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Abstract  1 

Immunoglobulin (IG) gene analysis provides fundamental insight into B-cell receptor structure 2 
and function. In B-cell tumors, it can inform the cell of origin and clinical outcomes. Its clinical 3 
value has been established in the two types of chronic lymphocytic leukemia with unmutated 4 
or mutated IGHV genes and is emerging in other B-cell tumors. The traditional PCR-based 5 
techniques, which are labor-intensive, rely on the attainment of either a dominant sequence 6 
or a small number of subclonal sequences and do not allow automated matching with the 7 
clonal phenotypic features. Extraction of the expressed tumor IG transcripts using high-8 
throughput RNA sequencing (RNA-seq) can be faster and allow the collection of multiple 9 
sequences matched with the transcriptome profile. Analytical tools are regularly sought to 10 
increase the accuracy, depth, and speed of acquisition of the full IGV-(IGD)-IGJ-IGC 11 
sequences and combine the IG characteristics with other RNA-seq data. We provide here a 12 
user-friendly protocol for the rapid extraction, identification, and accurate determination of the 13 
full (leader to constant region) tumor IG templated and non-templated transcript sequence 14 
from RNA-seq. The derived amino acid sequences can be interrogated for their physico-15 
chemical characteristics and, in certain lymphomas, predict tumor glycan types occupying 16 
acquired N-glycosylation sites. These features will then be available for association studies 17 
with the tumor transcriptome. The resulting information can also help refine diagnosis, 18 
prognosis, and potential therapeutic targeting in the most common lymphomas. 19 
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Introduction 1 

The B-cell receptor (BCR) immunoglobulin (IG) glycoprotein is the defining functional 2 
feature of a mature B cell, and IG gene analysis can provide fundamental insight into 3 
the origin and behavior of a B-cell tumor [1, 2]. It is a Y-shaped dimer of 2 identical 4 
heavy and light chains, with 2 main functional components. A variable region that 5 
confers diversity to recognize different antigens and is unique to each B cell, and a 6 
constant region with an effector function. IG diversity results from a series of genetic 7 
recombinations at the IG heavy (IGH) and kappa (IGK) or lambda (IGL) light chain loci 8 
during B cell development in the bone marrow before a naïve B cell exits to the 9 
periphery (Figure 1). For the heavy chain, the recombinations are accompanied by 10 
non-templated nucleotide additions/deletions at the junctions of one of ~51 IGHV, ~21 11 
IGHD, and ~6 IGHJ genes in the complementarity-determining region 3 (CDR3) 12 
forming the “fingerprint” of an individual B cell. Further variability is conferred by the 13 
recombination of a V gene with a J gene at the IGK or IGL loci. Following antigen 14 
encounter, naïve B-cells undergo class-switch recombination and somatic 15 
hypermutation, typically in the presence of activation-induced cytidine deaminase 16 
(AID), T cells, and cytokines, for affinity maturation in the germinal center (GC) and 17 
differentiation in memory B cells or plasma cells [3]. The GC reaction involves 18 
proliferation, which makes the B cells vulnerable to damage and transformation into 19 
tumors. Tumor B cells preserve the IG sequence of the cell of origin. Therefore, 20 
analysis of the IG sequences allows the identification of the stage of differentiation 21 
reached by a B-cell before tumor transformation [4-6].  22 

In chronic lymphocytic leukemia (CLL), IG analysis reveals two major types defined by 23 
IGHV mutational status [5]. The CLL type with unmutated IGHV (U-CLL) derives from 24 
pre-germinal center CD5+ B cells, while the CLL type with mutated IGHV (M-CLL) 25 
appears to arise from post-follicular CD5+ B cells [7, 8]. Since the discovery that U-26 
CLL has a worse prognosis than M-CLL [9, 10], subsequent studies have 27 
demonstrated that each type has a distinctive cellular origin, biology, (epi)genetics, 28 
clinical prognosis, and response to therapy [5, 11]. IGHV gene analysis has become 29 
an essential part of the diagnostic workup for any patient with CLL. 30 

IG analysis also informs key tumor-specific features in certain lymphomas. In classic 31 
follicular lymphoma (FL), the tumor IG acquires N-glycosylation sites (AGS), defined 32 
by the asparagine-X-serine/threonine motif (where X is any amino acid except proline) 33 
[12]. AGS in FL are typically in the CDRs of the variable region by somatic 34 
hypermutation [13] and are occupied by tumor-specific oligomannose-type glycans 35 
[14-16]. These atypical glycans are unique to the tumor B cell, are present on the entire 36 
FL clone, and persist during the entire clonal history of FL through transformation into 37 
diffuse large B-cell lymphoma (DLBCL), despite ongoing somatic hypermutation [14, 38 
17]. 39 

The current gold standard for IG gene analysis is by Sanger sequencing. This 40 
approach offers a highly accurate IG sequence but is time-consuming, labor-intensive, 41 
and requires a dedicated experimental and analytical workflow on samples with 42 
documented high tumor infiltration [18]. The increasing adoption of high-throughput 43 
whole transcriptome RNA sequencing (RNA-seq) methods allows many tests to be 44 
streamlined into a single experimental workflow. Through the application of 45 
appropriate analytical pipelines, a single RNA-seq experiment can yield 46 
comprehensive information on gene expression, isoform expression, single nucleotide 47 
polymorphisms (SNPs), and larger structural variants [19].  48 
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RNA-seq can therefore be a better alternative to Sanger sequencing in IG gene 1 
analysis. However, the intrinsic high variability of the non-templated CDR3 sequences 2 
has been a challenge to the identification of the full IG sequence with the current RNA-3 
seq analytical workflows, which have involved mapping reads to a reference 4 
transcriptome. 5 

Here we describe IgSeqR (pronounced I-G-Seeker), a protocol for the reference-free 6 
extraction, identification, and accurate determination of the full tumor IG transcript 7 
sequence from unselected whole transcriptome RNA-seq data. 8 

Development of the protocol 9 

We first used IgSeqR to identify the tumor IG full transcripts in a cohort of 489 DLBCL 10 
with RNA-seq data publically available [14]. The data were deposited in the National 11 
Cancer Institute (NCI) Genomic Data Commons (accession phs001444.v1.p1) [20, 12 
21]. The full IGHV-IGHD-IGHJ sequence rearrangements were identified from leader 13 
to constant region with high confidence in 339 (69%) samples, from which we could 14 
determine IGHV, IGHD, IGHJ, and IGHC use, homology to germline, and AGS 15 
presence and location. Since we were interested in those cases with N-glycosylation 16 
sites acquired by somatic hypermutation and no information was available on the 17 
tumor purity of these samples, we investigated only the 307 samples with mutated 18 
(<98% homology to germline) IGHV [14]. We found that the AGS were preferentially 19 
in the EZB genetic subtype of the GC-B-cell-like (GCB) DLBCL. The majority of these 20 
AGS were located in the CDR, in a fashion similar to FL. Following the generation of 21 
F(ab) from the tumor-derived IG heavy and light chain sequences we documented that 22 
the glycan structure occupying the AGS was location-dependent and that the 23 
oligomannose-type glycans occupied the CDR-located sites only. We performed 24 
correlation studies with the transcriptome profile and defined genes and gene sets 25 
differentially expressed in samples with and without AGS. We performed correlations 26 
with the clinical characteristics of the DLBCL. Interestingly, we found that AGS in the 27 
EZB subtype conferred a poor prognosis, indicating that this approach for IG gene 28 
analysis could be adopted to predict both glycan structure and response to 29 
conventional therapies [14]. In the present study, we report the IgSeqR script while 30 
validating its accuracy in primary CLL samples with matched IG heavy chain Sanger 31 
and bulk RNA-seq data (deposited in ArrayExpress, accession E-MTAB-12017) [22]. 32 
IgSeqR is fully concordant with Sanger sequencing for IGHV, IGHD, and IGHJ allele 33 
use and nucleotide sequence. 34 

