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Abstract: In this paper, we present a new intrinsically mo-

tivated actor-critic algorithm for learning continuous mo-

tor skills directly from raw visual input. Our neural archi-

tecture is composed of a critic and an actor network. Both

networks receive the hidden representation of a deep con-

volutional autoencoder which is trained to reconstruct the

visual input, while the centre-most hidden representation

is also optimized to estimate the state value. Separately,

an ensemble of predictive world models generates, based

on its learning progress, an intrinsic reward signal which

is combined with the extrinsic reward to guide the explo-

ration of the actor-critic learner. Our approach is more

data-efficient and inherently more stable than the exist-

ing actor-critic methods for continuous control from pixel

data. We evaluate our algorithm for the task of learning

robotic reaching and grasping skills on a realistic physics

simulator and on a humanoid robot. The results show that

the control policies learnedwith our approach can achieve

better performance than the compared state-of-the-art and

baseline algorithms in both dense-reward and challenging

sparse-reward settings.

Keywords: deep reinforcement learning, actor-critic, con-

tinuous control, efficient exploration, neuro-robotics

1 Introduction
An autonomous agent learning control skills from trial

and error in an unknown environment with zero prior

knowledge is faced with the challenging task of correctly
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mapping the oftenhigh-dimensional sensory observations

to motor actions. Reinforcement Learning (RL) allows for

learning such a mapping by finding action policies that

maximize future rewards from the environment. In recent

years, deep RL has achieved great success in solving sev-

eral control problems, utilizing deep neural networks as

powerful nonlinear function approximators [1]. However,

deep RL suffers from poor sample efficiency as it requires

large amounts of training data and the agent needs to ac-

tively collect it online, rendering it generally impractical

for real-world robotic learning. In this article, we make

two novel contributions: First, a deep autoencoder archi-

tecture is proposed that aids the learning of deep RL pa-

rameters through online joint optimization of supervised

and unsupervised objectives. Second, we derive an effi-

cient exploration strategy using the learning progress of

an ensemble of predictive models. Combined, this leads to

the Deep Intrinsically motivated Continuous Actor-Critic

(Deep ICAC) algorithm which optimizes model-free policy

learning and provides model-based intrinsic feedback to-

wards accelerating real robot learning. We evaluate our

Deep ICAC algorithm for learning-to-reach and learning-

to-grasp tasks on simulated and real robots.

1.1 The problem of data eflciency in deep RL

To improve sample efficiency in deep RL, different ap-

proaches have recently been proposed. Schaul et al.
pointed out that for most deep RL methods, transitions

are randomly drawn from a replay buffer of recent transi-

tions whenever a learning update for the network weights

is performed. Insteadof this inefficient sampling, theypro-

posed a Prioritized Experience Replay, where each transi-

tion in the buffer is assigned a sampling probability pro-

portional to its temporal-difference error [2]. High priority

is thus given to samples of large errors, and thus of a high

potential for updating the network weights, making expe-

rience replay more efficient. In a different approach, an

agent learns an estimate of the expectation over the future

state representations from a given state and action, called

https://doi.org/10.1515/pjbr-2019-0005
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successor representation (SR) [3]. This allows for replac-

ing the state-action value function,which estimates the ex-

pected future reward, with a function estimating only the

immediate reward using the SR, and thereby eliminating

the need for the slow propagation of state-action values

among visited states.

Another study suggests that in order to enhance the ex-

ploration efficiency, the uncertainty about the state-action

values needs to be propagated back when updating the

value estimates instead of only the scalar mean values as

usually done in previous works [4]. For that, a probability

distribution is defined over returns froma state-action pair

and approximated with a deep neural network, which,

along with its parametric uncertainty, is propagated using

the Bellman equation. The policy is then improved with

Thompson sampling based on both the parametric uncer-

tainty of the network and the distributional uncertainty of

the return. Integrating model-based andmodel-free learn-

ing by training a model-free RL agent on real as well as

model-generated, imagined trajectories has also shown to

improve data efficiency [5].

Other studies demonstrate that unsupervised learning

from self-generated reward leads to efficient exploration.

In [6], an exploration incentive based on the prediction er-

ror of a learned model of the environmental dynamics is

used as internal feedback and added to the observed re-

ward. The incentive encourages visiting novel states and

is applied as an alternative to the count-based exploration

bonuses, which are impractical in large domains [6]. Sim-

ilarly, Jaderberg et al. show that maximizing auxiliary re-

wards representing perceptual changes on the sensory as

well as the learned feature levels while learning the target

task makes the training faster. To achieve this, they train

agents to learn separate policies that maximize the per-

ceived changes in image pixel values and in neuron acti-

vations of each layer of the value and policy networks, op-

timizing the combined loss of the auxiliary and the base

agents [7].

While the above approaches offer a variety of tech-

niques in which data efficiency in deep RL can be im-

proved, they are limited to discrete action domains un-

suitable in a realistic robotic setting. To address continu-

ous control with deep RL, a few attempts have been made

over the last two years. For example, Deep Deterministic

Policy Gradient (DDPG), a state-of-the-art deep RL algo-

rithm, has been successfully applied to continuous con-

trol tasks [8]. It learns an action-value function in an off-

policy manner from trajectories generated by a stochastic

behavior policy and updates the deterministic target pol-

icy by gradient ascent on the value function.More recently,

Kalweit and Boedecker showed that DDPG’s high sample

complexity can be reduced by performing a learning up-

date on not only real but also imaginary transition sam-

ples generated by a learned dynamics model [9]. As op-

posed to [5], imaginary samples are not used each time an

update is performed but based on an uncertainty measure

derived by bootstrapping the critic’s neural network. Sim-

ilar to DDPG, Asynchronous Advantage Actor-Critic (A3C)

is an actor-critic policy gradient algorithm, but learns a

stochastic instead of deterministic target policy. A3C asyn-

chronously updates the deep network parameters of mul-

tiple agents in parallel and has shown to improve learning

efficiency [10].

1.2 The role of state representation learning
in RL

In realistic high-dimensional sensory space, it is partic-

ularly helpful for an RL agent to learn task-relevant fea-

tures that make learning the desired control behavior eas-

ier. Learning good state representation in RL thus has re-

ceived wide attention in recent years. For instance, using

autoencoders to learn compact low-dimensional state rep-

resentations unsupervised for RL has been proposed [11–

13]. However, a common limitation to thesemethods is that

they require a separate pre-training phase to adjust the au-

toencoder weights prior to learning the policy for the tar-

get task. Therefore, they learn features that do not nec-

essarily distinguish rewarding states. Unsupervised learn-

ing of temporally coherent features has shown to pro-

vide invariant representations that also improve the learn-

ing speed of RL agents in different control tasks [14, 15].

