
Curiosity-based Topological Reinforcement Learning

Muhammad Burhan Hafez, Loo Chu Kiong

Faculty of Computer Science and Information Technology

University of Malaya

Kuala Lumpur, Malaysia

burhan.hafez@gmail.com, ckloo.um@um.edu.my

Abstract—Recent works involved in enhancing the learning

convergence of reinforcement learning (RL) in mobile robot

navigation have investigated methods to obtain knowledge from

efficiently exploring the robot's environment. In RL, this

knowledge is highly desirable to reduce the high number of

interactions required for updating the value function and to

eventually find an optimal or suboptimal policy for the agent. In

this work, we propose a curiosity-based topological RL (CBT-

RL) algorithm that makes use of the topological relationships

among the observed states of the environment in which the agent

acts. This algorithm builds an incremental topological map of the

environment using Instantaneous Topological Map (ITM) model,

which we use for facilitating value function updates as well as

providing a guided exploration. We evaluate our algorithm

against the original Q-Learning and Influence Zone algorithms

in static and dynamic environments.

Keywords— Reinforcement Learning; Convergence

Acceleration; Topological Map; Guided Exploration.

I. INTRODUCTION

Reinforcement Learning (RL) allows an autonomous agent
to learn to perform a task in initially unknown environment. It
directs the agent to continuously take actions that maximize the
received rewards from the environment. This sequential
decision making is inherently related to the problem of
autonomous robot navigation, in which the aim is to find an
optimal path between two states in the environment while
avoiding obstacles. The RL agent optimizes its behavior, unlike
the supervised learning algorithms, without external
supervision and using only its collected experiences.
Accordingly, the goal of the agent is to learn an optimal policy
through exploration, which requires enormous interactions with
the environment, and it becomes very difficult in large state
spaces and in online applications.

Many approaches from many different perspectives have
been taken to accelerate the learning convergence of RL. Some
of these are model-based [1] [2] and others are model-free [3]
[4] [5]. Q-Learning is a well-known example of the model-free
approaches and it guarantees to find an optimal policy for the
agent having visited every state of the environment infinitely
often. Throughout the literature, many methods were proposed
to improve and speed up Q-Learning, using eligibility traces
[5] [6], exploiting the generalization ability of the supervised
learning algorithms [7] [8], or using topological representation
of the environment [9] [10]. However, although most of these
methods achieve a considerable learning performance, they
made no consideration to the exploration part of the RL

algorithm which is a significant component of the learning
process, and that makes the policy produced by those methods
far from being optimal especially in the early stages of
learning. Thus, we propose a new Reinforcement Learning
algorithm that uses a topological model of the environment to
accelerate learning an optimal policy by optimizing the
exploration strategy of the agent.

The paper is organized as follows: Section 2 gives an
overview of the Q-Learning algorithm. The use of
Instantaneous Topological Map (ITM) to model the agent’s
environment is presented in Section 3. The proposed method is
then demonstrated in Section 4. Comparisons and simulation
results are shown in Section 5. We conclude the paper in
Section 6 by discussing the obtained results and the future
direction of the study.

II. MODEL FREE RL AND Q-LEARNING

 RL problem is formalized using Markov Decision Process

(MDP), which is a five-tuple (S, A, T, R, γ), where S is a set of

states, A is a set of actions, T : S × A × S � [0, 1] a state-

transition distribution, R : S × A × S � ℜ is a reward function

and γ is a discount factor; 0�γ <1.

 A policy π is defined as a mapping from states to actions;

π : S � A. The value of each state is given by a value

function, as follows:

����� � �	
����
 �
����
 ��
����
 ������ � ����
�

� �� ��� ����� ����� ��� ����� ���
 ������������
�� � �

(1)

The value function, �����, is the expected sum of discounted

rewards the agent receives starting at state s and executing

policyπ. The goal of the RL agent is to take actions that

maximize that value function in order to learn an optimal

policy π*.

