
Proceedings of the 17th Danube European Conference on Geotechnical Engineering (17DECGE) 
June 7-9, 2023, Bucharest, România 

Abstract. “p-y” curves are used to simplify the pile response of laterally loaded piles at any given depth by 
describing the applied lateral soil reaction as a function of the lateral displacement. Simple analytical solutions in 
two-dimensions for system stiffness are available by modelling a segment of the pile surrounded by an annular 
zone of linear-elastic soil. Current solutions assume homogeneous soil conditions. However, installation of a bored 
pile in clay would result in a region of softened material immediately surrounding the pile-soil interface, which 
can be modelled using a function describing the variation of shear modulus with distance from the pile. Such 
functions are available in the literature using linear and power-law variations. This paper derives an improved 
solution for the system stiffness considering the effects of pile installation. The previously discussed annular zone 
of soil is split into multiple rings with each able to define an independent shear modulus. A solution for the overall 
system stiffness is provided. Three-dimensional and parameter effects are discussed. 
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1 INTRODUCTION 
 
Analysis of laterally loaded piles can be simplified by discretising the pile-soil system into multiple 
horizontal soil “slices” of infinitesimal thickness. For each slice at a specific depth, the behaviour can 
be modelled using (1) a “p-y” curve describing the lateral displacement resulting from a corresponding 
load; (2) and an “m-θ” curve describing the pile rotation under a corresponding moment (e.g. Byrne et 
al. 2020; Bateman et al. 2023; beyond the scope of this work). A numerical integration approach can 
then be applied to compute the overall lateral deflection under a given load. 
 
A simplified method to determine a “p-y” curve simplifies the three-dimensional continuum problem 
using a horizontal slice through the pile. The pile slice is surrounded by a soft “inner” annular zone of 
homogenous soil of finite radius, which is surrounded by a semi-infinite “outer” annular zone of 
homogeneous soil of infinite radius with a higher modulus than in the inner zone (Novak and Sheta 
1980). The overall system stiffness is calculated by combining the compliance of the “inner” and “outer” 
rings by modelling them as a pair of springs in series. Evidently, this approach is approximate because 
compatibility of displacements at the interface between the rings is not rigorously considered (discussed 
later in this paper). The behaviour of the “inner” zone has been considered in the literature and closed-
form solutions are available for various response modes under static and dynamic loading. These 
include: horizontal (e.g. Karatzia et al. 2014), vertical (e.g. Michaelides et al. 1998; El Naggar 2000), 
rotation or rocking (e.g. Novak et al. 1978; Lakshmanan and Minai 1981) and torsional (e.g. El Naggar 
2000) modes. Similarly, the behaviour of the “outer” zone has been considered (e.g. Baguelin et al. 
1977; Novak et al. 1978; Mylonakis 2001; Karatzia and Mylonakis 2017; Crispin and Mylonakis 2022). 
 
The above solutions assume radially homogeneous soil. However, installation of the pile will result in 
a “disturbed” region immediately surrounding the pile circumference. Specifically, O’Neill (2001) 
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suggested that bored pile installation results in larger reductions of soil stiffness closer to the pile-
circumference. This was verified experimentally by Kalinski and Stokoe (1998) and Kalinski et al. 
(2001) who used Spectral Analysis of Surface Waves (SASW) techniques to measure the radial variation 
of shear modulus in the vicinity of a bored pile. This variation of shear modulus with radial distance has 
been modelled using a linear variation by Kraft et al. (1981) and using a power-law variation by 
Bateman and Crispin (2020). Following on from this, the horizontal slice approach discussed above, has 
also been used for radially inhomogeneous soil for vertical, rocking, and torsional modes (e.g. 
Lakshmanan and Minai 1981; Veletsos and Dotson 1988; Han and Sabin 1995). It has also been 
employed for dynamic horizontal loading by Lakshmanan and Minai (1981) and Veletsos and Dotson 
(1988). However, there is a lack of solutions for lateral loading under static conditions which provides 
the motivation for this work. 
 
This paper develops an extension to the available solutions for the stiffness of the “inner” annular zone 
under homogeneous conditions to consider the effects of pile installation. To achieve this, the “inner” 
annular zone is split into multiple rings with each able to define an independent shear modulus. The 
addition of the “outer” annular zone to compute an overall system stiffness (that includes three-
dimensional effects) is discussed. 
 