Applications of the method 35 

IgSeqR is ideal for studies requiring high-quality base calls across the full sequence, 36 
including the non-templated CDR3 region, of the IG heavy and light chains of any 37 
mature B cell tumor. The protocol reduces the computational burden of de novo 38 
assembly by pre-filtering redundant data and allows the identification of the dominant 39 
nucleotide sequence of the IG heavy and light chains from leader to constant region 40 
from RNA-seq data. Through the alignment to the most updated IG sequence 41 
repertoires, currently IMGT/V-QUEST reference directory 202349-3, program version 42 
3.6.2 at http://www.imgt.org, it is possible to obtain insights into IGHV, IGHD, IGHJ 43 
heavy chain alleles, IGKV, IGKJ or IGLV, IGLJ light chain alleles, constant region class 44 
and subclass, homology to germline, CDR1-3 and FR1-4 characteristics. 45 
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IgSeqR can also be applied to autoimmune and infectious diseases to identify 1 
common patterns recurring in the polyclonal expansions (e.g. dominance and 2 
characteristics of IGHV1-69 in rheumatoid arthritis or influenza) [23, 24]. 3 

IgSeqR can also be used to generate F(ab)s [14] or improve strategies for vaccine 4 
and antibody therapy development [25-27].  5 

Comparisons with other methods 6 

Compared to Sanger sequencing and existing RNAseq-based protocols, IgSeqR 7 
increases the length of the transcript containing the full IGV(-IGD)-IGJ rearrangements 8 
from leader to IG constant region (up to 2000 nucleotides). 9 

It maintains the same level of accuracy as Sanger sequencing while improving the 10 
chance of detecting a clonal sequence compared to a PCR-based approach, 11 
particularly in lymphoma samples. IG sequencing of lymphoma samples by Sanger is 12 
notoriously difficult and demands significant amounts of equipment and time, 13 
particularly if subcloning approaches are necessary, to identify small cohorts of 14 
patients [28-30]. In a cohort of 37 lymphomas with more than 10% tumor B cells in the 15 
test sample by flow cytometry, PCR/direct Sanger sequencing successfully identified 16 
a dominant IG rearrangement in only 11 (30%). By Cibersort estimation [31], 439 17 
DLBCL samples from the NCI cohort had > 10% (tumor) B cells. IgSeqR identified the 18 
tumor IG rearrangement in 319 (73%), a significantly superior frequency than Sanger 19 
(p<0.0001). However, IgSeqR was also successful in identifying the full IG sequence 20 
in 20 of the 50 (40%) samples with <10% B cell purity, although the success rate was 21 
lower compared to >10% (p<0.005) (Figure 2 and Table S1).  22 

The experimental and analytical time to identify the sequences by Sanger was in 23 
weeks, while it was in days for the IgSeqR approach. This suggests that IgSeqR is 24 
dramatically efficient, offering a higher success rate in a shorter experimental and 25 
analytical time compared to standard PCR and Sanger sequencing. 26 

Although IgSeqR is currently not configured to build the IGHC sequence with contigs 27 
spanning from CDR3 to the 3’ end of the constant region allele used, the derived 28 
transcripts recovered are generally sufficient to determine the IGHC class and 29 
subclass with high confidence. This is another advantage compared to Sanger, where 30 
individual isotypes can only be identified using isotype-specific primers. 31 

Several tools have been developed for IG analysis from bulk and single-cell RNA-seq 32 
[32-40] (Table 1), many of which preferentially rely on aligning RNA-seq reads to IG 33 
reference sequences [33, 35-37]. MiXCR is widely adopted for immune profiling in 34 
both academic and industrial settings [33]. It primarily uses the N-regions at the IGV-35 
(IGD)-IGJ junctions as a reference and identifies and quantifies the IG repertoire by 36 
CDR3 diversity. However, it is less focused on the full length, and highly mutated IGV-37 
(IGD)-IGJ sequences may not be fully reconstructed. TRUST4 and IG_ID tools utilize 38 
de novo transcriptome assembly. However, TRUST4 was initially designed for TCR, 39 
rather than BCR, repertoire analysis [39]. The IG_ID tool can accurately produce full-40 
length BCR transcripts comparable to Sanger sequencing, but has an extended 41 
processing time and generates large temporary files due to the de novo assembly of 42 
the whole transcriptome, limiting its use for large-scale analyses [32]. 43 

We performed a direct comparison of IgSeqR with the MiXCR (v 4.3.2) or TRUST4 44 
(v1.0.12) with the 18 CLL samples (Tables 2 and S2).  45 
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MiXCR generated IGH transcripts for all 18 of the samples, but only 17 (94%) of these 1 
spanned the full IGHV-IGHD-IGHJ rearrangement, and only 14 (78%) had 100% 2 
identity with Sanger.  3 

TRUST4 generated IGH transcripts from 17 (94%) of the samples, all of which were 4 
fully concordant with Sanger. However, TRUST4 failed to identify the only case that 5 
had a deletion of codon 66 of the IGHV4-34 tumor sequence, possibly revealing a 6 
limitation of TRUST4 in identifying insertions or deletions.  7 

IgSeqR also produced the longest tumor transcripts, averaging a length of 2036 8 
nucleotides, compared to 589 and 769 nucleotides by MiXCR and TRUST4 9 
respectively. Notably, the majority (78%) of the IgSeqR transcripts were long enough 10 
to cover the full IGH region from leader to the membrane domain of the constant region 11 
with confidence, a feature not possible in the shorter transcripts generated by MiXCR 12 
or TRUST4 (Figure 3).  13 

When efficiency was assessed, IgSeqR took on average 1.18 seconds per nucleotide 14 
assembled (s/nt) to complete, compared to 8.10 s/nt and 1.44 s/nt minutes by MiXCR 15 
and TRUST4, respectively (Table S3). 16 

Overall, IgSeqR obtained longer transcripts, was more efficient per nucleotide 17 
assembled, and was more accurate than MiXCR and TRUST4. 18 

Experimental Design 19 

The experimental design of IgSeqR is divided into four key stages (Figure 3): (a) data 20 
preprocessing, (b) de novo transcriptome assembly, (c) IG transcript selection and 21 
quantification, and (d) IG transcript annotation and interpretation. 22 

Data preprocessing 23 
IgSeqR can use RNA-seq data in either BAM or FASTQ format. We have assessed 24 
the quality of the RNA-seq data using FastQC [41], but alternative methods more 25 
familiar to the operator can be used. Alignment of the data to a reference transcriptome 26 
is performed using HISAT2 alignment tool, which employs a hierarchical indexing 27 
strategy based on Burrows-Wheeler Transform [42]. If the input file has been 28 
previously aligned, FASTQ reads must first be extracted from the alignment file (Step 29 
1) before being supplied to HISAT2 (Step 2). It is problematic to map IG variable 30 
genes, especially D and J to a reference transcriptome using short read RNA-seq data, 31 
which results in many IG-derived reads being unmapped following alignment [32]. 32 
Therefore, following alignment, the resultant BAM file is filtered to extract reads which 33 
align to specific IG associated genomic loci in addition to any unmapped reads. 34 

