
Curiosity-Driven Exploration Enhances Motor Skills

of Continuous Actor-Critic Learner

Muhammad Burhan Hafez, Cornelius Weber, Stefan Wermter

Knowledge Technology, Department of Informatics, University of Hamburg,

Vogt-Koelln-Str. 30, 22527 Hamburg, Germany

Email: {hafez, weber, wermter}@informatik.uni-hamburg.de

http://www.knowledge-technology.info

Abstract—Guiding the action selection mechanism of an

autonomous agent for learning control behaviors is a crucial

issue in reinforcement learning. While classical approaches to

reinforcement learning seem to be deeply dependent on external

feedback, intrinsically motivated approaches are more natural

and follow the principles of infant sensorimotor development. In

this work, we investigate the role of incremental learning of

predictive models in generating curiosity, an intrinsic moti-

vation, for directing the agent’s choice of action and propose a

curiosity-driven reinforcement learning algorithm for

continuous motor control. Our algorithm builds an internal

representation of the state space that handles the computation of

curiosity signals using the learned predictive models and extends

the Continuous-Actor-Critic-Learning-Automaton to use extri-

nsic and intrinsic feedback. Evaluation of our algorithm on

simple and complex robotic control tasks shows a significant

performance gain for the intrinsically motivated goal reaching

agent compared to agents that are only motivated by extrinsic

rewards.

Index Terms— Reinforcement Learning; Motor Control;

Curiosity-based learning; Predictive Model; CACLA.

I. INTRODUCTION

Helping autonomous agents to learn new motor skills from

trial-and-error experience in their environment is the major

task of Reinforcement Learning (RL). Learning is achieved

when the agent keeps executing actions that maximize long-

term reward from its environment, thus employing an optimal

policy describing the desired skill. During learning, in

deciding on its next action, the agent faces the exploration-

versus-exploitation trade-off, a key problem in RL,

particularly in complex domains. This is because inadequate

exploration is most likely to keep the agent from discovering

effective control policies.

To address balancing exploration and exploitation, differ-

ent approaches adopt different strategies. Some simply use

random exploration methods, such as the commonly used ε-

greedy and Boltzmann exploration [1]. This includes even a

recent breakthrough in RL for playing Atari games [2]. Other

approaches use count-based exploration to keep track of the

state-action visitation frequency, encouraging the agent to try

actions it has a lot of uncertainty about, with exploration

bonuses [3] and R-MAX [4],[5] being the most popular. A

more recent approach applies Thompson sampling, learning

multiple action-value functions via bootstrapping [6].

What is common among these approaches is their strong

reliance on external rewards; however, fully autonomous

agents often operate in environments where such external

rewards do not exist or are sparsely available. Intrinsically

motivated RL, therefore, attempts to address this common

limitation by endowing the agent with intrinsic drives/rewar-

ds, such as fear, hunger or curiosity, which enable it to

continue to meaningfully explore its environment and gather

useful experience data to learn from [7].

A wide variety of functions have been defined for compu-

ting an intrinsic reward, including Bayesian surprise [8],

measures based on the agent’s learning progress in predicting

action outcomes [9], [10], information theoretic measures like

information gain [11] and empowerment [12], measures based

on novelty of observed states [7],[13],[14] and measures

based on the change of the agent’s policy value, which is the

expected value of the start state [15],[16].

The majority of these functions focus almost entirely on the

perceptual characteristics of the observed information. Only

the learning progress-based measures have allowed the

agent’s learning history from previous experience as well as

the environmental features to define the agent’s curiosity as

an intrinsic reward [9], [10]. This is also supported by recent

studies from developmental psychology that have found

infants’ curious exploration to be based on both their own

learning history and perceptual variability. These studies

show evidence of a Goldilocks effect where seeking just the

right level of difficulty drives optimal learning with too much

or too little difficulty being disruptive [17],[18].

