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Abstract: In this paper, we propose a modified synthetic control causal analysis for time series data
with volatility in terms of absolute value of return outcomes taken into account in constructing the
prediction of potential outcomes for time series causal analysis. The consistency property of the
synthetic weight parameter estimators is developed theoretically under a time series data-generating
process framework. The application to evaluate the UK’s mini-budget policy, announced by the
then Chancellor on 23 September 2022, which had significant implications for the stock market, is
examined and analysed. Comparisons with traditional synthetic control and synthetic difference in
difference (DID) methods for evaluation of the effect of the mini-budget policy on the UK’s stock
market are also discussed.
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1. Introduction

Causal inference of the impact of a governmental policy on the financial market is
important not only for evaluating the policy’s effects but also for understanding the market
movement. In this study, we are interested in investigating the synthetic control method [1]
in estimating the effect of the mini-budget policy by the Truss government on the UK’s stock
market. This policy was announced by the then Chancellor of the Exchequer in a Ministerial
Statement entitled “The Growth Plan” to the House of Commons on 23 September 2022,
widely referred to in the media as a mini-budget. It contained a set of economic policies and
tax cuts such as a planned cut in the basic rate of income tax from 20% to 19%, an abolition
of the highest (45%) rate of income tax in England, Wales and Northern Ireland, reversing a
plan of March 2021 to increase corporation tax from 19% to 25% from April 2023 and the
April 2022 increase in National Insurance, and cancelling the proposed Health and Social
Care Levy (according to a Wikipedia paper “September 2022 United Kingdom mini-budget”
extracted on 27 May 2024). Owing to widespread negative response to the mini-budget,
the planned abolition of the 45% tax rate was reversed 10 days later, and the plans to
cancel the increase in corporation tax were 21 days later. In order to assess the mini-budget
policy effects on the financial market, we will utilise the FTSE100 index as an aggregated
dataset of the UK stocks, a good metric to reflect the UK stock market. We can therefore
learn the causal effect of the mini-budget on the UK stock market by investigating how the
FTSE is affected by this policy. In view of the fact that the policy was only implemented
briefly in the UK, it may probably be reasonable to see that the stock indexes from other
countries were not significantly affected by this policy. In this situation, the FTSE100,
a share index of the 100 companies listed on the London Stock Exchange with the highest
market capitalisation, may be reasonably seen as the only index affected by the mini-budget
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policy among the indexes from different countries in this analysis. Therefore, the synthetic
control method looks like a suitable tool in solving such a problem through reasonably
synthesizing the indexes from other countries to estimate the potential outcomes of the
FTSE100 as the treated unit in the absence of the treatment of the mini-budget policy in
the UK.

In the realm of predictive modeling for time series data, great progress has been
achieved in the recent years especially in the field of predictive statistical and machine
learning methods, which perform well in estimating the outcomes that are of interest
given relative characteristics. However, prediction is not a causation in general. Re-
searchers have become increasingly interested in the causal mechanism between covariates
and outcomes. For example, people care about “why it happens” in addition to “what
will happen”. This kind of causal mechanism help people not only to summarise a past
event but also to improve the prediction accuracy of the outcomes under the varying
degrees of influence of certain factors and then further help people make their decisions
on the future. Evaluating the effect of some given intervention is one of the popular
causal inference problems, and receives widespread attention from researchers for inde-
pendent data (or for data assumed to be independent); see, e.g., Künzel et al., 2019 [2] and
Wager and Athey, 2018 [3]. However, the causal effect evaluation for time series data is the
problem that is of our interest in this paper. There remain few investigating time series
causal evaluations apart from interrupted time series analysis (c.f. [4]). For more discus-
sions with relevant references, see [5], where causal inference for time series is seen as a
(counterfactual) prediction problem built on the literature on conformal prediction.

The synthetic control method (SCM) has been popular, and is called “arguably the most
important innovation in the last 15 years” (Anthey and Imbends, 2017 [6]) in evaluating
the effect of some given treatment on a single unit (Abadie et al., 2010 [1]). It makes use of
the control units to construct the potential outcomes of the treated unit after intervention
by weighted averaging of the outcomes of the control units. The weights, referred to as
synthetic weights, are determined by minimising the difference between the synthetic series
and the observed treated series before intervention. Then, the causal effect of the given
treatment is estimated to be the difference between the observed series of the treated unit
and the synthetic series after the treatment time.

Conventional SCM constructs the potential outcome series which has similar charac-
teristics to the observed treated unit in terms of not only the pre-intervention outcomes but
also the covariates that could affect the outcomes. In this way, the effect of confounding
factors that possibly confound the causal effect estimation can be effectively eliminated
under suitable assumptions. However, considering that the SCM is usually applied in
a setting associated with time, it is reasonable for us to take time series properties into
consideration as some “time series covariates” while determining the synthetic weights to
improve the performance of the conventional SCM. Generally, the conventional SCM has
considered all the pre-intervention outcomes, which could have been seen as involving the
lagged outcomes when determining the synthetic weights. This property of the SCM could
make synthetic outcome series automatically include the autocorrelation properties of the
observed outcome series. We will show this property of the SCM in our empirical study.
However, in addition to autocorrelation, conditional heteroskedasticity, which is especially
widespread in financial time series data, is also an important characteristic and should be
taken into account when determining the synthetic weights. Therefore, in this paper, we
propose a modified synthetic control method (MSCM) to help cover the conditional het-
eroskedasticity of the original treated series to improve the performance of the conventional
SCM in causal effect inference and compare its performance with the conventional SCM in
the empirical study to evaluate the causal effect of the mini-budget policy in the UK.

Our modified synthetic control method, on the one hand, improves the estimation
accuracy for the potential outcome series, when compared to the conventional synthetic
control method. We will demonstrate this by the pre-intervention mean squared error
(MSE) of the two methods. In our empirical study, the MSE of our modified synthetic



Mathematics 2024, 12, 3301 3 of 25

control method is shown to decrease by 40% compared with the conventional synthetic
control method, which significantly illustrates the improvement of the modified synthetic
control method. On the other hand, by considering the volatility in terms of absolute return
in the empirical study, the pre-intervention residuals by the modified synthetic control
method are well controlled to have a stable fluctuation degree. This implies that the residual
series produced by the modified synthetic control has a stable variance while through the
conventional synthetic control method the residual series are obviously heteroskedastic
as shown in Section 4.3. Thus, we can reasonably assume that the residuals along time
have the homoskedasticity property by our modified synthetic control method. There-
fore, we can establish the consistency of the estimated synthetic weights by the modified
synthetic control method; thus, the consistency of the estimated potential outcomes is
naturally achieved under weaker assumptions than Chernozhukov et al. [5]. Note that
Chernozhukov et al. [5] achieve the consistency of the potential outcome estimations under
more stringent assumptions due to violation of homoskedasticity of the residual series.

