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Abstract—Guiding the action selection mechanism of an 

autonomous agent for learning control behaviors is a crucial 

issue in reinforcement learning. While classical approaches to 

reinforcement learning seem to be deeply dependent on external 

feedback, intrinsically motivated approaches are more natural 

and follow the principles of infant sensorimotor development. In 

this work, we investigate the role of incremental learning of 

predictive models in generating curiosity, an intrinsic moti-

vation, for directing the agent’s choice of action and propose a 

curiosity-driven reinforcement learning algorithm for 

continuous motor control. Our algorithm builds an internal 

representation of the state space that handles the computation of 

curiosity signals using the learned predictive models and extends 

the Continuous-Actor-Critic-Learning-Automaton to use extri-

nsic and intrinsic feedback. Evaluation of our algorithm on 

simple and complex robotic control tasks shows a significant 

performance gain for the intrinsically motivated goal reaching 

agent compared to agents that are only motivated by extrinsic 

rewards. 

Index Terms— Reinforcement Learning; Motor Control; 

Curiosity-based learning; Predictive Model; CACLA. 

I.  INTRODUCTION  

Helping autonomous agents to learn new motor skills from 

trial-and-error experience in their environment is the major 

task of Reinforcement Learning (RL). Learning is achieved 

when the agent keeps executing actions that maximize long-

term reward from its environment, thus employing an optimal 

policy describing the desired skill. During learning, in 

deciding on its next action, the agent faces the exploration-

versus-exploitation trade-off, a key problem in RL, 

particularly in complex domains. This is because inadequate 

exploration is most likely to keep the agent from discovering 

effective control policies. 

To address balancing exploration and exploitation, differ-

ent approaches adopt different strategies. Some simply use 

random exploration methods, such as the commonly used ε-

greedy and Boltzmann exploration [1]. This includes even a 

recent breakthrough in RL for playing Atari games [2]. Other 

approaches use count-based exploration to keep track of the 

state-action visitation frequency, encouraging the agent to try 

actions it has a lot of uncertainty about, with exploration 

bonuses [3] and R-MAX [4],[5] being the most popular. A 

more recent approach applies Thompson sampling, learning 

multiple action-value functions via bootstrapping [6].  

What is common among these approaches is their strong 

reliance on external rewards; however, fully autonomous 

agents often operate in environments where such external 

rewards do not exist or are sparsely available. Intrinsically 

motivated RL, therefore, attempts to address this common 

limitation by endowing the agent with intrinsic drives/rewar-

ds, such as fear, hunger or curiosity, which enable it to 

continue to meaningfully explore its environment and gather 

useful experience data to learn from [7].  

A wide variety of functions have been defined for compu-

ting an intrinsic reward, including Bayesian surprise [8], 

measures based on the agent’s learning progress in predicting 

action outcomes [9], [10], information theoretic measures like 

information gain [11] and empowerment [12], measures based 

on novelty of observed states [7],[13],[14] and measures 

based on the change of the agent’s policy value, which is the 

expected value of the start state [15],[16]. 

The majority of these functions focus almost entirely on the 

perceptual characteristics of the observed information. Only 

the learning progress-based measures have allowed the 

agent’s learning history from previous experience as well as 

the environmental features to define the agent’s curiosity as 

an intrinsic reward [9], [10]. This is also supported by recent 

studies from developmental psychology that have found 

infants’ curious exploration to be based on both their own 

learning history and perceptual variability. These studies 

show evidence of a Goldilocks effect where seeking just the 

right level of difficulty drives optimal learning with too much 

or too little difficulty being disruptive [17],[18]. 

Curiosity as a drive to maximizing the learning progress of 

an artificial agent has been successfully applied to various 

problems, for example, to the acquisition of increasingly com-

plex behaviors in play experiences in simple spaces, which 

resemble children’s developmental patterns [9] and to learn-

ing goal-oriented navigation in a 2D maze-like environment 

with high-dimensional visual input [10]. None of these 

approaches, however, address curiosity-based exploration in 

continuous control. Instead, they use discrete action spaces.   

Curiosity models, which employ learning progress-based 

measures, usually use a single model of the environment to 

assess a prediction error. Such a model cannot give accurate 

information on whether learning has progressed in particular 

regions of the agent’s sensory space where the interaction 

with the environment actually happens. Instead, it only 

informs us on the prediction performance over the entire 

sensory space, which is difficult to cover and, often, irrelevant 

to spatially-local behavioral patterns we are interested in 

modeling. Furthermore, it requires a collection of sufficient 

training samples that goes beyond the agent’s lifetime. 

