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Abstract—Guiding the action selection mechanism of an
autonomous agent for learning control behaviors is a crucial
issue in reinforcement learning. While classical approaches to
reinforcement learning seem to be deeply dependent on external
feedback, intrinsically motivated approaches are more natural
and follow the principles of infant sensorimotor development. In
this work, we investigate the role of incremental learning of
predictive models in generating curiosity, an intrinsic moti-
vation, for directing the agent’s choice of action and propose a
curiosity-driven  reinforcement learning algorithm for
continuous motor control. Our algorithm builds an internal
representation of the state space that handles the computation of
curiosity signals using the learned predictive models and extends
the Continuous-Actor-Critic-Learning-Automaton to use extri-
nsic and intrinsic feedback. Evaluation of our algorithm on
simple and complex robotic control tasks shows a significant
performance gain for the intrinsically motivated goal reaching
agent compared to agents that are only motivated by extrinsic
rewards.

Index Terms— Reinforcement Learning; Motor Control;
Curiosity-based learning; Predictive Model; CACLA.

1. INTRODUCTION

Helping autonomous agents to learn new motor skills from
trial-and-error experience in their environment is the major
task of Reinforcement Learning (RL). Learning is achieved
when the agent keeps executing actions that maximize long-
term reward from its environment, thus employing an optimal
policy describing the desired skill. During learning, in
deciding on its next action, the agent faces the exploration-
versus-exploitation trade-off, a key problem in RL,
particularly in complex domains. This is because inadequate
exploration is most likely to keep the agent from discovering
effective control policies.

To address balancing exploration and exploitation, differ-
ent approaches adopt different strategies. Some simply use
random exploration methods, such as the commonly used e-
greedy and Boltzmann exploration [1]. This includes even a
recent breakthrough in RL for playing Atari games [2]. Other
approaches use count-based exploration to keep track of the
state-action visitation frequency, encouraging the agent to try
actions it has a lot of uncertainty about, with exploration
bonuses [3] and R-MAX [4],[5] being the most popular. A
more recent approach applies Thompson sampling, learning
multiple action-value functions via bootstrapping [6].

What is common among these approaches is their strong
reliance on external rewards; however, fully autonomous
agents often operate in environments where such external
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rewards do not exist or are sparsely available. Intrinsically
motivated RL, therefore, attempts to address this common
limitation by endowing the agent with intrinsic drives/rewar-
ds, such as fear, hunger or curiosity, which enable it to
continue to meaningfully explore its environment and gather
useful experience data to learn from [7].

A wide variety of functions have been defined for compu-
ting an intrinsic reward, including Bayesian surprise [8],
measures based on the agent’s learning progress in predicting
action outcomes [9], [10], information theoretic measures like
information gain [11] and empowerment [12], measures based
on novelty of observed states [7],[13],[14] and measures
based on the change of the agent’s policy value, which is the
expected value of the start state [15],[16].

The majority of these functions focus almost entirely on the
perceptual characteristics of the observed information. Only
the learning progress-based measures have allowed the
agent’s learning history from previous experience as well as
the environmental features to define the agent’s curiosity as
an intrinsic reward [9], [10]. This is also supported by recent
studies from developmental psychology that have found
infants’ curious exploration to be based on both their own
learning history and perceptual variability. These studies
show evidence of a Goldilocks effect where seeking just the
right level of difficulty drives optimal learning with too much
or too little difficulty being disruptive [17],[18].

Curiosity as a drive to maximizing the learning progress of
an artificial agent has been successfully applied to various
problems, for example, to the acquisition of increasingly com-
plex behaviors in play experiences in simple spaces, which
resemble children’s developmental patterns [9] and to learn-
ing goal-oriented navigation in a 2D maze-like environment
with high-dimensional visual input [10]. None of these
approaches, however, address curiosity-based exploration in
continuous control. Instead, they use discrete action spaces.

