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Abstract
Objectives: Body composition assessment using CT images at the L3-level is increasingly applied in cancer research and has been shown to be 
strongly associated with long-term survival. Robust high-throughput automated segmentation is key to assess large patient cohorts and to sup-
port implementation of body composition analysis into routine clinical practice. We trained and externally validated a deep learning neural net-
work (DLNN) to automatically segment L3-CT images.
Methods: Expert-drawn segmentations of visceral and subcutaneous adipose tissue (VAT/SAT) and skeletal muscle (SM) of L3-CT-images of 
3187 patients undergoing abdominal surgery were used to train a DLNN. The external validation cohort was comprised of 2535 patients with 
abdominal cancer. DLNN performance was evaluated with (geometric) dice similarity (DS) and Lin’s concordance correlation coefficient.
Results: There was a strong concordance between automatic and manual segmentations with median DS for SM, VAT, and SAT of 0.97 (IQR: 
0.95-0.98), 0.98 (IQR: 0.95-0.98), and 0.95 (IQR: 0.92-0.97), respectively. Concordance correlations were excellent: SM 0.964 (0.959-0.968), 
VAT 0.998 (0.998-0.998), and SAT 0.992 (0.991-0.993). Bland-Altman metrics indicated only small and clinically insignificant systematic offsets; 
SM radiodensity: 0.23 Hounsfield units (0.5%), SM: 1.26 cm2.m−2 (2.8%), VAT: −1.02 cm2.m−2 (1.7%), and SAT: 3.24 cm2.m−2 (4.6%).
Conclusion: A robustly-performing and independently externally validated DLNN for automated body composition analysis was developed.

Advances in knowledge: This DLNN was successfully trained and externally validated on several large patient cohorts. The trained algorithm 
could facilitate large-scale population studies and implementation of body composition analysis into clinical practice.
Keywords: body composition; deep learning; convolutional neural networks; image segmentation; CT. 

Introduction
Body composition assessment using routine abdominal CT 
images is increasingly applied in clinical and translational re-
search.1 By measuring the tissue area at the level of the third 

lumbar vertebra (L3) and scaling for subject height, precise 
assessments of total body mass of skeletal muscle (SM), vis-
ceral adipose tissue (VAT), and subcutaneous adipose tissue 
(SAT) can be made.2 Body composition has been found to be 
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highly independently predictive of survival, especially among 
cancer patients. In particular, low SM mass (ie, sarcopenia), 
low adipose tissue mass, and decreased SM radiodensity (ie, 
myosteatosis) have been shown to be associated with shorter 
overall survival in various cancer types.3-5

Body composition exhibits substantial heterogeneity 
among people due to variations in age, sex, race, build, and 
lifestyle.6 These intrinsic inter-personal differences are unre-
lated to disease and may therefore obscure disease-related 
body composition effects, necessitating large population- 
based data cohorts to adjust for them.

Manual segmentation of body compartments on L3 CT 
images is time-consuming and requires significant expertise.7

Therefore, robust high-throughput automated segmentation 
is key to body composition assessment in large patient 
cohorts and ultimately, to support implementation of body 
composition assessment into routine clinical practice. A deep 
learning neural network (DLNN) can be an essential part of 
such an automated workflow.

One challenge for developing a robust DLNN is that CT 
scans can differ in quality due to patient-, scanner-, and contrast 
media-related parameters.8-10 For example, patient positioning 
can significantly affect image quality (eg, parts of the patient, 
such as the arms, may be outside the scanning field of view),11

(moving) artefacts can occur, and different scanners are used in 
daily clinical practice around the world, heavily impacting the 
radiation dose. This variation might result in poor or differences 
in performance of an automated segmentation algorithm.12 A 
systematic review revealed that 1 in 3 DLNN studies of body 
composition segmentation has been developed with <100 
unique human subjects, and more than half of the reviewed 
studies used exclusively single-institutional datasets.13

Computerized applications trained and validated in closely- 
related datasets are at high risk of reporting overly-optimistic 
metrics of performance. Healthcare artificial intelligence (AI) 
guidelines in general,14,15 and, specifically, the “Transparent 
Reporting of a multivariable prediction model for Individual 
Prognosis Or Diagnosis” (TRIPOD) guidelines,16 recommend 
that a fully independent external validation—with entirely 
different clinicians, scanners, and hospitals—be used for a 
robust estimation of how a computerized system performs in 
truly realistic clinical settings.