Therefore, in this approach, we train an ensemble of local 
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predictive neural networks, as opposed to one monolithic 

network. The intrinsic reward is composed of two terms: the 

perception error of the ensemble, and the change of the 

prediction error of a local model. These separate terms make 

the intrinsic reward more stable to fluctuations and the agent 

more likely to continually discover better control policies. 

Learning multiple forward and inverse models has also 

been used for efficient exploration in continuous, redundant 

control spaces [19],[20].  As opposed to random exploration 

of the high-dimensional action space with motor babbling, 

these approaches perform exploration in the low-dimensional 

task space for efficient learning of inverse kinematics. [20] 

proposes active self-generation and selection of high-level 

goals driven by a measure of competence progress to reach 

these goals and uses RL for goal-directed learning of policy 

parameters. [19] requires a predefined set of goals and paths 

along which goals are ordered and tried to reach to detect and 

resolve inconsistent samples resulting from redundancy and 

drifts in the inverse estimate. This approach makes no use of 

RL of control actions. In contrast to these models, we are 

interested in improving RL with intrinsic motivation to learn 

good general policies to achieve the desired task. 

More recently, Deep Deterministic Policy Gradient 

(DDPG) has been proposed for learning continuous motor 

policies [21].  Similar to our work, DDPG is an off-policy 

actor-critic algorithm that learns a deterministic target policy 

while behaving according to a stochastic behavior one. The 

main difference is that the actor in DDPG updates the policy 

to follow the gradient of the critic’s action-value function, but 

the actor in our algorithm as well as in [22] updates its policy 

towards an action that was found to be better than the current 

approximation of the optimal action. Using gradient ascent on 

the critic’s value for adjusting the policy as in DDPG is prone 

to early divergence since the gradient of a not-fully-trained 

critic will not always be accurate, as found in [22] when 

testing on simple control tasks.    

In this paper, we propose a novel curiosity-driven RL 

algorithm based on an actor-critic model. Our algorithm 

incrementally builds a network of local forward models that 

handles the computation of the agent’s learning progress-

based intrinsic reward. This reward is then used to shape the 

action selection and direct the agent at potentially informative 

states and actions that improve the prediction error of its 

environment dynamics in a continuous state-and-action space. 

The paper is organized as follows: Section II gives the nec-

essary background on the Continuous-Actor-Critic-Learning-

Automaton algorithm. Our proposed algorithm is then 

described in Section III. Empirical evaluation and results are 

shown in Section IV. We conclude in Section V by 

summarizing the main results and providing directions for 

future work.    

II. BACKGROUND 

We consider a standard RL setup with an infinite-horizon 

discounted Markov Decision Process (MDP), where an agent 

decides on an action and observes a new state and reward. An 

MDP is defined by a tuple (S, A, T, R, ), consisting of a  set 

of states S, a set of actions A, state transition distribution T : S 

 A  S   [0, 1], reward function R : S  A  S      and  

discount factor ;       . We aim to find a behavioral 

policy  : S  A   [0, 1] that maximizes the total discounted 

reward    
     . The state value function      , given a 

policy  , is defined over all states and indicates the expected 

total discounted reward when executing policy   from state  . 

The optimal value function corresponding to the optimal 

policy   :    =         
     is given by: 

         
 

                                 

    

  (1) 

which is the Bellman optimality equation for    [1]. 

We are concerned with online RL, where T is unknown and 

the agent receives a sample transition (               at each 

time step and uses it to update an estimate of the state value 

function via Temporal Difference (TD) learning [23]: 

                       (2) 

where                           is the TD-error and 

       is the learning rate.  It has been proven that in 

tabular representation, the value estimates, updated by using 

(2), will eventually converge to the actual state values for a 

fixed policy [23].  When the state space is continuous, 

function approximation is used, such as a neural network in 

our work, to learn a parameterized estimate of the value 

function. The update is then performed on the neural network 

parameters in the direction of                  
  : 

    
      

                  
                   

   (3) 

where   
  is the parameter vector of the neural network 

approximating the value function at time t and   is the sample 

value                  
  . For an extensive review of similar 

methods, the reader is referred to [24].   