Curiosity as a drive to maximizing the learning progress of

an artificial agent has been successfully applied to various

problems, for example, to the acquisition of increasingly com-

plex behaviors in play experiences in simple spaces, which

resemble children’s developmental patterns [9] and to learn-

ing goal-oriented navigation in a 2D maze-like environment

with high-dimensional visual input [10]. None of these

approaches, however, address curiosity-based exploration in

continuous control. Instead, they use discrete action spaces.

Curiosity models, which employ learning progress-based

measures, usually use a single model of the environment to

assess a prediction error. Such a model cannot give accurate

information on whether learning has progressed in particular

regions of the agent’s sensory space where the interaction

with the environment actually happens. Instead, it only

informs us on the prediction performance over the entire

sensory space, which is difficult to cover and, often, irrelevant

to spatially-local behavioral patterns we are interested in

modeling. Furthermore, it requires a collection of sufficient

training samples that goes beyond the agent’s lifetime.

Therefore, in this approach, we train an ensemble of local

2017 Joint IEEE International Conference on Development and Learning and
Epigenetic Robotics (ICDL-EpiRob)
Lisbon, Portugal, September 18-21, 2017

978-1-5386-3715-9/17/$31.00 ©2017 IEEE 39

predictive neural networks, as opposed to one monolithic

network. The intrinsic reward is composed of two terms: the

perception error of the ensemble, and the change of the

prediction error of a local model. These separate terms make

the intrinsic reward more stable to fluctuations and the agent

more likely to continually discover better control policies.

Learning multiple forward and inverse models has also

been used for efficient exploration in continuous, redundant

control spaces [19],[20]. As opposed to random exploration

of the high-dimensional action space with motor babbling,

these approaches perform exploration in the low-dimensional

task space for efficient learning of inverse kinematics. [20]

proposes active self-generation and selection of high-level

goals driven by a measure of competence progress to reach

these goals and uses RL for goal-directed learning of policy

parameters. [19] requires a predefined set of goals and paths

along which goals are ordered and tried to reach to detect and

resolve inconsistent samples resulting from redundancy and

drifts in the inverse estimate. This approach makes no use of

RL of control actions. In contrast to these models, we are

interested in improving RL with intrinsic motivation to learn

good general policies to achieve the desired task.

More recently, Deep Deterministic Policy Gradient

(DDPG) has been proposed for learning continuous motor

policies [21]. Similar to our work, DDPG is an off-policy

actor-critic algorithm that learns a deterministic target policy

while behaving according to a stochastic behavior one. The

main difference is that the actor in DDPG updates the policy

to follow the gradient of the critic’s action-value function, but

the actor in our algorithm as well as in [22] updates its policy

towards an action that was found to be better than the current

approximation of the optimal action. Using gradient ascent on

the critic’s value for adjusting the policy as in DDPG is prone

to early divergence since the gradient of a not-fully-trained

critic will not always be accurate, as found in [22] when

testing on simple control tasks.

In this paper, we propose a novel curiosity-driven RL

algorithm based on an actor-critic model. Our algorithm

incrementally builds a network of local forward models that

handles the computation of the agent’s learning progress-

based intrinsic reward. This reward is then used to shape the

action selection and direct the agent at potentially informative

states and actions that improve the prediction error of its

environment dynamics in a continuous state-and-action space.

The paper is organized as follows: Section II gives the nec-

essary background on the Continuous-Actor-Critic-Learning-

Automaton algorithm. Our proposed algorithm is then

described in Section III. Empirical evaluation and results are

shown in Section IV. We conclude in Section V by

summarizing the main results and providing directions for

future work.

II. BACKGROUND

We consider a standard RL setup with an infinite-horizon

discounted Markov Decision Process (MDP), where an agent

decides on an action and observes a new state and reward. An

MDP is defined by a tuple (S, A, T, R, ), consisting of a set

of states S, a set of actions A, state transition distribution T : S

 A  S [0, 1], reward function R : S  A  S and

discount factor ;  . We aim to find a behavioral

policy  : S  A [0, 1] that maximizes the total discounted

reward 
 . The state value function , given a

policy , is defined over all states and indicates the expected

total discounted reward when executing policy from state .

