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Abstract:Dependable predictions of monopile foundation response to lateral loads are crucial to the efficient design of offshore wind turbine
foundations. For squat monopile foundations, it is important to incorporate the distributed nonlinear moment-rotation response with depth,
known as m-θ curves, in addition to traditional p-y curves and lumped force-displacement curves at the pile base. Recognizing the limited
number of m-θ curves available in the literature, this paper develops new theoretical curves using a rational two-dimensional horizontal pile/
soil “slice” model to obtain improved representations of the stress and displacement fields in the soil around the pile. First, this model
undergoes validation through comparisons with available linear-elastic solutions. Subsequently, it is employed in conjunction with a numeri-
cal discretization of the pile circumference to obtain nonlinear m-θ curves accounting for both soil yielding and slippage between pile and
soil. The resulting curves are compared with a novel simplified solution based on an approximate distribution of vertical shear stresses at the
pile/soil interface that can be derived in closed form. The new solutions are developed for undrained conditions considering elastic-perfectly
plastic soil material behavior and properly accounting for slip at the pile/soil interface. DOI: 10.1061/JGGEFK.GTENG-12889. This work is
made available under the terms of the Creative Commons Attribution 4.0 International license, https://creativecommons.org/licenses/by/4.0/.
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Introduction

Traditional analysis methods for monopiles employ t-z and p-y
curves to predict the nonlinear displacement response due to ap-
plied axial and lateral loads, respectively. The latter curves describe
the distributed horizontal load-displacement response at any given
depth and have been widely used for over 50 years in the offshore
industry (McClelland and Focht 1956; Matlock 1970; Juirnarongrit
and Ashford 2006; Basu and Salgado 2008; Franke and Rollins
2013; Khalili-Tehrani et al. 2014; Jeanjean et al. 2017; Byrne et al.
2020; Bateman et al. 2023a; Creasey et al. 2024). These develop-
ments have been summarized in books and reports (Scott 1981;
Lam and Martin 1986; Reese and Van Impe 2011; Guo 2012;
Viggiani et al. 2014; Favaretti et al. 2015; Poulos 2017; Vrettos
2021; Mylonakis and Crispin 2021; Kaynia 2021; Salgado 2022).
A notable weakness of traditional p-y models lies in the omission
of soil reaction mechanisms other than horizontal normal and
shear stresses which tends to overpredict the lateral displacement
response. This overprediction is particularly pronounced in squat
monopiles (slenderness ratio L=D < 10) where additional resistance
mechanisms are engaged, notably distributed bending moments
along the pile due to vertical shear tractions generated from bending
rotation (Byrne et al. 2017).

Although continuum solutions that inherently incorporate all
relevant resistance mechanics are available (e.g., Basu et al.
2009; Han et al. 2017; Hu et al. 2022), improved solutions that
retain the simplified 1D nature of the p-y analysis are preferred in
routine design. Away to improve predictions from the p-y model is
by considering the distributed moment-rotation response along the
pile, known in the literature as m-θ curves (Sanchez-Salinero 1982;
Lam and Martin 1986; Gerolymos and Gazetas 2006; Lam 2013;
Agapaki et al. 2018; Byrne et al. 2020; Bateman 2025), as well as
the horizontal force and moment resistance at the pile base (Osman
et al. 2007; Lai et al. 2021; Fu et al. 2020; Byrne et al. 2020). The
importance of accounting for these additional curves is evidenced
by Murphy et al. (2018), who estimated that the supplementary soil
reaction components (i.e., excluding the influence of p-y curves)
may contribute a considerable 10%–25% to the overall pile resis-
tance. Despite the extensive literature on p-y curves for different
soil types and loading conditions, there has been limited investigation
into developing corresponding distributed m-θ curves. Motivated by
this lack in knowledge, this paper will focus on developing novel
solutions for m-θ curves that define the distributed moment resis-
tance (units of FL/L) due to the pile rotation at a specific depth.

Several early solutions focusing on elastic rotational springs and
other equivalent distributed resistance mechanisms along flexible
and rigid piles are available (Hetenyi 1946; Novak and Sheta
1980; Sanchez-Salinero 1982; Mylonakis 2000; Basu et al. 2009;
Varun et al. 2009; Guo 2012; Agapaki et al. 2018). Following these
efforts, empirical linear-elastic-perfectly plastic m-θ curves have
recently been developed by Byrne et al. (2020), who calibrated
idealized conic functions to results from nonlinear 3D finite-
element analyses (FEA) of the full pile-soil system (by Zdravković
et al. 2020). The FEA results were calibrated using medium-scale
field test data in Cowden clay. The parametric study undertaken
using those analyses resulted in simplified bilinear m-θ curves.
However, as the analysis considers the full pile response, the m-θ
curves are implicitly coupled with the calibrated p-y and base
resistance curves, as well as additional geometric and material
parameters and can hardly be viewed as self-standing solutions.
Similar analyses have been conducted by Wan et al. (2021) using
linear-elastic soil to obtain the initial stiffness of anm-θ curve. These
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solutions both require calibration based on a specific pile-soil con-
figuration using 3D FEA analysis.

Alternatively, some simplified analytical solutions form-θ curves
are available, framed by considering horizontal slices of the pile and
soil medium and assuming there is negligible variation of interslice
normal and shear stresses with depth, so each slice can be treated
independently (plane strain model). Fig. 1 shows the vertical shear
stresses, τ rz and τφz acting on an infinitesimal soil element within a
horizontal slice. Them-θ curves are then formulated by calculating
the contact shear stresses, τ rz, developing at the pile periphery as a
function of the bending rotation θ and summing the resultant
distributed pile bending moment m at the specific depth.

A rigorous analytical solution for a linear-elastic material in two
dimensions has been developed by Novak and Sheta (1980). This
early solution assumes a horizontal soil/pile “slice” under plane de-
formation and establishes the m-θ curve based on an antisymmetric
stress field at the pile circumference relative to the axis of rotation.
This solution directly incorporates both vertical stress components
τ rz and τφz, but is limited to linear-elastic conditions. Alternatively,
nonlinear vertical shear tractions developed at the pile periphery
can be derived in an approximate manner using available t-z curves,
describing the vertical shear stress and corresponding vertical dis-
placement at the pile/soil interface (e.g., Kraft et al. 1981; Bateman
et al. 2022b). Tott-Buswell and Prendergast (2022), and Bateman
et al. (2023b) employed quadratic and power-law t-z curves, re-
spectively, to obtain nonlinear m-θ curves. However, this approach
considers an axisymmetric response mode, generating solely the
stress component τ rz and neglects the additional stresses, τφz, de-
veloping in antisymmetric mode.

A simpler relevant approach has been suggested by Fu et al.
(2020), who compared the elastic stiffness of a t-z curve with that
of anm-θ curve in dimensionless coordinates. This enabled a linear
scaling factor to be obtained that can transform between the two
curves. This method relies on the premise that the two curves are
similar in shape and can be mapped onto a single “master” curve
upon pertinent stretching or compression of coordinates, following
analogous theories developed for p-y curves (Matlock 1970; Kagawa
and Kraft 1981; Reese and Van Impe 2011). Alternative similarity
factors have been developed from nonlinear quadratic and power-
law t-z curves (Bateman et al. 2023b). In addition, Fu et al. (2020)
extended this method to consider separate similarity factors for the
elastic and plastic soil response by decomposing the overall shear
strain into elastic and plastic components (two-part similarity). Fol-
lowing the original proposal by Skempton (1951), the similarity
concept has also been used to relate stress–strain curves of a soil
element test with t-z curves (Fu et al. 2020; Bateman et al. 2022a)
as well as p-y curves (McClelland and Focht 1956; Matlock 1970;

Reese and Van Impe 2011; Fu et al. 2020) and is still employed in
modern offshore design (ANSI and API 2011).