Curiosity models, which employ learning progress-based
measures, usually use a single model of the environment to
assess a prediction error. Such a model cannot give accurate
information on whether learning has progressed in particular
regions of the agent’s sensory space where the interaction
with the environment actually happens. Instead, it only
informs us on the prediction performance over the entire
sensory space, which is difficult to cover and, often, irrelevant
to spatially-local behavioral patterns we are interested in
modeling. Furthermore, it requires a collection of sufficient
training samples that goes beyond the agent’s lifetime.
Therefore, in this approach, we train an ensemble of local



predictive neural networks, as opposed to one monolithic
network. The intrinsic reward is composed of two terms: the
perception error of the ensemble, and the change of the
prediction error of a local model. These separate terms make
the intrinsic reward more stable to fluctuations and the agent
more likely to continually discover better control policies.

Learning multiple forward and inverse models has also
been used for efficient exploration in continuous, redundant
control spaces [19],[20]. As opposed to random exploration
of the high-dimensional action space with motor babbling,
these approaches perform exploration in the low-dimensional
task space for efficient learning of inverse kinematics. [20]
proposes active self-generation and selection of high-level
goals driven by a measure of competence progress to reach
these goals and uses RL for goal-directed learning of policy
parameters. [19] requires a predefined set of goals and paths
along which goals are ordered and tried to reach to detect and
resolve inconsistent samples resulting from redundancy and
drifts in the inverse estimate. This approach makes no use of
RL of control actions. In contrast to these models, we are
interested in improving RL with intrinsic motivation to learn
good general policies to achieve the desired task.

More recently, Deep Deterministic Policy Gradient
(DDPG) has been proposed for learning continuous motor
policies [21]. Similar to our work, DDPG is an off-policy
actor-critic algorithm that learns a deterministic target policy
while behaving according to a stochastic behavior one. The
main difference is that the actor in DDPG updates the policy
to follow the gradient of the critic’s action-value function, but
the actor in our algorithm as well as in [22] updates its policy
towards an action that was found to be better than the current
approximation of the optimal action. Using gradient ascent on
the critic’s value for adjusting the policy as in DDPG is prone
to early divergence since the gradient of a not-fully-trained
critic will not always be accurate, as found in [22] when
testing on simple control tasks.

In this paper, we propose a novel curiosity-driven RL
algorithm based on an actor-critic model. Our algorithm
incrementally builds a network of local forward models that
handles the computation of the agent’s learning progress-
based intrinsic reward. This reward is then used to shape the
action selection and direct the agent at potentially informative
states and actions that improve the prediction error of its
environment dynamics in a continuous state-and-action space.

The paper is organized as follows: Section II gives the nec-
essary background on the Continuous-Actor-Critic-Learning-
Automaton algorithm. Our proposed algorithm is then
described in Section III. Empirical evaluation and results are
shown in Section IV. We conclude in Section V by
summarizing the main results and providing directions for
future work.

IL.

We consider a standard RL setup with an infinite-horizon
discounted Markov Decision Process (MDP), where an agent
decides on an action and observes a new state and reward. An
MDP is defined by a tuple (S, 4, T, R, ), consisting of a set
of states .S, a set of actions A, state transition distribution 7 : S

xA xS - [0, 1], reward function R : § x4 xS —» R and

BACKGROUND

40

discount factor , 0 < y< 1. We aim to find a behavioral
policy 7 : § x A — [0, 1] that maximizes the total discounted
reward %2, % 1. The state value function V™(s), given a
policy m, is defined over all states and indicates the expected
total discounted reward when executing policy m from state s.
The optimal value function corresponding to the optimal
policy *: m* = arg max,, V™ (s) is given by:

V*(s) = m:lxz T (s, a,s’)(R (s,a,s") + yV*(s’)) (1)

which is the Bellman optimality equation for V* [1].