 Since RL does not have a complete knowledge of the

underlying MDP, there were many algorithms to build an

approximate model for the MDP, and these are called Model-

based. On the other hand, Model-free algorithms do not

estimate the MDP but rather estimate the state values directly

based on the collected samples resulting from taking actions

according to some fixed policyπ. Each sample takes the

following form:

2014 IEEE International Conference on Systems, Man, and Cybernetics
October 5-8, 2014, San Diego, CA, USA

978-1-4799-3840-7/14/$31.00 ©2014 IEEE 1979

��� !"# � $
 ���������#� (2)

where r is the reward received on experiencing a transition (s,

π(s), s'). Averaging these samples gives the value estimate of

the state s as follows:

����� � � %&����� !"#
#

 (3)

where n is the number of collected samples from state s.

Rather than keeping all samples to be averaged each time a

new sample is collected, an exponentially-weighted average is

used and updated on observing a new sample, as follows:

����� � ������
 �'�(��� !")������* (4)

where ' is a weighting term (the learning rate); 0 + ' + 1.

This equation is called Temporal-Difference Learning (TD-

Learning) [11] because it depends on the difference,

��� !")������, between the new sample and the current

value estimate to update and learn the value estimate of state s.

Using TD-Learning, Watkins proposed a method to assign

values to state-action pairs and named it incremental dynamic

programming [4] [12]. The method was later called Q-

Learning, since its use is to learn state-action values (Q-

values). The action-value function of the Q-Learning agent is

updates as follows:

,��� �� � �,��� ��
 �'�($
 ��� �����) �,��� ��* (5)

The value of the next state s’ is computed by taking the
maximum over all its Q values; ����� � �-./0�,���# � ���. As

this value update is applied independently of any policy, the Q-
Learning is considered an off-policy TD-Learning method.

III. TOPOLOGY LEARNING FOR MODELING THE

ENVIRONMENT

 Topology learning is a set of unsupervised learning

techniques developed to identify data clusters and regularities

in the input space, and were frequently used to produce a low-

dimensional representation of a high-dimensional space. The

information provided by the topology learning methods in

terms of neighborhood relationships is of a great importance

for autonomous navigation applications [13] [14].

 Kohonen's self-organizing feature map (SOFM) was the

first algorithm to learn a mapping from the input space to an

output space represented by a network of neurons, utilizing

competitive learning [15] [16]. The Neural Gas (NG) proposed

by Martinetz and Schulten overcomes the SOFM deficiency of

using a fixed and predetermined network topology [17]. This

model uses competitive Hebbian learning (CHL) to develop

edges between the neighboring nodes and to generate the final

topology. This was further improved by the work of Fritzke

where he introduced an incremental generation of the topology

called Growing Neural Gas (GNG) [18]. This incrementally

built topology eliminates the need for defining a specific

number of nodes a priori. Despite the potential of building the

topological representation of the RL agent’s environment

using GNG algorithm, it remains inadequate for such a task.

This is because the GNG is based on the assumption that the

input data (stimuli) are statistically uncorrelated, which is

untrue assumption in robotics where the stimuli are generated

along continuous trajectories.

 The approach that constructs a topological map from such

correlated stimuli is the Instantaneous Topological Map (ITM)

[19]. Instead of being stuck in a single node for long time in

the case of GNG causing slow adaptation, this approach

makes the creation of new nodes resulting from traversing a

trajectory faster and efficient, using fewer adaptation

parameters.

ITM is defined by a set of neurons i with each neuron

represented by a weight vector wi, and a set of edges which is

simply considered as a set of the neighboring nodes N(i) for

each node i. ITM implements Delaunay triangulation for the

placement of nodes and edges in the map. According to [19],

The ITM starts with two connected nodes and each time a new

stimulus � is provided, the map performs the following

adaptation steps:

1. Matching: compute the nearest node n and the second-

nearest node s with regard to � based on the Euclidean

distance measure. &� � �.12-34# �56) 7#5, �� �
�.12-3489# �:6) 78:.

2. Reference vector adaptation: move the nearest node n by

a small rate � towards �, ;�7< � �=��6)�7<�.
3. Edge adaptation: connect n and s by adding an edge

between them (if they are not connected), and for every

node m > N(n), check if the edge between n and m is non-

Delaunay. If so, remove that edge. If there are no more

edges originating from m, remove the node m as well.