The simplified analytical m-θ curves available in the literature
enable straightforward, easy to apply solutions that are derived with
clear assumptions and provide a time-efficient approach for pre-
liminary design. Nonetheless, these analytical solutions exhibit a
number of limitations. First, for nonlinear materials, the only shear
stress considered in the derivation is τ rz, neglecting the effect of the
conjugate stress component τφz. Additionally, the effect of slip or a
reduced shear strength at the pile/soil interface is often neglected as
well as the yielding of the soil (or at least not explicitly considered).
To account for the latter two effects, Jeanjean and Zakeri (2023)
suggest using the conventional similarity factors from Fu et al. (2020)
and then manually applying a cutoff moment to account for slip or
soil yield. However, the value of the similarity factor is uncertain
(Bateman et al. 2023b) and given that the two response modes are
fundamentally different, it is not clear whether it is valid to assume
similarity in shape between a t-z and anm-θ curve. Acknowledging
these gaps in knowledge, this paper aims to improve upon the
available analytical solutions by developing a novel nonlinear
model encompassing both τ rz and τφz in the derivation of an
m-θ curve for an elastic-perfectly plastic soil material.

To this end, existing analytical solutions are first investigated
(including the derivation of nonlinear m-θ curves from available
t-z curves) and their underlying assumptions and limitations are
discussed. Second, a novel nonlinear model is developed in two
dimensions by considering a horizontal pile/soil “slice” loaded
antisymmetrically, leading to improved predictions for the vertical
shear stresses τ rz and τφz, and the associated soil displacements
developing in the surrounding soil due to slice rotation. Third, based
on the new model, a set of nonlinearm-θ curves are calculated for an
elastic-perfectly plastic cohesive medium, encompassing the com-
bined effects of slippage at the pile/soil interface and yielding of the
soil mass. The full solution is obtained using a coupled system of
equations that are formulated analytically and solved numerically.
Finally, the full solution is compared with a novel approximate
closed form solution developed in this paper based on a simplified
shear stress distribution encompassing both the effect of slip at the
pile/soil interface and the yielding of the soil.

Problem Definition

Developing m-θ curves is a complex boundary value problem
that involves the coupling of soil resistances in multiple directions
and depths. One approach to obtain useful solutions simplifies the
three-dimensional continuum to two dimensions using a horizontal

z
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Fig. 1. Equilibrium of a soil element in axisymmetric mode due to pile slice rotation.
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pile/soil slice, as shown in Fig. 2. This simplification has been
widely employed in relevant models to obtain p-y, m-θ, and t-z
curves for lateral pile analysis under static and dynamic loads
(e.g., Novak and Sheta 1980; Mylonakis 2001; Fu et al. 2020;
Bateman et al. 2022b).

The pile segment shown in Fig. 2 is assumed to have a circular
rigid cross section; henceforth, the geometry is described in cylindri-
cal coordinates, where r is the radial distance from the pile centreline,
z is the depth measured from the ground surface, and φ is the aper-
ture angle measured anticlockwise from the location of maximum
displacement (φ ¼ 0). The pile segment is rotated in bending by an
angle θ about an axis BB’, perpendicular to and intercepting the
pile’s vertical axis (AA’) as well as the centroid of the segment,
resulting in an antisymmetric deformation pattern without net ver-
tical displacement. This rotation applies a vertical shear stress,
τ rz;0ðφÞ ¼ τ rzðD=2;φÞ , along the pile circumference. Assuming
no preexisting vertical shear stresses, τ rz;0 is at its largest value,
τ rz;0;C ¼ τ rz;0ð0Þ , at the intersection of the pile circumference
with axis CC’ and decreases with φ until it reaches zero at the
intersection with the rotation axis BB’ [i.e., τ rz;0ðπ=2Þ ¼ 0]. This
means that CC’ is an axis of symmetry and BB’ is an axis of anti-
symmetry for the observed shear stresses. To develop the model,
the following assumptions are employed:
1. The domain is a two-dimensional horizontal pile-soil slice of

infinitesimal thickness dz. Accordingly, the variation of normal
stresses and displacements with depth is negligible, and thus, the
corresponding normal strain, εzz, is zero.

2. The pile segment rotates, without translating, around the axis
BB’, orientated along the direction φ ¼ π=2, which passes
through its centroid resulting in an antisymmetric deformation
pattern. Therefore, the tangential displacement uφ and the cor-
responding shear strain γrφ are zero.

3. The pile has a circular rigid cross section, meaning the vertical
displacement at all points on the pile periphery can be determined
as the product of the pile radius, the rotation angle θ, and the
cosine of the aperture angle φ [see Eq. (2) below].

4. There are no preexisting vertical shear stresses in the soil.
5. As the slice undergoes pure rotation and the vertical shear stresses

are independent of normal stresses, the p-y and m-θ curves are
uncoupled.

6. Displacements, rotations, and associated strains are small.
7. Finally, total stress analysis is adopted under the assumption of

zero apparent soil friction angle and uniform undrained shear
strength, su, pertaining to clay soil under undrained conditions.
From this model, the distributed moment resistance of the pile

slice for a specific rotation θ can be calculated as the summation of
the vertical contact shear stresses acting on the pile periphery multi-
plied by their respective lever arm. Using cylindrical coordinates and
considering both symmetry and antisymmetry, this can be written as:

m ¼ 4

�
D
2

�
2
Z

π=2

0

τ rz;0ðφÞ cosφ dφ ð1Þ

where m = distributed moment resistance (units of FL/L); D = pile
diameter; and τ rz;0ðφÞ = vertical contact shear stress at the pile/soil
interface given as a function of the aperture angle φ, shown in
Fig. 2.

Derivation Using t -z Curves

To calculate the distributed moment capacity of the pile slice using
Eq. (1), the vertical contact shear stresses, τ rz;0, are required. From
the geometry of the pile and given a rigid circular pile cross section,
the vertical displacements of the pile at the pile periphery (assum-
ing small rotation angles θ) can be given by

u0p ¼
�
D
2

�
θ cosφ ð2Þ

where u0p = vertical pile displacement around the pile circumfer-
ence. Note, Eq. (2) also describes the vertical soil displacement at
the pile periphery (u0p ¼ u0) if there is perfect bonding between the
pile and soil (i.e., no slip). However, the pile displacements, u0p, is
not equal to the soil displacement in the presence of slip at the pile
circumference. Therefore, substituting this expression into Eq. (1)
gives

m ¼ 4

�
D
2

�
2
Z

π=2

0

τ rz;0ðu0ðφ; θÞÞ cosφ dφ ð3Þ

which relies on the assumption of perfect bonding between the pile
and soil.

(a) (b)

Fig. 2. Illustration of the horizontal pile slice problem, with reference to anm-θ curve: (a) side view; and (b) plan view. [Reprinted from Bateman et al.
(2023b), under Creative Commons-BY-4.0 license (https://creativecommons.org/licenses/by/4.0/).]
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If the contact shear stress τ rz;0 is known as a function of the
soil displacements, u0, a distributed m-θ curve can be derived. This
expression describes a t-z curve, many of which are available in
the literature (e.g., Fu et al. 2020; Tott-Buswell and Prendergast
2022; Bateman et al. 2023b). Specifically, t-z curves describe
the vertical shear stress at the pile/soil interface τ rz;0ðu0Þ resulting
from a vertical displacement u0. Substituting Eq. (2) into a t-z curve
(Appendix I) gives the corresponding shear strain τ rz;0 as a function
of θ and φ. Substituting this expression into Eq. (1) and integrating
over φ enables an m-θ curve to be derived following Eq. (3).

As an example, a linear-elastic t-z curve can be given in the form
[using Eq. (2)]

τ rz;0 ¼ kvu0 ¼ kv

�
D
2

�
θ cos φ ð4Þ

where kv = stiffness of the linear t-z curve (units of F=L2=L).
Substituting this expression into Eq. (3) yields an m-θ curve

(before slip occurs)

m ¼ πD3

8
kvθ ¼ kmθ ð5Þ

where km = stiffness of the linear m-θ curve (units of FL/L).
Three t-z curves available in the literature are provided in the

table in Appendix I, including two nonlinear solutions, followed by
their corresponding m-θ curve. This approach is detailed further in
Bateman et al. (2023b).