We are concerned with online RL, where T is unknown and
the agent receives a sample transition (s;, a;, S¢41,7;) at each
time step and uses it to update an estimate of the state value
function via Temporal Difference (TD) learning [23]:

Ver1(se) = Ve(se) + aie (2)
where 6, = 1. + yVi(St41) — Vi(sy)is the TD-error and
0 < a; <1 is the learning rate. It has been proven that in
tabular representation, the value estimates, updated by using
(2), will eventually converge to the actual state values for a
fixed policy [23]. When the state space is continuous,
function approximation is used, such as a neural network in
our work, to learn a parameterized estimate of the value
function. The update is then performed on the neural network
parameters in the direction of 7, + YV (sp41; 67_1):

)

where @) is the parameter vector of the neural network
approximating the value function at time ¢ and y is the sample
value 1, + yV(S¢4q; 07_1). For an extensive review of similar
methods, the reader is referred to [24].

In continuous action space, the problem is harder because
there is no obvious way to decide in a given state which
action leads to a state with the highest value. Van Hasselt and
Wiering (2007) tackled this problem and proposed the
Continuous-Actor-Critic-Learning-Automaton (CACLA) alg-
orithm that handles both continuous state and action spaces
[22]. A standard Actor-Critic RL model has the structure
shown in Fig. 1, where the actor suggests an action a; in state
s and the critic evaluates the action outcome using the
observed reward r, and next state s;,,, and based on this
evaluation, the actor improves its future suggestions.

0fi1= 6/ + a 8. VgVi(s;; 00); 6, =y — Vi(se; 0)

Agent
SuT0S

Environment -IL Actor

S

Fig. 1. Actor-Critic model. The critic and actor are responsible for action
evaluation and action improvement respectively.

The basic idea behind CACLA is that if an explored action
a; has resulted in a positive change of a state value, then this



action is believed to lead to a potentially higher accumulated
reward and will, therefore, be reinforced:

“

This can be implemented in continuous spaces by using
two function approximators; one for the critic updated using
Eq. (3) and one for the actor updated as follows:

If 6, >0:
9;‘15 +a (at — Ac(sy; ch))VgAct(st; 91?%)

If6,>0: increaset(nt(st,at))

¢ = ©)
where /¢ is the parameter vector for the actor’s function
approximator (a neural network here) and Ac,(s;; 67°) is the
actor’s output at time ¢ given 8/, which is far from a,. No
update is performed when the value is not improving because
otherwise that would update towards an action that might not
be better than the current estimate of the optimal action.

If an action is found to have considerably improved the
value of a state, then the corresponding actor update is further
magnified. This is done by first keeping a running average of
the TD-error’s variance:

vary,, = (1= B) var, + B8,* (6)

and then the number of updates towards that action is
determined by [St //var |, which is relative to the number of
standard deviations the target of the critic is above its output,
rounded up to the next nearest integer number. This form of
the algorithm is called CACLA+Var to distinguish it from the
case where only a single update to the actor is performed.

For exploration in CACLA, two methods were considered
by the authors: e-greedy (selecting a uniformly-distributed
random action with probability ¢ and the currently best-
known action with probability 1- €) and Gaussian exploration
where the selected action is sampled from a Gaussian
distribution with a mean at the actor’s output:

e—(ar- Act(sp)’ /202

O]

(S, ar) = o

In the next section, we will discuss our proposed approach
and show how we use CACLA as the RL algorithm within our
approach.

III.

The algorithm presented here is called ICAC (Intrinsically-
motivated Continuous Actor-Critic). In ICAC, the agent’s
learning system consists of two main parts: 1) A network of
predictive models of sensorimotor activity; and 2) a module
of intrinsically motivated control. The full system architecture
is shown in Fig. 2.