The optimal value function corresponding to the optimal

policy : =
 is given by:

 

 (1)

which is the Bellman optimality equation for [1].

We are concerned with online RL, where T is unknown and

the agent receives a sample transition (at each

time step and uses it to update an estimate of the state value

function via Temporal Difference (TD) learning [23]:

 (2)

where  is the TD-error and

 is the learning rate. It has been proven that in

tabular representation, the value estimates, updated by using

(2), will eventually converge to the actual state values for a

fixed policy [23]. When the state space is continuous,

function approximation is used, such as a neural network in

our work, to learn a parameterized estimate of the value

function. The update is then performed on the neural network

parameters in the direction of
 :

 (3)

where
 is the parameter vector of the neural network

approximating the value function at time t and is the sample

value
 . For an extensive review of similar

methods, the reader is referred to [24].

In continuous action space, the problem is harder because

there is no obvious way to decide in a given state which

action leads to a state with the highest value. Van Hasselt and

Wiering (2007) tackled this problem and proposed the

Continuous-Actor-Critic-Learning-Automaton (CACLA) alg-

orithm that handles both continuous state and action spaces

[22]. A standard Actor-Critic RL model has the structure

shown in Fig. 1, where the actor suggests an action in state

 and the critic evaluates the action outcome using the

observed reward and next state , and based on this

evaluation, the actor improves its future suggestions.

Fig. 1. Actor-Critic model. The critic and actor are responsible for action
evaluation and action improvement respectively.

The basic idea behind CACLA is that if an explored action

 has resulted in a positive change of a state value, then this

40

action is believed to lead to a potentially higher accumulated

reward and will, therefore, be reinforced:

 (4)

This can be implemented in continuous spaces by using

two function approximators; one for the critic updated using

Eq. (3) and one for the actor updated as follows:

(5)

where
 is the parameter vector for the actor’s function

approximator (a neural network here) and
 is the

actor’s output at time t given
 , which is far from . No

update is performed when the value is not improving because

otherwise that would update towards an action that might not

be better than the current estimate of the optimal action.

If an action is found to have considerably improved the

value of a state, then the corresponding actor update is further

magnified. This is done by first keeping a running average of

the TD-error’s variance:

 (6)

and then the number of updates towards that action is

determined by , which is relative to the number of

standard deviations the target of the critic is above its output,

rounded up to the next nearest integer number. This form of

the algorithm is called CACLA+Var to distinguish it from the

case where only a single update to the actor is performed.

For exploration in CACLA, two methods were considered

by the authors: ε-greedy (selecting a uniformly-distributed

random action with probability ε and the currently best-

known action with probability 1- ε) and Gaussian exploration

where the selected action is sampled from a Gaussian

distribution with a mean at the actor’s output:

 (7)

 In the next section, we will discuss our proposed approach

and show how we use CACLA as the RL algorithm within our

approach.

III. ALGORITHM

The algorithm presented here is called ICAC (Intrinsically-

motivated Continuous Actor-Critic). In ICAC, the agent’s

learning system consists of two main parts: 1) A network of

predictive models of sensorimotor activity; and 2) a module

of intrinsically motivated control. The full system architecture

is shown in Fig. 2.

A. Network of predictive models

Much like a human infant, we want our learning agent to be

able to reorganize its interaction with its environment, moving

from regions where it has learned about the outcome of its

motor actions to other regions where it expects to learn new

patterns of motor activity. This can be realized by learning a

number of local predictive models, which we call here activity

models. To facilitate this, we equip the agent with a cognitive

map-like representation that stores and integrates information

about spatial connectivity among environmental regions with

information about activity models.

