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Abstract

This paper presents the Random-Key Optimizer (RKO), a versatile and efficient
stochastic local search method tailored for combinatorial optimization problems.
Using the random-key concept, RKO encodes solutions as vectors of random
keys that are subsequently decoded into feasible solutions via problem-specific
decoders. The RKO framework is able to combine a plethora of classic metaheuris-
tics, each capable of operating independently or in parallel, with solution sharing
facilitated through an elite solution pool. This modular approach allows for
the adaptation of various metaheuristics, including simulated annealing, iterated
local search, and greedy randomized adaptive search procedures, among oth-
ers. The efficacy of the RKO framework, implemented in C++, is demonstrated
through its application to three NP-hard combinatorial optimization problems:
the α-neighborhood p-median problem, the tree of hubs location problem, and
the node-capacitated graph partitioning problem. The results highlight the frame-
work’s ability to produce high-quality solutions across diverse problem domains,
underscoring its potential as a robust tool for combinatorial optimization.
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1 Introduction

An instance of a combinatorial optimization problem is defined by a finite ground
set E = {1, . . . , n}, a set of feasible solutions F ⊆ 2E , and an objective function
f : 2E → R. In the case of a minimization problem, we seek a global optimal solution
S∗ ∈ F such that f(S∗) ≤ f(S), ∀S ∈ F . The ground set E, the cost function f ,
and the set of feasible solutions F are defined for each specific problem. Similarly,
in the case of a maximization problem, we seek an optimal solution S∗ ∈ F such
that f(S∗) ≥ f(S), ∀S ∈ F . In the traveling salesman problem (TSP) on a graph
G = (N,A), for example, one seeks the shortest tour of arcs in A that visits each node
in N exactly once and returns to the first node. The ground set E for the TSP consists
of the sets of |A| arcs while the set of feasible solutions is made up of all subsets of
arcs in A such that they form a tour of the nodes in N . The cost f of a tour is the
sum of the lengths of the arcs in the tour.

A random key x is a real number in the interval [0, 1), i.e. x ∈ [0, 1). A vector χ
of n random keys is a point in the unit hypercube in Rn, χ = (x1, x2, . . . , xn), where
xi ∈ [0, 1). We shall refer to a vector of n random keys simply as random keys. A
solution of a combinatorial optimization problem can be encoded with random keys.
Given a vector χ of random keys, a decoder D takes as input χ and outputs a feasible
solution S ∈ F of the combinatorial optimization problem, i.e., F = D(χ).

The Random-Key Optimizer (RKO) is a stochastic local search method that
employs the random-key concept for solution representation to address combinato-
rial optimization problems. Since the introduction of the first random-key genetic
algorithm by Bean (1994), followed by the biased random-key genetic algorithms
(BRKGA) of Gonçalves and Resende (2011a), various metaheuristics have been
adapted to this framework. Recent adaptations include dual annealing (Schuetz et al.,
2022), simulated annealing, iterated local search, variable neighborhood search (Man-
gussi et al., 2023), and the greedy randomized adaptive search procedure (Chaves
et al., 2024).

This paper presents a C++ implementation of the RKO framework, which sim-
plifies user interaction by requiring only the development of a decoder function. The
current framework incorporates eight classic metaheuristics that can operate indepen-
dently or in parallel, with the latter approach facilitating solution sharing through
an elite solution pool. These metaheuristics are problem-independent, relying on the
decoder to map between the random-key space and the solution space of the specific
optimization problem. Additional metaheuristics can be easily added to the framework.
As a proof of concept, the RKO was tested on three NP-hard combinatorial opti-
mization problems: the α-neighborhood p-median problem, the tree of hubs location
problem, and the node-capacitated graph partitioning problem.

The structure of this paper is as follows. To first illustrate the idea of encoding and
decoding with random keys, Section 2 first introduces decoders from successful appli-
cations. Section 3 introduces the Random-Key Optimizer (RKO) concept. Section 4
details the RKO framework components, including metaheuristics, shaking, blending,
and local search modules. Section 5 demonstrates the application of RKO to three dis-
tinct combinatorial optimization problems, each utilizing a different decoder. Finally,
Section 6 offers concluding remarks.
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2 Encoding and decoding with random keys

The random-key representation confers significant advantages in solving complex com-
binatorial optimization problems when coupled with problem-dependent decoders.
This approach preserves solution feasibility, simplifies search operators, and enables
the development of problem-independent metaheuristics. This paradigm facilitates
efficient navigation of highly constrained solution spaces by establishing a mapping
between continuous and discrete domains. Furthermore, it stimulates the creation
of adaptable optimization algorithms applicable across diverse optimization prob-
lems, allowing for core search mechanisms while adapting problem-specific constraints
through customized decoders.

In the next subsections, we illustrate the encoding and decoding processes for a
diverse range of application domains, including packing, vehicle routing, and internet
traffic engineering.

2.1 Traveling Salesman Problem

Bean (1994) first proposed random key encoding for problems whose solutions can be
represented as a permutation vector, as is the case for the TSP, an NP-hard problem
(Karp, 1972). Given a vector of random keys χ, the decoder simply sorts the keys of
the vector, and the indices of the sorted vector represent a permutation of 1, 2, . . . , n.

Consider a random key vector χ = (0.085, 0.277, 0.149, 0.332, 0.148). Sorting the
vector, we get σ[χ] = (0.085, 0.148, 0.149, 0.277, 0.332) with corresponding indices
π(σ[χ]) = (1, 5, 3, 2, 4). Figure 1 shows this tour where we start at node 1, then visit
nodes 5, 3, 2, and 4, in this order, and finally return to node 1.

1
3

2

5

4

Fig. 1 A TSP tour, decoded from the vector of random keys χ = (0.085, 0.277, 0.149, 0.332, 0.148).

2.2 Set Covering Problem

Given n finite sets P1, P2, . . . , Pn, let sets I and J be defined as I = ∪nj=1Pj =
{1, 2, . . . ,m} and J = {1, . . . , n}. A subset J∗ ⊆ J is called a cover if ∪j∈J∗Pj = I.
The set covering problem is to find a cover of minimum cardinality. Let A be the
binary m×n matrix such that Ai,j = 1 if and only if i ∈ Pj . An integer programming
formulation for set covering is

min {enx : Ax ≥ em, x ∈ {0, 1}n},
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where ek denotes a vector of k ones and x is a binary n-vector such that xj = 1 if
and only if j ∈ J∗. The set covering problem has many applications such as crew
scheduling, cutting stock, facilities location, and others (Vemuganti, 1998) and is NP-
hard (Karp, 1972; Garey and Johnson, 1979).

Random keys can be used to encode solutions of the set covering problem. In one
approach, the vector of n random key χ is sorted, and elements are added to the
cover in the order given by π(σ(χ)) until a cover is constructed. Then, elements are
scanned in the same order, and each element is tentatively removed from the cover.
The removal is made permanent if the cover is not destroyed by its removal.

Another approach (Resende et al., 2012) makes use of a greedy algorithm. As with
the first decoder, this decoder takes the vector of random keys χ as input and returns
a cover J∗ ⊆ J . To describe the decoding procedure, let the cover be represented by
a binary vector Y = (Y1, . . . ,Y|J|), where Yj = 1 if and only if j ∈ J∗.

The decoder has three phases. In the first phase, for j = 1, . . . , |J |, the values of
Yj are initially set according to

Yj =

{
1 if χj ≥ 0.5

0 otherwise.

The indices implied by the binary vector Y can correspond to either a feasible or
infeasible cover J∗. If J∗ is a feasible cover, then the second phase is skipped. If J∗

is not a valid cover, then the second phase of the decoding procedure builds a valid
cover with the greedy algorithm for set covering of Johnson (1974), starting from the
partial cover J∗ defined by Y. This greedy algorithm proceeds as follows. While J∗ is
not a valid cover, select the smallest index j ∈ J \ J∗ for which the inclusion of j in
J∗ covers a maximum number of yet-uncovered elements of I. The third phase of the
decoder attempts to remove superfluous elements from cover J∗ as in the case of the
first decoder described above. While there is some element j ∈ J∗ such that J∗ \{j} is
still a valid cover, then such an element having the smallest index is removed from J∗.

2.3 OSPF routing in intradomain traffic engineering

LetG = (N,E) be an Internet Protocol (IP) network, whereN is its set of router nodes
and E is its set of links. Given a set of traffic demands between origin-destination (O-
D) pairs in the network, the Open Shortest Path First (OSPF), an NP-hard problem
(Giroire et al., 2013), weight setting problem consists in determining weights to be
assigned to the links so as to optimize a cost function, typically associated with a
network congestion measure, when traffic is routed on least-weight paths between O-D
pairs. Link weights w1, w2, . . . , w|E| typically are integer-valued in the interval [1, w̄],
where w̄ = 216 − 1.