The solutions in the table in Appendix I assume perfect bonding
at the pile/soil interface. However, it is inevitable that slip between
the pile and soil will occur with increasing pile slice rotation. This
can be modeled using a reduced interface strength τ rz;0 ¼ αsu at
the pile periphery, where α is an empirical adhesion factor discussed
later in this paper. This condition of slip will first occur at φ ¼ 0,
where vertical pile displacement is maximum, and propagate around
the pile circumference with increased slice rotation. This can be in-
cluded in the derivation of them-θ curve by defining φs (subscript s
standing for “slip”) as the maximum aperture angle at which the
interface strength is reached (i.e., τ rz;0 ¼ αsu and the pile/soil inter-
face becomes bonded).

Considering the linear-elastic t-z curve in Appendix I, replacing
u0 from Eq. (2) (u0 ¼ u0p for perfect bonding between pile and
soil) and setting τ rz;0 ¼ αsu enables a function that relates the larg-
est aperture angle at which slip occurs, defined here as φs, and the
slice rotation, θ (Bateman et al. 2023b)

cosφs ¼
αsu
θG

ln

�
2rm
D

�
ð6Þ

Therefore, using the linear-elastic t-z curve in Appendix I and
considering slip at the pile/soil interface (for after slip first occurs;
τ rz0;C ¼ αsu), the corresponding m-θ curve can be derived in the
form (Bateman et al. 2023b)

m¼D2αsu

8><
>:
π− 2φs − sinð2φsÞ

4 ln
�
2rm
D

� �
Gθ
αsu

�
þ sinφs φs < π=2

1 φs ¼ π=2

ð7Þ

While this approach enables incorporating soil nonlinearity and
pile slip with relative ease, it relies on the assumption that the m-θ
curve can be obtained based on a t-z curve. This hypothesis cannot
be exact since the two problems involve different stress fields and
symmetries.

Incorporation of Additional Shear Stresses

A set of solutions for this case can be obtained in terms of the pair
of shear stresses, τ rz and τφz, by considering the equilibrium of a
soil element in the vertical direction. These coupled shear stresses
are illustrated on an infinitesimal soil element in Fig. 1. Assuming
the variation of normal stresses with depth is negligible, the vertical
equilibrium of the soil element in cylindrical coordinates yields the
governing equation

∂ðτ rzrÞ
∂r þ ∂τφz

∂φ ¼ 0 ð8Þ

which naturally depends on both r and φ. Introducing separation of
variables, the two shear stresses can be written as products of in-
dependent functions of r and φ in the form:

τ rzðr;φÞ ¼ RrðrÞΦrðφÞ

¼ τ ref
X∞

j¼1;2;3 : : :

Cj

�
2r
D

�−2j
cos ðð2j − 1ÞφÞ ð9aÞ

τφzðr;φÞ ¼ RφðrÞΦφðφÞ

¼ τ ref
X∞

j¼1;2;3 : : :

Cj

�
2r
D

�−2j
sin ðð2j − 1ÞφÞ ð9bÞ

where R and Φ = functions of r and φ, respectively; j = harmonic
parameter taking any positive integer value; Cj = dimensionless
integration constants (Fourier coefficients) to be determined from
the boundary conditions at the pile/soil interface; and τ ref = refer-
ence shear stress that matches the units between the left and right-
hand sides of the equations, rendering the integration constants
dimensionless.

The full derivation of Eq. (9) from Eq. (8) is provided in
Appendix II. It should be noted that these shear stresses are not de-
rived for a specific soil constitutive model, apart from satisfying the
weaker assumption that the soil shear stiffness is identical in both
radial and tangential directions (i.e., τ rz=γrz ¼ τφz=γφz), yet
not necessarily constant with level of strain and, therefore, is appli-
cable even to nonlinear soil. However, the derivation of these equa-
tions does rely on three fundamental assumptions: first, due to
symmetry, ΦrðφÞ and ΦφðφÞ are even and odd periodic functions
of φ, respectively, and can be written as sinusoidal and cosinusoidal
harmonics. Second, following existing solutions (Novak and Sheta
1980), RrðrÞ and RφðrÞ are assumed to be power-law functions of r.
Third, soil is considered isotropic, so the same value of shear modu-
lus G can be assumed for both conjugate shear strains, γrz and γφz.

Linear-Elastic Soil

Retaining only the first term (j ¼ 1) in Eq. (9), the functions re-
produce the classical solution of Novak and Sheta (1980) for linear-
elastic soil

τ rz ¼ τ rz;0;C

�
D
2r

�
2

cosφ ð10aÞ

τφz ¼ τ rz;0;C

�
D
2r

�
2

sinφ ð10bÞ

where τ rz;0;C ¼ τ rzðD=2; 0Þ = largest contact shear stress. Evi-
dently, τ rz and τφz are strictly decreasing and increasing functions
of φ in the interval 0 < φ < π=2, attaining their maxima at φ ¼ 0
and φ ¼ π=2.
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From Eq. (10a), the vertical soil displacements at the pile/soil
interface, u0, (at r ¼ D=2) can be derived by integrating the vertical
contact shear strains over r

u0ðφÞ
D

¼ 1

D

Z ∞
D=2

γrzdr ¼
�
τ rz;0;C
2G

�
cosφ ð11Þ

Due to the rigidity of the pile slice and assuming perfect bonding
between soil and pile (alternative assumptions are discussed later),
u0 can be set equal to the vertical displacements of the pile u0p,
which, in turn can be linked to pile rotation θ as in Eq. (2). Then,
setting φ ¼ 0 yields a value of τ rz;0;C for a specific slice rotation

τ rz;0;C ¼ Gθ ð12Þ

Further, the distributed moment acting on the pile slice can be
calculated using Eq. (1), by integrating the contact stresses τ rz;0
from Eq. (10a) multiplied by their lever arm [length (D=2Þ cosφ
in Fig. 2] around the pile periphery, to get

m ¼ π
4
τ rz;0;CD2 ¼ π

4
GD2θ ð13Þ

which coincides with the solution by Novak and Sheta (1980) pro-
viding an elastic rotational stiffness km ¼ πGD2=4 . This linear-
elastic m-θ curve is plotted in Fig. 3(a) using different assumptions
as to the distributed moment capacity cutoff to be discussed in the
following sections.

Linear-Elastic Perfectly Plastic Soil

As a first approximation, τ rz;0 can be assumed to reach su at all
points around the pile periphery [Fig. 3(b)]. By substituting τ rz;0 ¼
su into Eq. (1) and integrating over φ yields an upper bound value
of the distributed moment resistancemu ofD2su. Using this approxi-
mation is equivalent to applying a cutoff to the linear-elastic m-θ
curve, shown as the upper plateau in Fig. 3(a).

However, the soil strength limit, su, should be applied to the
magnitude of the shear stresses (i.e., the magnitude of the second
stress invariant

ffiffiffiffiffi
J2

p
), rather than just τ rz;0, as follows:

τmagðr;φÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2rz þ τ2φz

q
≤ su ð14Þ

which corresponds to the radius of Mohr’s circle on the σ1 − σ3

plane (Davies and Selvadurai 1996). To meet this criterion, if
τ rz;0 ¼ su at all aperture angles, then τφz;0 must equal zero, which
is obviously not the case [Eq. (8)]. This would mean that simply
applying the cutoff value τ rz;0 ¼ su suggested would result in the
magnitude of the shear stresses exceeding su along the periphery of
the pile slice.

A simple approximate way to ensure Eq. (14) is satisfied, is by
considering the elastic solution for shear stress given by Eq. (10)
and limiting the resulting magnitude τmag to su. From Eq. (10), τmag

yields

τmagðr;φÞ ¼ τ rz;0;C

�
D
2r

�
2

ð15Þ

which, remarkably, is independent of the aperture angle φ and de-
creases with radial distance from the pile circumference. Therefore,
setting this equation equal to su at the pile periphery [τmag;0 ¼
τmagðD=2;φÞ ¼ su] indicates that soil yield will occur at all loca-
tions on the pile periphery at once. This results in an elastic-perfectly
plasticm-θ curve. Notably, τ rz;0 still varies with the aperture angle φ,
shown in Fig. 3(b), and only equals su at φ ¼ 0. Equating this τ rz;0;C
to that calculated in Eq. (12) yields the slice rotation at which soil
first yields (τmag;0 ¼ su)

θu ¼
su
G

ð16Þ

where θu = corresponding slice rotation at first soil yield.
The relevant ultimate distributed moment acting on the pile slice

can be determined (neglecting pile slip; for α ¼ 1) by substituting
this solution into Eq. (13) to get

mu ¼
π
4
D2su ð17Þ

This distributed moment capacity is lower, by a factor of
π=4≈ 0.79, than simply providing the cutoff suggested previously
based on the assumption τ rz;0 ¼ su [Fig. 3(a)]. Interestingly, this
approximate solution represents a rare case where the behavior
is linear-elastic-perfectly plastic for both the constitutive model
and the boundary value problem. In other words, Eqs. (16) and (17)
correspond to rotations and moments under both yielding and

(a) (b)

Fig. 3. (a) Linear-elastic and corresponding elastic-perfectly plastic m-θ curves based on different distributed moment capacity assumptions; and
(b) assumed τ rz;0 for the different distributed moment capacities.
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ultimate conditions [Fig. 3(a)]. Considering that in most soils,
G=su ≈ 102 to 103, θu is in the order of 10−3 to 10−2 radians (i.
e., 0.06° to 0.6°) regardless of the absolute soil strength.