In continuous action space, the problem is harder because 

there is no obvious way to decide in a given state which 

action leads to a state with the highest value. Van Hasselt and 

Wiering (2007) tackled this problem and proposed the 

Continuous-Actor-Critic-Learning-Automaton (CACLA) alg-

orithm that handles both continuous state and action spaces 

[22].  A standard Actor-Critic RL model has the structure 

shown in Fig. 1, where the actor suggests an action    in state 

   and the critic evaluates the action outcome using the 

observed reward    and next state     , and based on this 

evaluation, the actor improves its future suggestions. 

Fig. 1. Actor-Critic model. The critic and actor are responsible for action 
evaluation and action improvement respectively. 

The basic idea behind CACLA is that if an explored action 

   has resulted in a positive change of a state value, then this 
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action is believed to lead to a potentially higher accumulated 

reward and will, therefore, be reinforced: 

                              (4) 

This can be implemented in continuous spaces by using 

two function approximators; one for the critic updated using 

Eq. (3) and one for the actor updated as follows: 

         

    
       

                    
               

    
(5) 

where   
   is the parameter vector for the actor’s function 

approximator (a neural network here) and          
    is the 

actor’s output at time t given   
  , which is far from   . No 

update is performed when the value is not improving because 

otherwise that would update towards an action that might not 

be better than the current estimate of the optimal action. 

If an action is found to have considerably improved the 

value of a state, then the corresponding actor update is further 

magnified. This is done by first keeping a running average of 

the TD-error’s variance: 

                       
 
 (6) 

and then the number of updates towards that action is 

determined by           , which is relative to the number of 

standard deviations the target of the critic is above its output, 

rounded up to the next nearest integer number. This form of 

the algorithm is called CACLA+Var to distinguish it from the 

case where only a single update to the actor is performed. 

For exploration in CACLA, two methods were considered 

by the authors: ε-greedy (selecting a uniformly-distributed 

random action with probability ε and the currently best-

known action with probability 1- ε) and Gaussian exploration 

where the selected action is sampled from a Gaussian 

distribution with a mean at the actor’s output: 

           
 

    
               

 
     (7) 

 In the next section, we will discuss our proposed approach 

and show how we use CACLA as the RL algorithm within our 

approach. 

III. ALGORITHM 

The algorithm presented here is called ICAC (Intrinsically-

motivated Continuous Actor-Critic). In ICAC, the agent’s 

learning system consists of two main parts: 1) A network of 

predictive models of sensorimotor activity; and 2) a module 

of intrinsically motivated control. The full system architecture 

is shown in Fig. 2. 

  

A. Network of predictive models 

Much like a human infant, we want our learning agent to be 

able to reorganize its interaction with its environment, moving 

from regions where it has learned about the outcome of its 

motor actions to other regions where it expects to learn new 

patterns of motor activity. This can be realized by learning a  

number of local predictive models, which we call here activity 

models. To facilitate this, we equip the agent with a cognitive 

map-like representation that stores and integrates information 

about spatial connectivity among environmental regions with 

information about activity models.         

    While interacting with its environment, the agent incremen-

tally partitions the sensory input space into regions of activity 

using the Instantaneous Topological Map (ITM) [25].  The 

ITM is an unsupervised learning method for adaptively 

building a topology-preserving map of the input space, 

specially developed for strongly correlated input, which is the 

case in most robotic applications where stimuli are generated 

by exploration along continuous trajectories. Unlike other 

common topology-representing networks such as the SOM 

[26] and the Growing Neural Gas [27], ITM is considered 

more computationally efficient, with the number of nodes 

scaling linearly with the volume of the state space, of which it 

provides a Delaunay triangulation, and has been successfully 

used in several RL problems [28],[16]. 

The ITM (see Fig. 3)  is defined by a set of neurons/nodes 

i, each having a weight vector    and a set of neighboring 

nodes N(i) with which it is connected by edges. A predictive 

model of system dynamics is assigned to each node, trained to 

predict the next state from the current state and agent’s action.  

Fig. 2. ICAC architecture. The multi-predictor network adaptively forms a 

topology-representing network of the agent’s sensory input, where each node 

is associated with a local predictor of the system dynamics in the region 

covered by the node. The agent’s control module comprises an actor-critic 

model. The predictor of the network’s nearest node to the observed state    
predicts the next state       using both    and the taken action    and updates 

itself using the actual next state     . An internal reward is then generated 
from the perception error and the learning progress observed, combined with 

the external reward and sent to the critic to update its estimate of the utility of 

   accordingly. 
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Given a sample experience (             ), the agent 

updates its ITM network, which starts with two connected 

nodes, as outlined in Algorithm 1. 