Solutions to the OSPF weight setting problem are encoded with a vector χ of
|E| random keys (Ericsson et al., 2002; Buriol et al., 2005). The decoder first sets
link weights as wi = ⌈χi × w̄⌉, for i = 1, 2, . . . , |E|, where ⌈z⌉ is the smallest integer
greater than or equal to z. Then, the demand for each O-D pair is routed on a least-
weight path. For each link e ∈ E, the flows from each O-D pair on that link are
summed up, resulting in the total flow Fe on link e. The link congestion cost ϕe(Fe) is
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computed for each link e ∈ E and the total network congestion cost is then computed
as Φ =

∑
e∈E ϕe(Fe).

2.4 Redundant content distribution

Johnson et al. (2020) consider a situation where we need to distribute data, like video-
on-demand, over a network where link or vertex failures cannot be quickly repaired.
These failures could cause costly service interruptions, so we want a robust distribution
process that is resilient to any single vertex or link failure. To achieve this, we need
to place multiple copies of our data source in the network. However, due to hosting
costs, we want to minimize the number of hosting sites rather than placing a copy at
each service hub.

The setwise-disjoint facility location model applies when we do not control routing,
relying on the network’s shortest-path protocols (like OSPF) instead. Here, to guar-
antee vertex-disjoint paths to a customer from two facility locations, we must ensure
that their shortest path sets intersect only at the customer location. We can examine
every pair of facility locations, s and t, and every customer location u. If the short-
est paths from s to u and the shortest paths from t to u only intersect at u, then s
and t cover u and the triple (u, s, t) can be saved for possible use in a solution to the
setwise-disjoint facility location problem. Model the network as a graph G = (V,E),
where V are the vertices of G and E are its links. Let S ⊆ V be the set of nodes where
hosting facilities can be located and assume users are located on any node belonging
to the set U ⊆ V .

In the set cover by pairs problem, we are given a ground set U of elements, a set
S of cover objects, and a set T of triples (u, s, t), where u ∈ U and s, t ∈ S. We seek
a minimum-cardinality cover by pairs subset S∗ ⊆ S for U , where S∗ covers U if for
each u ∈ U , there are s, t ∈ S∗ such that (u, s, t) ∈ T .

Solutions to the setwise-disjoint facility location problem can be encoded with a
vector χ of |S| random keys. Decoding is similar to the second decoder for set covering,
introduced in Section 2.2. This decoder takes as input the vector of random keys χ
and returns a cover by pairs S∗ ⊆ S. To describe the decoding procedure, let the cover
by pairs be represented by a binary vector Y = (Y1, . . . ,Y|S|), where Yj = 1 if and
only if j ∈ S∗.

The decoder has three phases. In the first phase, for j = 1, . . . , |S|, the values of
Yj are initially set according to

Yj =

{
1 if χj ≥ 0.5

0 otherwise.

The indices implied by the binary vector Y can correspond to either a feasible or
infeasible cover S∗. If S∗ is a feasible cover, then the second phase is skipped. If S∗ is
not a valid cover, then the second phase of the decoding procedure builds a valid cover
with the greedy algorithm for set cover by pairs of Johnson et al. (2020), starting from
the partial cover S∗ defined by Y. This greedy algorithm proceeds as follows. While
S∗ is not a valid cover, select the smallest index j ∈ S \ S∗ for which the inclusion of
j in S∗ covers a maximum number of yet-uncovered elements of U . If no such element
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exists, then find the smallest indexed pair i, j ∈ S \S∗ for which the inclusion of i, j in
S∗ covers a maximum number of yet-uncovered elements of U . If no such pair exists,
then the problem is infeasible.

The third phase of the decoder attempts to remove superfluous elements from cover
S∗. While there is some element j ∈ S∗ such that S∗ \ {j} is still a valid cover by
pairs, then such an element having the smallest index is removed from S∗.

2.5 2D orthogonal packing

In the two-dimensional non-guillotine packing problem, rectangular sheets must be
packed into a larger rectangular sheet to maximize value. The rectangular sheets can-
not overlap or be rotated and must align with the larger sheet’s edges. This problem,
which is NP-hard (Garey and Johnson, 1979), is significant both theoretically and
practically, with applications in industries like textiles, glass, steel, wood, and paper,
where large sheets of material are cut into smaller rectangular pieces.

Given a large rectangular sheet of dimension H × W and N types of smaller
rectangular sheets, of dimensions h1 ×w1, h2 ×w2, . . . , hN ×wN . There are Qi sheets
of type i, each having value Vi. Let Ri denote the number of sheets of type i that are
packed into the larger rectangular sheet. We seek a packing that maximizes the total
value

∑
i=1,N Ri × Vi, where Ri ≤ Qi, for i = 1, 2, . . . , N .

3

1 14 4

2

Fig. 2 Example of input for 2D orthogonal packing. Four rectangle types are given, two of types 1
and 4, and one of types 2 and 3.

Gonçalves and Resende (2011b) present an encoder and decoder for 2D orthogonal
packing. Let N ′ be the total number of available smaller rectangular sheets, i.e. N ′ =∑N

i=1 Qi. Solutions are encoded with a vector χ of 2N ′ random keys. To decode a
solution, we sort the first N ′ keys of χ in increasing order. The indices of the sorted
keys impose a sequence for placement of the N ′ rectangles. The decoder uses the last
N ′ keys to determine which of two placement heuristics is used to place rectangle i:
Left-Bottom (LB) or Bottom-Left (BL). Placement heuristic Left-Bottom takes the
small rectangle from the top-right corner and moves it as far left as possible and then
as far bottom as possible while placement heuristic Bottom-Left also takes the small
rectangle from the top-right corner but moves it as far down as possible and then as far
left as possible. If χN ′+i >

1
2 , we pack rectangle i with Bottom-Left placement, else we

use Left-Bottom placement. If the rectangle cannot be packed with either placement
heuristic, it is simply discarded and the decoder moves on to the next small rectangle.
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Type 1 sheet placed using BL

Type 4  sheet placed using BL

Remaining type 1 and type 4 sheets
cannot be placed.  They are left out.

Type 3 sheet placed using LB

Type 2 sheet placed using BL

3

1

14 4

2

3

1

14 4

2

3 3

1

14 4

2

3 3

1

144

2

Fig. 3 Example of decoding a 2D orthogonal packing.

Figure 2 shows an instance of the 2D orthogonal packing problem with four types
of small rectangles where two of them have two copies while the other two are single
copies. Therefore N ′ = 6. Indices 1 and 2 correspond to the two type-1 rectangles.
Indices 3 and 4 correspond to, respectively, the type-2 and type-3 rectangles. Finally,
indices 5 and 6 correspond to the two type-4 rectangles.

Consider the encoded vector of random keys

χ = (.12, .90, .34, .55, .88, .99 | .63, .02, .98, .21, .99, .80).

Let χ1 be the first N ′ = 6 keys of χ. Sorting the keys of χ1, we get
σ(χ1) = (.12, .34, .55, .88, .90, .99) with corresponding rectangle indices π(σ(χ1)) =
(1, 3, 4, 5, 2, 6) which gives us a placement order for the rectangles. Using the last N ′

keys we use placement heuristics BL, LB, BL, LB, BL, BL for, respectively, rectangles
1, 2, 3, 4, 5, and 6.

Figure 3 shows four steps of the placement procedure. On top, a type 1 rectangular
sheet (rectangle 1) is placed using the BL heuristic. Next, a type 2 rectangular sheet
(rectangle 3) is placed using the BL heuristic. Next, a type 3 rectangular sheet (rect-
angle 4) is placed using an LB heuristic. Finally, on the bottom of the figure, a type
4 rectangular sheet (rectangle 5) is placed using a BL heuristic. Neither of the two
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remaining rectangular sheets (one of type 1 and the other of type 4) can be added to
the large sheet. The total value of the solution is

∑
i=1,N Ri×Vi = V1 +V2 +V3 +V4.

2.6 Vehicle routing problem

The vehicle routing problem (VRP) has many practical applications, e.g., in logistics.
In these problems, one or more vehicles depart from a depot and visit a number of
customer nodes and then return to the depot. One common objective is to minimize
the cost of delivery, e.g., minimize total distance given a fixed number of vehicles, or
minimize the number of vehicles, given a maximum distance traveled by each vehicle.
Often, constraints are imposed on the capacity of vehicles and on when they visit the
customers.

2 3 4 5 6 7 8 9 10 111 2 3 4 5 6 7 8 9 10 111

2 3 0.050.33 6 7 8 9 10 111 0.14 0.67 0.42 0.39 0.21 0.37 0.98  0.19 0.24

2 3 0.240.21 6 7 8 9 10 111 0.19 0.33 0.37 0.39 0.42 0.67 0.98  0.05 0.14

3 1 9 2 4 10 8 7 6 115

                                   eight customers                       three vehicles

 Encoding

Decoding

sort keys

Fig. 4 Example of decoding a VRP.