These works use Slow Feature Analysis (SFA) as an un-

supervised method for learning invariances from tempo-

ral input sequences. While these approaches learn low-

dimensional feature abstraction that is more biologically

plausible and noise robust than the abstraction learned

with autoencoders, they are susceptible to learning task-

irrelevant slow features and perform expensive eigenvalue

decomposition which is also done before starting to opti-

mize the action policy.

1.3 RL and sparse feedback

Besides the need to learn in continuous action spaces,

truly autonomous agents need to learn how to act when

extrinsic rewards are only sparsely available. In order to

allow RL agents to efficiently and meaningfully explore in

a sparse-reward world, intrinsically motivated RL meth-

ods have been proposed providing the agent a number
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of intrinsic drives, with artificial curiosity being the most

common. Different functions have been defined to design

an intrinsic reward for the agent, including Bayesian sur-

prise [16], information gain [17], empowerment [18], pre-

diction error of a learned forwardmodel [6, 19, 20], predic-

tive learningprogress [21, 22], andpolicy value change [23].

In deepRL, Stadie et al. and Jaderberg et al. also use intrin-

sic feedback to aid the learning of a target task instead of

relying exclusively on sparse extrinsic rewards [6, 7]. How-
ever, their proposed measures for computing the intrinsic

reward are mainly based on the perceptual novelty of the

observed states, that is highly sensitive to noise commonly

found in real-world systems.

In another approach, intrinsic rewards are used in hi-

erarchical deep RL to encourage a low-level controller to

reach an intrinsic goal state chosen by a high-level con-

troller that learns a policy over intrinsic goals to optimize

some extrinsic reward from the environment [24]. Despite

being limited to discrete actions, the proposed algorithm

was shown to significantly outperform the DQN algorithm

of Mnih et al. [1] in sparse reward tasks with a complex

goal structure. More recently, intrinsic feedback has been

applied in self-play between two copies of the same agent

where the first periodically sets a goal for the second to

achieve and is intrinsically rewarded proportionally to the

time taken by the second to complete the task [25]. The sec-

ond is rewarded inversely proportional to the time taken to

complete the first one’s chosen task.Moving from self-play

to target task learning, a learning speed-up was shown

when the second copy was deployed to solve the target

task.

In this paper, we use an intrinsic reward based on

the learning progress of a growing ensemble of predic-

tive models, that is less sensitive to noise and accords

with the surprise-enhanced learning [26], where violation-

of-expectation, seen as a prediction error, enhances chil-

dren’s learning, and the Goldilocks effect principle in in-

fant cognition that attributes optimal learning to stimuli

of an intermediate difficulty [27]. This is evident in how in-

fants seek increasingly complex learning samplesby selec-

tively shifting their interactions with the world from well-

explored regions to others where they expect to learn new

effects of motor activity acquiring information of events

that are neither too predictable nor too surprising.

2 Deep intrinsically motivated
continuous actor-critic (deep
ICAC)

Our approach to learning goal-directed continuous control

policies involves two interacting parts: (1) training the ac-

tor and critic networks with experience replay based on

our deep variant of the Continuous Actor-Critic Learning

Automaton (CACLA) algorithm [28]; and (2) incorporating

predictive model-ensemble intrinsic reward for directed

exploration. We first give the necessary background on

continuous actor-critic RL including the CACLA algorithm

in Section 2.1 and then describe our proposed learning ar-

chitecture for Deep CACLA which we use as the RL con-

troller in Section 2.2. We present our Deep ICAC algorithm

in Section 2.3.

2.1 Continuous actor-critic RL

Weconsider a standard finite-horizonMDPwhere an agent

takes an action at from its action space A in a state st from
its state space S each timestep t and observes a new state

st+1 and reward rt. This transition is described by a state

transitionmodel mapping from a state-action pair to a dis-

tribution over S. When acting in its environment the agent

executes a policy π : S → P(A) mapping from a state to a

distribution over A. A return from a state is defined as the

total discounted reward Rt =
∑︀T

i=t 𝛾
i−t r (si , ai) with a dis-

count factor 𝛾 ∈ [0, 1]. The value function is the expected

return from state s, Vπ (s) = E [Rt | st = s, π]when follow-

ing a policy π. The goal of the RL agent is to find an optimal

policy maximizing the expected return:

π* = argmaxπ Es ∼ S
0

[︀
Vπ (s)

]︀
(1)

where S
0
⊆ S is a set of initial states.

To solve Eq. 1, a true transition model is necessary.

However, in complex domains, learning a good transition

model is often computationally expensive and severely

limits the policy by the accuracy of the learned model

and thus model-free RL methods can be used in such

cases. In model-free, value-based RL, an action-value

function is defined as the expected return from taking

action a in state s and following policy π hereafter,

Qπ (s, a) = E [Rt | st = s, at = a, π], and can be com-

puted recursively using the Bellman equation: Qπ (s, a) =
Est+1 ∼ M

[︀
r (st , at) + 𝛾 Eat+1 ∼ π

[︀
Qπ (st+1, at+1)

]︀
|s = st ,

a = at]. In continuous state spaces, a function approxi-

mator is used to learn parameters θQ that minimize the
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loss:

L
(︁
θQ

)︁
=

(︁
yQt − Q

π
(︁
st , at | θQ

)︁)︁
2

(2)

where yQt = r (st , at) + 𝛾 maxa Qπ
(︁
st+1, a | θQ

)︁
. The

value-function approximator is updated by gradient de-

scent on the loss in Eq. 2.

Actor-critic methods are a class of RL algorithms that

learn a value function and a policy simultaneously and

have shown promising results with the advances in deep

learning. They are particularly suitable for continuous ac-

tion spaces. In a standard actor-critic RL, the actor sug-

gests an action at in state st and the critic evaluates the

action utility through the observed reward rt and next

state st+1, and using this evaluation, the actor refines

its future suggestions. Deep Deterministic Policy Gradient

(DDPG) [8] and CACLA [28] are two popular continuous

actor-critic methods.

2.1.1 DDPG

DDPG is a model-free actor-critic algorithm that learns a

deterministic target policy µ from transitions generated

by an arbitrary stochastic policy. The policy µ directly

maps states to actions and represents the current approx-

imation of the optimal policy. The critic estimates the

action-value function. Function approximators µ
(︀
s | θµ

)︀
and Q

(︁
s, a | θQ

)︁
are used to estimate the actor and critic

with parameters θµ and θQ respectively. The critic is up-

dated by the Bellman equation using slowly changing tar-

get value and policy networks found to stabilize learning

in theDeepQ-Networks algorithm [1]. A randomminibatch

of n transitions of the form (si , ai , si+1, ri) is first drawn
and corresponding targets yi are computed using the tar-

get value Q′
(︁
s, a | θQ

′

)︁
and policy µ′

(︁
s | θµ

′

)︁
networks,

yi = ri + 𝛾 Q′
(︁
si+1, µ′

(︁
si+1 | θµ

′

)︁
| θQ

′

)︁
. A minibatch

stochastic gradient descent (SGD) step is then performed

on the loss function L =

1

n
∑︀

i

(︁
yi − Q

(︁
si , ai | θQ

)︁)︁
2

to

update the parameters θQ. The actor is updated in the di-

rection of the sampled policy gradient:

∇θµ J =
1

n
∑︁
i

∇aQ
(︁
s, a | θQ

)︁
|s= si , a= µ(si) ∇θµµ

(︀
s | θµ

)︀
|s= si

(3)

where J is a performance objective representing the ex-

pected return of the target policy and n is the minibatch

size. The parameters of the target networks are alsomoved

slowly toward their corresponding parameters of the pol-

icy and value networks, θQ
′

← τ θQ+ (1 − τ) θQ
′

and θµ
′

←

τ θµ + (1 − τ) θµ
′

, with τ ≪ 1.