De Novo Assembly 35 
The Trinity software [43] is used for reference-free transcript reconstruction of the 36 
reads associated with IG sequences. Trinity follows a three-step process: Inchworm, 37 
Chrysalis, and Butterfly [43]. Inchworm builds initial contigs by assembling overlapping 38 
k-mers from the short reads. Chrysalis constructs a De Bruijn graph using the 39 
Inchworm contigs to represent connections between overlapping sequences and 40 
identifies alternative splicing events. Butterfly decomposes the De Bruijn graph into 41 
individual components representing distinct transcripts from the same gene. These 42 
components are refined and merged to generate complete transcript sequences. The 43 
filtered FASTQ files generated from the HISAT2 output are supplied to Trinity for de 44 

.CC-BY-NC-ND 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 4, 2024. ; https://doi.org/10.1101/2024.09.03.611002doi: bioRxiv preprint 

https://doi.org/10.1101/2024.09.03.611002
http://creativecommons.org/licenses/by-nc-nd/4.0/


novo transcript assembly, resulting in a FASTA file containing the assembled 1 
transcripts (Step 4). 2 

IG Transcript Selection and Quantification 3 
To remove any non-IG associated transcripts assembled by Trinity, the transcripts in 4 
the output FASTA file are aligned to reference IG databases using BLAST [44]. 5 
Reference FASTA IG sequences are concatenated to generate the databases (Step 6 
5). Transcripts that align with an IG reference sequence are retained (Step 6) and 7 
quantified using Kallisto [45], a tool that quantifies transcript abundance from RNA-8 
Seq data using pseudo-alignment instead of read alignment. A k-mer-based index is 9 
built (Step 7) for quantification of the filtered transcripts using the FASTQ reads (Step 10 
8). 11 

IG Transcript Annotation and Interpretation 12 
The most abundant transcripts are identified using the transcript quantification outputs 13 
(Step 9) and passed through the IMGT/V-QUEST sequence alignment web tool [46], 14 
benefiting from a comprehensive database of known germline IG alleles and 15 
polymorphisms for functional annotations (Step 10). V-QUEST identifies and 16 
annotates IGHV-IGHD-IGHJ and IGKV-IGKJ or IGLV-IGLJ rearrangements, detects 17 
nucleotide mutations and insertions/deletions, and functionality. The annotated 18 
transcripts are then manually reviewed to identify the tumor transcript through a 19 
hierarchical filtering process (Step 11). 20 

Expertise Required 21 

To effectively implement IgSeqR, individuals must be familiar with computational 22 
biology and have basic expertise in navigating a Linux command-line environment. 23 
Users will need to be comfortable installing the necessary bioinformatics tools 24 
involved, preferably via the conda package manager. The protocol provides annotated 25 
scripts to run the pipeline, although proficiency in scripting languages, particularly 26 
BASH, and large-scale sequencing data and their data formats (Table 3) is beneficial. 27 
Familiarity with the principles of immunogenetics, BCR structure and function, and B-28 
cell biology in health and disease is expected for the interpretation and curation of the 29 
results (https://www.imgt.org/IMGTeducation/). While the protocol can be performed 30 
by a skilled graduate student or postdoctoral researcher with the necessary 31 
computational expertise, collaboration with a specialized core facility for sequencing 32 
analysis may be advantageous when generating and processing primary high-33 
throughput sequencing data. 34 

Limitations of Method 35 

Our initial use of IgSeqR with RNA-seq data from a cohort with unknown tumor B cell 36 
percentage [20, 21] demonstrated the utility of our protocol [14]. We used selection 37 
criteria that were designed to have the maximal confidence that the sequence 38 
identified was tumor-derived (at least 5-fold higher frequency than any other functional 39 
full transcript with different CDR3 identified). The full tumor IGHV-IGHD-IGHJ 40 
sequences including the IGHC constant region isotype were defined in 339/489 (69%) 41 
samples with RNA-seq data available [14]. However, the probability of identifying the 42 
tumor sequence could be maximized by changing certain parameters, including the 43 
fold increase of the dominant to the other sequences' frequency or the length of the 44 
transcript desired. 45 
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Although the success rate was lower compared to those with ≥10% estimated  B cells, 1 
a full IG rearrangement could be identified in many samples with <10%.  2 

The main limitation of IgSeqR is accessibility to high-quality RNA and the experimental 3 
costs of RNA-seq. However, the costs might be a limitation for large-scale cohorts, 4 
and not for well-selected samples. The poor quality of the RNA-seq data is a limitation. 5 
RNA extracted from formalin-fixed paraffin-embedded (FFPE) tumor samples, which 6 
are commonly available in diagnostic settings, is often of low quality [47], and is 7 
currently inadequate for IgSeqR. 8 

The sequencing chemistry employed during data generation can influence the outputs 9 
of the protocol. IgSeqR protocol has been designed and tested using paired-end 10 
sequencing, which is recommended for de novo assembly of RNA libraries generated 11 
from a polyA library prep and allows the recovery of unmapped reads [48]. The use of 12 
sequencing assays and analytical pipelines that remove unmapped reads will severely 13 
limit IgSeqR reliability and should therefore not be used.  14 

A benchmarking comparison of 10 DLBCL samples demonstrated notably longer 15 
runtimes when compared to our CLL cohort, with average runtimes taking 247 minutes 16 
in DLBCL vs 33 minutes in CLL per sample (Table S4). The cellular complexity and 17 
lower tumor purity (Table S1) of a DLBCL tissue sample may contribute to these longer 18 
runtimes compared to CLL blood samples. However, this is likely to have been 19 
compounded by the higher number of starting reads in DLBCL cases (121.2 million on 20 
average) compared to CLL (71.1 million on average), which increases the processing 21 
requirements at each stage of the protocol. 22 

Overall, sample characteristics, sequencing chemistry, and data quality may limit the 23 
efficacy of IgSeqR. Quality control assessments should be performed, and any 24 
necessary errors should be corrected before using IgSeqR. 25 

 26 

Materials 27 

Hardware 28 

The IgSeqR protocol is designed to be versatile, allowing compatibility with various 29 
computing resources, ranging from laptops to high-performance computing clusters, 30 
and cloud computing platforms. All analyses, including those for comparison with 31 
MixCR and TRUST4, were conducted using the Iridis5 high-performance computing 32 
cluster at the University of Southampton, utilizing 8 x 2.0 GHz CPU cores and 32 GB 33 
RAM to simulate a typical desktop workstation. Default settings were used for MixCR 34 
and TRUST4 following the RNA-seq from raw FASTQ files protocols from each tool’s 35 
documentation.  36 

However, the protocol can be run on less powerful hardware with longer expected 37 
runtimes. Before starting the protocol, users should carefully consider the exact 38 
resources available on their machine, including CPU cores and RAM (considering the 39 
RAM utilized by the operating system), to mitigate errors. 40 