The structure of the rest of this paper is as follows. Section 2 introduces the preliminar-
ies for causal analysis, including notations, a potential outcome-based causal framework
and the conventional synthetic control method. In Section 3, we propose the modified
synthetic control method including its overview, the form of the model and the consistency
of the estimated synthetic weights. Section 4 will apply our new method to an empirical
study, which evaluates the causal effect of the mini-budget policy on the UK’s stock market.
We will demonstrate the performance of the modified synthetic control method proposed
by this paper by comparing our method to the conventional synthetic control method and
the synthetic difference in difference method popular in the causal evaluation literature.
Finally, Section 5 presents the conclusion. The theoretical proof of the consistency property
will be relegated to Appendix A.

2. Preliminaries of Causal Analysis

In this section, we introduce preliminaries on the potential outcome causal framework,
which is applied in this paper, due to Neyman [7] and Rubin (c.f., the synthetic control
method proposed by Abadie et al. [1]).

2.1. Notations

We consider the panel data Yit, a type of data collected for units, i = 1,⋯, J +1, observed
over a period of time at a regular frequency, t = 1,⋯, T. The indicator of a treatment
assignment is defined to be a binary Wit for unit i at time t, where Wit = 0 stands for unit
i not to be under the treatment at time t while Wit = 1 implies that the unit i is under the
treatment at time t. Further, suppose the intervention time is at time T0 (1 < T0 < T); that is,
after the time T0, a group of units, called treated units, are assigned the treatments, while
the rest, called control units, will remain untreated over the period. This hence implies
that Wit = 1 for a treated unit i, while Wit = 0 for a non-treated unit i, at t > T0. In synthetic
control casual effect evaluation problems, we are often interested in the situation where
only one or a few units are affected by the intervention. Without loss of generality, we
let unit 1 be the only treated unit and others the control units, the number of which is
hence J. Moreover, as we care about only the effect of a given intervention, the treatment
assignment is binary and there are only two potential outcomes for unit i at time t, which are
denoted by Y(0)it in the absence of the treatment and Y(1)it under the treatment, respectively.
In addition, the observed outcome of unit i at time t is denoted by Yit and the vector of p
observed covariates for unit i at time t by Zit. As usual, we will denote the causal effect by
τ, defined specifically below.

2.2. Causal Framework

We introduce the needed potential outcome causal framework, based on which the
synthetic control method and our modified synthetic control method are conceptually de-
fined. Note that in causal inference problem, data of the control units after the intervention
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time T0 are available for causal evaluation. This means we can make use of the data for
the control units after intervention to estimate the potential outcome of the treated units.
Applying the potential outcome framework due to Neyman [7] and Rubin (see, e.g., [8]),
we need to posit the existence of the two potential outcomes. In the case of independent
and identically distributed (i.i.d.) data across units, the average treatment effect is usually
of interest. Recall that the potential outcomes at time t are denoted by Y(0)it in the absence of

treatment and Y(1)it under the treatment, respectively. Then, in general, at t > T0, the average
treatment effect in population is

τave
t = Ei[Y

(1)
i,t −Y(0)i,t ], (1)

where Ei denotes the average in population across the individual units i, while the individ-
ual treatment effect for unit i at time t is

τit = Y(1)i,t −Y(0)i,t . (2)

When there is only one or a few units affected by the intervention, the individual
treatment effect is a more suitable metric to evaluate the causal effect because the number
of the treated units i is limited with the scales of the treated and the control units seriously
unbalanced. Therefore, the individual causal effect of the treated unit i is of interest often
in the synthetic control case.

Rubin suggested that we cannot infer the causal effect without rational assumptions
that link statistics to science [9]. We thus made some assumptions to implement causal
inference, including unconfoundedness assumption [10] and stable unit treatment values
assumptions (SUTVA), which are wildly used for causal inference. Here, the unconfound-
edness assumes that the treatment assignment Wit is independent of the potential outcomes
conditional on the vector of covariates Zit, often denoted by

{Y(0)it , Y(1)it } áWit∣Zit. (3)

The SUTVA includes no interference assumption and no hidden variations of treatment
assumption. No interference means that the potential outcomes for any unit do not vary
with the treatments assigned to other units, while the no hidden variation of treatment
assumes that for each unit, there are no different forms or versions of each treatment level,
which lead to different potential outcomes.

2.3. The Conventional Synthetic Control Method

In this section, we briefly introduce the conventional synthetic control method pro-
posed by Abadie [1] as a benchmark method based on which we will suggest our modified
synthetic control method in the next section. The synthetic control method [1] is a popular
causal inference method in evaluating the causal effect of some certain intervention on the
treat unit. It imputes the counterfactual by weighted averaging the outcomes of the control
units. In the synthetic control method, we take unit i = 1 for the treated unit, and other
units for the control units. A useful exemplary model for the potential outcome Y(0)it in [1]
is defined by a factor model:

Y(0)it = δt + θtZi + λtµi + εit, (4)

where Zi is a vector of p observable covariates and µi is a vector of unobserved factors
for unit i, εit is a zero mean error term, and θt and λt are the time-varying coefficients.
The weights for the control units, which are called the synthetic weights, are determined
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through balancing the properties of the units under or in the absence of the treatment
before the intervention. Suppose there exist (w∗2 , . . . , w∗J+1) such that

J+1

∑
j=2

w∗j Yj1 = Y11,
J+1

∑
j=2

w∗j Yj2 = Y12, . . . ,
J+1

∑
j=2

w∗j YjT0 = Y1T0 and
J+1

∑
j=2

w∗j Zj = Z1. (5)

In general, it is impossible to do as indicated in (5), so what we are trying to do is to
find a series of weights ω̂ = (ŵ2, . . . , ŵJ+1)′ close to the weights w∗j by approximation to
solve the equation:

ω̂ = arg min
ω
∣∣Vx

1/2(X1 −X0ω)∣∣22 =∶ (X1 −X0ω)′Vx(X1 −X0ω), (6)

where ∣∣ ⋅ ∣∣2 stands for the L2 Euclidean norm, ω = (w2, ..., wJ+1)′, with the notation ′ in

the superscript denoting the transpose of a vector or matrix, satisfies
J+1
∑
i=2

wi = 1 and wi ≥ 0

for 2 ≤ i ≤ J + 1, X1 is the vector that contains the pre-treatment outcomes Y1t, 1 ≤ t ≤ T0,
and observable covariate Z1 for the treated unit, and X0 is a (T0 + p) × J matrix whose
j-th column vector contains the corresponding pre-treatment outcomes Yjt, 1 ≤ t ≤ T0,
and observable covariate vector Zj for the control units, with p denoting the dimension
of the vector Zi. Here, Vx ∈ R(T0+p)×(T0+p) is a pre-specified symmetric importance matrix
which grants different importance weights to the properties specified in (5) for the units.
To simplify the exposition and notation, Vx is set to be an identity matrix, that is with equal
importance weight for each equation in (5), in this paper as Ben-Michael et al. [11] did.