The main goal in producing a solution for a VRP is to assign customers to vehicles
and sequence them on each vehicle. Resende and Werneck (2015) describe a decoder for
the VRP. In this decoder, we assume there are n customers and m vehicles. Solutions
are encoded as vectors χ of n + m random keys. The first n keys correspond to the
customers that should be visited, while the last m keys correspond to the vehicles.
Decoding is accomplished by sorting the keys in χ. The last m keys serve as the
demarcation of customers assigned to the vehicles. Sorted keys can be rotated so that
the index of last key in π(σ(χ)) is always a vehicle key. Suppose the indices of the
sorted vector of random keys appear as

π(σ(χ′)) = (. . . , v, a, b, c, u, . . .),
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0

8

6

7

5

3

1

4

2

Fig. 5 VRP routes of decoded vector. The routes of vehicles with indices 9, 10, and 11 are colored,
respectively, red, blue, and green.

where v and u are vehicles indices and a, b, and c are customer indices. We assign
customers a, b, and c to vehicle u and sequence the customers on that vehicle as a to
b to c. If vehicle key v is followed immediately by vehicle key u, then vehicle u is not
assigned customers and is therefore not used. Consider the example in Figure 4 where
we have eight customers and three vehicles. Sorting the vector χ gives us the sorted
vector σ(χ) and the corresponding indices of the sorted vector π(σ(χ)) that encodes
the assignment of customers to vehicles and their sequencing. In this solution, the
vehicle of key index 9 is assigned customers 5, 3, and 1, and vehicle 9 visits customer
5, then customer 3, and lastly customer 1. The vehicle of key 10 is assigned customer
2, which it visits first, and then customer 4, visited last. Lastly, customers 8, 7, and
6 are assigned to vehicle 11, which visits them in that order, i.e. 8 then 7, and finally
customer 6. The three routes are show in Figure 5.

3 Random-Key Optimizer

Random-Key Optimizer (RKO) is an efficient metaheuristic framework rooted in the
concept of the random-key genetic algorithm (RKGA), initially proposed by Bean
(1994). This approach encodes solutions as vectors of random keys — real numbers
uniformly distributed in the interval [0,1) — enabling a unique representation of com-
binatorial optimization problems in a continuous search space. The RKGA evolves
a population of random-key vectors over multiple generations, employing a problem-
specific decoder to transform each vector into a feasible solution and evaluate its
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quality. This evolution process typically involves elitism, mutation, and crossover oper-
ations. The biased random-key genetic algorithm (BRKGA) (Gonçalves and Resende,
2011a) refines this approach by introducing a bias towards elite solutions in the
crossover phase. An up-to-date and complete review of the BRKGA is found in Londe
et al. (2024).

RKGA and BRKGA represent a class of problem-independent metaheuristics for
addressing optimization problems. These approaches operate indirectly in a contin-
uous n-dimensional unit hypercube, employing a problem-specific decoder to map
solutions from the continuous space to the discrete problem domain. This modular
design allows the solver to be implemented once and reused to solve several problems
by implementing a problem-specific decoder. Examples of Application Programming
Interfaces (APIs) for BRKGA are Toso and Resende (2015), Andrade et al. (2021),
Oliveira et al. (2022), and Chaves and Lorena (2021).

Schuetz et al. (2022) extended the RKO framework to incorporate other meta-
heuristic paradigms. Recent research has demonstrated the successful application of
RKO principles to algorithms such as simulated annealing, iterated local search,
variable neighborhood search, and greedy randomized adaptive search procedure
(Mangussi et al., 2023; Chaves et al., 2024).

Figure 6 presents a schematic representation of the RKO approach. In Figure 6a,
we can observe the optimization process that receives as input an instance of a combi-
natorial optimization problem and returns the best solution found during the search
process. Diverse metaheuristics guide the optimization process, each employing dis-
tinct search paradigms while leveraging the random-key representation for solution
encoding. These algorithms balance exploration and exploitation within the random-
key space. In parallel computation, these metaheuristics engage in collaborative search
by exchanging high-quality solutions through a shared elite solution pool. This pool,
dynamically updated throughout the optimization process, is a repository of the most
promising solutions, facilitating knowledge transfer across different search strategies
and promoting convergence towards optimal solutions. Figure 6b illustrates the map-
ping schema that links the random-key and solution space via the problem-dependent
decoder. After this transformation, it is possible to evaluate the quality of the solutions.

Fig. 6 Schematic illustration of the RKO approach. Adapted from Schuetz et al. (2022).
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The RKO framework demonstrates considerable flexibility, allowing for the adap-
tation of various metaheuristics beyond those currently implemented. Researchers can
potentially integrate additional population-based or single-solution metaheuristics,
such as ant colony optimization or tabu search, by adapting their core mechanisms
to operate within the random-key solution space. Furthermore, the elite solution
pool inherent in the RKO framework presents an opportunity for implementing path-
relinking strategies. Path-relinking, a method for generating new solutions by exploring
trajectories connecting high-quality solutions, could be applied to pairs of solutions
from the elite pool. This approach may enhance the framework’s ability to intensify
the search in promising regions of the solution space, potentially leading to improved
solution quality or faster convergence.

4 Framework

This section presents the RKO framework developed to find optimal or near-optimal
solutions to combinatorial optimization problems. First, we present the components
of the RKO that are used by the metaheuristics: initial and pool of elite solu-
tions (Section 4.1), shaking (Section 4.2), blending (Section 4.3), and local search
(Section 4.4). Then, we present the classical metaheuristics adapted to the random-key
paradigm (Section 4.5) and an online parameter control method (Section 4.6).

The RKO framework, including its source code in C++ language and documen-
tation, is freely available to researchers and practitioners through our public GitHub
repository at https://github.com/antoniochaves19/RKO.

4.1 Initial and pool of elite solutions

The metaheuristics initialize with solutions represented by n-dimensional vectors χ ∈
[0, 1)n, where each random key xi is randomly generated within the half-open interval
[0, 1). The quality of each solution is quantified by an objective function value, obtained
through the application of a problem-specific decoder function D to χ, denoted as
f(D(χ)).

The RKO framework maintains a shared pool of elite solutions (pool) accessible
to all metaheuristics. This pool is initialized with λ randomly generated random-key
vectors. To enhance the quality of the initial pool , each solution undergoes refinement
via the Farey Local Search heuristic (detailed in Section 4.4.3). To preserve diversity
within the pool , any clone solutions (i.e., solutions with identical objective function
values) are subjected to a perturbation process using the shaking method (described
in Section 4.2).

Any solution generated by a metaheuristic that improves its current best solution
is considered for inclusion in the elite pool . This inclusion is contingent upon the
absence of an existing clone within the pool . Upon acceptance of a new solution, the
pool maintains its size constraint by eliminating the solution with the worst objective
function value, thereby ensuring a continuous improvement in the overall quality of
the elite pool .

11
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4.2 Shaking

To modify a random-key vector χ, a perturbation rate β is employed. This value
is randomly generated within a specified interval [βmin, βmax], which should be
defined according to the specific metaheuristic approach being used. The shaking
method, inspired by the approach proposed by Andrade et al. (2019), applies random
modifications to the random-key values by utilizing four distinct neighborhood moves:

• Swap: Swap the value of two randomly selected random keys χi and χj .
• Swap Neighbor : Swap the value of a randomly selected random key χi with its
neighbor χi+1. In case i = n, then χn is swapped with χ1.

• Mirror : Change the value of a randomly selected random key χi with its complement
(1− χi).

• Random: Assign a newly generated random value within the interval [0, 1) to a
randomly selected random key χi.

Algorithm 1 outlines the shaking method. A shaking rate β is initially randomly
generated (line 1). The main loop (lines 2-18) then iterates over the random-key vector
χ, applying perturbations β × n times. During each iteration, one of the four neigh-
borhood moves is randomly selected and applied. After completing the perturbations,
the modified random-key vector χ is returned (line 19). This vector must be decoded
during the metaheuristics search process.

Algorithm 1: Shaking method

Input: Random-key vector χ, βmin, βmax

Output: Changed random-key vector χ
1 Generate shaking rate β randomly within the interval [βmin, βmax];
2 for k ← 1 to β × n do
3 Randomly select one shaking move m from {1, 2, 3, 4};
4 switch m do
5 case 1 do
6 Apply Random move in χ;
7 end
8 case 2 do
9 Apply Mirror move in χ;

10 end
11 case 3 do
12 Apply Swap move in χ;
13 end
14 case 4 do
15 Apply Swap Neighbor move in χ;
16 end

17 end

18 end
19 return χ;
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4.3 Blending

The blending method creates a new random-key vector by combining two parent solu-
tions (χa and χb). This process extends the uniform crossover (UX) concept (Davis,
1991), incorporating additional stochastic elements. For each position in the vector,
a probability ρ determines whether the corresponding random key from χa or χb is
inherited. We introduce a factor parameter to modulate the contribution of χb: when
factor = 1, the original key is used; when factor = −1, its complement (1.0 − χb

i ) is
employed. Furthermore, with a small probability µ, the algorithm generates a novel
random value within the [0, 1) interval, injecting additional diversity into the solution
χc. Algorithm 2 presents the pseudocode of the blending method.