Software 41 

• Operating system: Linux distribution (tested on Red Hat Enterprise v 7.9 and 42 
Ubuntu versions 16, 22 and 24 distributions)  43 
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• Conda package manager (https://conda.io) to install the IgSeqR environment. 1 
All dependencies of IgSeqR are documented in the environment file 2 
(Supplement 1), which eliminates the need for manual installation of individual 3 
tools and dependencies. The main software tools used in IgSeqR are listed 4 
below along with their versions as documented in the environment file: 5 

o BLAST (v 2.13.0) [44] 6 
o HISAT2 (v 2.2.1) [42] 7 
o Kallisto (v 0.48.0) [45] 8 
o Samtools (v 1.16.1) [49] 9 
o Trinity (v 2.13.2) [43] 10 

 11 
To create a conda environment from the command line, navigate to the 12 
directory containing the environment file and run the following command: 13 
 14 
$ conda env create -f environment.yml 15 
 16 
Replacing ‘environment.yml’ with the filepath of the environment file. 17 
 18 
Once the environment is created, it can be activated by running the following 19 
command: 20 
 21 
$ conda activate IgSeqR 22 

• The protocol below provides a detailed explanation of each command required 23 
for the operation of the IgSeqR protocol. Each command can be run 24 
independently; however, the protocol is designed to be run as a complete 25 
pipeline from a Linux shell script. An example BASH script has been provided 26 
(Supplement 2) which will carry out all analytical steps, if a conda evironment 27 
containing the necessary software (described above) is correctly setup and the 28 
correct experimental variables have been included in the accompanying 29 
configuration file (Supplement 3). This can be performed by calling the 30 
following command in the directory outputs and intermediate files should be 31 
written to: 32 
 33 
$ bash path/to/IgSeqR/Script.sh 34 
 35 
Where ‘path/to/IgSeqR/Script.sh’ specifies the location of the IgSeqR 36 
script file (Supplement 2) 37 
 38 
Users must read the protocol thoroughly before performing analysis using the 39 
provided scripts to facilitate error debugging and configuration for experiment-40 
specific requirements. 41 
 42 

Data 43 

In order to implement this protocol users  will need: 44 

● Paired-end RNA sequencing data in either FASTQ or BAM format 45 
● Indexed reference transcriptome for HISAT2 alignment. The protocol was 46 

designed and tested using the HISAT2 pre-indexed GRCh38 reference which 47 
can be downloaded from the HISAT2 Repository using the command: 48 
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$ wget https://genome-1 
idx.s3.amazonaws.com/hisat/grch38_snptran.tar.gz 2 

Alternatively, custom indexed reference from a user provided reference 3 
transcriptome can be generated using the hisat2-build command, as 4 
described in the HISAT2 documentation 5 
(https://daehwankimlab.github.io/hisat2/manual/) 6 

● Genomic coordinates associated with target regions for de novo transcript 7 
assembly. In this application, we have focused on IG heavy and light chains 8 
coordinateswhich are supplied in the Procedure section below.  9 

● Reference sequences for IG heavy (IGHV, IGHD, IGHJ) and light (IGKV, IGKJ, 10 
IGLV, IGLJ) chain genes. The references used to develop this protocol can be 11 
found in the supplementary material (Supplements 4-5) However, the IMGT 12 
database is regularly updated online. Therefore the individual gene reference 13 
files should be downloaded from IMGT (Table 4) and merged into reference 14 
FASTA files for IG heavy and IG light chains before use of the pipeline. 15 
 16 

 17 
Procedure 18 

Data pre-processing of newly generated sequencing data (Pre-pipeline) 19 

1.1 The pipeline has been optimized on fastq files from Illumina sequencing platforms 20 
(Illumina, Hayward, CA, USA). Users with newly generated sequencing data in 21 
BCL format should follow illlumina protocols for converting data into fastq format. 22 
Users with fastq files should commence the pipeline at “Step 2. Genome 23 
Alignment” 24 

Pre-processing published and existing sequencing data (~ 5 minutes) 25 

1.2 FASTQ files are required for downstream steps in this pipeline, however published 26 
RNA-seq datasets often provide aligned or unaligned BAM files, in which case 27 
FASTQ records must first be extracted from these files, using the fastq command 28 
from Samtools. 29 

 30 
CRITICAL STEP: The fastq command requires BAMs to first be sorted by name 31 
rather than the default sorting by chromosomal coordinates to ensure proper read 32 
pairing. This can be achieved by running the Samtools sort  command. 33 

 34 
The following example command could be used to sort, and extract FASTQ records 35 
from a paired-end BAM file ‘sample.bam’. This command uses 8 CPU threads for 36 
parallelization, and outputs compressed FASTQ files for read 1, read 2, and 37 
unpaired singleton reads to ‘read1.raw.fastq.gz’, ‘read2.raw.fastq.gz’, 38 
respectively: 39 

  40 
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$ samtools sort -n -@ 8 sample.bam -o sorted.bam  1 
 2 
$ samtools fastq -@ 8 -n -c 6 sorted.bam \ 3 
-1 read1.raw.fastq.gz \ 4 
-2 read2.raw.fastq.gz \ 5 
-0 /dev/null -s /dev/null 6 

 7 
The -n parameter in sort is used to sort  BAM file by name, -@ parameter 8 
specifies the number of CPU threads to be used for parallelization of tasks. The -9 
n option in fastq is used to leave the read names as they are provided. The -c 10 
option sets the compression level of the output files. ‘sample.bam’ specifies the 11 
path to the input BAM file. -1 and -2 specify the desired paths for the compressed 12 
FASTQ output files for read 1 and read 2, respectively. -0 /dev/null and 13 
-s /dev/null discard any discarding singletons, supplementary and 14 
secondary reads.  15 
 16 
CRITICAL STEP: It is important to perform quality control (QC) to ensure that the 17 
data is of sufficient quality for downstream analysis. A widely used QC tool is 18 
FastQC, which produces a detailed report of several quality metrics including per 19 
base sequence quality, per sequence quality scores, per base sequence content, 20 
per sequence GC content, and sequence length distribution, among others detailed 21 
at in the FastQC documentation [41]. If any issues are identified, corrective 22 
measures should be taken as per local procedures or general best practice [50]. If 23 
the tumor purity is unknown, it is advisable to estimate this through identification of 24 
the B cell proportion using a computational cellular deconvolution tool such as 25 
Cibersort [31]. 26 

Genome Alignment (~ 10 minutes) 27 

2. FASTQ reads are aligned to a reference genome using HISAT2 which produces 28 
SAM output file which is processed by Samtools. These commands can be run as 29 
a pipeline to save computational resources. The HISAT2 SAM can be passed to 30 
Samtools view for conversion to BAM format which is then sorted using the  31 
Samtools sort command. Upon completion of Samtools sort, Samtools index 32 
is run to create an accompanying index file for the BAM. 33 

 34 
The following example command can be used to align FASTQ input files 35 
‘read1.raw.fastq.gz’ and ‘read2.raw.fastq.gz’ to the GRCh38 reference 36 
transcriptome using 8 CPU threads. The resulting HISAT2 aligned BAM file is 37 
output as ‘hisat_output.bam’ and its corresponding index as 38 
‘hisat_output.bam.bai’: 39 

