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Abstract—Recent works involved in enhancing the learning 

convergence of reinforcement learning (RL) in mobile robot 

navigation have investigated methods to obtain knowledge from 

efficiently exploring the robot's environment. In RL, this 

knowledge is highly desirable to reduce the high number of 

interactions required for updating the value function and to 

eventually find an optimal or suboptimal policy for the agent. In 

this work, we propose a curiosity-based topological RL (CBT-

RL) algorithm that makes use of the topological relationships 

among the observed states of the environment in which the agent 

acts. This algorithm builds an incremental topological map of the 

environment using Instantaneous Topological Map (ITM) model, 

which we use for facilitating value function updates as well as 

providing a guided exploration. We evaluate our algorithm 

against the original Q-Learning and Influence Zone algorithms 

in static and dynamic environments. 

Keywords— Reinforcement Learning; Convergence 

Acceleration; Topological Map; Guided Exploration. 

I.  INTRODUCTION  

Reinforcement Learning (RL) allows an autonomous agent 
to learn to perform a task in initially unknown environment. It 
directs the agent to continuously take actions that maximize the 
received rewards from the environment. This sequential 
decision making is inherently related to the problem of 
autonomous robot navigation, in which the aim is to find an 
optimal path between two states in the environment while 
avoiding obstacles. The RL agent optimizes its behavior, unlike 
the supervised learning algorithms, without external 
supervision and using only its collected experiences. 
Accordingly, the goal of the agent is to learn an optimal policy 
through exploration, which requires enormous interactions with 
the environment, and it becomes very difficult in large state 
spaces and in online applications. 

Many approaches from many different perspectives have 
been taken to accelerate the learning convergence of RL. Some 
of these are model-based [1] [2] and others are model-free [3] 
[4] [5]. Q-Learning is a well-known example of the model-free 
approaches and it guarantees to find an optimal policy for the 
agent having visited every state of the environment infinitely 
often. Throughout the literature, many methods were proposed 
to improve and speed up Q-Learning, using eligibility traces 
[5] [6], exploiting the generalization ability of the supervised 
learning algorithms [7] [8], or using topological representation 
of the environment [9] [10]. However, although most of these 
methods achieve a considerable learning performance, they 
made no consideration to the exploration part of the RL 

algorithm which is a significant component of the learning 
process, and that makes the policy produced by those methods 
far from being optimal especially in the early stages of 
learning. Thus, we propose a new Reinforcement Learning 
algorithm that uses a topological model of the environment to 
accelerate learning an optimal policy by optimizing the 
exploration strategy of the agent. 

The paper is organized as follows: Section 2 gives an 
overview of the Q-Learning algorithm. The use of 
Instantaneous Topological Map (ITM) to model the agent’s 
environment is presented in Section 3. The proposed method is 
then demonstrated in Section 4. Comparisons and simulation 
results are shown in Section 5. We conclude the paper in 
Section 6 by discussing the obtained results and the future 
direction of the study. 

II. MODEL FREE RL AND Q-LEARNING 

 RL problem is formalized using Markov Decision Process 

(MDP), which is a five-tuple (S, A, T, R, γ), where S is a set of 

states, A is a set of actions, T : S × A × S � [0, 1] a state-

transition distribution, R : S × A × S � ℜ is a reward function 

and γ is a discount factor;  0�γ <1. 

 A policy π  is defined as a mapping from states to actions; 

π : S � A. The value of each state is given by a value 

function, as follows:  
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The value function, �����, is the expected sum of discounted 

rewards the agent receives starting at state s and executing 

policyπ.  The goal of the RL agent is to take actions that 

maximize that value function in order to learn an optimal 

policy π*. 

 Since RL does not have a complete knowledge of the 

underlying MDP, there were many algorithms to build an 

approximate model for the MDP, and these are called Model-

based. On the other hand, Model-free algorithms do not 

estimate the MDP but rather estimate the state values directly 

based on the collected samples resulting from taking actions 

according to some fixed policyπ. Each sample takes the 

following form: 
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where r is the reward received on experiencing a transition (s, 

π(s), s'). Averaging these samples gives the value estimate of 

the state s as follows:  
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where n is the number of collected samples from state s. 