ALGORITHM

A. Network of predictive models

Much like a human infant, we want our learning agent to be
able to reorganize its interaction with its environment, moving
from regions where it has learned about the outcome of its
motor actions to other regions where it expects to learn new
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Fig. 2. ICAC architecture. The multi-predictor network adaptively forms a
topology-representing network of the agent’s sensory input, where each node
is associated with a local predictor of the system dynamics in the region
covered by the node. The agent’s control module comprises an actor-critic
model. The predictor of the network’s nearest node to the observed state s,
predicts the next state $;,, using both s; and the taken action a, and updates
itself using the actual next state s;,,. An internal reward is then generated
from the perception error and the learning progress observed, combined with
the external reward and sent to the critic to update its estimate of the utility of
a; accordingly.

patterns of motor activity. This can be realized by learning a
number of local predictive models, which we call here activity
models. To facilitate this, we equip the agent with a cognitive
map-like representation that stores and integrates information
about spatial connectivity among environmental regions with
information about activity models.

While interacting with its environment, the agent incremen-
tally partitions the sensory input space into regions of activity
using the Instantaneous Topological Map (ITM) [25]. The
ITM is an unsupervised learning method for adaptively
building a topology-preserving map of the input space,
specially developed for strongly correlated input, which is the
case in most robotic applications where stimuli are generated
by exploration along continuous trajectories. Unlike other
common topology-representing networks such as the SOM
[26] and the Growing Neural Gas [27], ITM is considered
more computationally efficient, with the number of nodes
scaling linearly with the volume of the state space, of which it
provides a Delaunay triangulation, and has been successfully
used in several RL problems [28],[16].

The ITM (see Fig. 3) is defined by a set of neurons/nodes
i, each having a weight vector w; and a set of neighboring
nodes N(i) with which it is connected by edges. A predictive
model of system dynamics is assigned to each node, trained to
predict the next state from the current state and agent’s action.
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Fig. 3. ITM network. The nodes of the incrementally built
ITM network are the centers of the Voronoi cells. The
Delaunay triangulation (dotted lines) connects the centers of
the neighboring cells. Each triangle is associated with a
circle inside which no triangulation vertices can exist.
Otherwise, a non-Delaunay edge is found.

Given a sample experience (S;, at, S;41,7:), the agent
updates its ITM network, which starts with two connected
nodes, as outlined in Algorithm 1.

Algorithm 1 Multi-predictor Network Adaptation

I:  n < argmin|ls; — wll,n’ < argmin||s, — wj]|
i ijen

2 Awy, < €(sp —wy)

3: N(n) «N(n) u W'}, N(n") « N(n") U {n}

4:  for min N(n) do

5: if (W, — wy,). (W, — wy,) <0 then

6: N() « N(n) — {m},N(m) « N(m) — {n}
7: if N(m) = {0} then

8: ITM « ITM — {m}

9: end if

10: end if

11:  end for

12:if |lsg = wull > emax & Wy — 5). (W, — s¢) > 0 then
13: ITM «ITM U {v}

14: w, <S¢, N(w) « {n}, N(n) « N(n) u{v}
15: Initialize and update activity model of v

16: else

17: Update activity model of n

18:  endif

19: if |lw, — wyll < 0.5ep4, then

20: ITM « ITM — {n'}

21: endif

The nearest n and the second-nearest node n' to the
observed state s; are determined based on the Euclidean
distance between s; and the weight vector of each ITM node
(line 1), and n is then moved by a small rate e towards s;
(line 2). An edge between n and n' is created (line 3) if no
such edge exists. For all neighbors of n, we check if any edge
has become invalid/non-Delaunay as a result of the recent
edge creation, and if so, the invalid edge is removed and if it
is the only edge of the neighbor, the neighbor is removed as
well from the network (lines 4-8). If the Euclidean distance
between s, and the weight vector of n denoted by w,, is
greater than a threshold e, , and s; and w,, are on opposite
sides of w,, then a new node v is added to the ITM with a
weight vector equal to s, and an edge with n (lines 12-14). In
case a new node for s; is added, we initialize a new prediction
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model assigned to the new node and train it using the triple
(st at, S¢+1) (line 15). Otherwise, the model associated with n
is updated (line 17). Finally, if the distance between w,, and
wy, has become less than 0.5e,,,,, we remove s from the
network (lines 19-20). The threshold e,,,, controls the growth
of the ITM network and is referred to in [25] as the desired
mapping resolution.