2.1.2 CACLA

Like DDPG, CACLA is a model-free actor-critic algorithm.

The critic learns a parameterized approximation of the

state-value function by applying a Temporal-Difference

(TD) learning update, Vt+1
(︁
st | θV

)︁
= Vt

(︁
st | θV

)︁
+ αtδt,

where δt = rt + 𝛾 Vt
(︁
st+1 | θV

)︁
− Vt

(︁
st | θV

)︁
is the TD-

error and αt ∈ [0, 1] is the learning rate. The parameters

θV are updated by an SGDon the loss

1

2

(δt)2, whichmoves

the value estimate closer to rt + 𝛾 Vt
(︁
st+1 | θV

)︁
. The actor

is represented by a function approximator Ac
(︁
s | θAC

)︁
. In

contrast to DDPG, the actor here is only updated when the

TD-error is positive. The reason is that when an explored

action at results in an increase in the critic’s estimate of

the state st value, then this action is believed to lead to

potentially higher future rewards and thus the target pol-

icy is updated in the direction of that action. The actor’s

parameters θAC are adjusted by performing a conditional

SGDupdate on the loss

1

2

(︁
at − AC

(︁
st|θAC

)︁)︁
2

as follows:

If δt > 0 :

θAC ← θAC + α
(︁
at − AC

(︁
st|θAC

)︁)︁
∇θACAC

(︁
st|θAC

)︁
(4)

No update is performedwhen the value estimate is not

actually improving (i.e. δt ≤ 0) because otherwise that

would update toward an action that might not be better

than the currently known best action. This update rule is a

major difference to the policy gradient algorithms that do

not consider the distance to the promising action but the

size of the value improvement. By using the sign of the TD-

error rather than its size when updating the actor’s policy,

CACLA is more invariant to scaling of rewards.

2.2 Deep CACLA

For high-dimensional state spaces, the actor and critic re-

quire good representations capable of identifying states

that lead to high future rewards in order to learn a good

value function which makes learning the desired policy

easier. To support this, we propose an architecture that

includes learning a low-dimensional feature representa-

tion ϕst using a Convolutional Autoencoder (CAE). The
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CAE is jointly trained with the critic’s neural network

V
(︁
.|ω, θV

)︁
that outputs an estimate of the expected state

value using the features ϕst computed by the convolu-

tional encoder f with parameters ω. The decoder g with
parameters ω̃ decodes ϕst into the state space. The actor
is represented by a separate neural network that takes in

ϕst and outputs a current estimate of the best action. The

architecture is shown in Figure 1.

The CAE learns the encoder parametersω anddecoder

parameters ω̃ that minimize the L2 reconstruction loss be-

tween the input image st and the reconstructed image ŝt:

Lct (ω, ω̃) =
(︀
g
(︀
ϕst | ω̃

)︀
− st

)︀
2

(5)

The loss function for the critic’s parameters is given

by:

Lvt
(︁
ω, θV

)︁
= E

[︂(︁
yt − V

(︁
ϕst |ω, θ

V
)︁)︁

2

]︂
(6)

where yt is the target value calculated using the tar-

get value network V
′

(︁
.|ω′, θV

′

)︁
and the reward rt ob-

served when acting at the state st and equals rt +

𝛾 V ′
(︁
ϕst+1 |ω

′

, θV
′

)︁
. A target networkwith slowly updated

parameters is oftenused indeep value-basedRL toprovide

more stationary targets, as mentioned in Section 2.1.1. For

learning the actor’s parameters, when the TD-error is pos-

itive (see Eq. 4), the following loss function is used:

Lat
(︁
ω, θAC

)︁
=

(︁
at − AC

(︁
ϕst | θ

AC
)︁)︁

2

(7)

where at is the exploratory action taken at st.

Figure 1: Learning Architecture: The architecture consists of (1) a
convolutional encoder branch fω that takes in a raw image st and
extracts a feature vector ϕst , (2) a convolutional decoder branch gω
that produces a reconstruction st of the input, (3) a value branch
V with parameters θV that estimates the expected value using the
features ϕst , and (4) a policy branch AC with parameters θAC that
outputs a current estimation of the best action.

The proposed deep model is trained online with mini-

batchSGD tofindvalues for theparameters (ω, ω̃, θV , θAC)

that minimize the combined loss:

Lt
(︁
ω, ω̃, θV , θAC

)︁
= Lct (ω, ω̃) + Lvt

(︁
ω, θV

)︁
+ Lat

(︁
ω, θAC

)︁
(8)

To optimize Eq. 8 with respect to the learning

parameters {ω, ω̃, θV , θAC }, we perform an itera-

tive update of the parameters {ω, ω̃, θV} to minimize

Lct (ω, ω̃) + Lvt
(︁
ω, θV

)︁
and the parameters θAC to

minimize Lat
(︁
ω, θAC

)︁
after fixing {ω, ω̃, θV}. This

update ensures that the parameters ω are not affected

by backpropagation of Lat gradients since we want the

actor to take the learned ϕst as its input and not st. We

also move the target value network parameters slowly

toward the learned network parameters as follows:

θV
′

← τ θV + (1 − τ) θV
′

, ω′ ← τω + (1 − τ)ω′ with
τ ≪ 1. The minibatch is drawn from a replay buffer of

size 10

5

to perform aminibatch SGD on the combined loss

(Eq. 8) at each update iteration.

The feature representation ϕst in the proposed archi-

tecture is learned to be a good state representative and

value predictor by sharing the parameters ω between the

encoder and the critic, which is highly desirable for effi-

cient learning of good action policies. The learning system

is shown in Figure 2.