After the synthetic weights are determined as above, the potential outcomes of the
treated unit in the absence of the treatment can be estimated through the weighted averag-
ing of the observed outcomes of the control units:

Ŷ(0)1t =
J+1

∑
i=2

ŵiYit for t > T0. (7)

Then, the causal effect of the intervention can be derived by comparing the estimated
potential with the observed outcomes of the treated unit, by noting that Y(1)1t = Y1t for t > T0,

τ̂t = Y1t − Ŷ(0)1t , t > T0. (8)

3. The Modified Synthetic Control Method

As introduced in the last section, the synthetic control method determines the synthetic
weights by balancing the outcomes Yit and covariates Zi of the units under or in the absence
of the treatment before intervention time. In our real data example on mini-budget impact
below, Yit is the daily stock market return series with unit i standing for individual country,
and Zit is the interest rate of the corresponding country i but depending on time t. It is a
well known fact that the volatility of the stock-return series is often clustered; that is, while
returns themselves are uncorrelated, absolute returns or their squares display a positive,
significant and slowly decaying auto-correlation function [12], which is however not taken
into account by the conventional synthetic control method. We have hence followed
Granger and Ding [13] with the absolute return value seen as a local volatility measure.
In this section, we hence suggest a modified synthetic control method which additionally
considers the absolute value of the outcomes, standing for their local volatility. Thus,
in addition to the lagged terms of the outcome, as mentioned by Abadie [1], the absolute
value of the outcomes should also be taken into consideration while applying the synthetic
control method on interrupted time series problems [4], especially for financial time series.
Because there usually exists conditional heteroskedasticity in such time series as a very
important characteristic, ignoring it might affect the quality of the synthetic counterfactual



Mathematics 2024, 12, 3301 6 of 25

series. We will show the improvement of the modified synthetic control method over the
conventional synthetic control method through the empirical study in next section.

3.1. Form of the Modified Synthetic Control Method

For convenience, we have made the variables centralised with mean zero in discussion
of the modified synthetic control method, designed to infer the causal effect of an interven-
tion on series in time. We consider zero-mean stationary series Yjt for units j = 1, 2,⋯, J + 1,
in which the absolute value of these outcomes would be helpful and reasonable, with unit
j = 1 for the treated unit and others for the control units. Specifically, we suppose there are
a series of weights (w∗2 , . . . , w∗J+1) that could make

J+1

∑
j=2

w∗j Yj1 = Y11,
J+1

∑
j=2

w∗j Yj2 = Y12, ⋯,
J+1

∑
j=2

w∗j YjT0 = Y1T0 ,

J+1

∑
j=2

w∗j ∣Yj1∣ = ∣Y11∣,
J+1

∑
j=2

w∗j ∣Yj2∣ = ∣Y12∣, ⋯,
J+1

∑
j=2

w∗j ∣YjT0 ∣ = ∣Y1T0 ∣,

and
J+1

∑
j=2

w∗j Zj1 = Z11,
J+1

∑
j=2

w∗j Zj2 = Z12, ⋯,
J+1

∑
j=2

w∗j ZjT0 = Z1T0 ,

(9)

hold. Then, we try to find a series of weights ω̂ = (ŵ2, . . . , ŵJ+1) close to the weights w∗j by
approximation to solve:

ω̂ = arg min
w2,...,wJ+1≥0,

J+1
∑
j=2

wj=1

T0

∑
t=1

⎧⎪⎪⎨⎪⎪⎩
v1(Y1t −

J+1

∑
j=2

ωjYjt)2 + v2(∣Y1t∣−
J+1

∑
j=2

ωj∣Yjt∣)2 +
p

∑
k=1

vi+2(Z
(k)
1t −

J+1

∑
j=2

ωjZ
(k)
jt )

2
⎫⎪⎪⎬⎪⎪⎭

, (10)

where Z(k)jt represents for the k-th covariate of Zjt for unit j at time t, k = 1,⋯, p, and v1, v2,⋯, vp+2

are the pre-specified group importance weight coefficients for each row group in (9), in the
same spirit (but a special case) of the importance matrix Vx in (6), which reflect the relative
importance of the synthetic control reproducing the values for each type of the predictors
in (9) for the treated unit (Abadie, 2021 [14]). In the following, all those v’s are just taken
as 1 for simplicity and ease. Then, similarly to the conventional synthetic control method,
after estimating the synthetic weights, the potential outcomes of the treated unit i = 1 in the
absence of the treatment can be estimated by:

Ŷ(0)1t =
J+1

∑
i=2

ŵiYit for t > T0, (11)

following from which the estimated causal effect of the intervention at time t > T0 is:

τ̂t = Y1t − Ŷ(0)1t . (12)

The consistency property of such an estimator is given in the next subsection. In
Section 4, we test its performance in an empirical study and compare it with the conven-
tional synthetic control method.

3.2. Consistency of the Modified Synthetic Control Method

In terms of the theoretical results of the synthetic control method, some work has been
carried out for the estimated potential outcomes. Abadie et al. [1] proved that the bias of the
synthetic control estimator can be bounded by a function that goes to zero as the number of
pre-treatment periods increases. Chernozhukov et al. [5] regard the conventional synthetic
control estimator, which only considers the outcomes of the units, as a constrained least
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squares estimator and give the consistency of the estimated potential outcomes. Despite
these existing theories for the estimated potential outcomes, researchers seldom focus
on the limiting theorems of the synthetic weights, which are essential in synthetic-type
methods. Therefore, we tend to give the consistency property of the synthetic weights of
the modified synthetic control method which considers the absolute outcomes and the
relevant covariates, to fill this gap.

Like Chernozhukov et al. [5], we regard the synthetic control estimator as a constrained
least squared estimator, i.e., the non-negative least square estimator. Correspondingly to (9),
we define

Y(0)1t = (Y1t, ∣Y1t∣, Z[1]1t , Z[2]1t , . . . , Z[p]1t )
′,

X(0)t =

⎛
⎜⎜⎜⎜⎜⎜⎜
⎝

Y2t Y3t . . . YJ+1 t
∣Y2t∣ ∣Y3t∣ . . . ∣YJ+1 t∣
Z[1]2t Z[1]3t . . . Z[1]J+1 t
⋮ ⋮ ⋮ ⋮

Z[p]2t Z[p]3t . . . Z[p]J+1 t

⎞
⎟⎟⎟⎟⎟⎟⎟
⎠

,

ω = (w2, w3, . . . , wJ+1)′

and
εt = (εt(Y), εt(∣Y∣), εt(Z[1]),⋯, εt(Z[p]))′

standing for the vector for the treated unit, the matrix that contains the vectors of the control
units, the vector of synthetic weights and the relevant residuals, respectively. According to
the equations given in (9), we have:

Y(0)1t = X(0)t ω + εt. (13)

Then, the “true synthetic weights” w∗ are defined by minimising the population error:

ω∗ = arg min
w≥0

E∥Y(0)1t −X(0)t ω∥22, (14)

where the L2 norm ∥ ⋅ ∥2 of a vector a is defined to be ∥a∥2 =
√

aTa. Note that “true synthetic
weights” here refers to the population version of the weights defined by Equation (14),
where the population synthetic weight vector ω∗ is defined by minimising the population
synthetic mean squared error. This does not mean that the synthetic regression model
based on the equations in (9) is true—it only means an optimal approximation in the sense
that the population synthetic mean squared error in Equation (14) is minimised.