2 PROBLEM DEFINITION 
 
A circular horizontal slice of soil of infinitesimal thickness is considered (Fig. 1). A rigid pile segment 
of radius 𝑟!, is surrounded by an annular zone of homogeneous, linear-elastic soil of shear modulus 𝐺 
and Poisson’s ratio 𝜈 . Extension of the analysis to include a radial variation of shear modulus is 
discussed later in this paper. Cylindrical coordinates are defined using 𝑟 as the distance from the centre 
of the pile and 𝜃 as the aperture angle. A fictitious rigid boundary is assumed at a distance 𝑟 = 𝑏, the 
effect of which is discussed later in this paper. Perfectly rough interfaces are considered at the pile-soil 
interface (𝑟 = 𝑟!) and at the outer boundary (𝑟 = 𝑏), as was assumed by Novak and Sheta (1980). 
Alternative assumptions for interface roughness are explored in Karatzia et al. (2014). 
 

 
Figure 1. Plan view of the “inner” ring of a horizontal soil slice showing the problem geometry and the 

proposed discretisation.  
 
A constant lateral load 𝑃 is applied to the pile, acting at 𝜃 = 0. This leads to a lateral movement of the 
pile which results in a deformation mechanism within the annular soil zone which can be defined using 
radial 𝑢(𝑟, 𝜃)  and tangential 𝑣(𝑟, 𝜃)  displacements. In the realm of this model, the radial, 𝑢 , and 
tangential, 𝑣, displacement components can be given by (Novak and Sheta 1980, Karatzia et al. 2014): 
 
𝑢(𝑟, 𝜃) = !
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where 𝐴", 𝐴#, 𝐴$ and 𝐴% are integration constants. The strains, 𝜀&&, 𝜀'' and 𝜀&', within the medium can 
be calculated using standard field relations in polar coordinates [𝜀&& = 𝜕𝑢/𝜕𝑟, 𝜀'' = (𝜕𝑣 𝜕𝜃⁄ + 𝑢) 𝑟⁄  
and 𝜀&' = 1 2⁄ [𝜕𝑣 𝜕𝑟⁄ − 𝑣/𝑟 + (𝜕𝑢 𝜕𝜃⁄ ) 𝑟⁄ ]] to get: 
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Perfect bonding is assumed at the pile-soil interface [𝑢(𝑟!, 0) = 𝑢! and 𝑣(𝑟!, 𝜋 2⁄ ) = −𝑢!] and at the 
outer surface [𝑢(𝑏, 𝜃) = 0 and 𝑣(𝑏, 𝜃) = 0] (Novak and Sheta 1980). Applying these constraints to 
Eq. 1 enables 𝐴", 𝐴#, 𝐴$ and 𝐴% to be determined analytically and are given explicitly in Karatzia et al. 
(2014). By considering a unit pile displacement, the sum of the tangential and radial tractions at the pile 
circumference yields the stiffness of the system 𝑘 (Karatzia et al. 2014). 
 
𝑘 = −𝑟! ∫ [𝜎&&(𝑟!, 𝜃) cos 𝜃 − 𝜏&'(𝑟!, 𝜃) sin 𝜃]	𝑑𝜃

#)
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)
#
NO (3) 

 
where 𝜎&& and 𝜏&' are normal and shear stresses, respectively. Assuming a linear-elastic soil of shear 
modulus 𝐺 and Poisson’s ratio 𝜈, the corresponding stress to the strain in Eq. 2 can be obtained using 
Hooke’s law. Substituting these into Eq. 3 yields the closed-form expression (Novak and Sheta 1980):  
 

𝑘 = 𝐺 *)($,%-)(",-)/(0 &"⁄ )#2"3

",(0 &"⁄ )#2($,%-)#[(0 &"⁄ )#2"] 678 $%"
9
 (4) 

 
Evidently, this solution is dependent on the distance to the outer boundary 𝑏, the pile radius 𝑟!, and the 
soil material constants 𝐺, 𝜈. Some basic trends can be noted; the system stiffness 𝑘 (1) has the same 
units as the shear modulus 𝐺; (2) is proportional to 𝐺; (3) decreases monotonically with increasing 
material thickness 𝑏/𝑟! (from infinity for a very thin annular zone, to zero for an unbounded medium); 
(4) increases monotonically with increasing Poisson’s ratio to a maximum value for an incompressible 
medium. Asymptotic relations for thin and thick annular zones are discussed in Karatzia et al. (2014). 
 