Robust DLNNs need to be trained on datasets that are 
large enough to incorporate the heterogeneity created by a 
variety of scanners, image acquisition settings, image recon-
struction kernels, imperfect adherence to patient positioning 
protocols, and sufficiently high heterogeneity of subject clini-
cal presentations. If training datasets are overly restrictive or 
too small to capture the diversity of clinical work, this intro-
duces a type of selection bias and hence performance will be 
poor when encountering real-life clinical situations.

In previous work, the DLNN that is the subject of this pa-
per had been independently validated using a large poly-
trauma patient cohort extracted from the same university 
hospital, albeit at a different department (emergency depart-
ment) and for a clinically distinct setting.17 This was nonethe-
less considered a challenging validation attempt due to the 
large variation in patient positioning (including arms and 
hands appearing inside the field of view) as well as radiation 
artefacts (eg, from metal devices attached to the patient). 
Even with this challenging cohort, the present DLNN model 
performed very well.

A robust, fully inter-institutional, and large-scale external 
testing with unseen datasets is needed for developing a qual-
ity AI tool for potential clinical use. By training a DLNN 
with several large trial cohorts and performing external vali-
dation on a large independent cohort, we aim to demonstrate 
the robust performance of our automatic body composition 
segmentation tool for future use in patients. This paper 
presents the first fully-independent external validation of the 
Mosamatic DLNN in a surgical oncology cohort with clinical 
imaging data from different hospitals, with independent 
radiology scan protocols, and comparing against reference 
delineations provided by independent clinicians.

Methods
Patients
A total of 3187 patients requiring abdominal surgery who 
had undergone a CT scan prior to surgery contributed by 32 
distinct centres (located in The Netherlands, Germany, and 
the United Kingdom) were used for DLNN development (see 
general patient characteristics in Table 1). These comprised 
of de-identified data abstracted from previously ethics board- 
approved clinical studies; permission for secondary analysis 
was obtained via the principal investigators of the respective 
studies. We used L3 CT slices from: 3 colorectal liver metas-
tases trials—2 from multiple sites across the United Kingdom 
and a single-institution study in The Netherlands; 2 ovarian 
cancer trials among 5 participating Dutch centres; and 1 pan-
creatic cancer trial of patients operated either in Aachen, 
Germany, or in Maastricht, The Netherlands.

An independent external validation set comprised 2535 L3 
CT slices at different time intervals taken from 1054 unique 
subjects diagnosed with either resectable colorectal or pancre-
atic cancer (see Table 1).18,19 Ethical approval was granted by 
the West of Scotland Research Ethics Committee, Glasgow.

Image acquisition and reference segmentations
The aforementioned datasets comprised CT scans from a broad 
range of equipment vendors and image acquisition settings, 
which enables development of a more robust algorithm. Images 
were archived in DICOM (digital imaging and communications 
in medicine) format. Table S1 (see online supplementary 
materials) summarizes the diverse imaging settings as recorded 
in DICOM metadata.