 40 
$ hisat2 -p 8 --phred33 -x grch38_snp_tran \ 41 
-1 read1.raw.fastq.gz -2 read1.raw.fastq.gz | \ 42 
samtools view -@8 -bS -0 - - | \ 43 
samtools sort -@8 - -o hisat_output.bam && 44 
samtools index -@8 hisat_output.bam -o hisat_output.bam.bai 45 

 46 
The -p or -@ parameters specifies the number of CPU threads to be used for 47 
parallelization, while --phred33 specifies the encoding format of the quality 48 
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scores. The -x parameter specifies the path and basename of the indexed 1 
reference transcriptome files. The input FASTQ file paths are specified by -1 and 2 
-2 for read 1 and read 2, respectively. The SAM is converted to bam using -bS 3 
with -0 specifying no additional filtering or format conversions, and  - signifying 4 
the standard input from the previous command. The sorted output is written to a 5 
file path specified by -o hisat_output.bam from which an index file is created 6 
and written to the file path specified by –o hisat_output.bam.bai.  7 

 8 

Read selection (<5 minutes) 9 

3. Samtools is used to remove all reads except those that map to the IG-associated 10 
loci and those that are unmapped from the HISAT2 aligned BAM file, ensuring that 11 
highly variable IG regions that are difficult to map are retained. 12 

 13 
TROUBLESHOOTING: If working from existing data, unmapped reads may have 14 
been removed and the alignment files may not contain sufficient IG reads to 15 
produce quality results. 16 

 17 
The view command is used to extract the IG-associated loci and unmapped reads 18 
independently, before joining using the merge command.  19 

 20 
The following example command can be used to filter the HISAT2 aligned BAM file 21 
‘hisat2_output.bam’, retaining reads mapping to the IGH, IGK, and IGL loci 22 
and unmapped reads, using 8 threads for parallelization. The resulting filtered bam 23 
BAM file is output as ‘IG_filtered.bam’. Process substitution can be applied 24 
when using a supported Unix shell to avoid the generation of temporary files: 25 

 26 
$ samtools merge -f IGH_filtered.bam \ 27 
<(samtools view -@ 8 -b -f 4 hisat2_output.bam) \ 28 
<(samtools view -@ 8 -b hisat2_output.bam 14:105550000-29 
106900000 2:87000000-92000000 22:20500000-24500000) 30 

 31 
Where -@  specifies the number of CPU threads to be utilized for parallelization, 32 
-b specifies the output format as BAM,  -f 4 returns sequences which have the 33 
unmapped Samtools flag, hisat2_output.bam is the full input HISAT2 aligned 34 
BAM file.  The IG coordinates 14:105550000-106900000, 2:87000000-35 
92000000 and 22:20500000-24500000 for IGH, IGK and IGL, respectively, 36 
are specified in the format chr:start-end where chr is the chromosome 37 
number, start is the numerical position of the first nucleotide in the loci and end 38 
is the numerical position of the last nucleotide. 39 

TROUBLESHOOTING: The format of the IG coordinates will depend on the 40 
reference transcriptome used to generate the aligned BAM file. The HISAT2 41 
indexed GRCh38 reference uses numerical values for chromosome (e.g., 14). 42 
However, other references may also include a ‘chr’ prefix (e.g., chr14). Additionally, 43 
if a different reference transcriptome build is used (e.g., GRCh37) the coordinates 44 
should be converted accordingly. 45 

 46 
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De Novo Transcript Assembly (~ 15 minutes) 1 

4. Trinity accepts FASTQ input files which must be extracted from the 2 
‘IGH_filtered.bam’ BAM file using the Samtools fastq command (as 3 
described in Step 1.2). 4 

 5 
The following example command can be used to perform Trinity de novo assembly 6 
with the input filtered FASTQ files ‘IG_filtered_read1.fastq’ and 7 
‘IG_filtered_read2.fastq’, using 8 threads for parallelization and 32Gb 8 
RAM. The resulting transcriptome FASTA file is output as 9 
‘trinity_transcripts.fasta’:  10 

 11 
$ Trinity –CPU 8 –max_memory 32G –seqType fq \ 12 
--left IG_filtered_read1.fastq \ 13 
--right IG_filtered_read2.fastq \ 14 
--output trinity_transcripts \ 15 
--no_normalize_reads \ 16 
--min_contig_length 500 \ 17 
--full_cleanup 18 
 19 
Where --CPU specifies the number of CPU threads to be utilized for 20 
parallelization, --max_memory specifies the maximum memory to be utilized, --21 
seqType fq specifies that the input files are in FASTQ format, --left and –22 
right are the filtered input FASTQ files for read 1 and read 2, respectively, and 23 
–output <output> is the basename of the output files. 24 
 25 
CRITICAL STEP: Read normalization aims to reduce bias in assembly by down 26 
sampling highly expressed reads. Input data will be enriched for IG transcripts. This 27 
can lead to a reduction of reads for low-abundance transcripts, which can lead to 28 
incomplete assembly or loss of rare transcripts and should be disabled using –29 
no_normalize_reads. 30 
 31 
CRITICAL STEP: Short contigs may represent partial or fragmented IG transcripts, 32 
which can affect downstream analysis and interpretation. Using a minimum contig 33 
length of 500 with –min_contig_length, most assembled transcripts will 34 
contain the full IGV-(IGD)-IGJ recombination. 35 

 36 

IG Transcript Selection ( < 5 mins) 37 

The protocol permits the detection and quantification of IG heavy and/or light chains. 38 
The steps below provide examples of IG heavy chain transcript extraction, but can be 39 
adapted to extract the IG light chain transcript. 40 

5. To extract putative IG sequences from the Trinity assembly, the transcriptome 41 
FASTA file containing the assembled contigs are searched against a reference 42 
sequence using BLAST. 43 

 44 
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Individual BLAST databases should be generated using the reference sequences 1 
for IG heavy (IGHV,IGHD,IGHJ) (Supplement 4) and light (IGKV,IGKJ,IGLV,IGLJ) 2 
(Supplement 5) chains  as required using the makeblastdb command. 3 
The following example command describes how to generate a BLAST database 4 
from the IG heavy reference FASTA sequences ‘IGH_reference.fasta’: 5 
 6 
$ makeblastdb -in IGH_reference.fasta -parse_seqids -dbtype 7 
nucl 8 
 9 
Where -in specifies the input FASTA file containing reference sequences, -10 
parse_seqids allows the FASTA headers to be parsed along with their 11 
sequence, and -dbtype nucl specifies the sequence content to be nucleotides. 12 
 13 
TROUBLESHOOTING: Ensure that the sequence headers in the FASTA file do 14 
not contain the pipe (“|”) character as it is a reserved character for the ID parser, 15 
which can cause an error. 16 

 17 
6. The assembled transcripts are compared against the reference database(s) 18 

generated in step 5 using the BLASTN command. This produces a tabular output 19 
that can be passed to the cut and uniq commands to obtain a unique list of IG 20 
transcript IDs, which are used by samtools faidx to extract the corresponding 21 
sequences from the assembled transcripts FASTA file. 22 