To obtain the estimated synthetic weights by non-negative regression based on the pre-
intervention data ranging from t = 1 to t = T0, we define the pre-intervention observations
of the treated unit to be:

Y pre
1 = (Y(0)′11 , Y(0)′12 ,⋯, Y(0)′1T0

)′ (15)

and the matrix that contains pre-intervention observations of control units is:

X pre
0 = (X(0)′1 , X(0)′2 ,⋯, X(0)′T0

)′. (16)

Since all the elements in the above vector and matrix are not affected by the interven-
tion before T0, their observation values could be directly regarded as the potential outcomes.
Then, based on the observation data, we can estimate the synthetic weights through:

ω̂ = arg min
ω≥0

1
T0
∥Y pre

1 −X pre
0 ω∥22 =∶

1
T0

T0

∑
t=1
∥Y(0)1t −X(0)t ω∥22. (17)
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In application, we can then normalise the estimator ω̂ so that the summation of the
components equals 1. The estimation of the parameters is easily implemented by using the
function “Synth” of the “SyntheticControlMethods” package in Python (Version 3.8.2).

The following theorem shows that the estimator ω̂ is a consistent estimator of ω∗ as
the sample size T0 →∞.

Theorem 1. (1) Let (εt) be the error term vector εt = Y(0)1t − X(0)t ω∗ that satisfies E[εt] =
0, E[∥εt∥2] = σ2 and E[∥εt∥4] < ∞. (2) {Y(0)1t , X(0)t } is an α-mixing stationary sequence,
with the mixing coefficient α(k) = supA∈F t

−∞
,B∈F∞t+k

∣P(AB)− P(A)P(B)∣ → 0 as k →∞, where

F t
s stands for the σ-algebra (or intuitively an information set) of {Y(0)1j , X(0)j }s≤j≤t. (3) Let

v = X pre
0 ω∗−X pre

0 ω, with vt being the sub-vector of v corresponding to εt, and
1
T0

v′ε =
1
T0

T0
∑
t=1

v′tεt.

Further, v′tεt for t = 1, 2, ... is an α-mixing series with its mixing coefficient α(n) ≤ exp(−2cn) for a

certain c > 0. (4) There exists M = MT0 that satisfies
M2

T0
= o(1) and

T0

M4 = o(1) . (5) Moreover,

the minimum eigenvalue of (X pre
0 )

′X pre
0 , denoted by λmin, has positive lower bound λmin > C > 0.

Then, ω̂ is a consistent estimation of ω∗, that is:

ω̂
p
Ð→ ω∗, as T0 →∞.

Theoretically, it is hoped that an optimal approximation in (14) can be achieved to
generate the synthetic regression residuals that are the least informative (i.e., more like a
purely white noise) in the sample version for the estimator given by Equation (17). Clearly,
the consistency of the estimator given in Equation (17) converging to the population optimal
synthetic weight vector ω∗ is theoretically important, ensuring that the sample version esti-
mator makes sense. Then, we can further conclude that the potential outcomes synthesised
by these consistent synthetic weights are consistent estimation of the potential outcomes.

4. Evaluating the Mini-Budget Policy on UK Stock Market: An Empirical Study

In this section, we take an empirical study to compare the performance of the modified
synthetic control method with the conventional synthetic control method in evaluating
the causal effect of “The Growth Plan” by the Truss government, widely referred to in the
media as a mini-budget.

4.1. Data

Here, we use the daily stock close index data of FTSE, DJI, FCHI, GDAXI, HSI, KS11,
IXIC, N225, ST0XX, TWII, and SPXL from 2 February 2021 to 9 November 2022 as the raw
data and let 23 September 2022 be the intervention date when the mini-budget was deliv-
ered as a ministerial statement by the then Chancellor of the Exchequer, Kwasi Kwarteng.
All the stock market datasets are collected from Yahoo Finance using the Python package
“yfinance”. The stock price indexes are shown in Figure 1, where the red vertical line
represents the intervention time. We observe from this figure that most of the series are
non-stationary. To make these series stationary, we transfer the daily stock price data into
daily return data through rt = (Pt − Pt−1)/Pt−1, where Pt and Pt−1 are the daily closing prices
of the index on day t and t − 1, respectively. The time series of the daily return data all look
stationary as shown in Figure 2.

Since the stock trading is not done everyday, we regard 26 September 2022, which
is the first observable time point immediately following the intervention, as the first
post-intervention time point. Following the no anticipation contextual requirement by
Abadie [14], the synthetic control estimators may be biased if forward-looking economic
agents react in advance of the policy intervention, while backdating the intervention in
the data does not mechanically bias the estimator of the effect. Therefore, we backdate the
intervention to 5 September 2022 before Truss became prime minister when little of the
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anticipation effect can be expected. Additionally, on the one hand, since the stock trading
dates are slightly different in various countries, we take the intersection of the trading dates
of all the 11 stock indexes to unify the trading dates for them. Then, based on the unified
data, we can apply the synthetic control method to estimate the potential outcomes and
thus the causal effects. On the other hand, the trading dates are not consecutive, which may
lead to some problem while plotting the series, so we transfer the dates into consecutive
integers according to the date index (e.g., 20210202 with date index 0 and 20210203 with
date index 1, etc.) so that we obtain date consecutive stock index series.

Figure 1. The stock price indexes, with the red vertical line representing the intervention time.

In addition to the stock index daily return as the outcome, we also consider the interest
rate as the covariate while implementing the synthetic control method because among the
financial factors, changes in the interest rate level have very direct and rapid impact on
the stock market. Generally, when interest rates fall, stock prices rise; when interest rates
rise, stock prices fall. Moreover, due to the epidemic of COVID-19, a lot of governments
around the world have adopted quantitative easing policies to stimulate the economy,
which may lead to inflation. Therefore, after the epidemic stabilised, in order to avoid
hyperinflation, central banks started raising the interest rates to control inflation. And the
drastic rate hike policies must have significant influence on the stock market. Therefore,
in addition to daily return, we take the interest rate data of transaction currency for the
11 indexes as the covariate in synthetic control method. This means that we hope to
obtain a synthetic unit whose stock index and corresponding interest rate are close to the
properties for the FTSE. We will compare it with the observed FTSE series to estimate the
causal effect. The series of interest rates for the corresponding transaction currencies are
shown in Figure 3. After processing and summarising the data, we will apply the synthetic
control method, the modified synthetic control and synthetic difference in difference (SDID)
method, respectively, to evaluate the causal effect of mini-budget policy and compare
their performances.
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Figure 2. The stock index daily return series, where the red vertical lines represent the interven-
tion time.
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Figure 3. Interest rate series of the 7 currencies.

4.2. Evaluating the Causal Effect of the Mini-Budget by Conventional Synthetic Control

In this subsection, we tend to estimate the causal effect of the mini-budget through
the conventional synthetic control method. In order to evaluate the performance of
this method, we need to set a metric that could reflect the performance of the model.
Moraffah et al., 2021 [15] summarised some evaluation metrics, which can be used to mea-
sure the performance of a causal model in terms of causal discovery power or causal effect
inference power and three of the proposed metrics (mean squared error (MSE), F-test, and
T-test) are suitable to evaluate the performance of causal effect inference models; that is of
interest to us. Moreover, Abadie 2021 [14] suggests the root mean squared prediction error
(RMSPE) as the evaluation metric for synthetic control method which is equivalent to the
pre-intervention MSE. Therefore, in this empirical study, we select MSE as the metric to
evaluate the performance of the causal inference methods, which compares the estimated
potential outcome series with the pre-intervention ground truth series by taking the average
of the squared differences at each pre-intervention time.