L3 images were obtained at the level of the transverse 
processes. All human-made segmentations in this study were 
created with Slice-o-matic (Tomovision, Quebec, Canada). 
Regions of interest (ROIs) were defined using standardized 
Hounsfield unit (HU) ranges (SM: −29 to þ150, VAT: −150 to 
−50, SAT: −190 to −30). Absolute areas were normalized by 
physical height squared to derive skeletal muscle index (SMI), 
visceral adipose tissue index (VATI), and subcutaneous adipose 
tissue index (SATI). Mean HU in SM at L3 was used as the skel-
etal muscle radiation attenuation (SMRA). All human reference 
segmentations were made by 6 clinical researchers extensively 
trained under supervision of a radiologist to perform body com-
position analysis in Slice-o-matic in concordance with the 
Alberta Protocol.20 Inter-observer variability for manual seg-
mentations was excellent with 2-way random-effects intra-class 
coefficient of correlations of 0.96, 1.00, 0.99, and 0.99 for SMI, 
VATI, SATI, and SMRA, respectively.7 Intra-observer variabil-
ity was low, with a percentage coefficient of variation in 
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measurement error of 0.65% for tissue areas and 0.60 for tissue 
radiation attenuation.5

Previously published analyses on the external validation 
dataset had been made with ImageJ (National Institutes of 
Health, v1.47, http://rsbweb.nih.gov/ij/), but this method was 
shown to overestimate adipose tissue areas relative to other 
software.21 Every validation subject in this study was there-
fore independently re-annotated in Slice-o-matic by the origi-
nal data owners. To ensure consistency for direct 
comparison, we re-computed areas and mean HU for all sub-
jects with independent Python code, and confirmed equiva-
lent values with each version of Slice-o-matic used to 2 
decimal places or better.

Deep learning neural network
A DLNN for multi-label segmentation of SM, VAT, and SAT 
was built from a canonical 2D U-Net,22 with minor changes 
in the input layer to match the dimensions of a CT slice 
(512×512). An essential development for this work was to 
chain 2 independently-trained U-Net networks; the first U- 
Net was developed to segment the whole abdomen, whilst ig-
noring hands, arms, CT mattress, and extraneous medical 
devices that sometimes appeared in the CT field of view. The 
second U-Net was specialized for segmenting SM, VAT, and 
SAT within the abdominal outline detected by the first U-Net 
(see online Figure S1 and its accompanying text).

Pixel intensities were clipped to the range [−500, þ500] 
HU for the abdomen segmentation network. The reference 
abdominal region was generated by computing the outermost 
continuous contour of the human expert’s SAT region before 
morphologically filling in every pixel inside. The range of in-
tensities was further clipped to [−200, þ200] HU to train the 
multi-label segmentation of muscle and fat. In each network, 
clipped intensities were scaled between [0,1] via standard 
min-max normalization. Pre-processed CT images were 
stored and handled in DICOM format. Human expert seg-
mentations were extracted from Slice-o-matic in its 

proprietary TAG format and converted to Python (NumPy) 
array objects before training the deep learning model.

Hands, arms, and other extraneous objects were rare 
within the training set; thus, we synthetically over-sampled 
images with extraneous objects outside the abdomen until 
they comprised 50% of each training batch while developing 
the abdomen U-Net. To train the muscle and fat multi-level 
segmentation network, all available 3187 subjects were ran-
domly shuffled and split into 80% for training and 20% for 
validation. Given the relatively large sample size, a (non-over-
lapping) 80-20 split is superior to alternative methods like K- 
fold cross-validation where each validation block ultimately 
ends up being “seen” by the training algorithm, potentially 
introducing bias due to data leakage. More details of DLNN 
construction have been provided in online supplemen-
tary materials.

CT slices and human-drawn (reference) annotations for the 
external validation were not revealed until the final DLNN 
model had been selected and all its model weights perma-
nently fixed. Pre-processing of the test set followed the same 
steps as aforementioned. The full DLNN code (stripped of all 
trained models and patient data) is made open access (see 
Data availability). The trained algorithm can run easily on a 
conventional office laptop with standard specifications. An 
example of the DLNN output is shown in Figure 1.