Slip at the Pile/Soil Interface

The shear strength of the interface between pile and soil may be
lower than su. This is often referred to as “slip” and was originally
introduced as a concept for axially loaded piles by Skempton (1959)
to account for a reduced shear strength between soil and pile. This
constraint limits the contact shear stresses around the pile periphery
to a maximum value of τ rz;0 ¼ αsu everywhere on the pile periph-
ery, where α is an empirical adhesion factor and su is the soil un-
drained shear strength. Note that this specific condition does not
limit τφz since this is a failure of the interface, not of the soil itself.
The relevant strength criterion can be written as

τ rz;0 ≤ αsu ð18Þ

To account for slip at the pile/soil interface, previous authors
(e.g., Fu et al. 2020) suggest assuming a maximum value of τ rz;0 ¼
αsu around the whole pile periphery [Fig. 3(b)]. Substituting this
into Eq. (1) yields

mu ¼ D2αsu ð19Þ

which is referred to throughout as the “classical moment capacity”
and, once again, acts as a manual cutoff value on the m-θ curve
[Fig. 3(a)]. Since this cutoff value is generally lower than the soil
yield value [Eq. (17); for α < π=4], it would appear that the higher
cutoff at soil yield will not be reached. However, from the disconti-
nuity at φ ¼ π=2 on Fig. 3(b), it is evident that the soil will reach
yield before the interface slips at φ values approaching π=2. There-
fore, the classical moment capacity in Eq. (19) would only be
possible if soil yield is not considered explicitly in the solution,
indicating it is an overestimate of the capacity.

In reality, the condition of slip will first occur at φ ¼ 0 and
propagate around the pile circumference with increased slice rota-
tion. Incorporating both slip and yield into this model is not trivial
since the shear stresses need to be defined everywhere on the pile
periphery after slip first occurs, which cannot be captured by these
approximate solutions.

General Solution

The general solutions for shear stresses τ rz and τφz in Eq. (9) can be
employed to calculate the m-θ curve for a linear-elastic perfectly
plastic (LEPP) material. This analysis will also consider a pile/soil
interface strength of τ rz;0 ¼ αsu to incorporate slip at the pile
periphery as well as soil yielding. The herein proposed analysis
does not enable an m-θ curve to be derived in closed form since
the dimensionless Fourier constants Cj are unknown and need to
be obtained from the numerical solution of a system of coupled
linear equations. The general solution consists of three parts. First,
before either soil yield (τmag < su) or slip at the interface occurs
(τ rz;0 < αsu), the solution is equivalent to that for an elastic mate-
rial, providing an m-θ curve given by Eq. (13) using a single har-
monic. Second, once slip starts to occur (τ rz;0;C ¼ αsu), but the
magnitude of shear stresses is below yield [ τmag < su ; according
to Eq. (14)], the solution becomes nonlinear and requires consid-
ering a full set of harmonic coefficients j ¼ 1 to N. Third, once soil
yielding also occurs [τmag ¼ su; according to Eq. (14)], the non-
linear solution needs to be modified accordingly.

Incorporation of Slip at the Pile/Soil Interface

The criterion of slip limits the vertical contact shear stresses at the
pile/soil interface, τ rz;0, to a reduced shear strength of αsu as ex-
pressed by Eq. (18). A value of φs is defined as the largest aperture
angle at which the shear stresses at the pile/soil interface equal αsu
and is used as the main independent variable in this analysis. In the
region 0 < φ < φs, it holds that τ rz;0 ¼ αsu and is referred to as the
“slipped” region [arc CS; Fig. 4(a)].

In the region of perfect bonding (φs < φ < π=2), known herein
as the “bonded” region [arc SB in Fig. 4(a)], the vertical soil dis-
placements can be obtained from the integration of soil shear strain
γrz over r

u0ðφÞ ¼
Z ∞
D=2

γrzdr ¼
su
G

�
D
2

� X∞
j¼1;2;3 : : :

Cj

2j − 1
cos ðð2j − 1ÞφÞ

ð20Þ

Setting this equation equal to the pile displacements in Eq. (2),
valid for the bonded region (φs < φ < π=2 ), and introducing pile

(a) (b)

Fig. 4. Illustration of the discretization of the pile: (a) before soil yield; and (b) after soil yield.
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rotation θ, the following equation for the pile slice rotation as a
function of φs can be derived

θðφsÞ ¼
su

G cosðφsÞ
X∞

j¼1;2;3 : : :

Cj

2j − 1
cos ðð2j − 1ÞφsÞ ð21Þ

Due to the infinite series involved, it is not possible to obtain an
m-θ curve in closed form using the shear stresses in Eq. (9). Instead,
a numerical solution is sought by discretizing a quarter of the pile
circumference into N discretization points, each corresponding to a
distinct arbitrary angle φi, illustrated in Fig. 4(a).

To calculate the distributed moment resistance for any given φs
value (and therefore a corresponding θ angle), the following analy-
sis procedure should be followed. First, the Fourier coefficients Cj

are calculated by solving a system of equations, FC ¼ V, where F
is a N × N square, nonsymmetric matrix of components relating
to i sums of j products of Cj terms (combined as vector C) and V
is a vector of values these sums equal. Second, given Cj, the shear
stresses, τ rz and τφz, are calculated around the pile periphery using
Eq. (9), and it is checked that τmag < su [Eq. (14)] is true every-
where. If this condition is not met, soil yield should be considered
(see the following section). Finally, the distributed moment resis-
tance m for a specific pile rotation is calculated from τ rz using
Eq. (1). As the governing equations are perfectly satisfied every-
where in the soil medium, yet only at the discretization points along
the pile periphery, the solution can be classified as a collocation
approach.

Matrix F consists of the terms fbði; jÞ and fsði; jÞ that corre-
spond to the bonded and slipped regions according to Eqs. (22a)
and (23a). These are made up of the jth term in a sum relating to the
ith discretization point (where φ ¼ φi ). The fbði; jÞ terms result
from equating the pile and soil displacements at the interface, while the
fsði; jÞ terms result from τ rz;0 ¼ αsu in the slipped region. Vector V
consists of terms VbðiÞ and VsðiÞ that correspond to the respective
solutions of fbði; jÞ and fsði; jÞ according to Eqs. (22b) and (23b)
(see Appendix III for more details)

fbði; jÞ ¼
1

2j − 1

�
cosðð2j − 1ÞφiÞ − cosφi

cosφs
cosðð2j − 1ÞφsÞ

�
ð22aÞ

VbðiÞ ¼ 0 ð22bÞ

fsði; jÞ ¼ cos ðð2j − 1ÞφiÞ ð23aÞ

Vs ¼ α ð23bÞ

An assumed value of φs is selected as between two successive
discretization points on the pile periphery. For simplicity and
numerical stability, φs is defined here as halfway between two dis-
cretization points [note that Eq. (22) becomes trivial for φi ¼ φs].
Interestingly, the solution to the system of simultaneous equations
depends only on the selected values of φs and α. The value of N
dictates the number of j values incorporated within the infinite sums.
It has been found by the authors that this has minimal effect on the
results beyond approximately N ¼ 10. Solutions shown in this paper
use N ¼ 250 to yield smooth m-θ curves, that can be viewed as
essentially exact results in the realm of the analysis assumptions
at hand. These steps should be repeated for multiple φs values [and
therefore corresponding θ angles according to Eq. (21)] to obtain the
fullm-θ curve. Anm-θ curve developed using this method is plotted
in Fig. 5(a) (results neglect soil yield). The minor error resulting
from the use of the classical cap in Eq. (19) is worthy of note.