By applying conventional synthetic control method, which balances both the stock
index daily return and the corresponding interest rate, we could obtain the synthetic
weights and estimate the potential daily returns of FTSE in the absence of the effect of
mini-budget policy after its implementation time. Based on the synthetic control result, only
FCHI and STOXX are selected from the 10 control indexes to synthesise FTSE with estimated
synthetic weights 0.6534 and 0.3465, respectively. In detail, the potential outcomes of FTSE
after intervention could be estimated by:

F̂TSEt = 0.653443 ∗ FCHIt + 0.346471 ∗ STOXXt for t > T0 (18)

with the synthetic weights determined by:

arg min
w2,...,wJ+1≥0,

J+1
∑
j=2

wj=1

T0

∑
t=1

⎧⎪⎪⎨⎪⎪⎩
(Y1t −

J+1

∑
j=2

ωjYjt)2 + (r1t −
J+1

∑
j=2

ωjrjt)2
⎫⎪⎪⎬⎪⎪⎭

, (19)
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where Y1t represents the daily return of FTSE, while Yjt for j ≥ 2 represents the daily returns
of other stock indexes except FTSE, and rjt denotes the corresponding interest rate of the
currency used by stock index j at time t. When j = 1, r1t represents the interest rate of the
currency used by FTSE, which is GBP.

As the synthetic result shown in Figure 4, we could observe that the pre-intervention
fitness of the conventional synthetic control method is fairly good. Especially in terms of
the growing or declining trend, the synthetic series could follow the true series closely.
However, it is obvious that the volatility of the synthetic series is usually higher than that
of the real series, with higher peaks and lower valleys. This implies the conventional
synthetic control method cannot accurately capture the fluctuation property of the true
series. Moreover, in terms of the middle panel in Figure 4, the scale of the residuals across
time is not stable, which implies there exists heteroskedasticity in the residual series and this
may affect our inference on the causal effect. In terms of the performance of the synthetic
control method, the MSE of daily return is 0.40561, with the number of pre-intervention
period T0 = 327. In addition to the MSE, we also test the autocorrelation of both the
squared true FTSE daily returns and the squared synthetic FTSE daily returns. As shown
in Figures 5 and 6 we could observe that the autocorrelation characteristics of the squared
true FTSE daily return series, which has first- and third-order autocorrelations, and the
squared synthetic FTSE daily return series by the conventional synthetic control method
are significantly different. This phenomenon can further support our conjecture that the
synthetic series produced by the conventional synthetic control method is not able to cover
the heteroskedasticity of the original series.

Figure 4. Conventional synthetic result. Top panel: FTSE return shown by the solid blue line and
conventional synthetic FTSE shown by the red dotted line. Middle panel: the blue solid line after
intervention represents the estimated individual treatment effects for each date. The red dotted line
illustrates the treatment effect on the conventional synthesised potential outcome which is obviously
always 0. Bottom panel: The blue line after intervention represents the cumulative effect for the
treated unit until certain dates.
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Figure 5. Autocorrelation of the squared FTSE daily return series.

Figure 6. Autocorrelation of the squared daily return series by conventional synthetic control
(̂FTSEt = 0.653443 ∗ FCHIt + 0.346471 ∗ STOXXt).

Considering the causal effect of the mini-budget, we select the period between 26
September 2022 and 4 November 2022, which contains the next 30 trading days after the
intervention, as the affected period and regard the accumulated causal effect during this
period as the metric to evaluate the effect caused by the mini-budget policy. The result
by the conventional synthetic control method illustrates that the accumulated effect of the
mini-budget policy on FTSE return is τ̂cum = −0.04607 in the next 30 trading days. This is
the accumulated causal effect on the daily return, while when transferred to index data,
the effect will be more significant. And we will show the potential index after intervention
through conventional and modified synthetic control methods and compare them in the
next subsection.
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4.3. Evaluating the Causal Effect of Mini-Budget by the Modified Synthetic Control

After applying the conventional synthetic control method in the last subsection, we
notice that the heteroskedasticity of the series is not considered by the conventional method,
which may affect the quality of the synthetic potential outcomes. Therefore, in this section,
we use the modified synthetic control method to overcome this problem. Compared to the
conventional synthetic control method, the modified synthetic control method additonally
considers the absolute value of the outcome as a covariate while determining the synthetic
weights. By the modified synthetic control method, we obtain different synthetic weights
from the conventional synthetic control method. The result illustrates that, different from
the conventional method, STOXX and N225 are chosen from the donor pool, which contains
all the control units, with synthetic weights 0.873342 and 0.126635, respectively. In detail,
the potential outcomes of FTSE after intervention are estimated by:

F̂TSEt = 0.873342 ∗ STOXXt + 0.126635 ∗N225t for t > T0 (20)

with the synthetic weights determined by:

arg min
w2,...,wJ+1≥0,

J+1
∑
j=2

wj=1

T0

∑
t=1

⎧⎪⎪⎨⎪⎪⎩
(Y1t −

J+1

∑
j=2

ωjYjt)2 + (∣Y1t∣−
J+1

∑
j=2

ωj∣Yjt∣)2 + (r1t −
J+1

∑
j=2

ωjrjt)2
⎫⎪⎪⎬⎪⎪⎭

, (21)

where Yit also represents the daily return of stock index i at time t and rjt denotes the
corresponding interest rate of the currency used by stock index j at time t. Corresponding
to Equation (10), the choice of vi’s in this real data analysis are just taken as 1 for simplicity,
and there seems to be no particular prior information telling us which equation in (9)
should be more considered.

By comparing the modified synthetic result in Figure 7 to the conventional synthetic
result in Figure 4, we can see in the top panel that the synthetic FTSE series fits the true FTSE
series better than the result by conventional synthetic control during the pre-intervention
period, especially at the peaks and valleys of the series. This implies that the fluctuation of
the synthetic series is well controlled to be more similar to the fluctuation of the true FTSE
series by the modified synthetic control method. And we tend to attribute this progress
to the introduction of the absolute return, which could help control the volatility of the
synthetic series. In terms of the second panel above, we can observe that the fluctuation
scale of pre-intervention fitting error series is much more stable than the pre-intervention
error series produced by conventional synthetic control, which implies that the error series
is essentially homoskedastic. This means that the conditional heteroskedasticity of the
original series is covered by the modified synthetic control method. In order to further
demonstrate the advantage of the modified synthetic control method in terms of its ability
to cover the conditional heteroskedasticity, we also test the autocorrelation of squared
residuals by the conventional synthetic control method and the modified synthetic control
method shown in Figures 8 and 9, respectively.

According to the two autocorrelograms, we could easily observe that the residual
series by modified synthetic control outperforms the residual series by the conventional
synthetic control method since there is no significant autocorrelation of the squared residual
series by modified synthetic control while for the conventional synthetic control, the auto-
correlation of its squared residual series is relatively more significant. This means that the
left heteroskedasticity in the residual series is not expressed by the conventional method
and might lead to worse inference of the causal effect. Interestingly, our modified synthetic
control generates less informative residuals (i.e., more like a purely white noise) than the
residuals from the conventional synthetic control, as indicated in Figures 8 and 9. In this
sense, our modified synthetic control is preferred.