Automatic L3-selection
For use on large cohorts and for ease of future clinical imple-
mentation, automatic vertebra localization is necessary. We 
have integrated a state-of-the-art externally validated and 
open-source tool known as TotalSegmentator (https://github. 
com/wasserth/TotalSegmentator).23,24 In keeping with the 
“narrow AI” paradigm, we have chained together highly spe-
cialized AI tools for each task. TotalSegmentator was first 
used for automated segmentation of all visible vertebrae in a 
volumetric CT study. The resulting labelled masks were used 
to locate all the slices intersecting L3, and then we selected 

Table 1. General patient characteristics for the DLNN development sets and the external test set.

Model development sets External validation set

Study ID FROGSa New EPOCa Zuydb MUMCc MUMC/Aachend UGe

Diagnosis Emergency laparotomy 
(benign and 
malignant disease)

Colorectal liver metastases Ovarian  
cancer

Pancreatic  
cancer

Pancreatic cancer þ
colorectal cancer

Time interval 2017-2019 2007-2012 2013-2017 2002-2015 2015-2019 2008-2019
Sample size 804 153 1587 339 304 1054 (147 pancreatic,  

907 colorectal)
No. male (%) 374 – 883 0 161 567

(47%) (56%) (0%) (53%) (54%)
No. female (%) 430 – 704 339 143 487

(53%) (44%) (100%) (47%) (46%)
Ages (median) 25-95 – 32-98 30-101 10-88 23-93

(68) (70) – (74) (69)
Range BMI in kg.m−2  

(median)
14-58 – 15-53 – – 14-59
(26) (26) – (25.4) (27)

aBristol, Poole, Bournemouth, Royal Marsden, Surrey, Portsmouth, Velindre, Sheffield, Imperial Charing Cross, Imperial St Mary, Christie, Southend, 
Yeovil, North Middlesex, Southampton, Guys, Aintree, Winchester, Cambridge, Princess Alexandra, Bedford, Salisbury, University College London, 
Basingstoke, Pennine (United Kingdom).

bZuyderland Medical Centre Geleen/Heerlen (The Netherlands).
cMaastricht University Medical Centre, Radboud University Medical Centre Nijmegen, Bernhoven Medical Centre Uden, St Jansdal Medical Centre Ede 

(The Netherlands).
dMaastricht University Medical Centre (Netherlands), RWTH Uniklinik Aachen (Germany).
eGlasgow Royal Infirmary (United Kingdom).

-No individual values extracted.
Abbreviations: DLNN ¼ deep learning neural network.
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the CT slices closest to the centre of the segmented object (see 
Figure S2).

Analysis
Geometric agreement was evaluated by using 2D dice similar-
ity (DS) comparing the DLNN segmentations of SM, SAT, 
and VAT against the corresponding annotation made by hu-
man experts. DS computes the area of the intersection be-
tween human and DLNN segmentations as a fraction of half 
the summated area (human-drawn area plus DLNN-drawn 
area). Perfect geometric agreement implies DS¼ 1, and if the 
intersection area is zero then DS¼0. Agreement of SMI, 
VATI, SATI, and SMRA between manual and automatic 
annotations was quantitatively evaluated in the test set using 
Lin’s concordance correlation coefficient (CCC) and Bland- 
Altman’s Limits of Agreement (LoA) (with and without 
repeated measurements). By using the human-drawn annota-
tions in the test set as reference and then applying the risk 
classification supplied by Martin et al,3 we computed the 
diagnostic performance (sensitivity, specificity, balanced 
accuracy, and agreement kappa) of the DLNN results. 
Statistical analyses were performed in R (version 4.2.0).

Results
Model training
Total loss and DS curves in the training dataset show DLNN 
model convergence within about 40 000 steps (see Figure S3). 
There was rapid improvement within the first 10 000 steps but 
DS was largely stable thereafter. Total (DiceþL3) loss continued 
to decrease gradually but we stopped model training after 
38 000 steps, since there was very little to gain with further 
training. The DLNN weights after the last training step were 
thus fixed as the “final model” for subsequent testing. The 
established segmentation tool was named MosaMatic.