Solution after Soil Yield

To incorporate soil yield in this solution, τmag should be limited to
su according to Eq. (14). To account for this, an additional angle
φyð> φsÞ is defined as the aperture angle below which (outside the
slipped region) the soil yields, as illustrated in Fig. 4(b). Accordingly,
a third region needs to be introduced between the slip and the bonded
regions (i.e., φy > φ > φs ), referred to herein as the “yielded”
region [arc SY in Fig. 4(b)].

Within the yielded region [arc SY in Fig. 4(b)], it is known that
τmag ¼ su and thus ∂τmag=∂φ ¼ 0. The latter equation is advanta-
geous over the former for the purposes of this analysis, as it enables
a system of linear equations in terms of Cj to be set up. When yield
is considered, Matrix F consists of the terms fbði; jÞ, fsði; jÞ as
before [Eqs. (22a) and (23a)] as well as fyði; jÞ within the yielded
region determined from the constraint in Eq. (24a) (see Appendix
IV for more details). Similarly, Vector V corresponds to the respec-
tive solution, given by Eqs. (22b), (23b), and (24b)

fyði; jÞ ¼ ð2j − 1Þ
��

τφz
τ rz

�
cosðð2j − 1ÞφiÞ − sinðð2j − 1ÞφiÞ

�
ð24aÞ

Vy ¼ 0 ð24bÞ

Note that as the shear stress ratio (τ rz=τφz) is not known a priori,
Eq. (24) is a nonlinear function of Cj. Nevertheless, for sufficiently
dense discretization [N > 20 so δφ in Fig. 4(a) is small], it can be
assumed that (τ rz=τφz) does not vary significantly between succes-
sive analysis steps (φy located at the previous discretization point)
and can be taken as equal to the value calculated at the same φi
during the previous analysis step.

To obtain the m-θ curve once τmag first reaches su anywhere on
the pile circumference, the following analysis procedure should be
followed. First, assume φs does not increase relative to the previous
step. Second, assume a φy value as equal to the φi one discretiza-
tion point further than either the φs or the previously assumed yield
point φy. Third, calculate the Fourier coefficients Cj by solving the
aforementioned system of equations. Fourth, use the calculated Cj

values to determine the shear stresses τ rz and τφz using Eq. (9) at
the pile periphery. From here, the shear stress ratio (τ rz=τφz) and
τmag can be established. Finally, if τmag=su < 1 in the region of
φs < φi < φy, then increase φs by one discretization point and re-
peat the presented steps.

This simple procedure should be repeated for multiple values of
φy to obtain the full m-θ curve. An example of Python implemen-
tation of this approach is provided in the Supplemental Materials.
The solution is plotted in Fig. 5(a) and demonstrates that incorpo-
rating soil yield into the general formulation has a negligible effect
on the final m-θ curves for approximately α < 0.7. Beyond the spe-
cific value, soil yield becomes gradually much more important due
to increased interface strength and yields more conservative values
for peak strength mu than Eq. (19).

Despite existing research demonstrating the importance of con-
sidering m-θ curves when investigating the response of monopiles
(Byrne et al. 2017; Murphy et al. 2018), a very limited number of
such curves are available in the literature. A comparison of the m-θ
curves produced using this solution against those calibrated from
the PISA tests (Byrne et al. 2020) is provided in Fig. 5(b). To better
fit pile response, integrated analysis methods like PISA employ a
two-stage calibration process that, after selecting individual soil re-
action curves (including corresponding p-y, Hb − vb, and Mb − θb
curves) from an FE analysis, adjusts them to best match the measured
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global pile response. In the author’s view, this empirical adjustment
means that the improved curves in the PISA solution cannot be
viewed as stand-alone solutions for m-θ curves. Instead, Fig. 5
(b) shows the first stage calibration results that, despite being in-
herently coupled with the other soil reaction curves through the
calibration process, compare well with the results from this work.
Note that the PISA results do not correspond to specific values of α
as in the theoretical solution.

Following the approach described in this section, the variation of
τ rz, τφz, and τmag around the pile circumference can be plotted for
three different loading stages, as shown in Fig. 6. As expected, τ rz
reaches αsu before τmag reaches su. This figure demonstrates that
τ rz is limited to αsu and τmag=su is limited to 1. Note after soil yield
first occurs, φs in the general solution can keep increasing and all
response parameters exhibit strong gradients near the threshold an-
glesφs and φy. Importantly, τ rz=τφz does not change significantly at
high φ values after yield first occurs. These shear stresses are com-
pared with the simplified solution in the following section.

Simplified Solution

Since the general solution presented above is not trivial and does
not yield anm-θ curve in closed form, deriving a simpler solution is
desirable. To this end, it can be assumed that τ rz after slip first oc-
curs (i.e., τ rz;0;C ¼ αsu ) can be approximated by the following
function:

τ rzðr;φÞ ¼ αsu

�
D
2r

�
2

8<
:

1; φ ≤ φs ðslippedÞ
cosφ
cosφs

; φ > φs ðbondedÞ ð25Þ

which reduces to the elastic solution when φs ¼ 0 and reproduces
the features of the general solution (Fig. 6).

Similar to the general solution, a value of φs is defined as the
boundary between the slipped and bonded regions—i.e., the largest
aperture angle at which the shear stresses at the pile/soil interface
equal the soil strength. Thus, for 0 < φ < φs (slipped region; arc
CS on Fig. 7) slip has occurred and τ rz;0 is limited to αsu; whereas,
for φs < φ < π=2 (bonded region; arc SB on Fig. 7) there is perfect
bonding meaning τ rz;0 < αsu, see Fig. 6.

First, for τ rz;0;C < αsu, the solution for a perfectly elastic soil can
be employed, resulting in an m-θ curve given by Eq. (13). This
equation is valid up to a rotation of

θs ¼
αsu
G

ð26Þ

where θs = pile slice rotation at which slip at the pile/soil interface
first occurs (i.e., τ rz;0;C ¼ αsu).

Beyond the first slip, the vertical displacements of the soil at the
pile/soil interface, u0, (at r ¼ D=2) can be derived for any aperture
angle φ by integrating the shear strain over r

u0ðφÞ ¼
Z ∞
D=2

γrzdr¼
αsu
G

�
D
2

�8<
:

1 φ ≤ φs ðslippedÞ
cosφ
cosφs

φ> φs ðbondedÞ ð27Þ

By equating this equation of soil displacement with the known
pile slice displacements, given by Eq. (2), in the bonded region (arc
PB on Fig. 7), φs as a function of the slice rotation can be calculated

cosφs ¼
αsu
G

�
1

θ

�
ð28Þ

Finally, the distributed moment acting on the pile slice can be
determined by integrating the contact stresses τ rz;0ðφÞ multiplied
by their lever arm along the pile periphery using Eq. (1)

m ¼ αsuD2

2

�
sinφs þ

π=2 − φs

cosφs

�
ð29aÞ

where φs is given in Eq. (28). Substituting φs into Eq. (29) yields
the explicit solution

m ¼ D2αsu
2

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

�
αsu
Gθ

�
2

s
þ Gθ
αsu

�
π
2
− arccos

�
αsu
Gθ

��#
ð29bÞ

Remarkably, this result is identical to that derived directly from
t-z curves based on different assumptions [Eq. (7)], if one assumes
ln ð2rm=DÞ ¼ 1. Note that this result is valid after the slip first oc-
curs and before the soil yields. To be able to calculate the rotation at
which the soil yields, first, a function for τφz;0 must be introduced.