Mathematics 2024, 12, 3301 15 of 25

Figure 7. Modified synthetic result. Top panel: FTSE return shown by the solid blue line and modified
synthetic FTSE shown by the red dotted line. Middle panel: the blue solid line after intervention
represents the estimated individual treatment effects for each date. The red dotted line illustrates
the treatment effect on the modified synthesised potential outcome which is obviously always 0.
Bottom panel: The blue line after intervention represents the cumulative effect for the treated unit
until certain dates.

Figure 8. Autocorrelation of the squared residuals by the conventional synthetic control method
(̂FTSEt = 0.653443 ∗ FCHIt + 0.346471 ∗ STOXXt).



Mathematics 2024, 12, 3301 16 of 25

Figure 9. Autocorrelation of squared residuals by modified synthetic control method
(̂FTSEt = 0.873342 ∗ STOXXt + 0.126635 ∗N225t).

Moreover, turning to the goodness of fit of and causal inference result by the modified
synthetic control model, the MSE of daily return is 0.2480, which is reduced by 40%
compared to the MSE of the conventional synthetic control method with MSE = 0.4056.
This implies that the introduction of absolute return in the modified synthetic control
method could significantly improve the pre-treatment fit of the conventional synthetic
control method at least in this empirical study. In terms of the estimated causal effect of
the mini-budget by this modified method, as we do for the conventional synthetic control
method, we still select the period between 26 September 2022 and 4 November 2022, which
contains the next 30 trading days after the intervention, as the affected period and regard
the accumulated causal effect during this period as a metric to evaluate the causal effect.
According to the comparison between observed outcomes of FTSE and synthetic outcomes
by the modified synthetic control method, we conclude that the causal effect of the mini-
budget on the FTSE index return is τ̂cum = −0.0220, which is less than half of the estimation
result by the conventional synthetic control method. And based on the performances of
both of these synthetic control methods, we tend to conclude that the conventional synthetic
control method significantly overestimates the scale of the causal effect by the mini-budget
policy compared to the modified synthetic control method, which has both lower MSE and
better homoskedastic properties.

To demonstrate the difference between the two synthetic control methods more clearly,
we transfer the daily return data back into stock index daily close price data. Since the
intervention was taken on 23 September 2022, we let the last trading day before intervention
(22 September 2022) be the starting point and calculate the estimated synthetic index
through multiplying (1+ r) with the last day’s close index where r is the synthetic daily
return. The comparison among the true FTSE index series and two synthetic series are
shown in Figure 10.

As shown in the figure, it is obvious that after promulgating the mini-budget policy,
there is a sharp decrease in the FTSE index, which is likely to be caused by the mini-budget
to a large extent, while also by other factors to some mild extend. Our target in the causal
effect inference is to precisely estimate the effect of the intervention of our interest while
eliminating the effect of other factors. Thus, the question here is how much of the change
comes from the mini-budget intervention. Therefore, we apply conventional and modified
synthetic control methods to construct the potential outcome series of FTSE which are
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shown by the yellow line and green line, respectively. In the next 5 trading days after
intervention, 337–341 (26 September 2022 to 5 October 2022), the three indexes experience
similar decrease trends. However, they begin to show significant difference from their
rebounding at 342, where the two synthetic FTSE series have more substantial growth
while the real FTSE just rises a little. After the rising trend, although the three series all
experience similar downtrends until 346 (10 December 2022), the divergence among the
three series still stays almost stable. After 346, even if all the three series grow rapidly,
the differences among them become larger because of different growth rates. Considering
the previous conclusion of the two synthetic control models, the green line generated by
modified SC model should be the best estimation of the potential outcomes in terms of
both the perspective of pre-treatment fit and its ability to control heteroskedasticity of
residual series. Therefore, we reasonably think that the conventional synthetic control
model seriously overrates the potential outcomes of the FTSE index after intervention and
thus overestimates the scale of the causal effect caused by the mini-budget policy on the
UK stock market. And the milder causal effect estimation given by the modified synthetic
control is considered to be more reasonable.

Figure 10. Comparison of the synthetic series and observed FTSE series.

4.4. Evaluating the Causal Effect of the Mini-Budget by Synthetic Difference in Difference

In addition to the comparison between the two synthetic control methods, we also tend
to compare them with synthetic difference in difference method (SDID) in this subsection
to see their performance in average causal effect inference. Synthetic DID is a causal in-
ference method proposed by Arkhangelsky et al., 2021 [16], which combines the ideas of
both synthetic control and difference in differences. It does not require one to synthesise
a series to fit the observed treated series very well by the control series like the synthetic
control method while the synthetic DID tends to synthesise a series parallel to the observed
treated series. In other words, it can accept a fixed intercept in the linear synthetic, and then
apply the difference in difference (DID) method (see Bowers et al. [17]; Abadie [18]; Call-
away et al. [19]; Card et al. [20]; Bertrand et al. [21]) on the parallelised series to eliminate the
effect of confounding factors while estimating the causal effect. Moreover, different from the
conventional synthetic control which gives a potential outcome series after intervention by
weighted averaging the control unit series, synthetic DID additionally weights the outcomes
along the time and gives an integrated result as an estimation of the average treatment effect.
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However, although learning good properties of synthetic control and DID, the synthetic DID
omits an important property from synthetic control, that SDID does not consider covariates
while determining the weights. The target of the synthetic control method is not only to
generate an outcome series which matches the observed series very well but one that also
requires the covariates of the synthetic unit match the observed treated unit’s covariates well,
through which we can obtain a similar unit to the observed treated unit in terms of every
aspect except for the treatment assignment; thus, the influence of the confounding factors
could be effectively eliminated. However, SDID only considers the outcome series and does
not care about the covariates, which means that although SDID uses a synthetic framework
similar to synthetic control, the basic idea of SDID is not essentially the same as the idea
of synthetic control. SDID does not try to eliminate the influence of confounding factors
through constructing a perfect unit with outcomes and covariates similar to the treated unit
like the synthetic control method does; it instead makes use of the idea of DID to eliminate
the confounding factors after the parallel assumption is well prepared by the synthetic idea.