 While interacting with its environment, the agent incremen-

tally partitions the sensory input space into regions of activity

using the Instantaneous Topological Map (ITM) [25]. The

ITM is an unsupervised learning method for adaptively

building a topology-preserving map of the input space,

specially developed for strongly correlated input, which is the

case in most robotic applications where stimuli are generated

by exploration along continuous trajectories. Unlike other

common topology-representing networks such as the SOM

[26] and the Growing Neural Gas [27], ITM is considered

more computationally efficient, with the number of nodes

scaling linearly with the volume of the state space, of which it

provides a Delaunay triangulation, and has been successfully

used in several RL problems [28],[16].

The ITM (see Fig. 3) is defined by a set of neurons/nodes

i, each having a weight vector and a set of neighboring

nodes N(i) with which it is connected by edges. A predictive

model of system dynamics is assigned to each node, trained to

predict the next state from the current state and agent’s action.

Fig. 2. ICAC architecture. The multi-predictor network adaptively forms a

topology-representing network of the agent’s sensory input, where each node

is associated with a local predictor of the system dynamics in the region

covered by the node. The agent’s control module comprises an actor-critic

model. The predictor of the network’s nearest node to the observed state
predicts the next state using both and the taken action and updates

itself using the actual next state . An internal reward is then generated
from the perception error and the learning progress observed, combined with

the external reward and sent to the critic to update its estimate of the utility of

 accordingly.

41

Given a sample experience (), the agent

updates its ITM network, which starts with two connected

nodes, as outlined in Algorithm 1.

Algorithm 1 Multi-predictor Network Adaptation

1:

2:

3:
4: for
5: if

6:
7: if

8:
9: end if

10: end if
11: end for

12: if

13:
14:
15: Initialize and update activity model of

16: else

17: Update activity model of

18: end if

19: if

20:
21: end if

The nearest and the second-nearest node to the

observed state are determined based on the Euclidean

distance between and the weight vector of each ITM node

(line 1), and is then moved by a small rate towards
(line 2). An edge between and is created (line 3) if no

such edge exists. For all neighbors of , we check if any edge

has become invalid/non-Delaunay as a result of the recent

edge creation, and if so, the invalid edge is removed and if it

is the only edge of the neighbor, the neighbor is removed as

well from the network (lines 4-8). If the Euclidean distance

between and the weight vector of denoted by is

greater than a threshold and and are on opposite

sides of , then a new node is added to the ITM with a

weight vector equal to and an edge with (lines 12-14). In

case a new node for is added, we initialize a new prediction

model assigned to the new node and train it using the triple

 (line 15). Otherwise, the model associated with

is updated (line 17). Finally, if the distance between and

 has become less than , we remove from the

network (lines 19-20). The threshold controls the growth

of the ITM network and is referred to in [25] as the desired

mapping resolution.

The prediction models associated with the ITM network

nodes are two-layer neural networks trained online from

experience data and represent a collection of local sensori-

motor behaviors of the agent.

The method by which experience data is collected and the

role of activity models in aiding the agent’s curiosity-driven

motor control will be explained in the following subsection.

B. Intrinsically motivated control

Using the currently observed state of its environment, the

agent is able to determine the activity region whose

corresponding ITM node has the closest weight vector to .
The activity model associated with this node (or the newly

added node in case no existing node is close enough to as

in line 12 of Algorithm 1) is then queried to predict the next

state using and the performed action as an input. The

difference between the true and the predicted next state,

and respectively indicates a prediction error:

 (8)

We keep an updated average of prediction error for each

activity model computed over the recent occurrences

the model was asked for predicting an action outcome:

 (9)

The change in value between two temporally consecutive

averages of the prediction error of a particular region carries

information about the learning progress the agent is expected

to make or has made to increase its ability to predict action

outcomes. In other words, if the average error has increased,

then there is a high potential for learning progress to be made

by exploring that region. Similarly, if the average error has

decreased, this means the agent has improved its prediction

capabilities and experienced a learning progress. We combine

this information with the perception error , which is

simply the distance between and the weight vector of the

nearest node of the multi-predictor network
 , to generate an internal reward for the agent:

 (10)

where (T) is the time frame between two recordings

of the average prediction error measured by the number of

times the corresponding activity model has been queried.

is the perception error used as an incentive for visiting per-

ceptually novel states. is effective while the observable

part of the sensory space is not fully mapped by the ITM,

after which it can be neglected.