Figure 2: Deep CACLA learning system: The convolutional encoder of
the agent’s learning architecture computes a feature representation
ϕst in state st. The agent then takes an action at chosen by the
actor network based on ϕst and the environment returns a new
state st+1 and reward rextt used to update the critic’s estimated
utility of at. Finally, the actor is updated towards at if it is found to
improve the critic’s estimated utility (i.e., TD-error > 0).
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2.3 Deep ICAC

While learning a policy in continuous action space, bal-

ancing exploration and exploitation becomes significantly

challenging. Simply following a randomized exploration

approach would be highly inefficient in such a space. In-

stead, to achieve amore efficient and directed exploration,

we propose an intrinsic reward function based on the

learning progress of an ensemble of local predictive mod-

els of the world dynamics.

2.3.1 Predictive model-ensemble intrinsic reward

Two key principles to our approach to intrinsic reward de-

sign are predictive learning progress and self-organization

of sensory space. This is inspired by how infants continu-

ally organize their interaction with the world as they learn

about its dynamics, shifting their focus from explored to

unexplored regions driven by curiosity.

In our approach, the state space is incrementally par-

titioned into local regions using a growing self-organizing

map model M. Since the RL agent explores its sensory

space along continuous trajectories, the Instantaneous

Topological Map (ITM) model [29] is used as our self-

organizing map model M. It is designed for strongly cor-

related stimuli and is simpler and grows faster than other

growing self-organizing models. The ITM is defined by a

set of nodes i, each with a weight vector wi, and a set of

edges connecting each node i to its neighbors N(i). The
ITM starts with two connected nodes, andwhenever a new

state s is observed (here the state is represented by its fea-
ture vector ϕs), the following adaptation steps are per-

formed:

1. Matching: Find the nearest node n and the sec-

ond nearest node n’ to the observed state ϕs: n ←

argmini
⃦⃦
ϕs − wi

⃦⃦
, n′ ← argminj,j≠n

⃦⃦
ϕs − wj

⃦⃦
.

2. Edge adaptation: Create an edge between n and n’ if
they are not connected. Check, for all nodesm inN(n),
whether n’ lies inside the Thales sphere throughm and

n (i.e. (wn − wn′ ) · (wm − wn′ ) < 0). If this is true, re-

move the edge between n andm, and then, ifm has no

remaining edges, removem.
3. Node adaptation: If ϕs lies outside the Thales sphere

through n and n’, i.e.
(︀
wn − ϕs

)︀
·

(︀
wn′ − ϕs

)︀
> 0,

and if the distance between n and ϕs is greater than a
given threshold emax, add a new node v with a weight
vector wv = ϕs and an edge with n.

Each region of the state space (node in M) is assigned a

local predictive model p trained to predict the next state,

given the current state and action. Then, the change be-

tween two consecutive average prediction errors of a pre-

dictor associated with the best-matching node n in M for

the current state is computed:

LPt =
⃒⃒⃒ ⟨
eprdt

⟩
−

⟨
eprdt−T

⟩ ⃒⃒⃒
(9)

where T is a time window and

⟨
eprdt

⟩
is the average pre-

diction error computed over the µ recent predictions,

⟨
eprdt

⟩
=

1

µ

µ∑︁
i=1

eprdi |
eprdi =

⃦⃦⃦
P
(︁
ϕsi , ai

)︁
− ϕsi+1

⃦⃦⃦

This change represents the learning progress LPt the
agent has made or expects to make and is combined with

the perception error epert which is the distance between the

state encoding ϕst and the weight vector of node n to give
an intrinsic reward signal:

rintt = LPt + epert (10)

This self-generated reward encourages the agent to try

actions that are expected tomaximize its learning progress

and to lead to perceptually novel states. In this way, the

agent is not solely attracted to states with large predic-

tion error (i.e. high novelty) which could attract it to noisy
states that retain a large prediction error. This intrinsic re-

ward also provides information on which regions of the

state space the agent is less certain about its action out-

comes and thus exploration is required. Being locally de-

fined, the intrinsic reward facilitates moving from well-

explored to less explored regions of the world, which is

also suitable for locally structured domains where actions

are defined only on parts of the environment.

To use the derived intrinsic reward in our proposed

actor-critic model, we gradually anneal it to account for

the fact thatwithmore interactions the agent becomes less

uncertain about its world dynamics. We combine it with

the extrinsic reward as follows:

rt = rextt +

rintt
1 + D · t (11)

where D > 0 is a decay constant. Figure 3 shows the overall

learning system, demonstrating the interaction among the

different components of our approach at one timestep. The

learning algorithm is detailed in Algorithm 1.

3 Experiments and results
We evaluate our approach on robotic learning-to-reach

and learning-to-grasp tasks. In all the experiments, we
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Figure 3: Deep ICAC learning system: The agent takes an action at
chosen by the actor in state st and the environment returns a new
state st+1 and reward rextt . The convolutional encoder of the agent’s
learning architecture then computes a feature representation ϕst+1
which the self-organizing map model M uses to adapt its topology
and, along with the action at, update the learning progress of the
predictor corresponding to the M’s best-matching node for ϕst . The
updated learning progress is used to derive an intrinsic reward rintt
that is combined with the extrinsic reward rextt , if any, and fed to the
critic to update its estimate of the utility of at. Finally, the actor is
updated towards at if it is found to improve the critic’s estimated
utility.

compare the proposedDeep ICAC to our Deep CACLAbase-

line and state-of-the-art DDPG. We consider two environ-

mental conditions for each task: dense-reward and sparse-

reward settings. The hyperparameter settings used in all

the experiments are discussed in Section 3.1. Results are

then presented in Section 3.2.

3.1 Parameters

We employ a convolutional autoencoder that includes 7

zero-padded convolutional layers with ReLU activations, 2

dense layers with ReLU activations, and no pooling layers,

as shown in the encoder and decoder branches of Figure

1. The figure also shows the number and size of the filters

used in each layer. All convolutional layers have the same

filter size (3×3) applied with stride 1 to maintain the size

of the input image. The critic network consists of the en-

coder layers followed by a dense layer with 20 ReLU neu-

rons andadenseoutput layer of a single linearneuron. The

fourth layer of the encoder is a dense layer with 16 neurons

whose output is used as a low-dimensional feature vector

ϕ and fed to the actor network. The actor network is a 2-

layer fully-connected MLP of 20 tanh hidden neurons and

tanh output neurons (to bound actions) representing an

action vector whose dimension depends on the task.

We train the networks with proportional Prioritized

Experience Replay (PER) [2] using the Adam optimizer [30]

and a learning rate of 10

−3

for both the autoencoder and

critic and 10

−4

for the actor. We use a replay buffer of size

10

5

and a minibatch size of 64 sampled using PER. The

PER hyperparameters α and β
0

were set to 0.6 and 0.4 re-

spectively. The target value network’s update factor τ is set
to 10

−3

. The reward discount 𝛾 is 0.99. We set the intrin-

sic reward decay constant D to 0.1. The intrinsic reward

is normalized so that it remains in the interval [0, 1]. The

ITMmodel has the threshold emax as its only hyperparam-

eter, whichwe set to 6.0. Five nodes, i.e. predictivemodels,

are generated on average. All predictivemodels used are 2-

layer fully-connectedMLPs of 20 tanhhidden and 16 linear

output neurons trained online with Adam optimizer. Ex-

ploratory actions are Gaussian distributedwith a standard

deviation of 20 degrees and a mean at the current actor’s

output.