Algorithm 2: Blending method

Input: Random-key vector χa, Random-key vector χb, factor , ρ, µ
Output: New random-key vector χc

1 for i← 1 to n do
2 if UnifRand(0, 1) < µ then
3 χc

i ← UnifRand(0, 1);
4 end
5 else
6 if UnifRand(0, 1) < ρ then
7 χc

i ← χa
i

8 end
9 else

10 if factor = 1 then
11 χc

i ← χb
i

12 end
13 if factor = −1 then
14 χc

i ← 1.0− χb
i

15 end

16 end

17 end

18 end
19 return χc;

4.4 Local Search

We introduce the local search procedure used in the RKO algorithms, which is car-
ried out by the Random Variable Neighborhood Descent (RVND) algorithm (Penna
et al., 2013). The RVND is an extension of the Variable Neighborhood Descent (VND)
method proposed by Mladenović and Hansen (1997). VND operates by exploring a
finite set of neighborhood structures, denoted as Nk for k = 1, . . . , kmax, where Nk(χ)
represents the set of solutions within the k-th neighborhood of a random-key vector
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χ. Unlike standard local search heuristics, which typically utilize a single neighbor-
hood structure, VND leverages multiple structures to enhance the search process. The
sequence in which these neighborhoods are explored is crucial to the effectiveness of
VND. To address this challenge, RVND randomly determines the order of neighbor-
hood heuristics applied in each iteration, thereby efficiently navigating diverse solution
spaces. This approach is well-suited for random-key spaces, allowing users to either
implement classic heuristics to the specific problem and encode the locally optimal
solution into the random-key vector or employ random-key neighborhoods independent
of the problem, using the decoder to iteratively refine the solution.

Algorithm 3 presents the pseudo-code for the RVND algorithm. The process begins
by initializing a list of neighborhoods (NL) containing kmax heuristics. The algorithm
then iteratively selects a neighborhood N i at random and searches for the best neigh-
boring solution (χ′) within that neighborhood. If the new solution χ′ improves upon
the current solution (χ), χ is updated to χ′, and the exploration of neighborhoods
is restarted. If no improvement is found, the current neighborhood N i is removed
from the list. This procedure continues until the list of neighborhoods is exhausted.
Ultimately, the algorithm returns the best solution χ found.

Algorithm 3: RandomVND

Input: χ
Output: The best solution in the neighborhoods.

1 Initialize the Neighborhood List (NL);
2 while NL ̸= 0 do
3 Choose a neighborhood N i ∈ NL at random;
4 Find the best neighbor χ′ of χ ∈ N i;
5 if f(D(χ′)) < f(D(χ)) then
6 χ← χ′;
7 Restart NL;

8 else
9 Remove N i from the NL ;

10 return χ

We developed four problem-independent local search (LS) heuristics designed to
operate within the random-key solution space. These heuristics constitute distinct
neighborhood structures integrated into the RVND: Swap LS, Mirror LS, Farey LS,
and Nelder-Mead LS. Each heuristic employs a unique strategy to exploit the solution
landscape, enhancing the algorithm’s capacity to find local optimal solutions.

4.4.1 Swap Local Search

The Swap LS heuristic involves swapping the positions of two random keys of the
random-key vector. The process begins by generating a vector RK that randomly
orders the indices of the random keys. This ensures that the sequence in which pairs
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of random keys are swapped varies with each run. The Swap LS procedure is detailed
in Algorithm 4. The best solution found (χbest) in this neighborhood is updated in
line 2. The main loop (lines 3-9) iteratively exchanges each pair of random keys at
indices i and j in RK . A first-improvement strategy is employed in each iteration,
either continuing the search from the newly found best solution or reverting to the
previous best solution. The best-found solution in this neighborhood is returned.

Algorithm 4: Swap Local Search

Input: Random-key vector χ
Output: Best random-key vector χbest found in the neighborhood

1 Define a vector RK with random order for the random-key indices;

2 Update the best solution found χbest ← χ;
3 for i← 1 to n− 1 do
4 for j ← i+ 1 to n do
5 Swap random keys RK i and RK j of χ;

6 if f(D(χ)) < f(D(χbest)) then
7 χbest ← χ;

8 else
9 χ← χbest ;

10 return χbest ;

4.4.2 Mirror Local Search

The Mirror LS heuristic modifies the current value of each random key by inverting it.
This heuristic utilizes the RK vector to generate a random order of indices. For each
index in this sequence, the value χRK i of the corresponding random key is replaced
with its complementary value (1 − χRK i). The first-improvement strategy is applied
during this process. The procedure is detailed in Algorithm 5.

4.4.3 Farey Local Search

The Farey LS heuristic adjusts the value of each random key by randomly selecting
values between consecutive terms of the Farey sequence (Niven et al., 1991). The Farey
sequence of order η includes all completely reduced fractions between 0 and 1 with
denominators less than or equal to η, arranged in ascending order. For our application,
we use the Farey sequence of order 7:

F =

{
0

1
,
1

7
,
1

6
,
1

5
,
1

4
,
2

7
,
1

3
,
2

5
,
3

7
,
1

2
,
4

7
,
3

5
,
2

3
,
5

7
,
3

4
,
4

5
,
5

6
,
6

7
,
1

1

}
This sequence creates 18 intervals that are used to generate new random key values.

In each iteration of this heuristic, the random keys are processed in a random order
as specified by the RK vector and the first-improvement strategy is applied. The
procedure is detailed in Algorithm 6.
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Algorithm 5: Mirror Local Search

Input: Random-key vector χ
Output: Best random-key vector χbest found in the neighborhood

1 Define a vector RK with random order for the random-key indices;

2 Update the best solution found χbest ← χ;
3 for i← 1 to n do
4 Set the value of the random key RK i of χ with its complement;

5 if f(D(χ)) < f(D(χbest)) then
6 χbest ← χ;

7 else
8 χ← χbest ;

9 return χbest ;

Algorithm 6: Farey Local Search

Input: Random-key vector χ
Output: Best random-key vector χbest found in the neighborhood

1 Define a vector RK with random order for the random-key indices;

2 Update the best solution found χbest ← χ;
3 for i← 1 to n do
4 for j ← 1 to |F | − 1 do
5 Set the value of the random key RK i of χ with UnifRand(Fj , Fj+1);

6 if f(D(χ)) < f(D(χbest)) then
7 χbest ← χ;

8 else
9 χ← χbest ;

10 return χbest ;

4.4.4 Nelder-Mead Local Search

The Nelder-Mead algorithm, originally proposed by Nelder and Mead (1965), is a
numerical optimization technique designed to locate the minimum of an objective
function in a multidimensional space. This heuristic method, which relies on function
value comparisons rather than derivatives, is widely employed in nonlinear optimiza-
tion scenarios where gradient information is unavailable or computationally expensive
to obtain. The algorithm initializes with a simplex of k + 1 points in a k-dimensional
space and iteratively refines the simplex through a series of geometric transforma-
tions. These transformations include reflection, expansion, contraction (internal and
external), and shrinking, each aimed at improving the worst point of the simplex.

In our research, we developed an adapted Nelder-Mead LS heuristic with three solu-
tions: χ1, χ2, and χ3. The first solution is a current solution of the RVND, while the
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remaining two are randomly selected from the pool of elite solutions discovered dur-
ing the optimization process. These solutions are ranked according to their objective
function values, with χ1 representing the best and χ3 the worst. Figure 7 illustrates a
simplex polyhedron and the five possible transformations in the Nelder-Mead LS.

Algorithm 7 presents the procedure for our adapted Nelder-Mead LS. We employ
the blending method (Section 4.3) to generate new solutions, using ρ = 0.5 and
µ = 0.02 after exhaustive preliminary computational tests. The procedure initializes
with a simplex comprising three solutions (χ1, χ2, χ3). The simplex’s centroid (χ0) is
computed using the blending method between χ1 and χ2. The algorithm then enters
its main loop, which continues until a termination condition is met. Each iteration
explores the random-key search space through a series of simplex transformations:

1. Reflection: Compute χr = Blending(χ0, χ3,−1)
2. Expansion: If χr outperforms χ1, compute χe = Blending(χr, χ0,−1)
3. Contraction: If neither reflection nor expansion improve χ1 or χ2:

- Outside contraction: If χr is better than χ3, χc = Blending(χr, χ0, 1)
- Inside contraction: Otherwise, χc = Blending(χ0, χ3, 1)

4. Shrinking: If contraction fails, the entire simplex contracts towards χ1: χi =
Blending(χ1, χi, 1) for i = 2, 3

The algorithm terminates based on a predefined condition. In this study, we set
the maximum number of iterations to n · e−2.

x2

x

x1

x2

x3

xr

x0

Simplex Reflection

xe

Expansion

xc

Outside Contraction

xc

Inside Contraction

x1
3

Shrinking

Fig. 7 Illustrative example of the simplex polyhedron and the five moves of the Nelder-Mead. Source:
based on Kolda et al. (2003)
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Algorithm 7: Nelder-Mead Local Search

Data: χ1, χ2, χ3, n, h
Result: The best solution found in simplex X.