The prediction models associated with the ITM network
nodes are two-layer neural networks trained online from
experience data and represent a collection of local sensori-
motor behaviors of the agent.

The method by which experience data is collected and the
role of activity models in aiding the agent’s curiosity-driven
motor control will be explained in the following subsection.

B. Intrinsically motivated control

Using the currently observed state s, of its environment, the
agent is able to determine the activity region whose
corresponding ITM node has the closest weight vector to s;.
The activity model associated with this node (or the newly
added node in case no existing node is close enough to s; as
in line 12 of Algorithm 1) is then queried to predict the next
state using s, and the performed action a; as an input. The
difference between the true and the predicted next state, S;,q
and $;,, respectively indicates a prediction error:

prd _
€1 =

®)

I $e1 — Seaall

We keep an updated average of prediction error for each
activity model computed over the p recent occurrences
the model was asked for predicting an action outcome:

u—-1 prd
( prdy _ Dizo €-it1
€ry1/) =
u

(€))

The change in value between two temporally consecutive
averages of the prediction error of a particular region carries
information about the learning progress the agent is expected
to make or has made to increase its ability to predict action
outcomes. In other words, if the average error has increased,
then there is a high potential for learning progress to be made
by exploring that region. Similarly, if the average error has
decreased, this means the agent has improved its prediction
capabilities and experienced a learning progress. We combine
this information with the perception error eP®”, which is
simply the distance between s; and the weight vector of the
nearest node of the multi-predictor network eP¢" =
lls; — wyll, to generate an internal reward for the agent:

it = (e — (efTh| + ePer (10)

where T (T < p) is the time frame between two recordings
of the average prediction error measured by the number of
times the corresponding activity model has been queried. e?¢”
is the perception error used as an incentive for visiting per-
ceptually novel states. eP®” is effective while the observable
part of the sensory space is not fully mapped by the ITM,
after which it can be neglected.



Algorithm 2 ICAC algorithm
1:  Randomly initialize critic and actor networks V (s; 6V) and
Ac(s; 84¢) with weights 8” and 64¢

2:  Initialize the variance of the TD-error: Vary—, « 1
3:  for episode =1to M do
4: Receive initial state s,
S: forstep =1to N do
6: Select action a; from a Gaussian distribution centered at
the actor’s output Ac(s;; 64°)
7. Execute a, and observe reward 7% and next state s,
8: Update the multi-predictor network using (s¢, a¢, S¢41),
as detailed in Algorithm 1
9: Compute internal reward /™, as in Eq. (10)
10: T« Ttint + rtext
11: Set critic target: y « 1. + YV (Ser1;07-1)
12: Update critic to minimize the cost (see Eq. (3)):
2
Je=3(y=viss0)
13: Sty = V(s 6!)
14: Vary, « (1—p)Var,+ ps.°
15: if 6; > 0 then
16: Update actor [ J%Ttltimes to minimize the cost (see
1 2
Eq. (5)): Jo = 3 (at — Ac(sg; 9{“))
17: end if
18: end for
19:  end for

This self-generated reward acts as a curiosity signal for the
agent to try actions that maximize its learning progress and
thus enabling it to learn the desired task more efficiently. The
reason is that, as the agent’s ability to model transition
dynamics in a region of its sensory space improves, it has
come to understand that region better, which is important to
perform tasks in the environment. In order to introduce this
reward to the agent’s control system, we use it in combination
with an external reward from the environment (if any):

T, =1 + rfxt (11)

The combined reward r; is then passed to the critic of the
CACLA control module to update its estimate of the value of
s; and update the actor when the resulting TD-error is
positive, as shown in Fig. 2.

The pseudo code of the proposed ICAC algorithm is
presented in Algorithm 2. Main changes to the standard
CACLA+Var algorithm are shown in lines 8-10, including the
adaptation of the multi-predictor network and its predictive
models. We approximate the critic and actor by a neural
network with two layers trained to minimize the relative costs
J and J, respectively.