The integrated result by SDID represents the fixed causal effect of intervention on the
treated unit at any time t for t > T0. Therefore, the result can be compared with the average
causal effect ˆ̄τ estimated by the two synthetic control methods. The causal effect series for a
long time after the intervention is not stationary as shown by the previous synthetic control
method results, which means the causal effects along the time may not have the same
expectation. Therefore, the mean value for such a non-stationary series without identical
expectation is not sufficient to be a metric to evaluate the causal effect. Thus, we tend to
select a relative short period after intervention, during which the expectation of the causal
effects at different times are similar to each other, then the average causal effect could be
regarded as a reasonable metric to evaluate the causal effect of the mini-budget. So the
average causal effect in the next five trading days after intervention is considered as a
metric to evaluate the average causal effect of the mini-budget policy. We apply SDID on
the FTSE daily return series ending at 341 (30 September 2022) by using the R (Version 4.2.1)
package “synthdid” to estimate the average causal effect of the mini-budget. By limiting
the time period before 341 we can calculate the conditional mean treatment effect in the
next five trading days after the intervention using SDID, the conventional synthetic control
method and the modified synthetic control method. The synthetic result by SDID is shown
in Figure 11 and the synthetic weights including period weights and unit weights are
shown in Table 1. In terms of the result produced by SDID, the estimated average treatment
effect of the mini-budget is τ̂SDID = −0.00329. And we tend to take the standard error of the
estimators, like Arkhangelsky et al. [16] did, as a metric to evaluate them so that the results
from different methods could be compared reasonably. The estimation results and standard
errors of the average treatment effects based on these three methods are demonstrated in
Table 2. We could see that the modified synthetic control method outperforms the other two
methods in terms of the standard error. In causal inference problems, less standard error
usually implies that more confounding factors are considered; thus, the estimation result of
causal effect is more stable and reliable. On the one hand, compared to the conventional
synthetic control method, the modified synthetic control decreases the standard error of
the conventional synthetic control method by about 50%, which implies that in estimating
the average causal effect, the modified synthetic control method still outperforms the
conventional synthetic control method significantly. On the other hand, in terms of the
comparison between the modified synthetic control method and SDID, their standard
errors are similar to each other and the modified synthetic control method even slightly
outperforms SDID, which is especially designed for average causal effect inference. This
might imply that when the suitable covariates are selected, the modified synthetic control
method could also have a very good performance in estimating the average causal effect
while the performance of conventional synthetic control is not desirable enough.
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Figure 11. The synthetic control DID result.

Table 1. The period weights and unit weights of the SDID.

Unit Weights Period Weights

Name Weight Time Weight

FCHI 0.124 4 0.020
STOXX 0.126 10 0.027
GDAXI 0.121 16 0.127
KS11 0.103 50 0.018
DJI 0.107 54 0.100
TWII 0.101 122 0.022
N225 0.102 173 0.027
HSI 0.099 187 0.078
IXIC 0.078 220 0.037

223 0.017
227 0.041
269 0.087
271 0.040
275 0.253
282 0.020

Table 2. Average causal effect estimation by the 3 methods.

Conventional SC Modified SC SDID

Average causal effect −0.00608 −0.00431 −0.00329
Stand error 0.00317 0.00156 0.00175

5. Conclusions

This study proposed a modified synthetic control method which can improve the
causal inference ability of the conventional synthetic control method. Compared to the
conventional synthetic control method, the modified method additionally considers the
absolute value of the outcomes to control the volatility of the synthetic series, which can
effectively improve the performance of the conventional synthetic control. Motivated by
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the heteroskedasticity of the time series, widely found in financial time series data but
not considered by the conventional synthetic control method, we propose the modified
synthetic control method to bridge this gap and introduce its framework and the synthetic
weight determination process with the theoretical consistency of the synthetic weights
determined by it established.

By the proposed method, we carry out an empirical study in evaluating the causal
effect of the mini-budget policy on the UK stock market to test the performance of the
modified synthetic control method. According to the empirical study result, the modified
synthetic control method significantly outperforms the conventional synthetic control in
terms of not only the pre-treatment fitness, illustrated by the pre-treatment MSE, but also
covering the heteroskedasticity of the pre-treatment residual series. The autocorrelation re-
sult demonstrates that there exists no autocorrelation of the squared pre-treatment residual
series by the modified synthetic control method, while the squared pre-treatment residual
series by the conventional synthetic control method is still obviously autocorrelated. This
implies that the conditional heteroskedasticity of the true pre-treatment series, which is not
covered by the conventional synthetic control method, has been reasonably characterised by
the modified synthetic control method. These two aspects of progress reflect the superiority
of the modified synthetic control method.

In addition, we also apply the synthetic difference in difference method in the empirical
study as a comparison with the modified synthetic control method to show its ability
in estimating the average treatment effect. The empirical study result illustrates that
the modified synthetic control method performs best among the three methods, at least
in this empirical study under reasonable settings. This means that if we could select
relatively reasonable covariates, the modified synthetic control method could even perform
better than SDID in the average causal effect estimation, which is specifically designed for
average treatment effect estimation while the conventional synthetic control method is not.
This result further demonstrates the advantage of the modified synthetic control method
especially while comparing to the conventional synthetic control method and also shows
its potential ability in estimating the average causal effect.
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Appendix A

To prove Theorem 1, we need the following lemma of Bernstein’s inequality.

Lemma A1. Let (Ui)i≥1 be a strong mixing sequence of centred real-valued and bounded random
variables satisfying that for a certain c > 0, α(n) ≤ exp(−2cn) and supi≥1 ∣Ui∣ ≤ M. Then, there is
a constant C3 that only depends on c such that for all n ≥ 4 and x ≥ 0:

p(∣Sn∣ ≥ x) ≤ exp(−
C3x2

nM2 +Mx(log n)(log log n)
), (A1)

where Sn =
n
∑
i=1

Ui.

This lemma is quoted from Merlevede et al., 2009 [22].
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Proof of Theorem 1. To obtain the optimal estimation of ŵ, we define the empirical
loss function:

L̂(ω) =
1
T0
∥Y pre

1 −X pre
0 ω∥22,

thus the expected loss function is:

L(ω) = E[L̂(ω)].

Then, based on the definition of the true synthetic weights ω∗, we have:

L̂(ω) =
1
T0
∥(X pre

0 ω∗ + ε)−X pre
0 ω∥22 =

1
T0
(∥X pre

0 ω∗ −X pre
0 ω∥22 + ∥ε∥

2
2 −2(X pre

0 ω∗ −X pre
0 ω)′ε)

and

L(ω) =
1
T0
(∥X pre

0 ω∗ −X pre
0 ω∥22 + E[∥ε∥22]) =

1
T0
(∥X pre

0 ω∗ −X pre
0 ω∥22 + T0σ2).

In terms of ∥ε∥22, we apply the law of large number (LLN):

1
T0
∥ε∥22

p
Ð→ σ2.

Turning to the term 2(X pre
0 ω∗ −X pre

0 ω)′ε, we first let X pre
0 ω∗ −X pre

0 ω = v, thus:

1
T0

v′ε =
1
T0

T0

∑
i=1

v′iεi.

We could decompose
1
T0

T0
∑
i=1

v′iεi into two parts: Letting Ui = v′iεiI(∣v′iεi∣ ≤ M/2)−Ev′iεiI

(∣v′iεi∣ ≤ M/2) and Vi = v′iεi −Ui = v′iεiI(∣v′iεi∣ > M/2)− Ev′iεiI(∣v′iεi∣ > M/2), we have

1
T0

T0

∑
i=1

v′iεi =
1
T0

T0

∑
i=1

Ui +
1
T0

T0

∑
i=1

Vi,

where M = MT0 satisfying
M2

T0
= o(1) and

T0

M4 = o(1) as stated in the assumption.