The above values were determined empirically based

on preliminary experiments and the following findings

were obtained. Different numbers for the dense layer neu-

rons of the actor and critic networks made no significant

difference to the results. For the centre-most hidden layer

of the autoencoder, we tested the performance for 8, 16, 32,

and 64 neurons. By reducing from 16, as finally used, to

8, the average reward decreased to below 2.5. Increasing

from 16 to 32 and 64 did not significantly change the av-

erage reward. Different learning rates were evaluated and

found to slightly affect the learning performance. How-

ever, learning rates below 10

−3

for training the autoen-

coder and critic caused slow learning convergence. Mini-

batch sizes larger than 64 did not lead to a considerable

performance improvement. The value of 𝛾 did not corre-

late with the performance.

Our own DDPG implementation for learning from pix-

els uses the same neural architecture described in [8]

and the best-performing hyperparameters we empirically

found, in addition to training with proportional PER. A

comparison between the number of learnt parameters

used in the proposed neural architecture (see Figure 1) and

that of DDPG is presented in Table 1.

Parameter choice analysis:
While the structural and learning parameters of our

proposed deep neural architecture is based on standard

deep learning models and so their choice can be directly

understood, some other parameters are less straightfor-

ward. Here, we particularly explain the role and choice of

the PER, ITM and intrinsic reward decay parameters as fol-

lows:

– In PER [2], transitions are sampled froma replay buffer

with probability proportional to their priorities P (i) =
pαi∑︀
k pαk

where pi is the priority of transition i repre-
sented by the absolute value of its TD-error and the
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Algorithm 1 Deep ICAC algorithm
1: Initialize the parameters {ω, ω̃, θV , θAC , ω′ , θV

′

, τ }
2: Initialize a growing self-organizing mapM
3: Initialize replay buffer R
4: for e = 1 to #episodes do
5: Get initial state s

1

6: for t = 1 to #steps do
7: Select action at from a Gaussian distribution centered at the actor’s output AC

(︁
ϕst | θ

AC
)︁

8: Execute at and observe rextt and st+1
9: UpdateM and the predictive model of the region covering ϕst using

(︀
ϕst , at , ϕst+1

)︀
10: Compute the intrinsic reward rintt using Eq. 10
11: Compute the total reward rt using Eq. 11
12: Store (st , at , rt , st+1) in R
13: Sample a minibatch from R

14: Perform a minibatch SGD on the loss Lc (ω, ω̃) + Lv
(︁
ω, θV

)︁
w.r.t. ω, ω̃, and θV

15: Fix {ω, ω̃, θV } and perform a minibatch SGD on the loss La
(︁
ω, θAC

)︁
w.r.t. θAC from only samples with

positive TD-error
16: Update target network parameters θV

′

← τ θV + (1 − τ) θV
′

, ω′ ← τω + (1 − τ)ω′
17: end for
18: end for

Table 1: Comparison between the number of learning parameters of the different deep architectures used in the experiments.

DDPG Deep CACLA/ICAC
Actor network 36,077,399 403
Critic network 36,077,585 935,716
Total 72,154,984 936,119

exponent α determines the amount of prioritization

used, with α = 0 corresponding to the uniform ran-

dom sampling. The larger the value of α the stronger is
the prioritization. The prioritization introduces a bias

by changing the distribution of the transitions used

for learning. To compensate for the bias, importance-

samplingweights are usedwPERi =

1

(N·P(i))
β , whereN is

the buffer size. Full compensation corresponds to β =
1. These weights are multiplied by the TD-error when

updating the value function parameters. The bias is

less significant prior to convergence, since the policy

and state distribution are non-stationary. Therefore, β
is usually annealed from some initial value β

0

to reach

1 at the end of learning. We empirically found α = 0.6

and β
0

= 0.4 to yield stable results in all our experi-

ments.

– In ITM [29], a newnode is createdwhen the stimulus is

more than a given threshold emax away from the near-

est node. Thismeans that emax determines the desired

mapping resolution as it controls the growth of the

ITMmap. The choice of emax can influence the derived

intrinsic reward by affecting the number of local pre-

dictivemodels generated. The results of setting emax to
6.0 were on average better than other values we exper-

imented with. Smaller values increased the computa-

tion time without significant performance gain.

– In the combined reward signal derived in Eq. 11, the

parameter D controls the decay rate of the weight of

the intrinsic reward component rintt . Reasonably small

values for D keep the agent more intrinsically moti-

vated during the early stages of learning while allow-

ing it to become gradually less intrinsically motivated

as it learns more about the world dynamics and its ac-

tion values. We found D = 0.1 as the best performing

value in our experiments.

3.2 Environments

Here we show the experiments conducted on three robotic

environments with increasing task complexity and com-

putational demand and present the obtained results.
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3.2.1 Vision-based learning-to-reach

We evaluate our approach on the learning-to-reach task

using the V-REP robot simulator [31]. The 3-D robotic en-

vironment used in the conducted experiments is shown in

Figure 4. The environment consists of a 3-DoF robot arm

with a gripper attached and a red cylindrical target object.

A vision sensor is used and positioned vertically above the

scene to capture real-time 84 × 84 pixel RGB images of the

states of the environment. Each joint of the robot canmove

in the angular range of [−

π
2

,

π
2

]. A reaching attempt is con-

sidered successful when the gripper center is within a pre-

determined radius from the center of the target object (the

resulting target zone area is equivalent to 9% of the total

reachable area of the scene). The reward function used is

as follows:

rextt =

{︃
+10 if successful
−

⃦⃦
ct − cg

⃦⃦
otherwise

where

⃦⃦
ct − cg

⃦⃦
is the Euclidian distance between the

center of the target object ct and the gripper center cg. In
the experiment with sparse rewards, a reward of 0 is given

for unsuccessful actions.

We ran Deep ICAC, Deep CACLA, and DDPG on dense-

reward and sparse-reward environments for 10K episodes

with amaximum of 10 steps per episode, with the position

of the target object varying randomly every episode. Train-

ing was done at the end of each episode by sampling from

the replay buffer with PER and performing a minibatch

SGD using Adam. For evaluating the learned policy, train-

ingwas paused after every 250 episodes and a test trialwas

performed that includes running the policywithout explo-

ration for 20 episodes each with a different target position

not included in the training. The average total (extrinsic)

reward over the 20 test episodes was then reported for ev-

ery test trial. We ran all the experiments on a single Nvidia

GTX 1050 GPU with an average runtime of five hours per

run for each of the algorithms considered.