Segmentation speed
The DLNN was able to segment a single CT-image in around 
2 s and the whole external validation cohort (n¼2535) in 
around 90 min.

Concordance between manual and DLNN 
segmentations
The overall distribution of DS for SM, VAT, and SAT in the 
quarantined validation dataset is summarized in the box- 
whisker plot shown in Figure 2A. The median DS for SM was 
0.97 (IQR: 0.95-0.98), with a tail of outliers down to a mini-
mum DS of 0.45. The distributions of DS for VAT (median: 
0.98, IQR: 0.95-0.98) and SAT (median: 0.95, IQR: 0.92-0.97) 
were highly skewed, with extreme outliers landing near zero 
(these were patients with very small amounts of total adipose 
tissue). The DS is known to be overly sensitive for small vol-
umes, and this can also be seen in our results—Figure 2B-D.

Lin’s CCC evaluation of SMRA, SMI, VATI, and SATI com-
paring expert segmentations (as reference) and DLNN results 
(as test) was excellent, as shown in Figure 3A-D. Numerical 
measures of the CCC, bias correction factor for slope of agree-
ment, and finally the Bland-Altman intervals of agreement with-
out repeated scans are provided in Table 2. The CCC ranges 
from 0.964 (for SMI) up to 0.998 (for VATI). The errors in the 
agreement slope, as indicated by deviation from the dotted line 
in Figure 3, were all close to unity, indicating no major devia-
tions from the ideal, which is supported by bias correction mul-
tipliers being better than 0.991 (ie, no correction implies 1.00). 
Based on our large cohort, median in vivo values (which are in 
reality age- and sex-dependent) of SMRA, SMI, VATI, and 
SATI roughly fall in the vicinity of 50 HU, 45, 60, and 70 cm2. 
m−2. The Bland-Altman metrics (with percentages in parenthe-
ses) indicate only small systematic offsets of 0.23 HU (1.0%), 
1.26 cm2.m−2 (2.9%), 1.02 cm2.m−2 (2.5%), and 3.24 cm2.m−2 

(4.9%) for SMRA, SMI, VATI, and SATI, respectively. The up-
per and lower limits of the Bland-Altman tests indicate SATI 
had the widest random variation component (−6.7 to 13 cm2. 
m−2). Most importantly, for risk stratification by muscle fat 
content, the random noise component of SMRA was estimated 
at about 2-3 HU in magnitude, and correspondingly for SMI 
about 3-5 cm2.m−2 in magnitude.

Consistent concordance for consecutive 
measurements
In 449 subjects, we obtained a consecutive CT image at vary-
ing time intervals ranging from within a month up to 

Figure 1. Segmentation of skeletal muscle (red), visceral adipose tissue (yellow), and subcutaneous adipose tissue (blue) on a single CT slice at the level 
of the third lumbar vertebra.
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12 months. Whereas the scope of this study was not to objec-
tively quantify longitudinal precision, we can already derive 
some preliminary insight into stability with repeated imaging 
over time using these data. The concordance plots for SMRA, 
SMI, VATI, and SATI for consecutive scans are equivalent to  
Figure 3 (see Figure S4). There was no evidence of divergence 
from the high concordance observed in the agreement on pri-
mary CTs. According to CCC metrics and Bland-Altman lim-
its with repeated measures, there are no notable changes 
between agreement of body composition indices between pri-
mary (top half of Table 2) and repeat scans (bottom half 
of Table 2).