Fig. 3. ITM network. The nodes of the incrementally built

ITM network are the centers of the Voronoi cells. The

Delaunay triangulation (dotted lines) connects the centers of
the neighboring cells. Each triangle is associated with a

circle inside which no triangulation vertices can exist.

Otherwise, a non-Delaunay edge is found.

42

This self-generated reward acts as a curiosity signal for the

agent to try actions that maximize its learning progress and

thus enabling it to learn the desired task more efficiently. The

reason is that, as the agent’s ability to model transition

dynamics in a region of its sensory space improves, it has

come to understand that region better, which is important to

perform tasks in the environment. In order to introduce this

reward to the agent’s control system, we use it in combination

with an external reward from the environment (if any):

 (11)

The combined reward is then passed to the critic of the

CACLA control module to update its estimate of the value of

 and update the actor when the resulting TD-error is

positive, as shown in Fig. 2.

The pseudo code of the proposed ICAC algorithm is

presented in Algorithm 2. Main changes to the standard

CACLA+Var algorithm are shown in lines 8-10, including the

adaptation of the multi-predictor network and its predictive

models. We approximate the critic and actor by a neural

network with two layers trained to minimize the relative costs

 and respectively.

IV. EVALUATION

In the following, we describe the experimental setup and

present two robotic experiments for learning control tasks

with increasing difficulty. All parameter values were empiri-

cally determined after preliminary testing on the environments

considered. The experiments were run using a discount factor

of 0.9. This value did not correlate with the performance. All

actions were drawn from a Gaussian distribution with a mean

at the actor’s output and standard deviation of 0.1. Both the

actor and critic were represented by two-layer feedforward

neural networks with 12 hidden neurons. Different numbers

made no significant difference to the results. We used hyper-

bolic tangent and linear activation functions for the hidden

and output layers respectively. The learning rate used to

update the actor and critic networks’ weights was set to 0.01.

For computing the TD-error’s variance, we used a factor of

0.01. Varying and did not affect the performance

adversely.

The node creation threshold of the ITM-based multi-

predictor network was set to 0.9. Smaller values were found

to increase the computation time without considerable perfor-

mance gain. The learning step was set to . All predict-

tive models of the multi-predictor network were two-layer

feedforward neural networks with the same number of hidden

neurons and learning rate as the actor and critic networks and

with hyperbolic tangent activation in the hidden and output

layers. The hyperbolic tangent at the output ensures that the

input and output states are in and that the prediction

error remains bounded. The number of successive predict-

tions of a predictive model, used to average the corresponding

prediction errors, was 40. The time frame used in deriving

the internal reward was 20. All inputs to the neural networks

were normalized to the interval . Actor outputs were

bounded to in degrees to only allow learning of

action sequences as opposed to single-step actions to the goal.

A. Reaching with 2-DoF robotic arm

In this experiment, we test our ICAC algorithm on a simple

control task of reaching a variable goal in 2D space with a 2-

DoF robotic arm, as shown in Fig. 4. The state representation

used in the actor and critic networks is a four-dimensional

real-valued vector with two components corresponding to the

current joint values of the arm in degrees and another two

corresponding to the Cartesian coordinates of the current goal

position. The actions are two-dimensional real-valued vectors,

containing the angular changes of the joints. The reward from

the environment after taking an action is defined as follows:

Each of the arm’s two links is one unit length and the goal

zone radius is 0.3 unit length.

Fig. 4. Goal reaching with a 2-DoF robotic arm. The red curve specifies the

reachable workspace for the arm. The green circle is the current goal zone.