1 Initialize simplex: X ← {χ1, χ2, χ3};
2 Sort simplex X by objective function value;
3 Compute the simplex centroid χ0 ← Blending(χ1, χ2, 1);
4 iter ← 0;
5 numIter ← n · e−2;
6 while iter < numIter do
7 shrink ← 0;
8 iter ← iter + 1;
9 Compute reflection solution χr ← Blending(χ0, χ3,−1);

10 if f(D(χr)) < f(D(χ1)) then
11 Compute expansion solution χe ← Blending(χr, χ0,−1);
12 if f(D(χe)) < f(D(χr)) then
13 χ3 ← χe;

14 else
15 χ3 ← χr;

16 else
17 if f(D(χr)) < f(D(χ2)) then
18 χ3 ← χr;

19 else
20 if f(D(χr)) < f(D(χ3)) then
21 Compute contraction solution χc ← Blending(χr, χ0, 1);
22 if f(D(χc)) < f(D(χr)) then
23 χ3 ← χc;

24 else
25 shrink ← 1;

26 else
27 Compute contraction solution χc ← Blending(χ0, χ3, 1);
28 if f(D(χc)) < f(D(χ3)) then
29 χ3 ← χc;

30 else
31 shrink ← 1;

32 if shrink = 1 then
33 Replace all solutions except the best χ1 with χi ←

Blending(χ1, χi, 1), i = 2, 3;

34 Sort simplex X by objective function value;
35 Compute the simplex centroid χ0 ← Blending(χ1, χ2, 1);

36 return χ1
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4.5 Metaheuristics

The versatility of the Random-Key Optimization (RKO) framework extends beyond
its initial application in genetic algorithms, allowing for integration with a wide array
of metaheuristics. In this paper, we explore the adaptability of RKO by implement-
ing a comprehensive framework that incorporates eight distinct metaheuristics. This
diverse set includes the BRKGA, simulated annealing (SA), greedy randomized adap-
tive search procedure (GRASP), iterated local search (ILS), variable neighborhood
search (VNS), particle swarm optimization (PSO), genetic algorithm (GA), and large
neighborhood search (LNS). Each metaheuristic offers an approach to exploring the
search space while benefiting from RKO’s random-key representation and decoding
mechanism features. This integration demonstrates RKO’s capacity to adapt to vari-
ous optimization paradigms, providing a robust and flexible framework for addressing
combinatorial optimization problems.

All metaheuristics start the search process from randomly generated random-key
vectors. After generating the initial solutions, each metaheuristic follows its search
paradigm.

The RKO framework employs a predefined CPU time limit as its stopping crite-
rion, ensuring all metaheuristics run with equivalent computational time. We adopted
this approach in order to have a fair comparison among diverse optimization meth-
ods when executed on identical hardware architectures. Nevertheless, the framework
allows alternative stopping criteria, such as a maximum number of objective function
evaluations or a specified convergence threshold.

In the context of RKO, the parameters of each metaheuristic need to be set using
offline optimization (parameter tuning) or online optimization (parameter control)
strategies. Parameter tuning focuses on finding optimal parameter values for a specific
algorithm and problem instance and remains fixed throughout optimization. On the
other hand, parameter control seeks to enhance performance by dynamically adjusting
the parameters that control the behavior of the metaheuristics.

In this framework, users can choose between parameter tuning and parameter con-
trol. In parameter tuning, users conduct an initial set of experiments to make informed
decisions, or they can rely on automated tools such as iRace (Birattari et al., 2002),
paramILS (Hutter et al., 2009), or REVAC (Nannen and Eiben, 2007). This process
can be very complex in the RKO due to the number of parameters and problem-
and instance-dependence. To overcome these difficulties, we develop a reinforcement-
learning-inspired parameter control based on the Q-Learning method (Watkins and
Dayan, 1992) (see Section 4.6).

The following sections provide a brief overview of the metaheuristics developed in
this paper. They outline the key principles and mechanisms underlying each approach
and highlight the innovative aspects of the random-key solutions.

4.5.1 BRKGA

The Biased Random-Key Genetic Algorithm (BRKGA) (Gonçalves and Resende,
2011a) is an evolutionary metaheuristic that extends the concept of RKGA. The algo-
rithm maintains a population p of random-key vectors, evolving them over multiple
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generations. BRKGA introduces a bias towards elite solutions in its selection process,
distinguishing it from standard RKGA. The population is partitioned at each iteration
into elite (with pe < p/2 solutions) and non-elite sets. The next generation is formed
by directly copying all elite solutions, introducing a small set (pm < p − pe) of new
random solutions (mutants), and generating offspring through the parameterized uni-
form crossover (Spears and De Jong, 1991). This crossover preferentially selects genes
from the elite parent, controlled by an inheritance probability ρ > 0.5. A decoder
transforms these random-key vectors into feasible solutions, evaluating their fitness.
The new population becomes the current population. Whenever a new best solution is
discovered within a generation, we apply the RVND heuristic (see Section 4.4) in this
solution. This intensification strategy aims to explore the promising region surrounding
the best-found solution.

4.5.2 GA

We also implemented a standard Genetic Algorithm (GA) (Holland, 1992; Goldberg,
1989) to work with the random-key representation. GA is a nature-inspired meta-
heuristic that emulates the principles of natural selection and genetic evolution to
solve optimization problems. In its traditional form, GA operates on a population of
candidate solutions, each encoded as a chromosome. The algorithm progresses through
generations, applying genetic operators such as selection, crossover, and mutation
to evolve the population towards better solutions. Our modified GA performs selec-
tion using the tournament method, applies crossover by combining random keys from
selected parent solutions with the blending method, and implements mutation by per-
turbing individual random keys (see Section 4.3). The algorithm creates an entirely
new population of offspring for each generation to replace the current population with
elitism for population evolution. We apply the RVND heuristic (see Section 4.4) to the
best solution of the current population and insert this improved solution into the new
population. The parameters of the GA are the population size (p), and the crossover
(pc) and mutation (µ) probabilities. Parameter pc represents the likelihood that two
solutions will exchange the random keys equally or that the parents will copy to the
next population. The parameter µ represents the likelihood that the random key will
be randomly altered during the crossover.

4.5.3 SA

Simulated Annealing (SA) (Kirkpatrick et al., 1983) is a metaheuristic inspired by the
annealing process in metallurgy, where controlled cooling of materials leads to more
stable, low-energy states. In optimization contexts, SA navigates the solution space by
iteratively perturbing the current solution and accepting or rejecting the new solution
based on a probabilistic criterion. In the case of random-key representation, the shaking
method performs the perturbation process (see Section 4.2). The SA begins with a
high temperature (T0), allowing for frequent acceptance of worse solutions to escape
local optima. As the temperature gradually decreases according to a cooling schedule
defined by the parameter α, the algorithm becomes increasingly selective, converging
towards high-quality solutions. The Metropolis criterion controls the probability of
accepting a worse solution based on the difference between the objective function
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values of the current solution and the new perturbed solution, as well as the current
temperature. This mechanism enables SA to balance exploration and exploitation
effectively. The performance of SA is influenced by the initial temperature (T0), the
cooling rate (α), and the number of iterations at each temperature level (SAmax ). In
our implementation, the RVND heuristic (see Section 4.4) is applied before cooling
the temperature.

4.5.4 GRASP

Chaves et al. (2024) adapted the Greedy Randomized Adaptive Search Procedure
(GRASP) (Feo and Resende, 1995) and Continuous-GRASP (Hirsch et al., 2007)
to solve combinatorial optimization problems using random-key representation. This
algorithm has two phases: a constructive phase and a local search phase. The construc-
tive phase uses a line search strategy inspired by C-GRASP to generate new solutions,
while the local search phase employs the RVND (Section 4.4). Our GRASP iteratively
improves solutions by generating random-key vectors, adjusting the grid parameter h,
and using a simulated annealing acceptance criterion to decide whether to accept new
solutions.

The constructive phase is an iterative process that perturbs a given solution using
semi-greedy moves. Each iteration uses the line search to find the best objective func-
tion value for each random key that is not fixed, randomly generating new random
keys in the sub-intervals defined by h. A Restricted Candidate List (RCL) is then cre-
ated, containing indices of random keys that produced solutions within a range defined
by a randomly set parameter γ ∈ [0, 1]. An index is randomly selected from the RCL,
its corresponding random key is updated with the value found by the line search, and
this random key is fixed. This process continues until all random keys have been fixed,
balancing randomness and greediness in solution construction. Initially, the parameter
h is set to hs, and each iteration without improvement of the current solution makes
the grid more dense (h = h/2), up to an end grid density (he).