Accuracy
We tested the clinical significance of using the DLNN seg-
mentations with respect to a change in stratification for low 
SMI and low SMRA using the widely used thresholds defined 
by Martin et al.3 Overall accuracy of stratification was 0.93 
for low SMI (sensitivity: 0.99, specificity: 0.87) and 0.98 for 
low SMRA (sensitivity: 0.98, specificity: 0.98). The discre-
tized agreement (Cohen’s inter-rater kappa) was 0.85 for low 
SMI and 0.96 for low SMRA, which is generally considered 

as being excellent. For completeness, a 2× 2 confusion 
matrix for low SMI and low SMRA is included in the online 
supplemental materials as Figure S5.

In addition, we tested the accuracy of L3 mid-vertebrae lo-
calization from TotalSegmentator using a small independent 
test cohort of 30 subjects completely unrelated to the present 
study. In this brief quality assurance test, we correctly identi-
fied the CT-slice at L3 in 30 out of 30 cases (100%) based on 
the vertebrae segmentation produced by TotalSegmentator.

Discussion
In this study, we present our TRIPOD Level 3 fully indepen-
dently and externally validated deep learning model for auto-
mated segmentation of CT-based L3 slices. Due to its robust 
performance in both internal and external validation cohorts, 
this study shows that DLNN-generated segmentation can re-
liably replace manual segmentation when performing body 
composition assessment. This opens up new possibilities both 
in clinical and scientific settings, such as cost- and time- 
effective clinical implementation and large cohort/popula-
tion studies.

Figure 2. Distribution of geometric dice similarity (DS) on L3 slice for skeletal muscle (SM), subcutaneous fat (SAT), and visceral fat (VAT). (A) Box- 
whisker plot showing the median DS as the solid horizontal line and the interquartile range as the upper and lower limits of the box. The vertical line ends 
indicate 1%-tile and 99%-tile, and outliers outside this range are shown as individual dots. (B)-(D) show the distribution of DS as a function of SM area, 
VAT area, and SAT area, respectively.
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Figure 3. Lin’s concordance correlation (CCC) plots. (A) Skeletal muscle attenuation (SMRA), (B) skeletal muscle index (SMI), (C) visceral fat index (VATI), 
and (D) subcutaneous fat index (SATI). The units of SMRA are Hounsfield unit (HU). The units of SMI, VATI, and SATI are all cm2.m−2. Reference values 
were defined as those extracted from human-drawn segmentations. Predicted values were extracted from DLNN-made segmentations. DLNN ¼ deep 
learning neural network.

Table 2. Concordance correlation, bias correction factor, and Bland-Altman agreement without repeated measures (n¼1054).

Bland-Altman estimates of agreement for primary scan only (n¼1054)

Concordance correlation  
(95% confidence interval)

Bias correction factor Bland-Altman agreement  
(95% lower-upper limits)

SMRA 0.991 (0.990-0.992) 0.999 0.23 (−2.06 to 2.52) HU
SMI 0.964 (0.959-0.968) 0.991 1.26 (−3.11 to 5.63) cm2.m−2

VATI 0.998 (0.998-0.998) 0.999 −1.02 (−4.55 to 2.50) cm2.m−2

SATI 0.992 (0.991-0.993) 0.997 3.24 (−6.69 to 13.2) cm2.m−2

Bland-Altman estimates of agreement for repeated scans only (n¼ 449)

Concordance correlation  
(95% confidence interval)

Bias correction factor Bland-Altman agreement  
(95% lower-upper limits)

SMRA 0.991 (0.990-0.992) 0.999 0.18 (−2.08 to 2.45) HU
SMI 0.973 (0.969-0.976) 0.997 0.75 (−3.56 to 5.06) cm2.m−2