Algorithm 2 ICAC algorithm

1: Randomly initialize critic and actor networks and

 with weights and

2: Initialize the variance of the TD-error:

3: for

4: Receive initial state

5: for
6: Select action from a Gaussian distribution centered at

 the actor’s output

7: Execute and observe reward
 and next state

8: Update the multi-predictor network using ,
 as detailed in Algorithm 1

9: Compute internal reward
 , as in Eq. (10)

10:

11: Set critic target:

12: Update critic to minimize the cost (see Eq. (3)):

13:

14:

15: if

16:
 Update actor

 times to minimize the cost (see

 Eq. (5)):

17: end if

18: end for

19: end for

43

Learning is performed over 1000 episodes, and the agent is

given a maximum of 50 timesteps to reach the goal, after

which the agent resets to a random initial configuration, and a

new random goal is generated. The results are averaged over

20 simulations. We compare our proposed algorithm ICAC to

CACLA and CACLA+Var. Fig. 5 shows the average external

reward obtained per episode of the three algorithms.

Fig. 5. Goal reaching with a 2-DoF robotic arm. Average external reward.

Although an external reward was provided to the agent

during learning only when reaching the current goal zone, the

ICAC agent was able to reach each new goal position more

often than the agent running any of the other two algorithms.

As expected, CACLA+Var showed slightly higher perfor-

mance than CACLA. Similarly, Fig. 6 compares the three

algorithms in terms of the average number of steps taken to

reach the randomly generated goal. While CACLA and

CACLA+Var converged to a policy of about 35 and 20

actions toward the goal respectively, ICAC continued to learn

and converged to a better action policy of slightly less than 10

actions on average toward the goal.

The reason CACLA does not quickly find optimal policy,

as seen in Fig. 5 and Fig. 6, is that once a goal is reached, all

future actor outputs will be largely influenced by the first

action sequence found to lead to the previously reached goal

and will hardly suggest other action sequences to be taken to

reach other new goal positions. Conversely, the actor of ICAC

mostly chooses actions that maximize the learning progress.

These actions keep changing as the perception error and the

predictive models evolve, allowing the discovery of new

policies with higher rewards and fewer actions.

B. Reaching with 4-DoF NICO arm

We evaluate here the three algorithms on our humanoid robot

NICO [29] in 3D space. The task is to learn to move a 4-DoF

robotic arm to reach the desired goal region. The experiment

was run in the V-REP robot simulation environment, as

shown in Fig. 7.

The joints considered in the experiment are shown in Table

I. The states and actions are four-dimensional real-valued

vectors of joint angles and angular changes respectively. The

input to the actor and critic networks are 7-dimensional real-

valued vectors consisting of the 4D state representation and

the Cartesian coordinates of the current goal position.

Fig. 6. Goal reaching with a 2-DoF robotic arm. Average number of steps to

the goal. The average over 20 episodes is shown for readability.

We use a dummy point in the right lower arm to serve as

the end-effector. For the goal region, a radius of 12.5% of the

robot’s arm length is used. Again, we do not provide any

external rewards until the robot reaches the goal region in

which it receives a positive external reward of 100:

Fig. 7. Simulated NICO robot. Four joints in the right arm are used to learn to

perform a reaching task in the 3D workspace.

Each simulation experiment consists of 15000 learning

episodes in which the robot is given 50 action attempts to

reach the goal before it is set to a random rest configuration,

then a new random goal position is generated.

We averaged the results over 20 simulations. The average

external reward obtained by the robot running each of the

three algorithms is shown in Fig. 8.

The CACLA algorithms were able to reach only a

maximum average reward of around 60 after 4500 episodes,

indicating that they failed to reach the goal in eight out of 20

simulations (60% successes). In contrast, the rate of

successful simulations of the ICAC algorithm continued to

increase with the learning episodes, reaching over 90% by the

end of the learning process.

44

Table I. List of the joints considered in the second experiment.

Fig. 8. Goal reaching with a 4-DoF robotic arm. Average external reward.

Regarding the average number of steps to the goal, CACLA

and CACLA+Var learned a policy of 30 and 20 steps

respectively, whereas the ICAC needed only around five steps

on average to reach the goal with the number sharply

decreasing over the first half of the learning episodes until

convergence, as illustrated in Fig. 9.