3 RADIAL INHOMOGENEITY 
 
Eq. 4 assumes a homogeneous, linear-elastic soil medium of constant shear modulus, 𝐺. However, 𝐺 is 
often a function of 𝑟 as pile installation results in a softened zone close to the pile circumference, 
resulting in radially varying soil properties (Fig. 2). Following Veletsos and Dotson (1988), radial 
inhomogeneity can be applied to the solution above by splitting the inner zone into 𝑁 rings (Fig. 1). An 
independent shear modulus can be selected for each ring, 𝐺:, which can be calculated at the centre of 
the ring from a continuous function 𝐺(𝑟). Employing this technique, the displacements (Eq. 1) and 
stresses (from Eq. 2) can be written in matrix form for a general ring 𝑖, with shear modulus 𝐺:  
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which is valid for [𝑟:>]: ≤ 	𝑟 ≤ [𝑟?@A]: (illustrated in Fig. 1). This can be expressed in compact form as: 
 
{𝐒𝒗(𝑟)}: = [𝚫(𝑟)]:{𝐀}: (5b) 
 
where 𝐒C stands for the state vector in the left-hand side of Eq. 5a and 𝐀 is the vector of the unknown 
integration constants. For general ring 𝑖, this equation can be evaluated twice, (1) at the inner boundary 
(𝑟 = 𝑟:> ) and (2) the outer boundary (𝑟 = 𝑟?@A ). Solving the first of these equations for 𝐀  and 
substituting into the second yields: 
 
{𝐒C(𝑟?@A)}: = [𝚫(𝑟?@A)]:[𝚫(𝑟:>)]:,"{𝐒C(𝑟:>)}: = [𝜦]:{𝐒C(𝑟:>)}: (6) 
 
where [𝜦]: = [𝚫(𝑟?@A)]:[𝚫(𝑟:>)]:," is the so-called transfer matrix relating the state vector at the two 
ends of the ring. This equation can be written for each ring by defining 𝑟:>  and 𝑟?@A . Considering 
equilibrium of forces and continuity of displacements at the interface between rings 𝑖 and (𝑖 − 1) it is 
evident that {𝐒C(𝑟?@A)}:," = {𝐒C(𝑟:>)}:. Therefore, the state vector for the outermost ring can be written 
in terms of the state vector of the inner most ring and the product of transfer matrices between each ring: 
 
{𝐒C(𝑏)}D = ∏ [𝜦]:D

:E" {𝐒C(𝑟!)}" = [𝑴]{𝐒C(𝑟!)}" (7) 
 
To determine the overall stiffness, boundary conditions can be applied to Eq. 7. Considering perfect 
rigidity at the outer boundary [𝑢(𝑏) = 	𝑣(𝑏) = 0] and a maximum displacement of 𝑢! at the pile 
circumference [𝑢(𝑟!) = −𝑣(𝑟!) = 𝑢!], these conditions can be substituted in to give: 
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Rearranging this equation for the stresses at the pile circumference and substituting into Eq. 3 (once 
again setting 𝑢! = 1), yields the system stiffness for radially inhomogeneous soil: 
 
𝑘 = −𝑟! ∫ LMF()F#(,F#)F((
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Figure 2. Variation of shear modulus with distance from the pile-soil interface (a) Idealised, (b) fitted functions 
plotted against O’Neill’s “probable variation” (2001). Measured data attributed to Kalinski and Stoke (1998). 

Fig. 2b reproduced from Bateman and Crispin (2020). 
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The system stiffness can be calculated using this equation in common spreadsheet software dependent 
on the number of rings, 𝑁, with a separate shear modulus value selected for each ring, 𝐺:. A continuous 
function 𝐺(𝑟) can be defined with a “disturbed” shear modulus 𝐺G (the shear modulus at the pile-soil 
interface after installation) and an “undisturbed” shear modulus 𝐺@ (the constant shear modulus value 
before pile installation) for 𝑟! < 𝑟 < 𝑏. 𝐺@ is reached at the radius of the disturbed material as a result 
of pile installation 𝑟G. This is shown in Fig. 2a with a linear variation (in black). As 𝑟G is incorporated 
to model the soft region surrounding the pile, 𝑏 will often be set as equal to this radius (discussed further 
below). The radial distance is then split into rings and each ring is assumed to have a constant shear 
modulus equal to that at the centre of each ring (in grey, Fig. 2a). 
 