VATI 0.998 (0.998-0.998) 0.999 −1.07 (−4.55 to 2.41) cm2.m−2

SATI 0.992 (0.991-0.993) 0.998 2.55 (−8.36 to 13.4) cm2.m−2

Abbreviations: HU ¼Hounsfield unit; SATI ¼ subcutaneous adipose tissue index; SMI ¼ skeletal muscle index; SMRA ¼ skeletal muscle radiation 
attenuation; VATI ¼ visceral adipose tissue index.
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Clinically, and subject to a future clinical implementation 
study to follow this work, our automated L3 body composi-
tion segmentation tool is intended to be easily implemented 
in standard practice for all routine CT-scans, which clinicians 
can then use for prognostic risk assessment and treatment de-
cision making. Changes in body composition over time can 
be detected during oncologic follow-up, which might provide 
early indications of treatment effect or disease progression/re-
currence. Going from a prognostic tool to a predictive tool— 
in which the tool is used for treatment decisions—still 
remains a large step to take as large international datasets are 
needed to provide clinical reference values. Nevertheless, a re-
cent publication on the increasing incorporation of body 
composition analysis as confounder or endpoint in clinical 
trials indicates the need for a fast and easy-to-use CT body 
composition assessment tool.1

Body composition is highly variable among sex, age, race, 
and cancer types.4,5,25-27 For this reason, developed clinical 
cut-offs vary greatly among different patient cohorts, and 
prognostic models of outcome (eg, survival) are likely to fail 
during external validation.4,28 In addition, body composition 
can be dependent on other clinical parameters and may have 
stronger prognostic effects when combined with parameters 
such as systemic inflammation and weight loss.18,29,30 We 
have previously demonstrated that such combinations or 
“host phenotypes” are more predictive of overall survival 
than tumour-based prognostic scores in patients with colo-
rectal liver metastases.29 Larger cohorts are needed for each 
cancer type, as these could support the use of body composi-
tion analysis in the standard diagnostic work-up, and poten-
tially aid in clinical treatment decision-making. Automated 
body composition analysis is the only way of acquiring suffi-
cient data for adequate Z-scoring and accounting for the 
aforementioned patient characteristics. While cut-offs are 
necessary for clinical use, we advocate the development of a 
clinical risk calculator, as the prognostic effect of body com-
position variables are incremental5 and should therefore not 
be arbitrarily forced into dichotomic cut-offs. In the end, inte-
grating body composition data with established prognostic 
factors such as tumour stage may improve prediction of a 
patient’s prognosis. A combined tumour and host-focused 
approach would provide a basis for clinical trials aimed at ex-
ploring whether body composition-based prognostic infor-
mation can be used as a basis for treatment decision making 
(eg, palliative intent instead of curative intent, or indication 
for/selection of (neo)adjuvant therapy).

Scientifically, our L3 segmentation tool enables assessment 
of large (incl. historical) cohorts that would be unfeasible to 
segment manually. In addition, as the AI has learned from 
multiple observers, it has not learned an expert’s specific sig-
nature, ensuring a more stable output. However, the true 
value of automated segmentation is that it facilitates the in-
clusion of body composition as a study parameter in random-
ized controlled trials (RCTs), as the time and effort of 
analysis is reduced from a couple of months to a few minutes. 
Segmentation speed is obviously highly dependent on com-
puter hardware, but on a standard entry-level set-up, the au-
tomatic segmentation speed was around 2 s as compared to 
440 s for a manual segmentation on the same device.7 Fast 
segmentation enables stratification and selection of patients 
with different body compositions, creating either homoge-
nous or heterogeneous cohorts as required. Including body 
composition is particularly important in oncology as it is 

related to chemotherapy effectiveness and toxicity.31 Ideally, 
chemotherapy dosing should be based on lean mass to pre-
vent dose-limiting toxicities for which DLNN would be a log-
ical application in the future.