4.5.5 ILS

Iterated Local Searcch (ILS) (Lourenço et al., 2003) is a metaheuristic that alternates
between intensification and diversification to explore the solution space effectively. In
our implementation, we adapt the ILS framework to operate within the random-key
representation paradigm. The algorithm begins with an initial solution encoded as a
vector of random keys. It then enters its main loop, where it iteratively applies local
search to reach a local optimum, followed by a perturbation mechanism to escape
this local optimum. We consider two components in this process: the shaking method
(detailed in Section 4.2) and the RVND method (described in Section 4.4). The shak-
ing method is our perturbation mechanism, introducing controlled randomness to the
current solution while preserving some of its structure. In each iteration, a param-
eter β controls the intensity of the perturbation, generating a random value within
the interval [βmin, βmax]. The RVND, on the other hand, is utilized within the local
search phase to generate new candidate solutions by combining features of the cur-
rent solution with other elite pool solutions. By operating on random-key vectors
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throughout the search process, our adapted ILS maintains the flexibility and problem-
independence characteristic of RKO while benefiting from the exploration-exploitation
balance inherent to the ILS.

4.5.6 VNS

Variable Neighborhood Search (VNS) (Mladenović and Hansen, 1997) is a metaheuris-
tic similar to ILS that systematically leverages neighborhood changes to escape local
optima. In our implementation, VNS begins with an initial solution encoded as a vec-
tor of random keys and iteratively applies the shaking method (Section 4.2) and the
RVND method (Section 4.4). The shaking method perturbs the current solution with
a randomly selected intensity, denoted by β, which is defined by the current neigh-
borhood as k × βmin. If a better solution is found, the search returns to the first
neighborhood (k = 1); otherwise, it proceeds to the next neighborhood (k = k + 1).
A maximum neighborhood number (kmax) is predefined. After the shaking phase,
the RVND procedure is applied, systematically exploring multiple heuristics in a
randomized order.

4.5.7 PSO

Similar to BRKGA and GA, Particle Swarm Optimization (PSO) (Kennedy and Eber-
hart, 1995) is a population-based metaheuristic inspired by the social behavior of
bird flocking. In PSO, a group of p candidate solutions, known as particles, navigate
the search space by adjusting their positions based on their own best-known position
(P i

best) and the swarm’s best-known position (Gbest). We adapt PSO by representing
each particle as a vector of random keys. In each generation, all particles are updated
by calculating their current velocity V i

j using the following equation:

V i
j = w · V i

j + c1 · r1 · (P i
best − χi

j) + c2 · r2 · (Gbest − χi
j)

where c1, c2, and w are parameters, and r1 and r2 are random numbers uniformly
distributed in the real interval [0, 1].

With these updated velocities, we adjust all random keys j of particle i (χi
j) by

adding the corresponding velocity V i
j to the current value χi

j . The positions P
i
best and

Gbest are then updated with the new population. Additionally, the RVND heuristic
(Section 4.4) is applied to one randomly selected particle in each generation.

4.5.8 LNS

Large Neighborhood Search (LNS) (Ropke and Pisinger, 2006) is a metaheuristic
optimization technique designed for solving combinatorial problems by iteratively
destroying and repairing solutions, thereby enabling the exploration of an ample solu-
tion space. In each iteration, LNS partially deconstructs the current solution and then
reconstructs it, with the potential for improvement. We adapted this approach to uti-
lize the random-key representation, beginning with an initial random solution. The
deconstruction phase involves randomly removing a portion of the random keys, with
the intensity of this phase defined by a random value within the interval [βmin, βmax].
The repair phase is inspired by the Farey local search (Section 4.4.3), where new
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random values are generated for each removed random key within the intervals of
the Farey sequence. The random key is then assigned the value that yields the best
objective function result. This process continues until all random keys that have been
removed have been repaired. The acceptance criterion in LNS is based on the Metropo-
lis criterion, where worse solutions may be occasionally accepted depending on the
current temperature, allowing the algorithm to escape local optima and explore dif-
ferent regions of the solution space. The process begins with an initial temperature
(T0), gradually reducing by a cooling factor α at each iteration. Additionally, when-
ever LNS identifies a better solution, a local search is performed using the RVND
method (Section 4.4).

4.6 Q-Learning

Q-Learning (Watkins and Dayan, 1992) is a classical heuristic algorithm designed to
seek the solution to stochastic sequential decision problems, which can be modelled by
means of Markov decision processes (MDP)(Puterman, 2014). The goal is to find an
optimal stationary policy that minimizes the long-term cost by simulating the system’s
transitions under a greedy policy that is refined via stochastic approximation (Robbins
and Monro, 1951). Under appropriate parameter control conditions, the algorithm is
guaranteed to converge to an optimal solution as long as each action is tried infinitely
often for each possible system’s state.

To guide the parameter exploration, we define a Markov decision process for each
metaheuristic, with each state s in the state space S representing a possible parameter
configuration and each action a ∈ A(s) representing a transition between parameter

configurations available in s. A =
⋃
s∈S

A(s) is the set of feasible actions in S (e.g.,

Puterman, 2014). We assume that the user prescribes a discrete set of configurations
to comprise the state space S, and that each action corresponds to a change in a single
parameter whilst the remaining parameters are kept unaltered. We utilise Q−Learning
to navigate the state space and optimise the parameter choice.

Our approach was built upon the BRKGA-QL framework (Chaves and Lorena,
2021) and introduced a novel MDP representation. In the BRKGA-QL, each state
corresponds to a parameter, and the actions represent the possible values for those
parameters. In contrast, the new MDP representation is more efficient and robust,
offering enhanced performance and stability compared to the previous version.

At each step t, the agent selects an action at ∈ A(st) from the set of feasible
actions in the current state st using the Q-Table and following an ϵ-greedy policy (e.g,
Sutton and Barto, 2018). The objective is to maximize the total reward by choosing
the action with the highest Q-value in state st with a probability of 1− ϵ, while with
a probability of ϵ, a random action is selected to encourage exploration. This action
leads to a new parameter configuration.

Next, the parameters are adjusted, and a new iteration of the metaheuristic is
executed, after which the agent receives a reward Rt+1, either positive or negative.
The Q-Table is updated, and the agent transitions to the new state st+1. The following
function determines the reward Rt+1:
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Rt+1 =

{
1, if f t+1

b < f t
b

ft
b−ft+1

b

ft+1
b

, otherwise

where f t
b is the best objective function value of the solutions in iteration (epoch) t.

We utilize a warm restart decay strategy for ϵ to balance exploration and exploita-
tion (Chaves et al., 2024). This method resets the ϵ value at regular intervals.
Specifically, for every T computing period, where T represents 10% of the maximum
computational time set by the user, we reset ϵ. We apply a cosine annealing function
at each step to control the decay of the ϵ parameter:

ϵ = ϵmin +
1

2
(ϵimax − ϵmin)

(
1 + cos

(
T i
cur

T
π

))
where ϵmin = 0.1 and ϵimax = {1, 0.9, 0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1} define the range
for ϵ, while T i

cur tracks the elapsed time since the last reset.
The function Q(st, at) represents the value of taking action at in state st, indicating

how effective this choice is in optimizing the expected cumulative reward. The update
rule is given by:

Q(st, at) = Q(st, at) + lf
[
Rt+1 + df ×max

a
Q(st+1, a)−Q(st, at)

]
.

The value Q(st, at) is updated in every iteration based on the immediate reward
received. The value increases when the action leads to a positive reward Rt+1, and
the maximum Q-value of the next state exceeds the current Q(st, at), showing that
the action was more valuable than previously estimated. Conversely, it decreases when
receiving negative rewards, reflecting the undesirable outcomes of those actions.

The learning factor (lf ) and discount factor (df ) are parameters in Q-Learning,
adjusted through deterministic rules during the search process. The lf is updated
based on runtime, prioritizing newly acquired knowledge in the early generations and
gradually increasing the importance of the knowledge in the Q-Table (lf = 1− 0.9×
percentage of running time). The discount factor controls the weight of future rewards,
with a value between 0 and 1. A higher df (close to 1) emphasizes long-term rewards,
while a lower value focuses on immediate gains. We adopt the same strategy of Chaves
et al. (2024), where df is set to 0.8 to balance current and future rewards.

All metaheuristics can implement the adaptive control of parameters using the Q-
Learning. The proposed approach follows a systematic flow in three phases: initially,
the possible states and actions are defined, and the Q-Table is initialized with arbitrary
values; during the search process, at the beginning of each iteration, an action is
selected through the ϵ-greedy policy, which determines the parameter values to be
used; at the end of each iteration, the algorithm calculates the reward based on the
obtained performance, updates the Q-Table values through the Bellman equation, and
transitions to the next state. This mechanism allows the algorithm to progressively
learn which parameter configurations are most effective in different states of the search
process, dynamically adapting to the problem characteristics and search evolution.
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5 Applications

This section presents the applications of the RKO framework to three combinatorial
optimization problems classified as NP-hard:

• α-Neighbor p-Median Problem
• Node Capacitated Graph Partitioning Problem
• Tree Hub Location Problem

The RKO framework was coded in C++ and compiled with GCC using the O3 and
OpenMP directives. The computer used in all experiments was a Dual Xenon Silver
4114 20c/40t 2.2Ghz processor with 96GB of DDR4 RAM and CentOS 8.0 x64. Each
instance was run five times for each method, with a specific time limit as a stopping
criterion.