Rather than keeping all samples to be averaged each time a 

new sample is collected, an exponentially-weighted average is 

used and updated on observing a new sample, as follows: 

����� � ������ 
 �'�(��� !" )������* (4) 

where ' is a weighting term (the learning rate); 0 + ' + 1. 

This equation is called Temporal-Difference Learning (TD-

Learning) [11] because it depends on the difference, 

��� !" )������, between the new sample and the current 

value estimate to update and learn the value estimate of state s. 

Using TD-Learning, Watkins proposed a method to assign 

values to state-action pairs and named it incremental dynamic 

programming [4] [12]. The method was later called Q-

Learning, since its use is to learn state-action values (Q-

values). The action-value function of the Q-Learning agent is 

updates as follows: 
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The value of the next state s’ is computed by taking the 
maximum over all its Q values; ����� � �-./0�,���# � ���. As 

this value update is applied independently of any policy, the Q-
Learning is considered an off-policy TD-Learning method. 

III. TOPOLOGY LEARNING FOR MODELING THE 

ENVIRONMENT 

 Topology learning is a set of unsupervised learning 

techniques developed to identify data clusters and regularities 

in the input space, and were frequently used to produce a low-

dimensional representation of a high-dimensional space. The 

information provided by the topology learning methods in 

terms of neighborhood relationships is of a great importance 

for autonomous navigation applications [13] [14].   

     

 Kohonen's self-organizing feature map (SOFM) was the 

first algorithm to learn a mapping from the input space to an 

output space represented by a network of neurons, utilizing 

competitive learning [15] [16]. The Neural Gas (NG) proposed 

by Martinetz and Schulten overcomes the SOFM deficiency of 

using a fixed and predetermined network topology [17]. This 

model uses competitive Hebbian learning (CHL) to develop 

edges between the neighboring nodes and to generate the final 

topology.  This was further improved by the work of Fritzke 

where he introduced an incremental generation of the topology 

called Growing Neural Gas (GNG) [18]. This incrementally 

built topology eliminates the need for defining a specific 

number of nodes a priori. Despite the potential of building the 

topological representation of the RL agent’s environment 

using GNG algorithm, it remains inadequate for such a task. 

This is because the GNG is based on the assumption that the 

input data (stimuli) are statistically uncorrelated, which is 

untrue assumption in robotics where the stimuli are generated 

along continuous trajectories. 

 The approach that constructs a topological map from such 

correlated stimuli is the Instantaneous Topological Map (ITM) 

[19].  Instead of being stuck in a single node for long time in 

the case of GNG causing slow adaptation, this approach 

makes the creation of new nodes resulting from traversing a 

trajectory faster and efficient, using fewer adaptation 

parameters. 

ITM is defined by a set of neurons i with each neuron 

represented by a weight vector wi, and a set of edges which is 

simply considered as a set of the neighboring nodes N(i) for 

each node i. ITM implements Delaunay triangulation for the 

placement of nodes and edges in the map. According to [19], 

The ITM starts with two connected nodes and each time a new 

stimulus � is provided, the map performs the following 

adaptation steps: 

1. Matching: compute the nearest node n and the second-

nearest node s with regard to � based on the Euclidean 

distance measure.  &� � �.12-34# �56 ) 7#5,  �� �
�.12-3489# �:6 ) 78:. 

2. Reference vector adaptation: move the nearest node n by 

a small rate � towards �, ;�7< � �=��6 )�7<�. 
3. Edge adaptation: connect n and s by adding an edge 

between them (if they are not connected), and for every 

node m > N(n), check if the edge between n and m is non-

Delaunay. If so, remove that edge. If there are no more 

edges originating from m, remove the node m as well. 

4. Node adaptation: if the distance between � and n is greater 

than some threshold "?@A, i.e., (56 ) 7<5 > "?@A) and � 

lies outside the circle defined by the diameter linking n 

and s, then add a new node y with 7B = �, and create a 

new edge between n and y. Then, if the distance between 

n and s becomes smaller than 
�
� �"?@A, then remove s. 

 Since the creation of new nodes is no longer time-

dependant and the non-Delaunay edges are removed instantly 

without waiting until they become obsolete, like in NG and 

GNG models, the ITM can adapt much faster to the observed 

states of the agent’s environment. 