Fig. 9. Goal reaching with a 4-DoF robotic arm. Average number of steps to

the goal. The average over 300 episodes is shown for readability.

V. CONCLUSION

In this paper, we present ICAC as an algorithm for

reinforcement learning of continuous control. This algorithm

integrates unsupervised learning of sensory representations

with online learning of predictive models of motor dynamics

to generate an intrinsic reward for guiding the exploration of

an autonomous agent. The intrinsic rewards reflect the

learning progress of the agent and are combined with external

rewards from the environment to learn control tasks more

effectively and rapidly than when only external rewards are

used, which is vital for open-ended developmental learning

systems. The experimental results show that ICAC achieves

better performance when compared to other related continu-

ous actor-critic algorithms.

One of the limitations of our approach is that although it

ultimately learns better control policies, it requires intensive

exploration in the early learning episodes which is necessary

for learning accurate and useful predictive models. A potential

alternative would be to provide the agent with good initial

policies by imitation learning methods to reduce the action

search space. Another issue is the dimensionality of the

sensory space if a real sensor like a camera is used. This can

be mitigated by passing low-dimensional feature embedding

from a deep autoencoder to the ITM map rather than directly

using the raw sensory input.

ACKNOWLEDGMENT

We gratefully acknowledge the support by the DAAD

German Academic Exchange Service (Funding Programme

No. 57214224).

REFERENCES

[1] L. P. Kaelbling, M. L. Littman and A. W. Moore, "Reinforcement

learning: a survey," Journal of Artificial Intelligence Research, vol. 4,
pp. 237-285, 1996.

[2] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.

Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski, S.
Petersen, C. Beattie, A. Sadik, I. Antonoglou and D. Hassabis, "Human-

level control through deep reinforcement learning," Nature, vol. 518, no.

7540, pp. 529-533, 2015.

[3] R. S. Sutton, "Integrated architectures for learning, planning, and

reacting based on approximating dynamic programming," in

Proceedings of the seventh International Conference on Machine
Learning (ICML), 1990.

[4] R. I. Brafman and M. Tennenholtz., "R-MAX a general polynomial time

algorithm for near-optimal reinforcement learning," Journal of Machine
Learning Research, vol. 3, no. Oct, pp. 213-231, 2002.

[5] L. Lihong, M. L. Littman and C. R. Mansley, "Online exploration in

least-squares policy iteration," in The 8th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), Budapest,

Hungary, 2009.

[6] I. Osband, C. Blundell, A. Pritzel and B. Van Roy, "Deep exploration
via bootstrapped DQN," in Advances In Neural Information Processing

Systems (NIPS), Long Beach, CA, USA, 2016.

[7] S. Singh, A. G. Barto and N. Chentanez, "Intrinsically motivated

reinforcement learning," in Advances in Neural Information Processing

Systems (NIPS), Vancouver, British Columbia, Canada, 2005.

[8] J. Schmidhuber, "Formal theory of creativity, fun, and intrinsic
motivation (1990–2010)," IEEE Transactions on Autonomous Mental

Development, vol. 2, no. 3, pp. 230-247, 2010.

[9] P. Y. Oudeyer, F. Kaplan and V. V. Hafner, "Intrinsic motivation
systems for autonomous mental development," IEEE Transactions on

Joint Description
Angle limit

(in degrees)

r_shoulder_z
rotates around the z-axis of the local

frame attached to the right shoulder.

r_shoulder_y
rotates around the y-axis of the local

frame attached to the right shoulder.

r_arm_z
rotates around the z-axis of the local

frame attached to the right arm.

r_elbow_y
rotates around the y-axis of the local

frame attached to the right elbow.

45

Evolutionary Computation, vol. 11, no. 2, pp. 265-286, 2007.

[10] M. Luciw, V. Graziano, M. Ring and J. Schmidhuber, "Artificial

curiosity with planning for autonomous perceptual and cognitive
development," in Joint IEEE International Conference on Development

and Learning and Epigenetic Robotics (ICDL-EpiRob), Frankfurt, 2011.