For the first part of the above equation with ST0 = ∑
T0
i=1 Ui, we apply the Bernstein

inequality for the α-mixing series proposed by Merlevede et al. (2009 [22], Theorem 1) as
we have given in Lemma A1:

p(∣Sn∣ ≥ x) ≤ exp(−
C3x2

nM2 +Mx(log n)(log log n)
)

for all n ≥ 4 and x ≥ 0, where Sn represents the sum of a sequence of dependent and
bounded random variables (Uk, k ≥ 1). (Uj)j≥1 is a strong mixing sequence of centred
and bounded random variables satisfying that, for a certain c > 0, α(n) ≤ exp(−2cn) and
supi≥1 ∣Ui∣ ≤ M and the constant C3 only depends on c.

Thus, we have:

p(∣
1
T0

T0

∑
i=1

Ui∣ ≥ e) = p(∣
T0

∑
i=1

Ui∣ ≥ T0e)

< exp(−
C3T2

0 e2

T0M2 + T0Me(log T0)(log log T0)
)
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p(∣
1
T0

T0

∑
i=1

Ui∣ ≥ e) < exp(−
C3T0e2

M2 +Me(log T0)(log log T0)
)

for any T0 ≥ 4, e > 0 and C3 is a constant depending on c. It is obvious that

−
C3T0e2

M2 +Me(log T0)(log log T0)
Ð→ −∞when T0 Ð→∞,

which means:

limmÐ→∞ p(∣
1
T0

T0
∑
i=1

Ui∣ ≥ e) = 0 for any e > 0.

Therefore, we can conclude that:

∣
1
T0

T0

∑
i=1

Ui∣
p
Ð→ 0.

In terms of the second part, we have:

P(
1
T0

T0

∑
i=1
∣v′iεi∣I(∣v′iεi∣ > M/2) > e) ≤ P( max

i=1,...,T0
∣v′iεi∣I(∣v′iεi∣ > M/2) > e)

≤
T0

∑
i=1

P(∣v′iεi∣I(∣v′iεi∣ > M/2) > e) = T0P(∣v′iεi∣I(∣v′iεi∣ > M/2) > e)

for any e > 0. It is obvious that when ∣v′iεi∣ > M/2, we always have ∣v′iεi∣I(∣v′iεi∣ > M/2) > e
and when ∣v′iεi∣ < M/2, ∣v′iεi∣I(∣v′iεi∣ > M/2) = 0 < e. Therefore, P(∣v′iεi∣I(∣v′iεi∣ > M/2) > e) ≤
P(∣v′iεi∣ > M/2). Then, we continue the above equation:

T0P(∣v′iεi∣I(∣v′iεi∣ > M/2) > e) ≤ T0P(∣v′iεi∣ > M/2)

≤ 4T0
E[∣v′iεi∣4]

M4 ,

where the inequality is obtained by Markov’s inequality. As we have assumed that
T0

M4 = o(1),

and E[εi
4] <∞, which implies E[∣v′iεi∣4] <∞. Then, it could be concluded that:

T0
E[∣v′iεi∣4]

M4 Ð→ 0,

which means:
1
T0

T0

∑
i=1
∣v′iεi∣I(∣v′iεi∣ > M/2)

p
Ð→ 0.

Thus, ∣
1
T0

T0
∑
i=1

Vi∣
p
Ð→ 0, and based on the convergence to 0 in probability of the two parts,

we have:
1
T0
(X pre

0 ω∗ −X pre
0 ω)′ε

p
Ð→ 0.

Therefore, it is obvious for us to conclude that:

L̂(ω)
p
Ð→ L(ω) as T0 Ð→∞.

After proofing that the empirical loss function is convergent to the expected loss
function, we need further to give the uniform convergence of the empirical loss function to

the expected loss function. For convenience, we denoteW = {ω ∈ RJ ∶
J+1
∑
i=2
∣wi∣ = 1, wi ≥ 0}.
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SinceW is compact, it can be covered by a finite number K of cubes Ik ⊂W with centres
ωk satisfying ∥ω −ωk∥ < δ for any δ > 0 and ω ∈ Ik. To give the uniform convergence of the
empirical loss function to the expected loss function, we hope:

sup
ω∈W

∥L̂(ω)− L(ω)∥
p
Ð→ 0.

Denote G(ω) by:

G(ω) = L̂(ω)− L(ω) =
1
T0
[∥ε∥22 − 2(X pre

0 ω∗ −X pre
0 ω)′ε]− σ2,

we can further give the inequality of G(w):

sup
ω∈W

∥G(ω)∥ = max
1≤k≤K

∥G(ωk)∥+ max
1≤k≤K

sup
ω∈Ik

∥G(ω)−G(ωk)∥.

For the first term, based on the pointwise convergence of L̂(ω), we could conclude
that max

1≤k≤K
∥G(ωk)∥ = op(1). Turning to the second term, for convenience, we first define:

H(ω) = ∥G(ω)−G(ωk)∥ = ∥
2
T0
[X pre

0 (ω −ωk)]′ε∥.

Thus, we can derive that:

H(ω) =
2
T0
∥ε′X pre

0 (ω −ωk)∥.

By Cauchy–Schwarz inequality, we have:

H(ω) ≤
2
T0
∥ε′X pre

0 ∥∥ω −ωk∥.

For the first term
2
T0
∥ε′X pre

0 ∥ in the above equation, we have:

2
T0
∥ε′X pre

0 ∥ =
2
T0

T0

∑
i=1
∣εi
′X(0)i ∣

= 2
1
T0

T0

∑
i=1
∣εi
′X(0)i ∣

≤ 2
1
T0

T0

∑
i=1
∥εi∥∥X

(0)
i ∥ = C,

where C is a finite constant. Turning to the second term ∥ω −ωk∥, we have:

∥ω −ωk∥ < δ

for any δ > 0 and ω ∈ Ik. Thus, we could conclude that:

max
1≤k≤K

sup
ω∈Ik

H(ω) = Op(δ).

Thus:
sup
ω∈W

∥G(ω)∥ ≤ max
1≤k≤K

∥G(ωk)∥+Op(δ) = op(1)+Op(δ),
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which means:
sup
ω∈W

∥L̂(ω)− L(ω)∥
p
Ð→ 0.

Then, we can conclude that L̂(ω) is uniformly convergent to L(ω).
Given that the empirical loss function is uniformly convergent to the expected loss func-

tion, we need to proof its strong convexity to ensure the loss function has a unique minimum
point. Returning to the expected loss function L(ω), we can calculate its Hessian matrix:

∇2L(ω) = X pre′
0 X pre

0 .

It is obvious that for any non-zero vector a, we have:

a′∇2L(ω)a = a′(X pre′
0 X pre

0 )a = (X
pre
0 a)′(X pre

0 a) = ∥X pre
0 a∥2 > 0,

which means ∇2L(ω) is positive definite. Then, based on the assumption as we assumed
that the minimum eigenvalue of X pre′

0 X pre
0 , denoted by λmin, has positive lower bound

λmin > C, we could conclude that the expected loss function L(ω) is strongly convex, which
means L(ω) has a unique minimum point. Therefore, based on the above results that
the empirical loss function converges to the expected loss function and the expected loss
function has a unique minimum point, we can conclude that:

ω̂
p
Ð→ ω∗,

which implies that ω̂ is a consistent estimation of ω∗. Thus, the consistency of the synthetic
weight estimation has been given.
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