In the following subsections, we briefly describe the combinatorial optimization
problems, the decoder process, and a summary of the computational experiments.
For each problem, we present a table with the results found by the state-of-the-art
methods, the RKO framework, and each metaheuristic of the RKO run by itself. We
use the prefix “RKO-” to identify the RKO-based metaheuristic algorithms. For each
method and problem, we present an average of objective function values of the best
solutions found in all instances (column Best), an average time, in seconds, in which
the best solution was found (column best found at (s)), and the number of best-known
solutions found (column #BKS ). We also calculate the relative percentage deviation
(RPD) for each run and instance, defined by

RPD(%) =
(Z − BKS )

BKS
× 100,

where Z is the solution value found by a specific method, and BKS is the value of the
best-known solution. We present an average of the RPD for the best solution found
in five runs (column RPDbest) and an average of all RPDs computed over all runs
(column RPDaver ).

All instance sets and detailed results are available online at https://github.com/
antoniochaves19/RKO.

The parameters of the metaheuristics were tuned for each combinatorial opti-
mization problem using an offline parameter tuning strategy based on the design of
experiments (DoE). The values of the different parameters were fixed before execut-
ing the metaheuristics, with some cases employing adaptive deterministic rules. We
utilized an experimental design approach, considering the parameters and their poten-
tial values, to identify the “best” value for each parameter through many experiments
on a subset of the problem instances. The values used by RKO in each optimization
problem are presented in the following.

5.1 α-Neighbor p-Median Problem

The α-Neighbor p-Median Problem (αNpMP) (Panteli et al., 2021) is a variant of the
facility location problem where a predefined number, p, of facilities must be estab-
lished, and each demand point is assigned to its nearest α facilities. This problem
arises from the consideration that a facility may eventually close, yet the system or
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service must continue operating by reassigning demand points to other facilities. The
objective of the αNpMP is to minimize the total distance from each demand point to
its α assigned facilities.

The αNpMP is mathematically defined as follows: Given an undirected, weighted,
and connected graph G = (V,E) with |V | = n vertices and |E| = m edges, where
each edge (i, j) ∈ E has an associated non-negative weight dij ∈ R+, the αNpMP
seeks to find a subset S ⊆ V of p facilities (1 ≤ p ≤ n) that minimizes the sum of the
α-median distances for all vertices. The α-median distance of a vertex i, given a set
of facilities S, is defined as dm(i, S) =

∑
min{dij : j ∈ S′, S′ ⊂ S, |S′| = α}, where

α ≤ p. This value represents the sum of the distances from vertex i to its α closest
facilities within S. The objective function of the αNpMP can then be expressed as
min

∑
i∈V dm(i, S), subject to |S| = p and S ⊆ V . In this problem, all vertices i ∈ V ,

including those selected as facilities, are assigned to their α nearest medians among
the p open facilities.

The αNpMP has been addressed in two papers. Panteli et al. (2021) proposed
a relaxation of the assignment constraint in the p-median problem, requiring each
vertex to be allocated to its α nearest medians. To solve this problem, the authors
developed the Biclustering Multiple Median heuristic (BIMM). Subsequently, Chagas
et al. (2024) presented a mathematical model solvable by the Gurobi optimizer and
proposed a basic parallel Variable Neighborhood Search (BP-VNS) algorithm. The BP-
VNS successfully identified all optimal solutions, as Gurobi proved. In our study, we
compare the performance of the RKO algorithm against these two heuristics (BIMM
and BP-VNS) and the commercial solver.

We encoded solutions of the αNpMP as a vector of random keys (χ) of size p,
where each key corresponds to a facility that will be opened. The decoding begins by
generating a candidate list (C) containing all possible facilities. For each random key
i, an index k is selected from the candidate list based on the key’s value using the
formula ⌊χi × |C|⌋. The facility corresponding to this index in C is then added to the
set of open facilities, and position k is removed from the candidate list. This process
repeats until p facilities have been selected.

Once the open facilities are determined from the random key vector, the objective
function value of the solution is calculated. For each vertex j in the graph, the α closest
open facilities are assigned to it. The objective function is the sum of the distances
between each vertex and its α closest facilities.

Figure 8 illustrates an example of the αNpMP decoder with ten vertices and three
facilities (p = 3). We begin by defining the list C of candidate facilities and then
map a random-key vector directly into an αNpMP solution. The first random key
(0.45) corresponds to index 4 of the list C (k = ⌊0.45× 10⌋ = 4), so facility 5 is
opened and removed from the list C. The second random key (0.74) points to index 6
(k = ⌊0.74× 9⌋ = 6), representing facility 8, which is then opened and removed from
the list C. Finally, the last random key (0.12) corresponds to index 0 in the list C
(k = ⌊0.12× 8⌋ = 0), which is facility 1. Facility 1 is opened, completing the process.
The open facilities are, therefore, vertices 5, 8, and 1.

We used instances from the OR-library (Beasley, 1990) for the αNpMP experi-
ments. This set contains 40 instances with sizes ranging from 100 to 900 vertices. The
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Fig. 8 Example of the αNpMP decoder with ten vertices and three facilities.

number of facilities and α were set as {10, 20} and {5, 10}, respectively. We have com-
putational experiments for 80 instances. We compared the RKO results with Gurobi
version 10.0.3, BIMM (Panteli et al., 2021), and VNS (Chagas et al., 2024). We used
a stopping criterion for the RKO methods based on the computational time equal to
10% of the number of vertices for each instance (in seconds).

Table 1 presents the parameters of each metaheuristic used by the RKO to solve
the αNpMP.

Table 1 Parameters of the RKO metaheuristics to solve the αNpMP.

Parameters Definition BRKGA GA SA ILS VNS GRASP PSO LNS

p population size 1597 1000 100
pe elite set 0.10
pm mutant set 0.20
ρ inherit probability 0.70
pc crossover probability 0.85
µ mutation probability 0.03
T0 initial temperature 10000 1000
SAmax number of iterations 100
α cooling rate 0.99 0.90
βmin minimum rate of shaking 0.10 0.15 0.05 0.10
βmax maximum rate of shaking 0.20 0.40 0.30
kmax number of neighborhoods 6
hs start grid dense 0.125
he end grid dense 0.00012
c1 cognitive coefficient 2.05
c2 social coefficient 2.05
w inertia weight 0.73

Table 2 summarizes the results of the tests on the OR-Library instances. This
table shows the name of the method, the average of the best solution found on the 80
instances, the RPD of the best solution found in five runs and an average of the RPDs,
the average of the best time to find the best solution in each run, and the number
of BKS found. A literature review shows that Gurobi found the optimal solution
for all 80 instances tested. VNS (Chagas et al., 2024) also achieved these optimal
solutions, whereas BIMM (Panteli et al., 2021) failed to find optimal solutions for all
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instances, with a RPDbest of 2.55%. In the case of RKO, the individual metaheuristics
produced results close to the optimum, with RKO-VNS finding the optimal solution in
55 instances. However, when RKO was executed with all eight metaheuristics running
in parallel and exchanging information through the elite pool, it found the optimal
solution in 65 instances and produced results even closer to the optimum in all runs,
with a RPDaver of 0.02.

Table 2 Summary of the αNpMP results for the OR-library instances.

Method Best RPDbest RPDaver best found at (s) #BKS
Gurobi2 84296.53 0.00 - 155.67 80
BiMM1 86465.14 2.55 - 2.43 0
BP-VNS2 84296.53 0.00 - 0.38 80
RKO 84300.39 0.003 0.02 28.70 65
RKO-BRKGA 84310.84 0.01 0.07 23.11 54
RKO-SA 84349.73 0.04 0.10 38.67 51
RKO-GRASP 84328.86 0.03 0.10 41.02 51
RKO-ILS 84321.18 0.02 0.06 44.73 53
RKO-VNS 84321.68 0.02 0.06 42.43 55
RKO-PSO 84356.23 0.05 0.16 35.34 39
RKO-GA 84312.56 0.01 0.04 33.74 55
RKO-LNS 84335.30 0.03 0.12 38.84 50
1 (Panteli et al., 2021) 2 (Chagas et al., 2024)

To statistically evaluate the differences between the RKO method and its meta-
heuristics, we employed the Friedman test (Friedman, 1937), a non-parametric
statistical test. The null hypothesis was that no statistically significant differences
existed between the evaluated methods. If the Friedman test rejected the null hypoth-
esis, we could proceed with the Nemenyi post-hoc test (Nemenyi, 1963). The Nemenyi
test is analogous to the Tukey test used in ANOVA, and it allows for pairwise com-
parisons of all methods without designating a control method (Demšar, 2006). This
approach is recommended when comparing the performance of multiple methods
independently.

The Friedman test results showed that the null hypothesis was rejected at a 95%
confidence level, with a p-value of 1.35E-83. Considering a 5% significance thresh-
old, this indicated statistically significant differences in the results of the methods.
Therefore, we conducted the Nemenyi post-hoc test to identify the specific pairwise
differences between the methods.