4. Node adaptation: if the distance between � and n is greater

than some threshold "?@A, i.e., (56) 7<5 > "?@A) and �

lies outside the circle defined by the diameter linking n

and s, then add a new node y with 7B = �, and create a

new edge between n and y. Then, if the distance between

n and s becomes smaller than
�
� �"?@A, then remove s.

 Since the creation of new nodes is no longer time-

dependant and the non-Delaunay edges are removed instantly

without waiting until they become obsolete, like in NG and

GNG models, the ITM can adapt much faster to the observed

states of the agent’s environment.

 In the next section we describe the use of ITM model to

facilitate computing the value function for our Topology-

based RL agent.

1980

IV. THE CBT-RL

 Considering the Eq. (5), we see that in Q-Learning the

update to the value estimate of state s after taking action a

depends on the reward experienced r and the value estimate of

the observed state s’, which is V(s’). This means that this

update contributes, in a decreasing magnitude, to the value

estimate of all the previously observed states on the trajectory

linking the start state to the current state s. However, in Q-

Learning this update is limited to one state s when observing

the transition (s,a,r,s’), and only contributes later to the

proceeding states over the subsequent iterations, causing slow

convergence rate. To overcome this limitation in Q-Learning,

a topological representation of the environment is built using

the ITM model discussed earlier.

Our algorithm consists of two successive phases: task learning

and exploration optimization. In task learning phase, the ITM

model is used to build a topological representation of the

environment for accelerating the value function updates. In

exploration optimization phase, we propose an internal reward

function to guide the exploration based on the state values

derived from the nodes of the ITM map.

A. Task learning:

 To overcome the limitation of performing a single value

update per interaction in the original Q-Learning algorithm,

we build a topological representation of the agent’s

environment using the ITM model discussed earlier. The RL

agent interacts with its environment and once a new state is

observed, a new node will be created in the topological map

which corresponds to the observed state. When the RL agent

takes action a at state �<C�, as shown in Fig. 1 , the value

estimate of this state V(�<C�) is updated according to Eq.(5).

Then, this updated estimate is propagated to the neighboring

nodes in the first topological neighborhood identified by

N(�<C�) using the edges developed so far. This allows the

identified nodes to have their value estimates updated as well.

The neighboring nodes, in turn, propagate their updated values

backwards to their neighbors and so on. However, in contrast

to the Influence Zone method [10] in which all the nodes in all

the identified neighborhoods update their values, we restrict

the update to the nodes whose corresponding states have been

traversed by the agent in the current learning experience (we

call them active nodes). This way we can avoid overestimating

the state values, because updating the values of states which

have not been visited in the current experience can result in an

incorrect policy for the RL agent. Consequently, multiple

updates are now performed in each interaction with the

environment rather than just a single update, which leads to a

faster convergence.

Each node n of the employed ITM consists of the following:

1- Reference vector: the geometrical position of the

corresponding state in the environment.

2- Set of edges: the neighboring nodes of n, N(n).

3- Set of Q-values: each Q-value corresponds to an

edge, and the value of the node is the maximum of its

Q-values.

4- Identification flag: indicates whether the node has

already undertaken a state-action value function

update or not.

5- Activation flag: indicates whether the node has been

traversed in the current learning experience (learning

trial) or not.

Fig. 1. Backward propagation of state value estimate through topological

edges after an interaction with the environmet

B. Exploration Optimization:

 In our approach we model the internal state of the agent

by its current learned policy derived from its current value

function. This is done by first defining the value of a policy

according to Ng and Jordan [20], as follows:

���� � D�EFG�	������� (6)

where D is the initial-state distribution, and the expectation E

is taken with respect to �� drawn from D. We can rewrite Eq.