 In the next section we describe the use of ITM model to 

facilitate computing the value function for our Topology-

based RL agent. 
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IV. THE CBT-RL 

 Considering the Eq. (5), we see that in Q-Learning the 

update to the value estimate of state s after taking action a 

depends on the reward experienced r and the value estimate of 

the observed state s’, which is V(s’). This means that this 

update contributes, in a decreasing magnitude, to the value 

estimate of all the previously observed states on the trajectory 

linking the start state to the current state s. However, in Q-

Learning this update is limited to one state s when observing 

the transition (s,a,r,s’), and only contributes later to the 

proceeding states over the subsequent iterations, causing slow 

convergence rate. To overcome this limitation in Q-Learning, 

a topological representation of the environment is built using 

the ITM model discussed earlier. 

Our algorithm consists of two successive phases: task learning 

and exploration optimization. In task learning phase, the ITM 

model is used to build a topological representation of the 

environment for accelerating the value function updates. In 

exploration optimization phase, we propose an internal reward 

function to guide the exploration based on the state values 

derived from the nodes of the ITM map. 

 

A. Task learning: 

 To overcome the limitation of performing a single value 

update per interaction in the original Q-Learning algorithm, 

we build a topological representation of the agent’s 

environment using the ITM model discussed earlier. The RL 

agent interacts with its environment and once a new state is 

observed, a new node will be created in the topological map 

which corresponds to the observed state.  When the RL agent 

takes action a at state �<C�, as shown in Fig. 1 , the value 

estimate of this state V(�<C�) is updated according to Eq.(5). 

Then, this updated estimate is propagated to the neighboring 

nodes in the first topological neighborhood identified by 

N(�<C�) using the edges developed so far. This allows the 

identified nodes to have their value estimates updated as well. 

The neighboring nodes, in turn, propagate their updated values 

backwards to their neighbors and so on. However, in contrast 

to the Influence Zone method [10] in which all the nodes in all 

the identified neighborhoods update their values, we restrict 

the update to the nodes whose corresponding states have been 

traversed by the agent in the current learning experience (we 

call them active nodes). This way we can avoid overestimating 

the state values, because updating the values of states which 

have not been visited in the current experience can result in an 

incorrect policy for the RL agent. Consequently, multiple 

updates are now performed in each interaction with the 

environment rather than just a single update, which leads to a 

faster convergence. 

Each node n of the employed ITM consists of the following: 

1- Reference vector: the geometrical position of the 

corresponding state in the environment. 

2- Set of edges: the neighboring nodes of n, N(n). 

3- Set of Q-values: each Q-value corresponds to an 

edge, and the value of the node is the maximum of its 

Q-values. 

4- Identification flag: indicates whether the node has 

already undertaken a state-action value function 

update or not. 

5- Activation flag: indicates whether the node has been 

traversed in the current learning experience (learning 

trial) or not. 

 

Fig. 1. Backward propagation of state value estimate through topological 

edges after an interaction with the environmet 

B. Exploration Optimization: 

  In our approach we model the internal state of the agent 

by its current learned policy derived from its current value 

function. This is done by first defining the value of a policy 

according to Ng and Jordan [20], as follows: 

���� � D�EFG�	������� (6) 

where D is the initial-state distribution, and the expectation E 

is taken with respect to �� drawn from D. We can rewrite Eq. 

(6) as: 

���� � � H����
�E>�

������� (7) 

where S is the set of external states. Thus, we consider ���� 
as an evaluation of the policy � which the agent has learned so 

far. When the agent transitions from one external state to 

another, its current policy driven from the state value 

estimates, which are updated after that transition, changes to a 

new policy. Based on this change in the internal state and the 

change in the perception of the agent (provided by the 

topological map), we propose an internal reward function as 

follows: 

$#<I � � �� �� ) ����� 
� "$JKK  (8) 

This internal reward function represents how much the current 

learned policy has changed, ������ ������ ��, as a result of a 
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transition in the external state space. This is realized by taking 

the difference between the values of the two policies before 

and after the transition occurs. The function also includes the 

perception error, which is the difference between the current 

state’s position 6 and the position of the nearest node in the 

topological map;   "$JKK �� �6 ) L"�$"�M�6��. Using Eq.(7), 

we can rewrite Eq.(8) as: 

 

$#<I ��� H����N������� )��� ����O
�E>�

�
 � "$JKK  (9) 

 

Since a single transition in the external state space between 

two time steps t-1 and t produces a change to the value 

estimate of the current state and all the states in its topological 

neighborhoods, and these changes are independent of the 

initial state distribution, we omit the distribution D from Eq. 