  23 
The following example command can be used to select IG transcripts covering 24 
reference IG heavy FASTA sequences in the ‘IGH_reference.fasta’ file from 25 
the assembled transcripts ‘trinity_transcripts.fasta’, to produce the 26 
filtered FASTA file ‘IGH_transcripts.fasta’:  27 
 28 
$ blastn -db IGH_reference.fasta \ 29 
-query trinity_transcripts.fasta -outfmt 6 | \ 30 
cut -f1 | uniq | xargs -n 1 samtools faidx 31 
trinity_transcripts.fasta > IGH_transcripts.fasta 32 
 33 
Where, -db specifies the path to the FASTA file used to generate the reference 34 
database for either IG heavy or light sequences, -query specifies the path to the 35 
FASTA file containing the Trinity assembled transcripts,  -outfmt 6 sets the 36 
output format to be tabular, cut -f1 selects the transcript ID (first) column in the 37 
tabular BLASTN output, uniq removes duplicate transcript IDs, xargs -n 1 38 
reads the IDs from output of the uniq (one ID per line) and passes them to 39 
samtools faidx as separate arguments. 40 

Transcript Quantification (< 5 minutes) 41 

7. Abundance of selected transcripts is quantified using the Kallisto pseudoalignment 42 
tool which first requires a Kallisto index to be built from the input FASTA file using 43 
the index command.  44 

 45 
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The following example command can be used to generate a Kallisto index file 1 
‘kallisto.index’ for the IG heavy chain filtered transcript FASTA sequence file 2 
‘IGH_transcripts.fasta’:  3 
 4 
kallisto index -i kallisto.index IGH_transcripts.fasta 5 
 6 
Where -i specifies the filename of the Kallisto index to be constructed and 7 
‘IGH_transcripts.fasta’ is the path to the filtered IG transcripts FASTA 8 
sequences. 9 

 10 
8. The generated index is used in the quant command, along with FASTQ files used 11 

to assemble the transcripts to quantify the abundance of the IG filtered transcripts.  12 
 13 

The following example command can be used to quantify the abundance of 14 
transcripts in the IG filtered transcript FASTQ files (generated in step 4) 15 
‘IG_filtered_read1.fastq’ and ‘IG_filtered_read1.fastq’, using 8 16 
threads: 17 
 18 
kallisto quant -i kallisto.index -t 8 \ 19 
IG_filtered_read1.fastq IG_filtered_read2.fastq 20 
 21 
Where -i specifies the filename of the Kallisto index, -t specifies the number 22 
of CPU threads to be utilized for parallelization, and 23 
‘IG_filtered_read1.fastq’ and ‘IG_filtered_read2.fastq’ are the IG 24 
filtered FASTQ files for read 1 and read 2, respectively. 25 

 26 
9. The five most abundant transcripts IDs are identified based on their transcript per 27 

million (TPM) value by passing the Kallisto output through the tail, sort, head 28 
and cut commands, and their corresponding FASTA sequences are extracted 29 
using samtools faidx command. 30 

 31 
The following example command can be used to identify the five most abundant 32 
transcript IDs from the Kallisto output ‘abundance.tsv’, extract their 33 
corresponding transcript sequences from ‘IGH_transcripts.fasta’ and write 34 
to an output FASTA file called ‘IGH_TPM_filtered.fasta’: 35 
 36 
$ tail -n +2 abundance.tsv | \ 37 
sort -t $'\t' -k5,5nr | head -5 | cut -f1 | \ 38 
xargs -n 1 samtools faidx IGH_transcripts.fasta > 39 
IGH_TPM_filtered.fasta 40 
 41 
Where -n +2 selects all rows except the first (header) from the Kallisto 42 
quantification output, -t $'\t' specifies the delimiter of the input as tab, -43 
k5,5nr sorts the remaining lines by the fifth column (TPM) in reverse numerical 44 
order, head -5 outputs the first 5 lines of the sorted file and cut -f1 extracts 45 
the first column (IDs) from the output. The IDs are read (one ID per line) using 46 
xargs -n 1 which then passes them to samtools faidx as separate 47 
arguments. 48 
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TROUBLESHOOTING: The number of most abundant transcripts to take forward 1 
has been suggested as 5. This has been found to strike a good balance between 2 
analytical efficiency and identification of the dominant tumor transcript. In instaces 3 
where no full-length, productive transcripts are not obtained within the top 5 4 
transcripts, users may wish to increase the number of transcripts to take forward 5 
for analysis. 6 

 7 
 8 

Dominant IG Transcript selection (~ 15 minutes) 9 

 10 

10. The top 5 most abundant transcripts identified in step 9 will be submitted to the 11 
IMGT/V-QUEST tool (https://imgt.org/IMGT_vquest/input) for sequence analysis 12 
and annotation. In the sequence submission section of the IMGT/V-QUEST tool, 13 
the top 5 transcript sequences should be provided either by copy and pasting the 14 
sequences from the FASTA file or by directly uploading the FASTA file. The 15 
parameters 'Species' and 'Receptor type or locus' should be set to 'Homo sapiens 16 
(human)' and 'IG', respectively. Finally, the output format should be set to 'C.Excel 17 
file'. The IMGT/V-QUEST tool will annotate and analyze the submitted sequences 18 
for their corresponding IGV, IGHD (for the heavy chain only) and IGJ genes, their 19 
junction at the CDR3 region, and other related features. 20 

 21 
11.  The outputs of the Kallisto quantification and IMGT/V-QUEST results transcript 22 

are used to identify the dominant/consensus (Tumor) IG transcript present within 23 
the RNA-seq dataset. This process may require manual interpretation but follows 24 
the following hierarchical filtering criteria: 25 

i. Presence of a full transcript sequence (from codon 1 in FR1 to codon 26 
129 in FR4 included), identified by IMGT/VQUEST. 27 

ii. Presence of 'productive' V-domain functionality call by IMGT/V-QUEST 28 
iii. The highest estimated read count (est. count) determined by Kallisto. 29 
iv. The est. count is greater than 5-fold higher than any of the other 4 30 

transcripts selected if different. A reduction of the fold amount difference 31 
will increase the probability to identify a “dominant” sequence in cases 32 
with low tumor infiltration. 33 

v. The ability to determine the IG constant region class and subclass. 34 

Timing 35 

Benchmarking was conducted using the computational hardware described in the 36 
materials section. The dominant IG heavy and light chain transcripts were extracted 37 
from FASTQ files generated from high-purity CLL samples with an average starting 38 
read count of 71.1 million following initial HISAT2 alignment. In similar conditions, the 39 
full pipeline can be expected to take less than 1 hour per sample. Specific timings can 40 
be found in the procedure section headers for each stage of the analytical pipeline. 41 
The duration of each stage may vary depending on the input file type (BAM files require 42 
additional pre-processing), hardware used to run the pipeline,  heterogeneity of B-cell 43 
populations, and number of starting sequencing reads generated from the samples. 44 

Anticipated results 45 
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Upon successful completion of the IgSeqR protocol, users will have generated the 1 
following output files for IG heavy and/or light chain transcripts:  2 

• The five most abundant assembled IG transcripts in FASTA format 3 
• Table of quantifications for these IG transcripts in tsv format 4 
• Annotations for the top five IG transcripts generated by IMGT/V-QUEST.  5 

For further insights, users can refer to our previously published [14], which includes 6 
results and examples of downstream analysis. 7 

Future Applications 8 

Future work is planned to develop further the existing protocol and evaluate its efficacy 9 
for deriving smaller, less dominant, clonal populations to widen the application of the 10 
protocol. When the tumor IG sequence is already known, we will apply this approach 11 
for the determination of the minimal residual disease in repeat samples following anti-12 
cancer therapy.  13 