(6) as:

���� � � H����
�E>�

������� (7)

where S is the set of external states. Thus, we consider ����
as an evaluation of the policy � which the agent has learned so

far. When the agent transitions from one external state to

another, its current policy driven from the state value

estimates, which are updated after that transition, changes to a

new policy. Based on this change in the internal state and the

change in the perception of the agent (provided by the

topological map), we propose an internal reward function as

follows:

$#<I � � �� ��) �����
� "$JKK (8)

This internal reward function represents how much the current

learned policy has changed, ������ ������ ��, as a result of a

1981

transition in the external state space. This is realized by taking

the difference between the values of the two policies before

and after the transition occurs. The function also includes the

perception error, which is the difference between the current

state’s position 6 and the position of the nearest node in the

topological map; "$JKK �� �6) L"�$"�M�6��. Using Eq.(7),

we can rewrite Eq.(8) as:

$#<I ��� H����N�������)��� ����O
�E>�

�
 � "$JKK (9)

Since a single transition in the external state space between

two time steps t-1 and t produces a change to the value

estimate of the current state and all the states in its topological

neighborhoods, and these changes are independent of the

initial state distribution, we omit the distribution D from Eq.

(9). Accordingly, the internal reward function is as follows:

$#<I�M� � ��	�I����)��IC�������
�E>�

�
 � "$JKK (10)

We can interpret our internal reward as consisting of two key

components: the learning progress (the change in the learned

policy) and the perception improvement (the change in the

external state); $#<I�M� ��Learning_progress + Perception

improvement.

The first component encourages the agent to take actions that

lead to an improvement in the learned policy (rewarding the

progress made) while the second encourages the agent to take

actions that lead to places it has no or little knowledge about.

Overall, this internal feedback acts as a curiosity signal for the

agent and gives a guided exploration strategy in which the

policies evolve until an optimal or suboptimal policy is

learned.

In order to integrate the internal reward in our algorithm, we

use two Q-learning value functions. The first Q function

estimates the external state values using the external rewards

received from the environment and is called the task function.

The second Q function, which is task-independent, estimates

the internal state values using the self-generated internal

reward $#<I defined earlier and is called the exploration

function.

The optimal policy of the exploration function defines the

optimal exploration for the RL agent to use while learning to

solve its task. The agent takes actions according to the

exploration function throughout the learning process. After the

learning ends, the agent takes actions according to the task

function to perform the task it has learned.

Fig. 2 shows the proposed algorithm architecture and the data

flow between the task layer and the exploration layer which

correspond to task learning and exploration optimization

phases explained earlier.

Algorithm 1 CBT-RL Algorithm
 1: While stop P true do

 2: s ���

 3: While s P goal do

 4: Take action a at state s according to the policy

 of the exploration function

 5: Observe state s’ and external reward r
 6: Create a new node o’ corresponds to s’

 7: if o’ Q Map then
 8: Add o’ to Map

 9: end if

10: Update Map according to ITM adaptation steps
11: R"$JKK � 7S�) 7<�: n’ is the nearest node to o’ in Map
12: Compute the temporal difference value,

TD_val � r + T �I@�U(s’) - ,I@�U��� ��, and update the
state-action value estimate using TD-val

13: if TD-val > V then
14: for each &# > N(s) do

15: ,I@�U�&# � �# �� � ,I@�U�&# � �# �� + ' ($�WX� + T

�I@�U���YLZ["� - ,I@�U�&# � �# �): maxNode is the
neighboring node with maximum value (with

respect to the node &#)
16: accumulator � accumulator + �I@�U<J\ �&#� -

�I@�US]^ �&#�
17: s � &#
18: Goto 14 (Repeat the process for &#’s neighboring

nodes)
19: end for

20: internal_r � accumulator + R"$JKK

21: ,JA_��� �� � ,JA_��� �� + ' (internal_r + T �JA_��`�)
,JA_��� ��)

22: end if

23: s � s’

24: end while

25: end while

26: Exit

Fig. 2. The Architecture of CBT-RL Agent

A detailed description of the algorithm’s global parameters is

given in Table 1.

1982

Table 1: Global parameters of CBT-RL algorithm

 Description

Stop The stopping condition can be either maximum

number of learning trials given to the agent, or a

minimum-error threshold, with which the total

difference between the current and the predicted

value estimates over all the states is compared.

Map It is the topological map incrementally built by

using the ITM algorithm.