(9). Accordingly, the internal reward function is as follows: 

 

$#<I�M� � ��	�I���� )��IC�������
�E>�

�
 � "$JKK  (10) 

 

We can interpret our internal reward as consisting of two key 

components: the learning progress (the change in the learned 

policy) and the perception improvement (the change in the 

external state);   $#<I�M� ��Learning_progress + Perception 

improvement. 

The first component encourages the agent to take actions that 

lead to an improvement in the learned policy (rewarding the 

progress made) while the second encourages the agent to take 

actions that lead to places it has no or little knowledge about. 

Overall, this internal feedback acts as a curiosity signal for the 

agent and gives a guided exploration strategy in which the 

policies evolve until an optimal or suboptimal policy is 

learned. 

In order to integrate the internal reward in our algorithm, we 

use two Q-learning value functions. The first Q function 

estimates the external state values using the external rewards 

received from the environment and is called the task function. 

The second Q function, which is task-independent, estimates 

the internal state values using the self-generated internal 

reward $#<I  defined earlier and is called the exploration 

function.  

The optimal policy of the exploration function defines the 

optimal exploration for the RL agent to use while learning to 

solve its task. The agent takes actions according to the 

exploration function throughout the learning process. After the 

learning ends, the agent takes actions according to the task 

function to perform the task it has learned. 

Fig. 2 shows the proposed algorithm architecture and the data 

flow between the task layer and the exploration layer which 

correspond to task learning and exploration optimization 

phases explained earlier. 

 

Algorithm 1 CBT-RL Algorithm 
  1: While stop P true do  

  2:      s ��� 

  3:      While s P goal do 

  4:  Take action a at state s according to the policy   

 of the exploration function 

  5:  Observe state s’ and external reward r 
  6:  Create a new node o’ corresponds to s’ 

  7: if o’ Q Map then 
  8: Add o’ to Map 

  9: end if 

10: Update Map  according to ITM adaptation steps 
11: R"$JKK � 7S� ) 7<�: n’ is the nearest node to o’ in Map 
12: Compute the temporal difference value,  

TD_val � r + T �I@�U(s’) - ,I@�U��� ��, and update the 
state-action value estimate using TD-val 

13: if TD-val > V then 
14: for each  &# > N(s) do  

15: ,I@�U�&# � �# �� � ,I@�U�&# � �# �� + ' ($�WX� + T 

�I@�U���YLZ["� - ,I@�U�&# � �# � ): maxNode is the 
neighboring node with maximum value (with 

respect to the node &#) 
16: accumulator � accumulator + �I@�U<J\ �&#� - 

�I@�US]^ �&#� 
17: s � &# 
18: Goto 14 (Repeat the process for &#’s neighboring 

nodes) 
19: end for 

20: internal_r � accumulator + R"$JKK 

21: ,JA_��� �� � ,JA_��� �� + ' (internal_r + T �JA_��`� )
,JA_��� �� ) 

22: end if 

23: s � s’

24: end while 

25: end while 

26: Exit 

 

 

 

Fig. 2. The Architecture of CBT-RL Agent 

 

A detailed description of the algorithm’s global parameters is 

given in Table 1. 
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Table 1: Global parameters of CBT-RL algorithm 

 Description 

Stop The stopping condition can be either maximum 

number of learning trials given to the agent, or a 

minimum-error threshold, with which the total 

difference between the current and the predicted 

value estimates over all the states is compared.   

Map It is the topological map incrementally built by 

using the ITM algorithm. 

Threshold 

V 

The purpose of this threshold is to reduce the 

number of updates per learning trial, so that a 

negligible TD_val causes no update propagation 

to the neighboring nodes. 

 

V. RESULTS AND EVALUATION 

 In the following experiments we compare the performance 

of our proposed algorithm to the original Q-Learning and the 

Influence Zone algorithms in static and dynamic environments 

of increasing levels of complexity. The learning rate ' is 0.5, 

the discount factor T is 0.8, the node insertion threshold of the 

ITM "?@A is 0.5, the temporal difference threshold V is 0.1 

and the =-greedy action-selection parameter (in Q-learning & 

Influence Zone) is 0.5. The learning rate and discount factor of 

the exploration function of our algorithm are 0.2 and 0.99 

respectively.  