 

Algorithm 1 Multi-predictor Network Adaptation 

1:         
 

                  
     

         

2:                 

3:                                      
4: for                
5:    if                              

6:                                          
7:          if                  

8:                               
9:           end if 

10:     end if 
11: end for 

12: if                                               

13:                  
14:                                        
15:    Initialize and update activity model of   

16: else 

17:    Update activity model of   

18: end if 

19: if                           

20:                    
21: end if 

 

The nearest   and the second-nearest node    to the 

observed state    are determined based on the Euclidean 

distance between     and the weight vector of each ITM node 

(line 1), and   is then moved by a small rate    towards    
(line 2).  An edge between   and    is created (line 3) if no 

such edge exists. For all neighbors of  , we check if any edge 

has become invalid/non-Delaunay as a result of the recent 

edge creation, and if so, the invalid edge is removed and if it 

is the only edge of the neighbor, the neighbor is removed as 

well from the network (lines 4-8). If the Euclidean distance 

between    and the weight vector of   denoted by     is 

greater than a threshold      and    and     are on opposite 

sides of   , then a new node   is added to the ITM with a 

weight vector equal to    and an edge with   (lines 12-14). In 

case a new node for    is added, we initialize a new prediction 

model assigned to the new node and train it using the triple 

             (line 15). Otherwise, the model associated with    

is updated (line 17). Finally, if the distance between    and 

    has become less than        , we remove   from the 

network (lines 19-20). The threshold      controls the growth 

of the ITM network and is referred to in [25] as the desired 

mapping resolution.  

The prediction models associated with the ITM network 

nodes are two-layer neural networks trained online from 

experience data and represent a collection of local sensori-

motor behaviors of the agent. 

The method by which experience data is collected and the 

role of activity models in aiding the agent’s curiosity-driven 

motor control will be explained in the following subsection. 

B. Intrinsically motivated control 

Using the currently observed state    of its environment, the 

agent is able to determine the activity region whose 

corresponding ITM node has the closest weight vector to   . 
The activity model associated with this node (or the newly 

added node in case no existing node is close enough to    as 

in line 12 of Algorithm 1) is then queried to predict the next 

state using    and the performed action    as an input. The 

difference between the true and the predicted next state,      

and       respectively indicates a prediction error:  

    
   

                 (8) 

We keep an updated average of prediction error for each 

activity model computed over the   recent occurrences  

the model was asked for predicting an action outcome: 

     
      

       
      

   

 
 (9) 

The change in value between two temporally consecutive 

averages of the prediction error of a particular region carries 

information about the learning progress the agent is expected 

to make or has made to increase its ability to predict action 

outcomes. In other words, if the average error has increased, 

then there is a high potential for learning progress to be made 

by exploring that region. Similarly, if the average error has 

decreased, this means the agent has improved its prediction 

capabilities and experienced a learning progress. We combine 

this information with the perception error     , which is 

simply the distance between    and the weight vector of the 

nearest node of the multi-predictor network      
        , to generate an internal reward for the agent: 

  
         

           
            (10) 

where   (T    ) is the time frame between two recordings 

of the average prediction error measured by the number of 

times the corresponding activity model has been queried.      

is the perception error used as an incentive for visiting per-

ceptually novel states.      is effective while the observable 

part of the sensory space is not fully mapped by the ITM, 

after which it can be neglected. 

Fig. 3. ITM network. The nodes of the incrementally built 

ITM network are the centers of the Voronoi cells. The 

Delaunay triangulation (dotted lines) connects the centers of 
the neighboring cells. Each triangle is associated with a 

circle inside which no triangulation vertices can exist. 

Otherwise, a non-Delaunay edge is found.   
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This self-generated reward acts as a curiosity signal for the 

agent to try actions that maximize its learning progress and 

thus enabling it to learn the desired task more efficiently. The 

reason is that, as the agent’s ability to model transition 

dynamics in a region of its sensory space improves, it has 

come to understand that region better, which is important to 

perform tasks in the environment. In order to introduce this 

reward to the agent’s control system, we use it in combination 

with an external reward from the environment (if any): 

      
        

    (11) 

The combined reward    is then passed to the critic of the 

CACLA control module to update its estimate of the value of 

   and update the actor when the resulting TD-error is 

positive, as shown in Fig. 2. 