We will also investigate the protocol's potential use with RNA-seq data generated from 14 
FFPE material. However, there are intrinsic limitations of RNA-seq data quality from 15 
FFPE, and areas where optimization or adaptation may be necessary will need to be 16 
identified. 17 

Future work will also focus on the annotation refinement of the IGC region. This work 18 
will facilitate and accompany the development of the protocol into a comprehensive 19 
bioinformatics tool for immunobiologists. 20 

The protocol will also be investigated for its use in any other genomic regions that are 21 
challenging to map to a reference genome, including the T-cell Receptoror specific 22 
fusion or deregulating gene rearrangements that are not represented in the reference 23 
transcriptome [51]. 24 

 25 

Supplementary information 26 

• Supplementary Tables.xlsx 27 
• Supplement 1. IgSeqR Environment.yml 28 
• Supplement 2. IgSeqR BASH Script.sh 29 
• Supplement 3. IgSeqR Configuration File 30 
• Supplement 4. IGH References.fasta 31 
• Supplement 5. IGKL References.fasta 32 
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Figure 1. Immunoglobulin gene analysis provides insight into the cell of origin and behavior of B-Cell malignancies. 
The immunoglobulin heavy-chain gene repertoire comprises ~51 functional variable (IGHV), ~21 diversity (IGHD), and 
~7 joining (IGHJ) genes at the 14q32 locus. In the bone marrow, progenitor B cells (Pro-B cells) undergo an IGHD-IGHJ 
rearrangement. If successful, a complete IGHV-IGHD-IGHJ rearrangement occurs at the precursor B cell (Pre-B), which 
expresses a precursor B-cell receptor (pre-BCR) containing a surrogate VpreB1 light chain and a full IG heavy chain. The 
pre-BCR will promote rearrangement of IGKV-IGKJ at the 2p11.2 locus, and, if this is non-functional in both alleles, the 
rearrangement of  IGLV-IGLJ will occur at the 22q11.22 locus in immature B cells. A successful rearrangement of the IG 
light chain enables the expression of a competent immunoglobulin M (IgM) and autoreactive B cell clones within the 
bone marrow microenvironment will be deleted, ensuring the production of functional non-autoreactive naïve B cells 
expressing IgM and IgD. IgM+ve IgD+ve naïve B cells exit the bone marrow and migrate to peripheral lymphoid organs 
(spleen, lymph nodes, MALTs, etc.) where they will encounter antigen, and they will undergo class-switch 
recombination (CSR) and somatic hypermutation (SHM) in the presence of activation-induced cytidine-deaminase 
(AID) in a germinal center (GC) reaction at the centroblast (Cb) stage (dark zone). During SHM, Cb introduce point 
mutations in the IG variable region genes to mature affinity to antigen. Centrocytes (Cc) emerge in the light zone where 
their fate will depend on their BCR interactions with immune complexes on follicular dendritic cells (FDC) in the 
presence of T follicular helper (TFH) cells. Cc with the BCR of the right affinity to antigen receive survival signals and 
differentiate into memory B cells or plasma cells, while the others will undergo apoptosis. 
The tumor IG genes preserve the features of the cell having undergone transformation. Chronic Lymphocytic 
Leukemias with unmutated IG genes (U-CLL) arise from pre-GC B-cells and have an aggressive clinical course, while 
those with mutated IG genes (M-CLL) arise from post-GC B cells and display an indolent clinical course. In endemic 
Burkitt lymphoma (eBL), FL, and some DLBCL, there is intraclonal heterogeneity of the IGV gene sequences to indicate 
that the SHM process is ongoing, as in a GC B cell. Diffuse Large B-cell Lymphoma (DLBCL) can be classified into two 
major subtypes: GC B-cell-like (GCB) and activated B-cell-like (ABC). Asparagine-x-serine/threonine N-glycosylation 
motifs (where X is any amino acid except proline) are introduced by SHM, allowing occupation of the sites by 
oligomannose-type glycans in almost all FL and in ~30% of all GCB-DLBCL. Multiple myeloma (MM) is characterized by 
the clonal expansion of plasma cells, which carry mutated IG and secrete a monoclonal IG in the serum (paraprotein). 
 
Figure 2. Tissue-derived lymphoma samples, in which the tumor IG sequence was sought by Sanger or IgSeqR. Each 
dot identifies a sample: red dots indicate the samples where the tumor IG sequence was identified; grey dots indicate 
the samples where the tumor IG sequence could not be identified. The accompanying table indicates the number and 
proportion of IG sequences identified using the individual methods. There was a significantly higher proportion and 
probability of identifying the tumor IG sequence by RNA-seq/IgSeqR (69%) compared to PCR/Sanger (30%) (X-square 
with Yates’ correction, p-value <0.0001). Sequencing by Sanger was performed only in samples with >10% tumor 
infiltration by immunophenotype, while IgSeqR was applied to any sample irrespective of (tumor) B cell percentage, 
as estimated by Cibersort. 
 
Figure 3. Comparison between the transcripts recovered by the IgSeqR pipeline with MiXCR, TRUST4 and a reference 
IGHM transcript. A direct comparison of three analytical tools for the recovery of IGHV-IGHD-IGHJ transcripts 
recovered from unselected bulk high throughput RNA sequencing data from 18 chronic lymphocytic leukemia samples 
with high tumor purity.  The tools, IgSeqR, MiXCR (v 4.3.2), and TRUST4 (v1.0.12) were run using the Iridis5 high-
performance computing cluster at the University of Southampton, utilizing 8 x 2.0 GHz CPU cores and 32 GB RAM to 
simulate a typical desktop workstation. The resulting transcripts were assessed for recovery of a full-length, productive 
IGHV-IGHD-IGHJ (V-Region) transcript and concordance with matched Sanger sequencing in the V-region.  MiXCR 
recovered IGHV-IGHD-IGHJ transcripts for all 18 of the samples, with 17 (94%) having productive and full V-Region 
coverage, however only 17 used the same IGHV of Sanger, and 14 (78%) had 100% identity with Sanger. TRUST4 
generated IGHV-IGHD-IGHJ transcripts from 17 (94%) of the samples, all of which had productive and full V-Region 
coverage and full concordance with Sanger. IgSeqR demonstrated productive and full V-Region coverage and full 
concordance with Sanger in all 18 (100%) samples.  IgSeqR also produced the longest tumor transcripts, averaging a 
length of 2036 nucleotides, compared to 589 and 769 nucleotides by MiXCR and TRUST4 respectively. Notably, the 
majority (78%) of the IgSeqR transcripts were long enough to cover the full IGHM transcript from leader to the 
membrane domains (M1 and M2) of the constant region (C-Region), a feature not possible in the shorter transcripts 
generated by MiXCR or TRUST4. 
 