IVv.

In the following, we describe the experimental setup and
present two robotic experiments for learning control tasks
with increasing difficulty. All parameter values were empiri-
cally determined after preliminary testing on the environments
considered. The experiments were run using a discount factor
of 0.9. This value did not correlate with the performance. All
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actions were drawn from a Gaussian distribution with a mean
at the actor’s output and standard deviation of 0.1. Both the
actor and critic were represented by two-layer feedforward
neural networks with 12 hidden neurons. Different numbers
made no significant difference to the results. We used hyper-
bolic tangent and linear activation functions for the hidden
and output layers respectively. The learning rate a used to
update the actor and critic networks’ weights was set to 0.01.
For computing the TD-error’s variance, we used a factor f§ of
0.01. Varying a and £ did not affect the performance
adversely.

The node creation threshold e, , of the ITM-based multi-
predictor network was set to 0.9. Smaller values were found
to increase the computation time without considerable perfor-
mance gain. The learning step € was set to 10™*. All predict-
tive models of the multi-predictor network were two-layer
feedforward neural networks with the same number of hidden
neurons and learning rate as the actor and critic networks and
with hyperbolic tangent activation in the hidden and output
layers. The hyperbolic tangent at the output ensures that the
input and output states are in [—1, 1] and that the prediction
error remains bounded. The number u of successive predict-
tions of a predictive model, used to average the corresponding
prediction errors, was 40. The time frame T used in deriving
the internal reward was 20. All inputs to the neural networks
were normalized to the interval [—1,1]. Actor outputs were
bounded to [—10,10] in degrees to only allow learning of
action sequences as opposed to single-step actions to the goal.

A. Reaching with 2-DoF robotic arm

In this experiment, we test our ICAC algorithm on a simple
control task of reaching a variable goal in 2D space with a 2-
DoF robotic arm, as shown in Fig. 4. The state representation
used in the actor and critic networks is a four-dimensional
real-valued vector with two components corresponding to the
current joint values of the arm in degrees and another two
corresponding to the Cartesian coordinates of the current goal
position. The actions are two-dimensional real-valued vectors,
containing the angular changes of the joints. The reward from
the environment after taking an action is defined as follows:

ext _ [+50 when reaching the current goal zone,
e = .
0 otherwise.

Each of the arm’s two links is one unit length and the goal
zone radius is 0.3 unit length.

Fig. 4. Goal reaching with a 2-DoF robotic arm. The red curve specifies the
reachable workspace for the arm. The green circle is the current goal zone.



Learning is performed over 1000 episodes, and the agent is
given a maximum of 50 timesteps to reach the goal, after
which the agent resets to a random initial configuration, and a
new random goal is generated. The results are averaged over
20 simulations. We compare our proposed algorithm ICAC to
CACLA and CACLA+Var. Fig. 5 shows the average external
reward obtained per episode of the three algorithms.
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Fig. 5. Goal reaching with a 2-DoF robotic arm. Average external reward.

Although an external reward was provided to the agent
during learning only when reaching the current goal zone, the
ICAC agent was able to reach each new goal position more
often than the agent running any of the other two algorithms.
As expected, CACLA+Var showed slightly higher perfor-
mance than CACLA. Similarly, Fig. 6 compares the three
algorithms in terms of the average number of steps taken to
reach the randomly generated goal. While CACLA and
CACLA+Var converged to a policy of about 35 and 20
actions toward the goal respectively, ICAC continued to learn
and converged to a better action policy of slightly less than 10
actions on average toward the goal.

The reason CACLA does not quickly find optimal policy,
as seen in Fig. 5 and Fig. 6, is that once a goal is reached, all
future actor outputs will be largely influenced by the first
action sequence found to lead to the previously reached goal
and will hardly suggest other action sequences to be taken to
reach other new goal positions. Conversely, the actor of ICAC
mostly chooses actions that maximize the learning progress.
These actions keep changing as the perception error and the
predictive models evolve, allowing the discovery of new
policies with higher rewards and fewer actions.