The agent selects one of the possible actions corresponding to 

the eight compass directions. The reward signal the agent 

receives is either: (-1) for hitting an obstacle or boundary, (+1) 

for reaching a goal state or (0) for wandering around. 

 

Fig. 3. Possible actions 

Fig. 4 shows a static grid-world environment of size 20a20 to 

which we apply the three algorithms. The red, black and green 

squares refer to an initial state, an obstacle and a goal state, 

respectively. In this experiment, we test the agent’s learned 

policy after each learning trial by letting the agent act 

according to the policy derived from the learned task function.  

In the test phase the agent is given up to 2000 steps to reach a 

goal state starting at the initial state. 

 

 

Fig. 4. Static Environment 

 The number of steps to reach the goal in the Q-learning is 

1000 on average as shown in Fig. 5. Influence Zone’s agent 

takes five learning trials to converge to a suboptimal policy 

reaching the goal with 27 steps. CBT-RL, on the other hand, 

needs only two learning trials to learn an optimal policy with 

24 steps to the goal. 

 

Fig. 5. Number of steps to the goal using the learned policy 

 To see how CBT-RL reacts to stochastic environment 

changes (from the agent perspective), we use a 4-cage 

configuration shown in Fig. 6 where the agent learns a path 

from a start to a goal state. But after 199 learning trials, the 

short path to the goal becomes blocked. Fig. 7 shows changes 

in the environment topology during the learning process, 

where the red nodes represent the environment’s free states. 

 

 

Fig. 6. Dynamic Environment (one downward path blocked stochastically) 

 In this experiment we test the agent on its learned policy 

every 25 learning trials, with the agent given up to 2000 trials 

to reach the goal. The number of steps to the goal has risen in 

the three algorithms after the change occurred at the learning 

trial 200 as shown in Fig. 8. But while the Q-learning and the 

Influence Zone require many learning trials to learn a new 

trajectory, CBT-RL adapts more quickly to such a stochastic 

change in the topology, converging to an optimal policy with 

21 steps to the goal at the end of the learning process. 

 

 
 

 

 

Fig. 8. Number of steps to the goal using the learned policy 

 In the last experiment, we set the number of learning trials 

to 500. Every 25 trial during the first 400 trials, the 

(a) (b) 

Fig. 7. ITM map: (a) before the change occurs, (b) after the change occurs
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environment changes stochastically to one of the four 

configurations shown in Fig. 9, with the number of the 

selected configuration drawn randomly from a uniform 

distribution over the range [1,4].  

As shown in Fig. 10, Q-learning and Influence Zone failed 

significantly to adapt to this challenging stochastic topology 

change. The agent in the Influence Zone could not continue 

the learning process, permanently taking actions that lead to 

some previous goal position. However, CBT-RL has been able 

to adapt quickly to this change in the goal position and its 

neighborhood, learning an optimal policy that leads to the goal 

position of the final selected configuration with just 20 steps. 

 

 
 

 

 

Fig. 10. Number of steps to the goal using the learned policy 

VI. CONCLUSION 

 In this paper, we propose CBT-RL, a topology-based 

enhancement method for the original Q-learning algorithm for 

mobile robot navigation. The method adopts the Instantaneous 

Topological Map (ITM) model for constructing topological 

representation of the agent’s environment. The neighborhood 

relationships information encoded in the incrementally-built 

ITM is used to spread the value function updates over the 

observed trajectories and to generate a curiosity used to 

optimize the action selection of the RL agent. We compared 

our proposed algorithm to the Q-learning and Influence Zone 

in static and dynamic environments. The simulation results 

support our claim that CBT-RL has higher learning 

performance than those algorithms and can adapt quickly in 

response to any stochastic changes in the environment 

topology. We demonstrated in this study the utility of the 

topological maps for facilitating value function updates and 

optimizing the exploration strategy in discrete state space. It 

would be interesting to investigate the potential of the 

algorithm in continuous state or continuous action spaces. 
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Fig. 9. Stochastically changing environment (goal and its surrounding 

obstacles change between the four configurations) 
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