(a) (b)

Fig. 5. (a) m-θ curves obtained from the general solution compared with the general solution neglecting soil yield; N ¼ 250; and (b) comparison of
the m-θ curves derived in this work (grey; hatched area) against those calibrated with the PISA tests in Byrne et al. (2020) (black).
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By substituting τ rz in Eq. (25) into the vertical equilibrium con-
ditions [Eq. (8)], it can be readily established that τφz;0 after slip
first occurs can be given by [also in the form presented in Eq. (9)]

τφz;0ðφÞ ¼ αsu

8<
:

tanφ; φ ≤ φs ðslippedÞ
sinφ
cosφs

; φ > φs ðbondedÞ
ð30Þ

This shear stress is compared with those from the general sol-
ution in Fig. 6. This shows that the approximate solution gives
slightly higher values than those obtained from the general solution.
From both vertical shear stresses at the pile periphery, τ rz;0 and τφz;0,
[Eqs. (25) and (30)], the magnitude of the shear stresses can be cal-
culated after the slip first occurs (i.e., τ rz;0;C ¼ αsu ):

τmag;0ðφÞ ¼ αsu

8>>><
>>>:

1

cosφ
φ ≤ φs ðslippedÞ

1

cosφs
; φ > φs ðbondedÞ

ð31Þ

From this equation, it can be seen that τmag;0 will not reach su
before τ rz;0;C ¼ αsu given an α value of less than 1. Thus, a slip
will occur before any of the soil yields.

Additionally, based on the τφz;0, it can be shown from Eq. (31)
that the soil will yield first in the bonded region (arc PB in Fig. 7,
φ > φs) which is again independent of φ. Therefore, the maximum
possible value of φs according to this solution can be given by

cosφs;u ¼ α ð32Þ

(a) (b) (c)

Fig. 6. Variation of shear stresses around the pile circumference comparing the general solution with the simplified solution for: (a) just before slip
occurs; (b) before soil yield (τmag < su); and (c) after soil yield (α ¼ 0.5, N ¼ 250).
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where φs;u = value of φs when the soil yields and is the maximum
possible value of φs for this simplified solution. The variation of φs
with pile slice rotation is shown in Fig. 8.

This value of φs;u occurs initially at a pile slice rotation of θu
(τmag ¼ su)

θu ¼
su
G

ð33Þ

Once soil yield has occurred in the bonded region (arc SB from
Fig. 7) stresses in the soil will remain constant. Therefore, the
ultimate distributed moment capacity, mu, of the pile slice incor-
porating pile slip and after the soil has yielded can be given by

mu ¼
suD2

4

h
2α

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − α2

p
− 2 arccosðαÞ þ π

i
ð34Þ

Notably, this ultimate distributed moment capacity is once again
lower than the anticipated value of D2su and, as expected, is lower
than when slip is ignored (assuming α < 1). Therefore, the full

Fig. 7. Illustration of the occurrence of slip (τ rz ¼ αsu) and soil yield
(τmag ¼ su) around the pile/soil interface and the definition of φs and φy

in the simplified solution.

(a) (b)

Fig. 8.Variation of φs with pile slice rotation in the simplified solution [Eqs. (28) and (32)]. Pile slice rotation (x-axis) is normalized by: (a)G=su; and
(b) G=αsu.

(a) (b)

Fig. 9. m-θ curve derived using the simplified solution assuming a pile/soil interface strength of τ rz;0 ¼ αsu [Eq. (35)]. Axes normalized by: (a) su;
and (b) αsu.
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simplified m-θ curve can be written as a combination of Eqs. (13),
(29), and (34)

m
D2αsu

¼

8>>>>>>>>><
>>>>>>>>>:

π
4

�
Gθ
αsu

�
θ ≤ αsu

G

1

2

" ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−

�
αsu
Gθ

�
2

s
þ Gθ
αsu

�
π
2
− arccos

�
αsu
Gθ

��#
αsu
G

< θ ≤ su
G

1

4α

h
2α

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1−α2

p
− 2arccosðαÞþπ

i
θ>

su
G

ð35Þ

Eq. (35) reproduces the “classical” ultimate moment resistance
[Eq. (19)] when α tends to 0 and also reproduces the elastic-
perfectly plastic response when α ¼ 1.

This simplified solution enables a closed form result (plotted in
Fig. 9) using two different normalizations for each axis.A comparison
against the general solution considering soil yield is provided in
Fig. 10. This solution is shown to be a very close match to the
general result with the maximum distributed moment approximately
3% more conservative (when α ¼ 0.8) than the general solution.
For smaller values of α, the discrepancy is even smaller.

Summary and Conclusions

Analyzing the distributed moment-rotation response of a thin pile/
soil slice, known as an m-θ curve, is important when predicting the
response of monopile foundations. Despite the importance of these
curves in design, few m-θ curves are available in the literature.
Motivated by this lack of solutions, this paper has developed a set
of novel improved analytical expressions for m-θ curves using the
pile/soil slice approach considering an elastic-perfectly plastic soil
material and a total stress failure criterion pertaining to undrained
conditions. The solutions are cast in the form of infinite sums of
Fourier components derived from vertical equilibrium considera-
tions [Eq. (9)]. These are validated against the classical solutions
of Novak and Sheta (1980) for an elastic material [Eq. (13)].

Furthermore, to incorporate soil yield into this solution, the
magnitude of the shear stresses [Eq. (14)] was limited to the
undrained shear strength of the soil, su. This results in soil yield oc-
curring at all locations on the pile periphery at once, at a slice rotation
θu ¼ su=G and represents a rare case where the behavior is linear-
elastic-perfectly plastic for both the constitutive model and the boun-
dary value problem. The distributed moment capacity of the pile slice
resulting from this solution is mu ¼ πD2su=4, which acts as an
upper bound of the true distributed moment capacity of the pile slice.

Slip at the pile/soil interface was incorporated through a reduc-
tion factor on the interface strength [the factor α in Eq. (18)]. Pre-
vious authors have suggested that the distributed moment capacity
can be calculated by assuming τ rz;0 ¼ αsu holds at all locations
around the pile periphery. This results in the “classical moment
capacity” mu ¼ αD2su that was shown to overestimate the capac-
ity since soil yield is neglected.

A more general semianalytical solution was developed that in-
corporates both soil yield and slip at the pile/soil interface. This
solution shows that incorporating soil yield has a negligible effect
for α < 0.7. Beyond this threshold, soil yield becomes gradually more
important due to the increased interface strength. Further, the theoreti-
cal formulation has demonstrated that the nonlinear pile-soil contact
problem can be solved in an exact manner using the superposition of
harmonics, a trait typically associated with linear solutions.

Finally, this paper presents novel derived m-θ curves in closed
form using the first term of the shear stress functions that incorpo-
rate both soil yield and slip at the pile/soil interface [Eq. (35)]. The
capacity obtained from this solution is a very close match to the
general solution, providing more conservation results by a mere 3%.
Furthermore, this solution reproduces the approximate “classical
moment capacity” result when α tends to 0 and the elastic-perfectly
plastic result when α tends to 1.

Appendix I. m-θ Curves Neglecting Slip, Derived from Available t -z Curves Using Eq. (1)

Soil constitutive model t-z curve m-θ curve

Linear τ rz;0ðφÞ ¼
2u0
D

G

�
ln

�
2rm
D

��−1
(Randolph and Wroth 1978) m ¼ πD2

4
G

�
ln

�
2rm
D

��−1
θ (Bateman et al. 2023b)

Power-law τ rz;0ðφÞ ¼
su
2

�
2u0
D

�
1 − b
γ50b

��
b
(Vardanega et al. 2012) m ¼ D2su

4

�
1 − b
γ50b

�
b
B

�
1

2
;
bþ 2

2

�
θb (Bateman et al. 2023b)

Quadratic τ rz;0ðφÞ ¼ G0

�
u0
2D

��
1 − G0

8su

�
u0
D

��
(Randolph 2003) m ¼ G0D2

16
θ

�
π − G0

6su
θ

�
(Tott-Buswell and Prendergast 2022)

Note: Where rm = an empirical radius introduced by Cooke (1974) and Randolph and Wroth (1978), su = the soil undrained shear strength, b = a soil
nonlinearity exponent, γ50 = the soil shear strain at a shear stress of 50% of su, G0 = the soil shear modulus at low strain, and B (x, y) = the incomplete
Beta function (Olver et al. 2010).