The pseudo code of the proposed ICAC algorithm is 

presented in Algorithm 2. Main changes to the standard 

CACLA+Var algorithm are shown in lines 8-10, including the 

adaptation of the multi-predictor network and its predictive 

models. We approximate the critic and actor by a neural 

network with two layers trained to minimize the relative costs 

   and    respectively. 

IV. EVALUATION 

In the following, we describe the experimental setup and 

present two robotic experiments for learning control tasks 

with increasing difficulty. All parameter values were empiri-

cally determined after preliminary testing on the environments 

considered. The experiments were run using a discount factor 

of 0.9. This value did not correlate with the performance. All 

actions were drawn from a Gaussian distribution with a mean 

at the actor’s output and standard deviation of 0.1. Both the 

actor and critic were represented by two-layer feedforward 

neural networks with 12 hidden neurons. Different numbers 

made no significant difference to the results. We used hyper-

bolic tangent and linear activation functions for the hidden 

and output layers respectively. The learning rate   used to 

update the actor and critic networks’ weights was set to 0.01. 

For computing the TD-error’s variance, we used a factor   of 

0.01. Varying   and   did not affect the performance 

adversely. 

The node creation threshold      of the ITM-based multi-

predictor network was set to 0.9. Smaller values were found 

to increase the computation time without considerable perfor-

mance gain. The learning step   was set to     . All predict-

tive models of the multi-predictor network were two-layer 

feedforward neural networks with the same number of hidden 

neurons and learning rate as the actor and critic networks and 

with hyperbolic tangent activation in the hidden and output 

layers. The hyperbolic tangent at the output ensures that the 

input and output states are in        and that the prediction 

error remains bounded. The number   of successive predict-

tions of a predictive model, used to average the corresponding 

prediction errors, was 40. The time frame   used in deriving 

the internal reward was 20. All inputs to the neural networks 

were normalized to the interval       . Actor outputs were 

bounded to          in degrees to only allow learning of 

action sequences as opposed to single-step actions to the goal. 

A. Reaching with 2-DoF robotic arm 

In this experiment, we test our ICAC algorithm on a simple 

control task of reaching a variable goal in 2D space with a 2-

DoF robotic arm, as shown in Fig. 4. The state representation 

used in the actor and critic networks is a four-dimensional 

real-valued vector with two components corresponding to the 

current joint values of the arm in degrees and another two 

corresponding to the Cartesian coordinates of the current goal 

position. The actions are two-dimensional real-valued vectors, 

containing the angular changes of the joints. The reward from 

the environment after taking an action is defined as follows: 

  
        

                                           
                                                           

  

Each of the arm’s two links is one unit length and the goal 

zone radius is 0.3 unit length. 

 

Fig. 4. Goal reaching with a 2-DoF robotic arm. The red curve specifies the 

reachable workspace for the arm. The green circle is the current goal zone. 

Algorithm 2 ICAC algorithm 

1: Randomly initialize critic and actor networks         and 

          with weights    and      

2: Initialize the variance of the TD-error:           

3: for                    

4:     Receive initial state    

5:     for                 
6:         Select action    from a Gaussian distribution centered at  

        the actor’s output          
    

7:         Execute    and observe reward   
    and next state      

8:         Update the multi-predictor network using             ,  
        as detailed in Algorithm 1 

9:         Compute internal reward   
   , as in Eq. (10) 

10:                
        

    
11:        Set critic target:                     

   
12:         Update critic to minimize the cost (see Eq. (3)): 

            
 

 
            

   
 
 

13:                      
   

14:                                
   

15:         if           

16: 
            Update actor  

  

     
 times to minimize the cost (see    

            Eq. (5)):      
 

 
              

    
 
 

17:          end if 

18:     end for 

19: end for 
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Learning is performed over 1000 episodes, and the agent is 

given a maximum of 50 timesteps to reach the goal, after 

which the agent resets to a random initial configuration, and a 

new random goal is generated. The results are averaged over 

20 simulations. We compare our proposed algorithm ICAC to 

CACLA and CACLA+Var. Fig. 5 shows the average external 

reward obtained per episode of the three algorithms. 

 

Fig. 5. Goal reaching with a 2-DoF robotic arm. Average external reward. 

Although an external reward was provided to the agent 

during learning only when reaching the current goal zone, the 

ICAC agent was able to reach each new goal position more 

often than the agent running any of the other two algorithms. 