Some other automated segmentation tools have been devel-
oped. The largest cohort (n¼ 12 128) was used for develop-
ment of the AI tool published by Magudia et al.25 Their tool 
performed well with similar dice scores to our algorithm. 
Their training cohort only included 604 pancreatic cancer 
patients while the large (n¼12 128) hospital dataset was 
used to derive reference curves. However, the large hospital 
dataset only included patients without cancer and cardiovas-
cular disease, making it less applicable to a clinical popula-
tion of subjects with cancer who frequently display body 
composition alterations. In addition, analysis of CT-scans of 
cancer patients can be more challenging due to anatomic ab-
normalities and suboptimal patient positioning. As patients 
with cancer were excluded, the tool by Magudia et al could 
perform worse in cancer cohorts. Our analyses did not ex-
clude patients with anatomical variations or unconventional 
patient positioning, which prevents overfitting the model to a 
specific patient group and will likely result in a more robust 
segmentation tool. Dabiri et al32 published an automated seg-
mentation tool that was trained on 2 cohorts of patients with 
cancer (n¼2529). Their segmentation tool performed simi-
larly well compared with our segmentation tool. However, in 
contrast to our study, they did not perform external valida-
tion, making it uncertain how their AI performs in 
other cohorts.

For volumetric CTs as input, an important consideration is 
how to select the slice intersecting the middle of the L3 verte-
bra, and more generally in case the user arbitrarily wishes to 
select some other vertebra. In keeping with the “narrow AI” 
paradigm, we have elected to implement a modular software 
design such that highly specialized DLNNs are joined up se-
quentially in a workflow to accomplish a meaningful task. 
Currently, we integrated the state-of-the-art and validated 
TotalSegmentator tool to automatically localize spinal verte-
brae. If a superior vertebrae segmentation tool should emerge 
in future, we could relatively easily adapt our workflow to in-
corporate the new tool, compared to “all-in-one” monolithic 
software design.

The DLNN was developed using a training set consisting 
of images with a variety of scan parameters (eg, scan manu-
facturers, tube voltage, contrast protocol), resulting in a more 
robust algorithm. While the DLNN showed excellent perfor-
mance, even with challenging CT-scans, it has its limitations. 
In particular, analysis of CT-scans of patients with anatomi-
cal abnormalities (eg, large abdominal hernia, colostomy, 
profound oedema, and scoliosis) or of patients with 
abnormal/non-standard positioning in the CT-scanner can 
lead to (partially) incorrect segmentations. Such challenging 
CT-images should then be manually corrected and stored 
prospectively. In due time, this cohort of “challenging CT- 
images” can be used to retrain and improve the DLNN. In 
addition, while we successfully tested our algorithm on re-
peated scans within the same patient, changes in body com-
position due to cancer progression could have occurred 
resulting in significant changes in body composition over 
time. Another limitation of the algorithm is that it has only 
been trained and validated in a Western European setting. 
Future studies should validate the algorithm in other parts of 
the world, as factors such as patient race and scanner 
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manufacturer could influence the segmentations. Finally, 
while having included a wide range of acquisition types, cer-
tain combinations could be underrepresented in the training 
set, resulting in potential segmentation errors. Different deep 
learning segmentation algorithms will have different limita-
tions depending on the cohort. A comparative study using 
both healthy individuals and different patient groups could 
provide insight into how these different algorithms perform 
and if 1 algorithm is preferred over the other in 
specific cohorts.

The key step forward will be implementing automated seg-
mentation into clinical practice and making it easily accessible 
for new research initiatives. Our tool was created in such a way 
that it can be easily integrated in clinical imaging software or 
work independent alongside existing imaging infrastructure. 
To ensure easy access for research purposes, both the untrained 
AI and the automatic DLNN-trained segmentation tool 
(Mosamatic) will be freely available for scientific use by other 
research groups. This enables rapid implementation and much- 
needed data collection to develop clinical prediction tools.

Conclusion
In this study, we developed a reliable deep-learning model that 
was independently and externally validated for automated 
analysis of body composition of patients with cancer. To sim-
plify future use and potential integration of the DLNN-based 
automated segmentation workflow, we have incorporated the 
steps into a web browser-based graphical user interface which 
included the open-source TotalSegmentator tool for automatic 
vertebral localization. The algorithm could be implemented in 
various clinical infrastructures and used by other research 
groups to assess large cancer patient cohorts.
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