Fig. 10. m-θ curves obtained from the simplified solution [Eq. (35)]
compared with the general solution incorporating soil yield (N ¼ 250).
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Appendix II. Derivation of General Shear Stress
Functions in Eq. (9)

Assuming the variation of normal stresses (and displacements) with
depth are negligible, the vertical equilibrium of the soil element in
cylindrical coordinates (Fig. 1) yields Eq. (8).

By introducing separation of variables, these two shear stresses
can be written as

τ rzðr;φÞ ¼ RrðrÞΦrðφÞ ð36aÞ

τφzðr;φÞ ¼ RφðrÞΦφðφÞ ð36bÞ

where R and Φ = functions of r and φ, respectively. Substituting
these functions into Eq. (8) yields

rðR 0
rΦrÞ þ ðRrΦrÞ þ ðRφΦ 0

φÞ ¼ 0 ð37aÞ
rR 0

r þ Rr

Rφ
¼ −Φ 0

Φ

Φr
¼ −arφ ð37bÞ

where arφ = positive constant, true for all r and φ values. Taking
each side of the equation separately, a pair of ordinary differential
equations (ODE) is formed

rR 0
r þ Rr þ arφRφ ¼ 0 ð38aÞ

Φ 0
φ − arφΦr ¼ 0 ð38bÞ

Due to the symmetry of the problem, Φr and Φφ should be even
and odd periodic functions of φ, respectively. Therefore, a natural
choice for these functions is sums of sinusoidal and cosinusoidal
terms which can form an infinite orthogonal basis for a function
space. Considering the general term per function, one obtains

Φφ ¼ sin ðkφÞ ð39aÞ

Φr ¼ cos ðkφÞ ð39bÞ
where k = harmonic integer parameter. Substituting these functions
into Eq. (38b) and solving yields:

arφ ¼ k ð40Þ

Inspired by the solution of the elastic problem, it can be as-
sumed, as a first approximation, that Rr is a power-law function of
the radial coordinate

Rr ¼ Ckrnr ð41Þ
where Ck = integration constant to be determined from the boun-
dary conditions; and nr = unknown power. This can be substituted
into Eq. (38a) and solved for Rφ to give

Rφ ¼ −Ck

�
nr þ 1

arφ

�
rnr ð42Þ

Note that a comparison between these two equations show that
Rr and Rφ differ only by the proportionality constant ðnr þ 1Þ=arφ.
Thus, their ratio is independent of the radial coordinate.

In addition, a relationship between nr and k can be established
by considering the six compatibility equations between strains,
which are necessary to consider as the analysis at hand begins with
stresses and establishes displacements by integration of the corre-
sponding strains. These are expressed in radial coordinates below
(Carlucci et al. 2013). Since all normal strains are equal to zero
(εrr ¼ εzz ¼ εφφ ¼ 0), the conjugate shear strain γrφ is zero, and

the rate of change of strains with depth is also zero (∂γrz=∂z ¼∂γφz=∂z ¼ 0), this leaves two compatibility equations to satisfy

− 1

r

�∂γφz
∂r

�
þ ∂
∂r

�
1

r

�∂γrz
∂φ

�
−
�∂γφz

∂r
��

þ 1

r2
γφz ¼ 0 ð43aÞ

1

r
∂
∂φ

�∂γφz
∂r − 1

r

�∂γrz
∂φ

��
þ 1

r2

�∂γφz
∂φ

�
¼ 0 ð43bÞ

where γφz ¼ τφz=G, γrz ¼ τ rz=G; andG = shear modulus which is
assumed to be the same for both γφz and γrz. A less restrictive
assumption would be to assume that the shear stiffnesses in the two
directions differ by a proportionality constant (i.e., τφz=γφz ¼
s τ rz=γrz) which is not a function of r or φ, so it can be
interpreted as an anisotropy parameter. Such analysis lies beyond
the scope of this study.

The shear stresses in the form of Eqs. (36a) and (36b) [with Eqs.
(39a), (39b), (41), and (42) substituted in] can be converted into
their respective shear strains. Substituting these functions of shear
strains into both Eqs. (43a) and (43b) proves that the power-
law functions in Eqs. (41) and (42) satisfy the compatibility equa-
tions and yields an identical relationship between nr and k shown in
Eq. (44)

k2 ¼ ðnr þ 1Þ2 ð44Þ

Considering k to be a positive variable and noting that nr should
be negative (so that stresses and strains attenuate with radial dis-
tance from the pile) and on taking square roots, a negative sign is
retained

nr ¼ −ðkþ 1Þ ð45Þ

Therefore, taking the shear stresses in the form of Eqs. (36a) and
(36b) and substituting them in Eqs. (39a), (39b), (41), (42), and
(45), the shear stresses in the soil can be written as

τ rz ¼ τ ref
X∞

k¼1;3;5;7 : : :

Ck

�
2r
D

�−ðkþ1Þ
cos ðkφÞ ð46aÞ

τφz ¼ τ ref
X∞

k¼1;3;5;7 : : :

Ck

�
2r
D

�−ðkþ1Þ
sin ðkφÞ ð46bÞ

where τ ref = arbitrary reference stress. These equations are valid for
any odd integer value of k, with an independent Ck value for each
term in the summation.

For convenience, an auxiliary parameter j ¼ ðkþ 1Þ=2 is de-
fined, where j is a harmonic parameter of any positive integer value.
This yields the shear stresses in the form given also in Eq. (9)

τ rzðr;φÞ ¼ τ ref
X∞

j¼1;2;3 : : :

Cj

�
2r
D

�−2j
cos ðð2j − 1ÞφÞ ð47aÞ

τφzðr;φÞ ¼ τ ref
X∞

j¼1;2;3 : : :

Cj

�
2r
D

�−2j
sin ðð2j − 1ÞφÞ ð47bÞ

Appendix III. Calculation of Fourier Coefficients Cj
in the General Solution Neglecting Soil Yield

For each assumed value of φs, a system of equations can be devel-
oped to obtain a vector C containing unknown coefficients Cj for
each value of j
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FC¼ V ¼

2
6666666664

fð1;1Þ · · · fð1; jÞ · · · fð1;NÞ
..
. . .

. ..
. . .

. ..
.

fði;1Þ · · · fði; jÞ · · · fði;NÞ
..
. . .

. ..
. . .

. ..
.

fðN;1Þ · · · fðN; jÞ · · · fðN;NÞ

3
7777777775

2
6666666664

C1

..

.

Ci

..

.

CN

3
7777777775

ð48Þ

where F ¼ N × N matrix of components relating to i sums of j
products of Cj terms; and V = vector of known values these sums
equal. The matrix element fði; jÞ corresponds to the contribution
of the jth Fourier term to the shear stress at the ith discretization
point (φ ¼ φi).

Starting with the bonded region [φi > φs; arc PB on Fig. 4(a)],
the soil and pile displacements on the pile periphery can be equated.
These can be given by: (1) the geometry of the rotation of a rigid
pile cross section [Eq. (2)—with θ given by Eq. (21)] and (2) the

soil displacements [Eq. (20)]. This yields the infinite set of linear
equations in terms of the unknowns CjX∞
j¼1;2;3 : : :

Cjfbði;jÞ

¼
X∞

j¼1;2;3 : : :

Cj

2j− 1

�
cosðð2j− 1ÞφiÞ− cosφi

cosφs
cosðð2j− 1ÞφsÞ

�
¼ 0

ð49Þ
where fbði; jÞ = dimensionless component of matrix F [Eq. (48)]
when φi is in the bonded region. It should be noted that as φi tends
toward φs, then fb tends toward zero, suggesting that the angle
φi ¼ φs should not be used as part of a linear system of equations
to determine the Fourier coefficients, Cj.

Continuing with the slipped region [φi < φs; arc CP on Fig. 4(a)],
the contact shear stresses at the pile/soil interface in Eq. (9) are equal
to the interface strength (i.e., τ rz ¼ αsu). This yields the infinite set
of linear equations in terms of the unknown Cj

X∞
j¼1;2;3 : : :

Cjfsði; jÞ ¼
X∞

j¼1;2;3 : : :

Cj cosðð2j − 1ÞφiÞ ¼ α ð50Þ

where fsði; jÞ = component of matrix F [Eq. (48)] when φi is in the slipped region.
Substituting Eqs. (49) and (50) into the matrix in Eq. (48) gives2

6666666666664

fsð1; 1Þ : : : fsð1; jÞ : : : fsð1;NÞ
..
. . .