As expected, CACLA+Var showed slightly higher perfor-

mance than CACLA. Similarly, Fig. 6 compares the three 

algorithms in terms of the average number of steps taken to 

reach the randomly generated goal. While CACLA and 

CACLA+Var converged to a policy of about 35 and 20 

actions toward the goal respectively, ICAC continued to learn 

and converged to a better action policy of slightly less than 10 

actions on average toward the goal. 

The reason CACLA does not quickly find optimal policy, 

as seen in Fig. 5 and Fig. 6, is that once a goal is reached, all 

future actor outputs will be largely influenced by the first  

action sequence found to lead to the previously reached goal 

and will hardly suggest other action sequences to be taken to 

reach other new goal positions. Conversely, the actor of ICAC 

mostly chooses actions that maximize the learning progress. 

These actions keep changing as the perception error and the 

predictive models evolve, allowing the discovery of new 

policies with higher rewards and fewer actions. 

B. Reaching with 4-DoF NICO arm 

We evaluate here the three algorithms on our humanoid robot 

NICO [29] in 3D space. The task is to learn to move a 4-DoF 

robotic arm to reach the desired goal region. The experiment 

was run in the V-REP robot simulation environment, as 

shown in Fig. 7.  

The joints considered in the experiment are shown in Table 

I. The states and actions are four-dimensional real-valued 

vectors of joint angles and angular changes respectively. The 

input to the actor and critic networks are 7-dimensional real-

valued vectors consisting of the 4D state representation and 

the Cartesian coordinates of the current goal position. 

 

Fig. 6. Goal reaching with a 2-DoF robotic arm. Average number of steps to 

the goal. The average over 20 episodes is shown for readability. 

We use a dummy point in the right lower arm to serve as 

the end-effector. For the goal region, a radius of 12.5% of the 

robot’s arm length is used. Again, we do not provide any 

external rewards until the robot reaches the goal region in 

which it receives a positive external reward of 100: 

  
        

                                    
                                                           

  

 

Fig. 7. Simulated NICO robot. Four joints in the right arm are used to learn to 

perform a reaching task in the 3D workspace. 

Each simulation experiment consists of 15000 learning 

episodes in which the robot is given 50 action attempts to 

reach the goal before it is set to a random rest configuration, 

then a new random goal position is generated.  

We averaged the results over 20 simulations. The average 

external reward obtained by the robot running each of the 

three algorithms is shown in Fig. 8. 

The CACLA algorithms were able to reach only a 

maximum average reward of around 60 after 4500 episodes, 

indicating that they failed to reach the goal in eight out of 20 

simulations (60% successes). In contrast, the rate of 

successful simulations of the ICAC algorithm continued to 

increase with the learning episodes, reaching over 90% by the 

end of the learning process. 
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Table I. List of the joints considered in the second experiment. 

 

 

Fig. 8. Goal reaching with a 4-DoF robotic arm. Average external reward. 

Regarding the average number of steps to the goal, CACLA 

and CACLA+Var learned a policy of 30 and 20 steps 

respectively, whereas the ICAC needed only around five steps 

on average to reach the goal with the number sharply 

decreasing over the first half of the learning episodes until 

convergence, as illustrated in Fig. 9. 

 

Fig. 9. Goal reaching with a 4-DoF robotic arm. Average number of steps to 

the goal. The average over 300 episodes is shown for readability. 

V. CONCLUSION 

In this paper, we present ICAC as an algorithm for 

reinforcement learning of continuous control. This algorithm 

integrates unsupervised learning of sensory representations 

with online learning of predictive models of motor dynamics 

to generate an intrinsic reward for guiding the exploration of 

an autonomous agent. The intrinsic rewards reflect the 

learning progress of the agent and are combined with external 

rewards from the environment to learn control tasks more 

effectively and rapidly than when only external rewards are 

used, which is vital for open-ended developmental learning 

systems. The experimental results show that ICAC achieves 

better performance when compared to other related continu-

ous actor-critic algorithms.  

One of the limitations of our approach is that although it 

ultimately learns better control policies, it requires intensive 

exploration in the early learning episodes which is necessary 

for learning accurate and useful predictive models. A potential 

alternative would be to provide the agent with good initial 

policies by imitation learning methods to reduce the action 

search space. Another issue is the dimensionality of the 

sensory space if a real sensor like a camera is used. This can 

be mitigated by passing low-dimensional feature embedding 

from a deep autoencoder to the ITM map rather than directly 

using the raw sensory input.    
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