Threshold

V

The purpose of this threshold is to reduce the

number of updates per learning trial, so that a

negligible TD_val causes no update propagation

to the neighboring nodes.

V. RESULTS AND EVALUATION

 In the following experiments we compare the performance

of our proposed algorithm to the original Q-Learning and the

Influence Zone algorithms in static and dynamic environments

of increasing levels of complexity. The learning rate ' is 0.5,

the discount factor T is 0.8, the node insertion threshold of the

ITM "?@A is 0.5, the temporal difference threshold V is 0.1

and the =-greedy action-selection parameter (in Q-learning &

Influence Zone) is 0.5. The learning rate and discount factor of

the exploration function of our algorithm are 0.2 and 0.99

respectively.

The agent selects one of the possible actions corresponding to

the eight compass directions. The reward signal the agent

receives is either: (-1) for hitting an obstacle or boundary, (+1)

for reaching a goal state or (0) for wandering around.

Fig. 3. Possible actions

Fig. 4 shows a static grid-world environment of size 20a20 to

which we apply the three algorithms. The red, black and green

squares refer to an initial state, an obstacle and a goal state,

respectively. In this experiment, we test the agent’s learned

policy after each learning trial by letting the agent act

according to the policy derived from the learned task function.

In the test phase the agent is given up to 2000 steps to reach a

goal state starting at the initial state.

Fig. 4. Static Environment

 The number of steps to reach the goal in the Q-learning is

1000 on average as shown in Fig. 5. Influence Zone’s agent

takes five learning trials to converge to a suboptimal policy

reaching the goal with 27 steps. CBT-RL, on the other hand,

needs only two learning trials to learn an optimal policy with

24 steps to the goal.

Fig. 5. Number of steps to the goal using the learned policy

 To see how CBT-RL reacts to stochastic environment

changes (from the agent perspective), we use a 4-cage

configuration shown in Fig. 6 where the agent learns a path

from a start to a goal state. But after 199 learning trials, the

short path to the goal becomes blocked. Fig. 7 shows changes

in the environment topology during the learning process,

where the red nodes represent the environment’s free states.

Fig. 6. Dynamic Environment (one downward path blocked stochastically)

 In this experiment we test the agent on its learned policy

every 25 learning trials, with the agent given up to 2000 trials

to reach the goal. The number of steps to the goal has risen in

the three algorithms after the change occurred at the learning

trial 200 as shown in Fig. 8. But while the Q-learning and the

Influence Zone require many learning trials to learn a new

trajectory, CBT-RL adapts more quickly to such a stochastic

change in the topology, converging to an optimal policy with

21 steps to the goal at the end of the learning process.

Fig. 8. Number of steps to the goal using the learned policy

 In the last experiment, we set the number of learning trials

to 500. Every 25 trial during the first 400 trials, the

(a) (b)

Fig. 7. ITM map: (a) before the change occurs, (b) after the change occurs

1983

environment changes stochastically to one of the four

configurations shown in Fig. 9, with the number of the

selected configuration drawn randomly from a uniform

distribution over the range [1,4].

As shown in Fig. 10, Q-learning and Influence Zone failed

significantly to adapt to this challenging stochastic topology

change. The agent in the Influence Zone could not continue

the learning process, permanently taking actions that lead to

some previous goal position. However, CBT-RL has been able

to adapt quickly to this change in the goal position and its

neighborhood, learning an optimal policy that leads to the goal

position of the final selected configuration with just 20 steps.

Fig. 10. Number of steps to the goal using the learned policy

VI. CONCLUSION

 In this paper, we propose CBT-RL, a topology-based

enhancement method for the original Q-learning algorithm for

mobile robot navigation. The method adopts the Instantaneous

Topological Map (ITM) model for constructing topological

representation of the agent’s environment. The neighborhood

relationships information encoded in the incrementally-built

ITM is used to spread the value function updates over the

observed trajectories and to generate a curiosity used to

optimize the action selection of the RL agent. We compared

our proposed algorithm to the Q-learning and Influence Zone

in static and dynamic environments. The simulation results

support our claim that CBT-RL has higher learning

performance than those algorithms and can adapt quickly in

response to any stochastic changes in the environment

topology. We demonstrated in this study the utility of the

topological maps for facilitating value function updates and

optimizing the exploration strategy in discrete state space. It

would be interesting to investigate the potential of the

algorithm in continuous state or continuous action spaces.
ACKNOWLEDGMENT

This research is supported by UMRG Grant (RP003D-
13ICT) from University of Malaya.