Figure 4. Schematic representation of the IgSeqR Pipeline. The experimental design of IgSeqR is divided into four 
key stages: (a) data pre-processing – RNA sequencing data (RNA-seq) can be supplied in either BAM or FASTQ 
format. The data are re-aligned to a reference transcriptome by HISAT2, producing a BAM file which is filtered 
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to retain reads mapping to IG gene coordinates, and reads unable to be mapped to the reference; (b) de 
novo transcriptome assembly - Trinity is used to de novo assemble transcripts from the filtered BAM file; (c) 
IG transcript selection and quantification – the assembled transcripts are run through a BLAST query to 
identify transcripts overlapping IG reference sequences. The abundance of the IG-derived transcripts is then 
estimated using Kallisto pseudoalignment; (d) IG transcript annotation and interpretation – the five most 
abundant transcripts by TPM are then run through IMGT/V-QEUEST for IG alignment and annotation which 
is used to recover the putative tumor/dominant IG transcript using a 5 step hierarchical selection process. 
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Table 1. Published tools for IG analysis from bulk and single-cell RNA sequencing (RNA-seq) 

     Tool Description Receptor Sequencing 
Data Reference 

IG_ID De Novo assembly of BCR 
transcripts from bulk RNA-seq data BCR Bulk Blachly et al 

2015 [31] 

MiXCR Analysis of raw T- or B- cell 
receptor repertoire sequencing data BCR/TCR Bulk/Single Cell Bolotin et al 

2015 [32] 

BASIC 

Bayesian inference of 
immunoglobulin sequences. It 
offers functionalities for V(D)J gene 
identification, clonotype analysis, 
and mutation profiling. 

BCR Single Cell Canzar et al 
2017 [33] 

IMSEQ 

Provides functionalities for the 
identification and quantification of 
IG genes, as well as the detection 
of somatic hypermutations 

BCR/TCR Bulk Kuchenbecker 
et al 2015 [34] 

ImReP 

Extraction of receptor reads from 
sequencing data and assemble 
clonotypes, detect corresponding 
V(D)J recombinations and correct 
PCR sequencing errors 

BCR/TCR Bulk Mandric et al 
2020 [35] 

V’DJer 

Customized read extraction, 
assembly and V(D)J rearrangement 
detection and filtering to produce 
contigs representing the most 
abundant portions of the BCR 
repetoire 

BCR Bulk Mose et al 2016 
[36] 

VDJPuzzl
e 

Provides a user-friendly interface 
for the identification of V(D)J 
rearrangements, clonotype 
analysis, and visualization of TCR 
and BCR repertoires. 

BCR/TCR Single Cell Rizzetto et al 
2018 [37] 

TRUST4 

Performs de novo assembly on V, 
J, C genes including the 
hypervariable complementarity-
determining region 3 (CDR3) and 
reports consensus of BCR/TCR 
sequences 

BCR/TCR Bulk/Single Cell Song et al 2021 
[38] 

BALDR 

Infers the clonal structure of B-cell 
repertoires, providing information 
on clonal abundance, V(D)J gene 
usage, and somatic hypermutations 

BCR Single Cell Upadhyay et al 
2018 [39] 
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Table 2. A comparison between RNA-seq based Immunoglobulin Gene analysis tools, IgSeqR 
MiXCR and TRUST4. 

Property IgSeqR MixCR TRUST4 
Recognized as IG (IMGT) 18 (100 %) 18 (100 %) 17 (94.44 %) 
Productive Sequence 18 (100 %) 18 (100 %) 17 (94.44 %) 
Complete VDJ 18 (100 %) 17 (94.44 %) 17 (94.44 %) 
IGHV Gene match 18 (100 %) 17 (94.44 %) 17 (94.44 %) 
IGHV Seq match 18 (100 %) 14 (77.78 %) 17 (94.44 %) 
IGHD Gene Allele match 18 (100 %) 18 (100 %) 17 (94.44 %) 
IGHD Seq match 18 (100 %) 18 (100 %) 17 (94.44 %) 
IGHJ Gene Allele match 18 (100 %) 18 (100 %) 17 (94.44 %) 
IGHJ Seq match 18 (100 %) 18 (100 %) 17 (94.44 %) 
CDR3 Seq match 18 (100 %) 18 (100 %) 17 (94.44 %) 
Full Sanger VDJ Concordance 18 (100 %) 14 (77.78 %) 17 (94.44 %) 
Average Length 2036 589 768 
Assembly efficiency (Seconds/Nucleotide) 1.18 8.10 1.44 

In red are identified the properties of MixCR or TRUST4 with inferior performance compared to 
IgSeqR.     
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Table 3. List of acronyms used in the IgSeqR protocol 

Acronyms Name Description 
BAM Binary Alignment/Map The BAM format is a binary 

representation of sequence 
alignment data. It is 
commonly used in genomics 
to store the results of 
sequence alignment 
algorithms. 

BASH Bourne Again Shell Unix shell and a command 
language interpreter. It is a 
default command interpreter 
on most GNU/Linux 
systems. Bash can also read 
and execute commands 
from a file, called a shell 
script. 

CPU Central Processing Unit  The CPU is the most 
important processor in a 
given computer, responsible 
for performing basic 
arithmetic, logic, controlling, 
and input/output (I/O) 
operations specified by the 
instructions in a program 

CSV Comma-Separated Values CSV is a simple file format 
used to store tabular data, 
such as a spreadsheet or 
database. Each line of the 
file represents a row of the 
table, and the values are 
separated by commas. CSV 
files are widely supported by 
spreadsheet and database 
software, making them easy 
to import and export data. 
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FASTA FASTA Sequence Format The FASTA format is a text-
based format for 
representing nucleotide or 
protein sequences. It 
consists of a single-line 
description followed by lines 
of sequence data. The 
format is widely used in 
bioinformatics for storing and 
exchanging sequence data. 

FASTQ FASTQ Sequence Format The FASTQ format is a text-
based format for storing both 
a biological sequence 
(usually nucleotide 
sequence) and its 
corresponding quality 
scores. It is widely used to 
represent raw sequencing 
data from high-throughput 
sequencing platforms. 

TSV Tab-Separated Values TSV is a file format similar to 
CSV, but with tab characters 
as the field separator instead 
of commas. TSV files are 
commonly used for storing 
and exchanging tabular 
data, especially when the 
data may contain commas or 
other special characters. 

RAM Random Access Memory A temporary memory bank in 
a computer where data 
which requires quick access 
is stored. It keeps data easily 
accessible so a computers 
processor can quickly find it 
without having to go into 
long-term storage to 
complete immediate 
processing tasks. 
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Table 4. Links to the most recent IMGT/V-QUEST reference immunoglobulin heavy and light 
chain FASTA sequences 

Chain Gene IMGT Link 

Heavy 
IGHV imgt.org//download/V-QUEST/IMGT_V-QUEST_reference_directory/Homo_sapiens/IG/IGHV.fasta 

IGHD imgt.org//download/V-QUEST/IMGT_V-QUEST_reference_directory/Homo_sapiens/IG/IGHD.fasta 

IGHJ imgt.org//download/V-QUEST/IMGT_V-QUEST_reference_directory/Homo_sapiens/IG/IGHJ.fasta 

Light 

IGKV imgt.org//download/V-QUEST/IMGT_V-QUEST_reference_directory/Homo_sapiens/IG/IGKV.fasta 

IGKJ imgt.org//download/V-QUEST/IMGT_V-QUEST_reference_directory/Homo_sapiens/IG/IGKJ.fasta 

IGLV imgt.org//download/V-QUEST/IMGT_V-QUEST_reference_directory/Homo_sapiens/IG/IGLV.fasta 

IGLJ imgt.org//download/V-QUEST/IMGT_V-QUEST_reference_directory/Homo_sapiens/IG/IGLJ.fasta 
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