Some variations of shear modulus with radial distance as a result of bored pile installation are available 
in the literature. Kalinski et al. (2001) investigated the effects of pile installation by measuring 
experimentally the radial variation of shear modulus using a Spectral Analysis of Surface Waves 
(SASW). A 3m deep and 1m wide borehole was drilled at a site at the University of Houston, Texas in 
an over-consolidated (OCR > 6) stiff clay (Kalinski et al. 2001). The measured test results (attributed to 
Kalinski and Stokoe 1998) are shown in Fig. 2b. These test results indicate a radius of disturbed material, 
𝑟G, to be approximately 2 to 4 pile radii and a disturbed shear modulus value 𝐺G of approximately half 
of the undisturbed value 𝐺@. O’Neill (2001) has fitted a “probable variation” of shear modulus with 
radial distance through data from Kalinski and Stokoe (1998). These results are limited to the specific 
test and soil conditions. The authors are not aware of any high-quality test results in other deposits or 
for other installation methods (e.g. driven piles). 
 
3.1 Linear radial function, G(r) 
 
Kraft et al. (1981) suggested the radial variation of shear modulus could be modelled as a linear function. 
 

𝐺(𝑟) = p𝐺@ L
(𝐺G 𝐺@⁄ ) + (1 − 𝐺G 𝐺@⁄ ) M & &"⁄ ,"

&* &"⁄ ,"
NO , 𝑟 ≤ 𝑟G

𝐺@																																																																					, 𝑟 < 𝑟G
 (10) 

 
This has been fitted through O’Neill’s “probable variation” with parameters given in Fig. 2b. This 
equation is used to calculate 𝐺: values at the centre of each ring. Eq. 9 is then applied to calculate the 
stiffness considering radially inhomogeneous soil. Fig. 3 shows the system stiffness values calculated 
for different 𝐺G/𝐺@ values (in black). The solutions from Novak and Sheta (1980) in Eq. 4 are given at 
𝐺G 𝐺@⁄ = 1. As would be expected, the systems stiffness 𝑘 decreases with a reduced disturbed shear 
modulus 𝐺G and an increased radius of disturbed soil 𝑟G. This reduction in system stiffness due to the 
consideration of pile installation enables a more conservative calculation of the Winkler stiffness. 
 
3.2 Power-law radial function, G(r) 
 
Alternatively, Bateman and Crispin (2020) suggested the radial variation of shear modulus can be 
generalised using a power-law function: 
 

𝐺(𝑟) = p𝐺@ L(𝐺G 𝐺@⁄ ) + (1 − 𝐺G 𝐺@⁄ ) M & &"⁄ ,"
&* &"⁄ ,"

N
H
O , 𝑟 ≤ 𝑟G

𝐺@																																																																							, 𝑟 < 𝑟G
 (11) 

 
where 𝑎 is a radial inhomogeneity exponent. This equation can be simplified to Eq. 10 by setting 𝑎 = 1. 
This equation has been fitted to O’Neill’s “probable variation” with parameters given in Fig 2b. Eq. 9 
is then applied to calculate the stiffness considering radially inhomogeneous soil (grey in Fig. 3). The 
power-law shear modulus variation results in a higher system stiffness than the linear due to the faster 
attenuation of the shear modulus towards the undisturbed value. 
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Figure 3. The stiffness of the “inner” zone of radius 𝑏 (Eq. 9) with a linear (Eq. 10; black) and power-law 

(Eq. 11; grey) radial shear modulus variation considering the effects of (a) 𝑏/𝑟(, (b) 𝑟)/𝑟(, (c) 𝜈, and (d) 𝑁. 
 
The approach derived in this paper enables any known shear modulus variation to be applied by simply 
allocating a single value of shear modulus 𝐺: for each ring. This can be based on known soil conditions 
and the method of pile installation. A single example of a linear and power-law fit is shown above to 
demonstrate the suggested method. Additional numerical and experimental results are required to 
determine the radial inhomogeneous parameters with confidence for a specific soil-pile configuration. 
 