Figure 5 shows the results of applying the algorithms

to the environment in both the dense-reward and the

sparse-reward settings. The results shown are averages

over 20 seeds.

The performance of the learned policy was almost

identical among the three algorithms during the first five

test trials (1K learning episodes) in the dense-reward set-

ting and the first ten trials (2.5K learning episodes) in the

challenging sparse-reward setting. However, only the poli-

cies learnedwithDeep ICAC andDeep CACLA continued to

improve steadily with Deep ICAC converging faster to an

average return of 7.1 in the dense-reward setting and over

8.0 (i.e. success rate of >80%) just below the optimal pol-

Figure 4: The V-REP robotic environment used in the first experiment
including the 3-DoF arm with a gripper attached and a red cylin-
drical target. The vision sensor output is shown in the upper left
corner.

Figure 5: Performance curves of Deep ICAC, Deep CACLA, and DDPG
on the robotic environment of the learning-to-reach task in different
reward settings: dense-reward (a) and sparse-reward (b).

icy (return of 10) in the sparse-reward setting. Despite its

good performance in the dense-reward setting, Deep CA-

CLA suffered from a premature convergence to a locally

optimal policy in the sparse-reward setting. DDPG, on the

other hand, showed poor stability unable to reach a good

policy by the end of the training process in both reward

settings.

We also report learning statistics in terms of the av-

erage reward per episode over the entire training process

(learning speed) and over the last 100 episodes of training

(final performance) in Table 2. The data shown are the av-

erage over 20 runs.

3.2.2 Vision-based learning-to-grasp

In the second experiment, we consider robotic grasping as

a learning task. Unlike reaching, grasping requires more

precisemotor actions, handling of external collisions with

the object to grasp, and finding correct finger placement.

The robotic environment consists of our Neuro-Inspired

COmpanion (NICO) humanoid [32] facing a table on top of
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which a target object is placed. Figure 6 shows the V-REP

simulation scene of the experiment.

To avoid self-collisions while allowing for a larger task

space for grasp learning, we consider a motor policy in-

volving the right shoulder joint and the right hand joints,

as shown in Figure 7(a). NICO’s right arm has 6 DoF of

which we control one in the shoulder. The shoulder joint

can move in the angular range [−100, 100] (in degrees).

NICO’s hand is an 11-DoF multi-fingered hand with two in-

dex fingers and a thumb each of which can move in the

angular range [−160, 160] (in degrees). The robot learns

to control 2 DoF: 1 DoF (shoulder joint) and 1 DoF (hand

open/close). Theonly input to the learning algorithm is the

raw data of 32×64 pixel RGB image, which is used as the

state of the environment, obtained from the vision sensor

output shown in Figure 7(b).

We use the following reward function:

rextt =

⎧⎪⎨⎪⎩
+10 if successful
−10 if object is toppled
−

⃦⃦⃦
ct − ch

⃦⃦⃦
otherwise

where ct is the center of the target object and ch is the cen-
ter of the robot hand. We determine successful grasps by

moving the shoulder joint 20 degrees in the opposite di-

rection of the recently applied joint value and measuring

the Euclidean distance

⃦⃦⃦
ct − ch

⃦⃦⃦
afterwards. If the dis-

tance remains belowagrasp threshold of 0.04m, the grasp

is deemed successful. Otherwise, the hand is opened, the

shoulder joint moves back to its previous value, and the

robot continues the learning episode. In the sparse reward

setting, we use the following sparse reward function:

rextt =

⎧⎪⎨⎪⎩
+10 if successful
−10 if object is toppled
0 otherwise

We run the algorithms for 10K episodes with a max-

imum of 50 actions per episode and with the target ob-

ject randomly placed in a graspable position after every

episode. The episode terminates when the object is suc-

cessfully grasped, the object is toppled, or a maximum

number of 20 action steps is reached.

The learning-to-grasp experiments were run on a sin-

gle Nvidia GTX 1050 GPU with an average runtime of ∼25
hours per run for all the algorithms in the dense-reward

setting. In the sparse-reward setting, the average runtime

was 27.2, 33.8, and 35.5 hours for Deep ICAC, Deep CACLA,

and DDPG respectively. Figure 8 shows the average total

extrinsic reward per learning episode over five seeds.

Gradual performance improvement was observed for

all the algorithms in the environment with dense reward

Figure 6: The V-REP simulation environment used in the second
experiment including the NICO humanoid sitting in front of a table
on top of which a target object is placed. NICO learns to grasp the
object with its right multi-fingered hand.

Figure 7: The raw motor output (a) and raw sensory input (b) con-
sidered in the learning-to-grasp experiment. Yellow cylinders in (a)
refer to the axes of rotations of the joints controlled during grasp
learning.

setting, as shown in Figure 8(a). Starting at around an av-

erage total reward of −17, Deep CACLA and Deep ICAC

reached a policy with an average return of 0 and 5 respec-

tively. The DDPG progress, on the other hand, was very

slow moving from −18 to −15 by the end of the learning

process. In the sparse-reward environment, the algorithms

were unable tomake a notable progress for 3K episodes af-

ter which the learned policy of only Deep ICAC and Deep

CACLA improved while DDPG’s remained the same.

3.2.3 Vision-based learning-to-grasp on NICO

Deep RL is well suited for research on physical, develop-

mental robots [33]. Enabling robots to learn increasingly

complex sensorimotor abilities through interaction with

the real environment would move the state of the art in
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Table 2: Learning statistics in the experiments with dense rewards (upper half) and sparse rewards (lower half).

DDPG Deep CACLA Deep ICAC
Learning speed 4.52 6.52 6.11
Final performance 4.08 7.01 7.51
Learning speed 5.34 7.25 8.14
Final performance 5.1 6.8 9.0

Figure 8: Learning curves of Deep ICAC, Deep CACLA, and DDPG on
the robotic environment of the learning-to-grasp task in different re-
ward settings: dense-reward (a) and sparse-reward (b). The average
over 50 episodes is shown for readability.

robotics from laborious programming tasks that can only

be realized by highly specialized experts into the realm of

intuitive, human-like teaching scenarios, or even robots,

that can carry out repetitive learning tasks autonomously.

To realize this, several obstacles have to be overcome:

Deep RL requires a large number of samples. Successful

application of deepRLhas been achieved for games [1] and

purely virtual environments [8]. In virtual environments,

a large number of samples can be collected within a short

time, without the danger of damaging the learner or to the

environment and without human assistance or supervi-

sion. A simulation can be reset to its initial state, whenever

an unwanted state occurs. Likewise, any required change

to the environment or assistance can be automated. An ex-

ample could be lifting up a toppled object and putting it

back into the robot’s reach. For a developing child, these

chores are usually realized by its caretakers: in a typical

parent-child interaction, the child learns under the super-

vision of adults that provide a safe environment that en-

ables suitable learning steps.