[11] R. Houthooft, X. Chen, Y. Duan, J. Schulman, F. D. Turck and P.
Abbeel, "VIME: variational information maximizing exploration," in

Advances in Neural Information Processing Systems (NIPS), Long

Beach, CA, USA, 2016.

[12] S. Mohamed and D. J. Rezende, "Variational information maximisation

for intrinsically motivated reinforcement learning," in Advances in

Neural Information Processing Systems (NIPS), Montréal, Canada,
2015.

[13] B. C. Stadie, S. Levine and P. Abbeel, "Incentivizing exploration in

reinforcement rearning with deep predictive models," arXiv preprint
arXiv:1507.00814, 2015.

[14] T. Hester and P. Stone, "Intrinsically motivated model learning for

developing curious robots," Artificial Intelligence, 2015.

[15] Ş. Özgür and A. G. Barto, "An intrinsic reward mechanism for efficient

exploration," in International Conference on Machine learning (ICML),

Pittsburgh, Pennsylvania, USA, 2006.

[16] M. B. Hafez and C. K. Loo, "Topological Q-learning with internally

guided exploration for mobile robot navigation," Neural Computing and

Applications, vol. 26, no. 8, pp. 1939-1954, 2015.

[17] K. E. Twomey and G. Westermann, "A neural network model of

curiosity-driven infant categorization," in Joint IEEE International

Conference on Development and Learning and Epigenetic Robotics
(ICDL-EpiRob), Rhode Island, USA, 2015.

[18] C. Kidd, S. T. Piantadosi and R. N. Aslin, "The Goldilocks effect in

infant auditory attention," Child Development, vol. 85, no. 5, pp. 1795-
1804, 2014.

[19] M. Rolf, J. J. Steil and M. Gienger, "Goal babbling permits direct

learning of inverse kinematics," IEEE Transactions on Autonomous

Mental Development, vol. 2, no. 3, pp. 216-229, 2010.

[20] A. Baranes and P. Y. Oudeyer, "Active learning of inverse models with

intrinsically motivated goal exploration in robots," Robotics and

Autonomous Systems, vol. 61, no. 1, pp. 49-73, 2013.

[21] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D.

Silver and D. Wierstra, "Continuous control with deep reinforcement

learning," in International Conference on Learning Representations
(ICLR), 2016.

[22] H. Van Hasselt and M. A. Wiering, "Reinforcement learning in

continuous action spaces," in IEEE International Symposium on
Approximate Dynamic Programming and Reinforcement Learning,

2007.

[23] R. S. Sutton, "Learning to predict by the methods of temporal
differences," Machine Learning, vol. 3, no. 1, pp. 9-44, 1988.

[24] D. Bertsekas and J. N. Tsitsiklis, Neuro-dynamic programming,

Belmont, MA: Athena Scientific, 1996.

[25] J. Jockusch and H. Ritter, "An instantaneous topological mapping model

for correlated stimuli," in Proceedings of the International Joint

Conference on Neural Networks (IJCNN 1999), Washington, DC, 1999.

[26] T. Kohonen, Self-organization and associative memory, New York:

Springer Berlin Heidelberg, 1989.

[27] B. Fritzke, "A growing neural gas network learns topologies," Advances
in Neural Information Processing Systems, vol. 7, p. 625–632, 1995.

[28] A. P. S. Braga and A. F. Araujo, "Influence zones: A strategy to enhance

reinforcement learning," Neurocomputing, vol. 70, no. 1-3, pp. 21-34,
2006.

[29] M. Kerzel, E. Strahl, S. Magg, N. Navarro-Guerrero, S. Heinrich and S.

Wermter, "NICO -- Neuro-Inspired COmpanion: A Developmental
Humanoid Robot Platform for Multimodal Interaction," in Proceedings

of the IEEE International Symposium on Robot and Human Interactive

Communication (RO-MAN), 2017 accepted.

46