4 THREE DIMENSIONAL EFFECTS 
 
The above solution employs a two-dimensional assumption. However, evidently, the problem is three-
dimensional with shear tractions 𝜏&I acting on the upper and lower surfaces of the horizontal soil slice 
which vary with depth (Mylonakis 2001). This adds additional complexities such as incorporation of 
pile stiffness, length and fixity conditions. Following Novak and Sheta (1980), superposition of the 
compliance of the stiffness of the “inner” annular zone 𝑘 (𝑟! < 𝑟 < 𝑏; calculated above) and the “outer” 
annular zone 𝑘?@AJ& (𝑏 < 𝑟 < ∞) enables the overall system stiffness 𝑘A?AHK to be calculated: 
 
"

L+,+-.
= "

L
+ "

L,/+0%
 (12) 

 
Inclusion of the outer ring stiffness enables the three-dimensional effects to be incorporated. Rigorous 
solutions for the overall system stiffness in radially homogeneous conditions are available, usually 
expressed in terms of Bessel functions (Novak 1974; Crispin and Mylonakis 2022). However, these are 
dependent on the vertical soil profile and the pile-head fixity. Simple forms of these solutions are 
available by applying asymptotic forms of the Bessel functions (e.g. Mylonakis 2001; Mylonakis and 
Crispin 2021). Assuming, as a first approximation, the pile and “inner” region of soil act together as a 
fixed-head pile in vertically homogenous soil profile, 𝑘?@AJ& is given by (Crispin and Mylonakis 2022): 

158



A.H. Bateman, G. Mylonakis / 17DECGE 

𝑘?@AJ& = 𝐺@
%	)	N#
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#
(1 + 𝜈)v 𝐺:w𝑟?@A% − 𝑟:>% x

D
:E"  (13b) 

 
where 𝜂  is a compressibility coefficient (discussed by Mylonakis 2001) and taken here to be 
𝜂# = [(2 − 𝜈) (1 − 𝜈)⁄ ], 𝜒 = 𝑒U 4⁄ ≈ 0.445 and 𝛾 is Euler’s constant (≈ 0.557). 𝜆 is given in terms of 
𝐸𝐼, the sum of the flexural stiffness for the pile 𝐸T𝐼T and an equivalent for the “inner” soil zone. As 𝜆 
in this equation is dependent on 𝑘?@AJ& an iterative process would be required to solve this equation. 
However, Karatzia and Mylonakis (2017) suggested that only a single iteration is required with an initial 
value of 𝑘?@AJ& ≈ 2𝐺@(1 + 𝜈). Therefore, the overall system stiffness can be calculated by substituting 
both Eq. 9 for the “inner” ring and Eq. 13 for the “outer” ring into Eq. 12. 
 
The overall stiffness (from Eq. 12) is shown in Fig. 4 for both homogeneous and radially inhomogeneous 
solutions. For the homogenous solution, this is compared with the more rigorous solution from Crispin 
and Mylonakis (2022). The “inner” annular zone is incorporated to model the soft region surrounding 
the pile meaning 𝑏 will often be set as equal to 𝑟G (fitted in Fig. 2b as 𝑟G = 3.5𝑟!). At this value of 𝑏, 
for the homogeneous solution, incorporation of the inner zone leads to an error of around 0-8% for 𝜈 =
0.2 and 45-62% for 𝜈 = 0.5 (for 𝐸T 2𝐺@(1 + 𝜈)⁄ = 100,1000,10000). The increased error at 𝜈 = 0.5 
has previously been commented on by Karatzia et al. (2014). It is also important to note that the radially 
inhomogeneous solution results in a lower (more conservative) stiffness value. This indicates the 
importance of considering the effect of pile installation. 
 

 
Figure 4. The overall stiffness of the system (Eq. 12) for a fixed head pile in (a) radially homogenous (compared 

with the more rigorous 3D solution detailed in Crispin and Mylonakis 2022), (b) radially inhomogeneous 
conditions. (𝑁 = 500, 𝜈 = 0.2) 

5 CONCLUSIONS 
 
A simplified method to develop “p-y” curves considers a horizontal slice of soil with an “inner” and 
“outer” annular zone of soil (Fig. 1). The “inner” zone can be used to consider pile installation effects, 
which may result in reduced soil stiffness close to the pile circumference. To this end, this paper: 

• Derives an improved solution for the system stiffness of the “inner” zone by considering the 
effects of pile installation (Eq. 9). 

• Provides an example of calculating stiffness of the “inner” zone by considering two variations 
of shear modulus with radial distance: a linear (Eq. 10) and a power-law (Eq. 11) function. 
These are fitted through experimental data from Kalinski and Stokoe (1998). 
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• Discusses the calculation of the overall system stiffness through the inclusion of the “inner” and 
“outer” zones (Eq. 12). 
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