REFERENCES

[1] R. S. Sutton, "Dyna, an integrated architecture for learning, planning, and

reacting," ACM SIGART Bulletin, vol. 2, no. 4, pp. 160-163, 1991.

[2] A. W. Moore and C. G. Atkeson, "Prioritized sweeping: Reinforcement

learning with less data and less time," Machine Learning, vol. 13, no. 1,

pp. 103-130, 1993.

[3] R. S. Sutton, "Learning to predict by the methods of temporal differences,"

Machine Learning, vol. 3, no. 1, pp. 9-44, 1988.

[4] C. G. C. H. Watkins, "Learning from delayed rewards," King's College,
Cambridge, 1989.

[5] M. Wiering and J. Schmidhuber, "Fast Online Q(�)," Machine Learning,

vol. 33, no. 1, pp. 105-115, 1998.

[6] J. Peng and R. J. Williams, "Incremental Multi-Step Q-Learning,"

Machine Learning, vol. 22, no. 1-3, pp. 283-290, 1996.

[7] M. Zeller, R. Sharma and K. Schulten, "Motion planning of a pneumatic
robot using a neural network," Control Systems, IEEE, vol. 17, no. 3, pp.

89 - 98, 1997.

[8] L. Busoniu, R. Babuska, B. De Schutter and D. Ernst, Reinforcement
learning and dynamic programming using function approximators, New

York: CRC Press, 2010.

[9] A. P. S. Braga and A. F. R. Araújo, "A topological reinforcement learning
agent for navigation," Neural Computing & Application, no. 12, p. 220–

236, 2003.

[10] A. P. S. Braga and A. F. R. Araújo, "Influence zones: A strategy to
enhance reinforcement learning," Neurocomputing, vol. 70, no. 1-3, pp.

21-34, 2006.

[11] R. S. Sutton and A. G. Barto, Introduction to reinforcement learning,
Cambridge, MA: MIT Press / Bradford Books, 1998.

[12] L. Kaelbling, M. Littman and A. Moore, "Reinforcement learning: a

survey," Journal of Artificial Intelligence Research, vol. 4, pp. 237-285,
1996.

[13] E. Remolina and B. Kuipers, "Towards a general theory of topological

maps," Artificial Intelligence, vol. 152, no. 1, p. 47–104, 2004.

[14] S. Thrun and A. Buckenz, "Integrating grid-based and topological maps

for mobile robot navigation," in Proceedings of the Thirteenth National

Conference on Artificial Intelligence AAAI, Portland, Oregon, 1996.

[15] T. Kohonen, Self-Organization and Associative Memory, New York:

Springer Berlin Heidelberg, 1989.

[16] T. Kohonen, Self-organizing maps, New York: Springer Berlin Heidelberg
, 2001.

[17] T. Martinetz and K. Schulten, "A neural-gas network learns topologies," in

Artificial Neural Networks, Amsterdam, 1991, pp. 397-402.

[18] B. Fritzke, "A Growing Neural Gas Network Learns Topolgies," Advances

in Neural Information Processing Systems, 1995.

[19] J. Jockusch and H. Ritter, "An Instantaneous Topological Mapping Model
for Correlated Stimuli," in Proceedings of the IJCNN’99, Washington, DC,

1999.

[20] A. Y. Ng and M. Jordan, "PEGASUS: A policy search method for large
MDPs and POMDPs," in Proceedings of the Sixteenth conference on

Uncertainty in artificial intelligence, San Francisco, CA, USA, 2000.

(b) (a)

(c) (d)

Fig. 9. Stochastically changing environment (goal and its surrounding

obstacles change between the four configurations)

1984