Therefore, when moving to a real robot the research

question is twofold: The core research question is the eval-

uation of the Deep ICAC algorithm on a real robotic sys-

tem.We analyse how real sensor andmotor noise affect the

learning outcome. The secondary research question is the

design of an experimental setup that enables autonomous

learning, i.e. learningwithout constant human assistance.

As a robotic platform, we use NICO [32], a child-sized

humanoid developed by the Knowledge Technology group

for research on neurobotic and cognitive learning mod-

els and on human-robot interaction. NICO is an open and

highly customizable platform.NICO’s relevant functionali-

ties for the experimental setup are its 6-DoF arms based on

humanoid anatomy and range of motion. NICO has three-

fingered HR4D hands from Seed Robotics¹ that are robust

and reliable. NICO’s arm is articulatedwithDynamixel ser-

vomotors and controlled via the PyPot framework² and

open NICO API by the Knowledge Technology group³.

As the presented experiments only use the upper body

functionality, the experiments are carried out on the torso

version of NICO that is placed in a fixed position as if

seated at a table, as shown in Figure 9. Though NICO

has two integrated cameras in its head and can view its

workspace on the table with its articulated head, an exter-

nal camera was used to mimic the position of the virtual

camera from the experiment presented in Section 3.2.2 to

ensure comparability and transferability. We also success-

fully tested transfer of a network that has been trained on

the simulator to the real NICO, but we did not use this net-

work in the presented results. Dedicated study and anal-

ysis of the transferability of the approach is a promising

area of future work.

Our physical experimental setup follows the approach

by Kerzel and Wermter [34] in which a robot is able to

manipulate its environment with simple, non-learnedmo-

tor actions to provide suitable learning input. To learn to

grasp, the robot executes a self-learning cycle depicted in

Figure 9. Initially, NICOmoves thehand to its start position

and the grasp-learning object is put into NICO’s hand (a),

NICO then grasps the object and moves it to a random po-

sition on the table by using only its shoulder joint (b). The

joint position is recorded and the object is released, the

now empty hand moves back to the home position (c). So

far, we have utilized basic robotic motor abilities, now the

learning phase begins: The top-mounted camera provides

an image to the learning algorithm (see Figure 10), and the

1 http://www.seedrobotics.com

2 http://github.com/poppy-project/pypot

3 http://www.inf.uni-hamburg.de/en/inst/ab/wtm/research/

neurobotics/nico.html

http://www.seedrobotics.com
http://github.com/poppy-project/pypot
http://www.inf.uni-hamburg.de/en/inst/ab/wtm/research/neurobotics/nico.html
http://www.inf.uni-hamburg.de/en/inst/ab/wtm/research/neurobotics/nico.html
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Figure 9: NICO experimental setup during learning including a red
object for grasp-learning and a top-mounted camera. The exper-
iment starts with NICO’s hand at its start position (a). Using its
shoulder joint, NICO grasps and moves the object to a random tar-
get position which is then recorded (b). Next, NICO moves back the
hand to the home position (c). Learning starts by taking the image
provided by the top-mounted camera as an input and producing an
action output from the actor network of the Deep RL algorithm. A se-
quence of actions is mostly required to reach and grasp the object
since the maximum angle change of the joint is limited (d-f). NICO
closes its hand when the algorithm recognizes that the object has
been reached (g). Once the object is grasped, the hand with the ob-
ject grasped is moved to the home position and the learning cycle
is repeated (h). In case of reaching a maximum of 50 action steps,
the shoulder joint position is set to the recorded target position to
grasp the object and move it to the home position before repeating
the learning cycle.

Figure 10: The image obtained from the top-mounted camera in the
NICO experimental setup.

output of the actor’s neural network is set as the next an-

gular change of the shoulder joint. As a result, NICOmoves

its hand towards the grasp-learning object (d-f). As the

maximum change in the joint angle is limited, mostly sev-

eral steps are needed until NICO’s hand reaches the object.

Once the deep RL algorithm recognizes that the hand has

reached the grasp-learning object based on the distance

between the current and target positions of the shoulder

joint, a command to close the hand is generated (g). In the

case of a successful grasp, the hand and the held object

are moved back to the home position (h) and the learn-

ing cycle is repeated. If a maximum number of 50 steps is

reached, the hand is opened and the shoulder is moved

to the recorded joint position to grasp the object which is

then moved to the home position (a). We limit the joints’

speed so that we do not have cases where the object is

pushed away fromNICO’s handor toppled over. In case the

object is pushed, it stays inside NICO’s open hand which

is then closed on the object, once the motion is finished,

and moved to the home position (a).

The advantage of this self-learning cycle is the com-

plete independence of external assistance. Basic robotic

motion and recording abilities are used to provide learn-

ing instances by placing the object at a random position

as well as resetting the experiment in the cases where the

learned grasp is not successful.

Figure 11: Learning curves of Deep ICAC for the vision-based
leaning-to-grasp task on the simulated and real NICO humanoid.

With regard to the learning algorithm, the experiment

uses the same parameters as in the virtual environment:

The algorithm was trained for 4K episodes with a max-

imum of 50 actions per episode. A full training of the

deep RL approach was conducted without human super-

vision for over 50 hours, during which about 15K samples

were collected. During the self-learning cycle, the grasp-

learning object is placed in a random graspable position

within the same range of possible positions. 32 × 64 pixel

RGB images from a top-mounted camera are used as visual

input. We use the following reward function:

rextt =

⎧⎪⎨⎪⎩
+10 if successful
−10 if object is pushed
−

⃦⃦
pt − pc

⃦⃦
otherwise

where pt and pc are the target and current positions of the
shoulder joint respectively. We define a successful grasp
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as having a distance in the joint space of less than 1.7 de-

grees. All hyperparameters for the learning algorithms re-

main unchanged from the experiment presented in Sec-

tion 3.2.2.

The results of the learning are presented in Figure 11.

Compared to the training in a virtual environment both

approaches show a very similar learning curve. After 4K

learning episodes, the Deep ICAC on the real NICO is able

to reliably grasp objects with 76% grasp accuracy (see Ta-

ble 3).

Time complexity. One main computational differ-

ence between DDPG and our proposed algorithms is the

cost of the minibatch gradient descent step during experi-

ence replay.While all the algorithmshave relatively similar

cost for updating the critic network, theyhave significantly

different cost for updating the actor network. DDPG per-

forms a product between the 1 × sa vector∇aQ
(︁
s, a | θQ

)︁
and the sa × sw Jacobian matrix ∇θµµ

(︀
s | θµ

)︀
n times,

where sa is the action dimension, sw is the number of

the actor network’s weights and n is the minibatch size

(see Eq. 3). This gives a complexity of O (n · sa · sw). Deep
CACLA and Deep ICAC, on the other hand, backpropa-

gate the gradients of the loss in Eq. 7 computed at the ac-

tor’s output layer to preceding layers with a complexity of

O
(︁
n
∑︀L

l=1 slsl−1
)︁
= O (n · sw), where L is the number of

layers, slis the layer size and the input is the feature vector
ϕs . Since sw ≈ 36M in DDPG but sw ≈ 400 for our actor

(see Table 1), thismeans our actor is updated roughly 250K

times faster than in DDPGwhen sa = 3 (evenmore if sa >3)
benefiting from the small 2-layer architecture trained on

the low-dimensional ϕs. The overall cost of the minibatch

update is linear in theminibatch size and in the number of

networks’ parameters.