B. Reaching with 4-DoF NICO arm

We evaluate here the three algorithms on our humanoid robot
NICO [29] in 3D space. The task is to learn to move a 4-DoF
robotic arm to reach the desired goal region. The experiment
was run in the V-REP robot simulation environment, as
shown in Fig. 7.

The joints considered in the experiment are shown in Table
I. The states and actions are four-dimensional real-valued
vectors of joint angles and angular changes respectively. The
input to the actor and critic networks are 7-dimensional real-
valued vectors consisting of the 4D state representation and
the Cartesian coordinates of the current goal position.
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Fig. 6. Goal reaching with a 2-DoF robotic arm. Average number of steps to
the goal. The average over 20 episodes is shown for readability.

We use a dummy point in the right lower arm to serve as
the end-effector. For the goal region, a radius of 12.5% of the
robot’s arm length is used. Again, we do not provide any
external rewards until the robot reaches the goal region in
which it receives a positive external reward of 100:

ext
t

_ {+100 when reaching the goal zone,
0 otherwise.

Fig. 7. Simulated NICO robot. Four joints in the right arm are used to learn to
perform a reaching task in the 3D workspace.

Each simulation experiment consists of 15000 learning
episodes in which the robot is given 50 action attempts to
reach the goal before it is set to a random rest configuration,
then a new random goal position is generated.

We averaged the results over 20 simulations. The average
external reward obtained by the robot running each of the
three algorithms is shown in Fig. 8.

The CACLA algorithms were able to reach only a
maximum average reward of around 60 after 4500 episodes,
indicating that they failed to reach the goal in eight out of 20
simulations (60% successes). In contrast, the rate of
successful simulations of the ICAC algorithm continued to
increase with the learning episodes, reaching over 90% by the
end of the learning process.



Table 1. List of the joints considered in the second experiment.

. o Angle limit
Joint Description (in degrees)
rotates around the z-axis of the local
r_shoulder_z frame attached to the right shoulder. [-100,125]
rotates around the y-axis of the local
r_shoulder_y frame attached to the right shoulder. [-180,179]
rotates around the z-axis of the local
fam_z frame attached to the right arm. [-140,75]
rotates around the y-axis of the local
r_clbow_y frame attached to the right elbow. [~100,100]
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Fig. 8. Goal reaching with a 4-DoF robotic arm. Average external reward.

Regarding the average number of steps to the goal, CACLA
and CACLA-+Var learned a policy of 30 and 20 steps
respectively, whereas the ICAC needed only around five steps
on average to reach the goal with the number sharply
decreasing over the first half of the learning episodes until
convergence, as illustrated in Fig. 9.
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Fig. 9. Goal reaching with a 4-DoF robotic arm. Average number of steps to
the goal. The average over 300 episodes is shown for readability.
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V.  CONCLUSION

In this paper, we present ICAC as an algorithm for
reinforcement learning of continuous control. This algorithm
integrates unsupervised learning of sensory representations
with online learning of predictive models of motor dynamics
to generate an intrinsic reward for guiding the exploration of
an autonomous agent. The intrinsic rewards reflect the
learning progress of the agent and are combined with external
rewards from the environment to learn control tasks more
effectively and rapidly than when only external rewards are
used, which is vital for open-ended developmental learning
systems. The experimental results show that ICAC achieves
better performance when compared to other related continu-
ous actor-critic algorithms.

One of the limitations of our approach is that although it
ultimately learns better control policies, it requires intensive
exploration in the early learning episodes which is necessary
for learning accurate and useful predictive models. A potential
alternative would be to provide the agent with good initial
policies by imitation learning methods to reduce the action
search space. Another issue is the dimensionality of the
sensory space if a real sensor like a camera is used. This can
be mitigated by passing low-dimensional feature embedding
from a deep autoencoder to the ITM map rather than directly
using the raw sensory input.
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