. ..
. . .

. ..
.

fsðis; 1Þ : : : fsðis; jÞ : : : fsðis;NÞ
fbðis þ 1; 1Þ : : : fbðis þ 1; jÞ : : : fbðis þ 1;NÞ

..

. . .
. ..

. . .
. ..

.

fbðN; 1Þ : : : fbðN; jÞ : : : fbðN;NÞ

3
7777777777775

2
6666666666664

C1

..

.

Cis

Cisþ1

..

.

CN

3
7777777777775
¼

2
66666666664

α

..

.

α

0

..

.

0

3
77777777775

ð51Þ

where is = index of the largest φi within the slipped region. Note this is also the number of discretization points within the slipped region.

Appendix IV. Calculation of Fourier Coefficients Cj in the General Solution Incorporating Soil Yield

Within the yielded region (φs < φ < φy) it is known that τmag ¼ su and thus, ∂τmag=∂φ ¼ 0 since τmag is constant. The latter constraint can be
expressed by

dτmag

dφ
¼ 2su

X

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½P∞

j¼1;2;3 : : : Cj cosðð2j − 1ÞφiÞ�2 þ ½P∞
j¼1;2;3 : : : Cj sinðð2j − 1ÞφiÞ�2

q ¼ 0 ð52aÞ

X ¼
" X∞

j¼1;2;3 : : :

ð1 − 2jÞCj sinðð2j − 1ÞφiÞ
#" X∞

j¼1;2;3 : : :

Cj cosðð2j − 1ÞφiÞ
#

þ
" X∞

j¼1;2;3 : : :

ð2j − 1ÞCj cosðð2j − 1ÞφiÞ
#" X∞

j¼1;2;3 : : :

Cj sinðð2j − 1ÞφiÞ
#

ð52bÞ

τ rz and τφz from Eq. (9) can be substituted into X in place of the relevant summations. Thus, given that the square root in the denominator
is always nonzero, one obtains

X∞
j¼1;2;3 : : :

Cjfyði; jÞ ¼
X∞

j¼1;2;3 : : :

Cjð2j − 1Þ
��

τφz
τ rz

�
cosðð2j − 1ÞφiÞ − sinðð2j − 1ÞφiÞ

�
¼ 0 ð53Þ

where fyði; jÞ = dimensionless component of matrix F [Eq. (48)] when φi is in the yielded region.
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This equation is expressed in terms of the stress ratio τ rz=τφz, making it a nonlinear function of Cj, which is not compatible with the
formation of linear equations required for Eq. (48). However, if the arc step δφ of the analysis in Fig. 4(a) is small, the ratio τφz=τ rz does not
vary significantly between two successive analysis steps and can be taken as equal to the value at the same φi during the previous analysis
step. In light of this approximation, the presented equation becomes linear in Cj and can be used in Eq. (48) for the zone φs < φ < φy , in
which the soil has yielded along the periphery of the pile. Therefore, from Eqs. (49), (50), and (53), a set of simultaneous equations can be set
up for each value of i and j assuming a specific φy and φs2

66666666666666666666664

fsð1; 1Þ : : : fsð1; jÞ : : : fsð1;NÞ
..
. . .

. ..
. . .

. ..
.

fsðis; 1Þ : : : fsðis; jÞ : : : fsðis;NÞ
fyðis þ 1; 1Þ : : : fyðis þ 1; jÞ : : : fyðis þ 1;NÞ

..

. . .
. ..

. . .
. ..

.

fyðiy; 1Þ : : : fyðiy; jÞ : : : fyðiy;NÞ
fbðiy þ 1; 1Þ : : : fbðiy þ 1; jÞ : : : fbðiy þ 1;NÞ

..

. . .
. ..

. . .
. ..

.

fbðN; 1Þ : : : fbðN; jÞ : : : fbðN;NÞ

3
7777777777777777777775

2
66666666666666666666664

C1

..

.

Cis

Cisþ1

..

.

Ciy

Ciyþ1

..

.

CN

3
77777777777777777777775

¼

2
66666666666666666664

α

..

.

α

0

..

.

0

0

..

.

0

3
77777777777777777775

ð54Þ

where iy = index of the largest φi within the yielded region.
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Notation

The following symbols are used in this paper:
arφ = positive constant, true for all r and φ values

[given by Eq. (40)];
b = soil nonlinearity exponent;
C = vector containing Cj values for specific values of j;
Cj = dimensionless constant determined for each j from

boundary conditions;
Ck = dimensionless constant determined for each k from

boundary conditions;
D = pile diameter;
F =N × N matrix of components relating to i sums of

j products of Cj terms [Eq. (48)];
fði; jÞ = general component of matrix F [Eq. (48)];
fbði; jÞ = component of matrix F [Eq. (48)] when φi is in the

bonded region [Eq. (49)];
fsði; jÞ = component of matrix F [Eq. (48)] when φi is in the

slipped region [Eq. (50)];
fyði; jÞ = component of matrix F [Eq. (48)] when φi is in the

yielded region [Eq. (53)];
G = shear modulus of the soil;
G0 = initial shear modulus of the soil;
i = circumference discretization index;
is = index of the largest φi within the slipped region;

iy = index of the largest φi within the yielded
region;

j = positive integer harmonic parameter;
k = positive odd integer valued harmonic parameter;

km = linear stiffness of an m-θ curve;
kv = linear stiffness of a t-z curve;
L = pile length;
m = distributed moment resistance;
mu = ultimate distributed moment resistance;
N = number of discretization points in the general

solution;
nr = power exponent [given by Eq. (45)];
R = denotes a function of r;
r = radial distance from the center of the pile slice;

rm = empirical radius;
su = soil undrained shear strength;

u0ðφÞ = vertical soil displacement at the pile/soil interface;
u0pðφÞ = vertical pile displacements at the pile

circumference;
V = vector of values denoting the solutions to fði; jÞ

[Eq. (48)];
Vb = component of vector V when φi is in the bonded

region [Eq. (49)];
Vs = component of vector V when φi is in the slipped

region [Eq. (50)];
Vy = component of vector V when φi is in the yielded

region [Eq. (51)];
X = parameter given by Eq. (52a);
z = depth measured from the ground surface;
α = empirical adhesion factor;

γrz, γφz, γrφ = soil shear strains;
γ50 = shear strain when the shear stress is at 50% of su;
δφ = angle in radians between each discretization point;

εrr, εzz, εφφ = normal strains in cylindrical coordinates;
θ = angle of pile slice rotation in radians;

© ASCE 04025024-14 J. Geotech. Geoenviron. Eng.
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θs = slice rotation at which slip at the pile/soil interface
(τ rz;0;C ¼ αsu) first occurs;

θu = slice rotation at which soil yielding (τmag ¼ su)
first occurs;

τmagðr;φÞ = magnitude of the shear stresses	
τmag ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
τ2rz þ τ 2φz

q 

;

τmag;0ðφÞ = magnitude of the shear stresses at the pile
periphery;

τ ref = arbitrary reference shear stress;
τ rzðr;φÞ = vertical contact shear stresses;
τ rz;0ðφÞ = vertical contact shear stresses at the pile periphery;
τ rz;0;C = maximum value of τ rz;0 at φ ¼ 0;

τ rφ = horizontal soil shear stress between each horizontal
soil slice (assumed to be zero);

τφzðr;φÞ = vertical tangential shear stresses;
τφz;0ðφÞ = vertical tangential shear stresses at the pile

periphery;
Φ = denotes a function of φ;
φ = aperture angle around the pile periphery, measured

from the location of maximum displacement;
φi = aperture angle to an arbitrary discretization point,

illustrated in Fig. 4(a);
φs = largest aperture angle at which slip occurs

(τ rz;0 ¼ αsu), illustrated in Fig. 7(a);
φs;u = maximum value of φs in the general solution

considering soil yield; and
φy = largest aperture angle at which soil yield occurs

(τmag ¼ su), illustrated in Fig. 4(b).

Supplemental Materials

An example Python implementation of the general solution is avail-
able online in the ASCE library (www.ascelibrary.org).
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