It should be noted that Deep ICAC has an additional

cost for updating the ITM network each time a transition

is observed. This involves the matching step that scales

with the number of nodes and the edge adaptation step

that scales with the average number of neighboring nodes.

All other operations are independent of the number of

nodes. The cost of updating the predictive model of the

best-matching node is O
(︁∑︀L

l=1 slsl−1
)︁

= 640 per tran-

sition which is the cost of a backpropagation pass on the

2-layer network. This added complexity is minimal when

the average size of the ITM network is small (5 ITM nodes

in our experiments). Consequently, the data efficiency of

Deep ICAC does not come at the expense of a greater com-

putational complexity, and this is especially evident since

our physical robot learns in real time (Section 3.2.3).

4 Discussion
The results presented in Section 3 can be summarized as

follows: First, Deep CACLA is significantlymore stable and

learns continuous control policies with high returns faster

thanDDPG. Second, Deep ICAC is inherentlymore sample-

efficient than bothDeep CACLA andDDPG and its superior

performance is particularly pronounced in the challenging

sparse-reward setting. Third, DDPG suffers frompoor sam-

ple efficiency as well as learning instability,diverging from

a good target policy multiple times.

The observeddifference in performance betweenDeep

CACLA and DDPG mainly stems from the policy update

mechanism and the learned state representation. While

DDPG updates the policy by gradient ascent on the cur-

rently learned action-value function that is initially not

well trained, Deep CACLA updates the policy towards the

recent action only when an actual increase in the pre-

dicted value is observed. This conservative update results

in more stable learning, preventing any significant diver-

gence from the currently best-known policy, as shown in

the obtained results. The jointly optimized state represen-

tation of Deep CACLA, which is used as an input to the ac-

tor, leads to fast learning of better control policies by pro-

viding state-discriminative and value-predictive features

that are low-dimensional and more accurately recognize

states with high value estimates.

It is clear from the results that both DDPG and, to a

lesser extent, Deep CACLA have a slow convergence to a

good policy and thus require more training samples. This

is largely due to the exploration policy employed which is

undirected and leads to more training time spent in parts

of the sensory space that are more frequently explored

than others. Deep ICAC, on the other hand, provides di-

rected, learning progress-driven exploration through its

predictive model-ensemble intrinsic reward. Its intrinsic

reward prevents spending additional training time in the

well-explored regions of the world and is more robust to

noise and task-irrelevant stochasticity in the environment.

This guarantees efficient exploration and fast convergence

to near-optimal policies, which is evident in the obtained

results.

In the experiments on environments with sparse re-

wards, the robot lacks frequent feedback signals impor-

tant for improving the learned policy, rendering the task

more difficult. Therefore, Deep CACLA and DDPG that re-

lay on extrinsic rewards exhibited slower learning perfor-

mance in such environments than in the environments

with dense rewards. Deep CACLA overcomes this diffi-

culty by combining the sparsely available extrinsic reward
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Table 3: Test results of running Deep ICAC using the networks trained on the real NICO.

No. of trials No. of success Success rate
Deep ICAC on real NICO 25 19 0.760

with its exploration-oriented intrinsic reward, enabling

the robot to continue to learn driven by the intrinsic mo-

tivation to explore.

What distinguishes the learning architecture of Deep

CACLA and Deep ICAC is the use of a convolutional au-

toencoder, rather than a standard CNN commonly used

when learning control policies from raw images. A stan-

dard CNN requires either standard deep RL with reward-

based losses, which is not realistic given the sparse feed-

back, or supervised learning with labeled pairs of states

and their optimal actions. Conversely, the convolutional

autoencoder can be trained unsupervised from the avail-

able images with a rich error signal, allowing seamless in-

tegration of unsupervised and RL training objectives, as

detailed in Section 2.2.

The algorithms presented here learn action policies

purely end-to-end without any prior knowledge or as-

sumptions about the geometry of the robot, its environ-

ment, or the appearance of the target object in all the con-

ducted experiments. Also, no knowledge of the kinematics

of the robot and the pose of the target object is assumed.

Our intrinsic reward module is general enough to be po-

tentially used for a variety of RLmethods, including value-

based methods and policy gradient methods (determinis-

tic, e.g., DDPG [8] or stochastic, e.g., A3C [10]). In the per-

formed experiments, we use Deep CACLA for the reasons

mentioned above, particularly because it provides low di-

mensional state representations as an input for the for-

ward models used in generating the intrinsic reward.

We could show that the Deep ICAC algorithm enabled

a physical robot to successfully learn a visuomotor abil-

ity without human assistance during the extended self-

learning phase. The learned ability is limited to a single

degree of freedom, but this limitation is in line with the

developmental robotics paradigm of learning increasingly

complex abilities, which is also found in other areas of ar-

tificial neural learning [35]. Based on the realized ability,

more complex abilities can follow as each learned ability

adds to the toolbox of abilities that can be used in the next

learning setups.

5 Conclusion
We presented Deep ICAC, a fast, sample-efficient, and sta-

ble actor-critic algorithm for learning visuomotor skills in

continuous action spaces. The algorithm uses a deep critic

network integrated with a convolutional autoencoder and

a simpler feedforward architecture for the actor. This al-

lows the policy to be trained with maximum efficiency

while learning compact, value-predictive representations.

The policy in our approach is updated only from experi-

ence samples with positive Temporal-Difference error [28],

which adds stability and prevents divergence when a good

policy is learned. The learning progress-based intrinsic

motivation of Deep ICAC supports directed and efficient

exploration necessary in sparse-reward domains. The re-

sults show state-of-the-art performance of Deep ICAC for

learning-to-reach and learning-to-grasp tasks in different

reward settings.

In future work, we will extend the complexity of the

sensorimotor task by using a visually more complex envi-

ronment by introducing different backgrounds and differ-

ent grasp-learning objects or alsomultiple objects, as real-

ized by Eppe et al. [36]. We will also investigate the appli-

cability of pretraining networks in a virtual environment

to further increase the sample efficiency of the presented

algorithm with regard to physical robot actions. Besides,

the local predictive models learned in our approach as a

basis for generating an intrinsic reward offer additional

information on the world dynamics that is not currently

used for model-based policy learning. Integrating model-

based predictions with the current model-free approach

also gives an interesting direction for future work.
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