The results of the Nemenyi test are presented in the heat map shown in Figure 9.
The green cells represent cases with a statistically significant difference at the 95% con-
fidence level. The Nemenyi test indicated that the RKO method produced significantly
better results than all the individual metaheuristics with the random-key represen-
tation. However, no statistically significant differences were found when comparing
GRASP and PSO, ILS and GA, or VNS and PSO, indicating a certain similarity in
the performance of these method pairs.

The computational time performance of the RKO methods was evaluated using the
performance profile technique introduced by Dolan and Moré (2002). The performance
ratio for each method-instance pair is defined as:
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Fig. 9 Heat map of the results (p-values) of the Nemenyi test for the RKO methods to solve the
αNpMP.

ri,h =
ti,h

min{ti,h|h ∈ H}
,

where ti,h represents the computational time required by method h to solve instance
i, and H is the set of all methods. To evaluate the quality of the results, a tolerance
threshold was set at RPDbest = 1% for each instance. If the RPDbest of a method’s
solution exceeded 1%, its computational time for that instance was set to∞, indicating
a failure to satisfy the convergence criteria.

The cumulative distribution function ρh(τ) computes the probability that a method
h achieves a performance ratio ri,h within a factor τ of the best possible ratio. This is
calculated as:

ρh(τ) =
|{i ∈ I : ri,h ≤ τ}|

|I|
,

where I is the set of all instances.
Figure 10 presents the performance profiles of the RKO methods on a log2 scale.

Using a performance profile with a convergence test, we could evaluate the accuracy
of the methods. The RKO method exhibited the most robust results in terms of both
computational time and solution quality, outperforming the individual metaheuristics
on the OR-library instances. For the 1% accuracy target (RPDbest ≤ 1), RKO was
able to find the target solution for all instances with a performance ratio of τ = 4
(corresponding to log2(τ) = 2). In contrast, the individual metaheuristics achieved
100% at a performance ratio higher than τ = 8 (log2(τ) = 3). Additionally, RKO
was the fastest solver for 45% of the instances, while RKO-BRKGA was the fastest
for 31% and the other methods for less than 10%. Looking at a performance ratio of
τ = 2 (log2(τ) = 1), RKO found the target solution for 80% of instances within a
factor of two from the best performance, compared to 70% for RKO-BRKGA and less
than 50% for the other methods.
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Fig. 10 Performance profile of runtime for RKO methods to solve the αNpMP.

5.2 Node Capacitated Graph Partitioning Problem

The node-capacitated graph partitioning problem (NCGPP), also known as the han-
dover minimization problem, can be described as follows. Let B denote the set of base
stations, where Tb represents the total traffic handled by base station b ∈ B and its
connected transceivers. Additionally, let N be the set of Radio Network Controllers
(RNCs), where each RNC r ∈ N has a maximum traffic capacity of Cr. Further-
more, define Hb1,b2 as the total number of handovers between base stations b1 and b2
(b1, b2 ∈ B, b1 ̸= b2). Note that Hb1,b2 and Hb2,b1 may differ.

The objective of the handover minimization problem is to assign each base station
b ∈ B to a specific RNC r ∈ N , such that the total number of handovers between
base stations assigned to different RNCs is minimized. Let ρb denote the index of the
RNC to which base station b is assigned, and Ψr denote the indices of base stations
assigned to RNC r. The assignments must satisfy the capacity constraints of each
RNC, meaning that for all r ∈ N : ∑

b∈Ψr

Tb ≤ Cr.

Mathematically, the problem can be formulated as finding the assignment of base
stations to RNCs that minimizes the total number of handovers between base stations
assigned to different RNCs: ∑

b1,b2∈B|ρb1
̸=ρb2

Hb1,b2 .

This optimization problem aims to balance the traffic load across the RNCs while
minimizing the overall handover between base stations, which is crucial for efficient
resource utilization and seamless user experiences in cellular networks.

One of the earliest contributions to the NCGPP came from Ferreira et al. (1998),
which introduced a branch-and-cut algorithm incorporating strong valid inequalities.
Their approach was tested on three diverse applications: compiler design, finite ele-
ment mesh computations, and electronic circuit layout. Mehrotra and Trick (1998)
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developed a branch-and-price algorithm for the NCGPP. Their experimental evalua-
tion encompassed instances with 30 to 61 nodes and 47 to 187 edges. Notably, they
solved these instances optimally, demonstrating the algorithm’s effectiveness. A signif-
icant advancement in heuristic approaches came from Deng and Bard (2011), which
introduced a reactive GRASP coupled with path-relinking. This metaheuristic was
tested on instances ranging from 30 to 82 nodes and 65 to 540 edges. The method
performed well, matching CPLEX’s optimal solutions in most cases while significantly
reducing computational time. The proposed heuristic outperformed the CPLEX solver
for larger instances, finding superior solutions. Finally, Morán-Mirabal et al. (2013)
proposed three randomized heuristics. First, the authors use the GRASP with path-
relinking proposed by Mateus et al. (2011) for the generalized quadratic assignment
(GQAP). The NCGPP is a particular case of the GQAP, where facilities are the base
stations, and locations are RNCs. They also developed a GRASP with evolutionary
path-relinking (GevPR) and a BRKGA to solve the NCGPP. A benchmark set of 83
synthetic instances that mimic problems encountered in practice is proposed, varying
in size from 20 to 400 nodes and 5 to 50 edges. The experiments show that the GevPR
performed better than the other methods.

In this paper, we encode solutions of the NCGPP as a vector of n = |B|+1 random
keys. The first |B| positions represent each base station, while the last random key
indicates the number of base stations assigned initially. Once sorted, the |B| random
keys will dictate the order in which base stations are assigned to the RNCs.

To decode a random-key vector and produce an assignment of base stations to
RNCs, the following steps are computed: sort the random-key vector and then group
base stations into RNCs, considering capacity constraints and costs. The assignment
process starts by ensuring the first #N = ⌈xn · |N |⌉ base stations are assigned to
separate RNCs. For each subsequent base station (|B| −#N), it searches for the best
RNC that can accommodate the base station without exceeding capacity, evaluating
the insertion cost based on the sum of handovers between the current base station and
base stations that are already in the RNCs. If a suitable RNC is found, the base station
is added, and the RNC’s capacity is updated. A penalty is added to the solution if no
RNC can accommodate the base station. Finally, the decoder calculates the objective
function value by summing the handover between base stations of different RNCs and
the penalties for ungrouped base stations.

Figure 11 shows an example of the NCGPP decoder with six base stations (|B| = 6)
and two RNCs (|N | = 2). In this example, #N = ⌈0.7 · 2⌉ = 2 and the ordered
random-key vector provides the sequence of base stations: 2, 4, 5, 3, 6, 1. From these
#N and sequence, base stations 2 and 4 are allocated to separate RNCs. Base station
5 is then allocated to RNC 2, as base station 5 has 191 handovers with base station
4 and only 116 with base station 2. Base station 3 is allocated to RNC 1, as it has
no handover with base stations 4 and 5, only with base station 2. Base station 6 is
allocated to RNC 2, which has 307 handovers (157 with base station 4 and 150 with
base station 5) against 13 for RNC 1. Finally, base station 1 is allocated to RNC 1
because it has only handovers with base stations 2 and 3.

We evaluated the performance of our proposed solution approach using the bench-
mark set with 83 instances proposed by Morán-Mirabal et al. (2013), which varied
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Fig. 11 Example of the NCGPP decoder with six base stations and two RNCs.

in size from 20 to 400 base stations and 5 to 50 RNCs. First, we evaluated the per-
formance of the commercial solver Gurobi (version 11.0) on the mathematical model
presented in Morán-Mirabal et al. (2013). Gurobi provided a baseline for comparison
against our RKO methods. Next, we compared the results obtained by our RKO meth-
ods against those of methods from the literature, including GRASP for the GQAP
(Mateus et al., 2011), GRASP with evolutionary path-relinking (GevPR) and BRKGA
(Morán-Mirabal et al., 2013). We implemented a stopping criterion for the RKO meth-
ods based on a computational time limit equal to the number of base stations in
each instance (measured in seconds). In contrast, we limited the execution time of the
Gurobi solver to 1800 seconds per instance. Regarding the three heuristic methods
from the literature, the authors allocated one hour of runtime for small instances and
24 hours for large instances using a Core 2 Duo processor with 2.2 GHz and 2.0 GB
RAM.

Table 3 presents the parameters of each metaheuristic used by the RKO to solve
the NCGPP.

Table 3 Parameters of the RKO metaheuristics to solve the NCGPP.

Parameters Definition BRKGA GA SA ILS VNS GRASP PSO LNS

p population size 1597 1000 50
pe elite set 0.10
pm mutant set 0.20
ρ inherit probability 0.70
pc crossover probability 0.85
µ mutation probability 0.002
T0 initial temperature 1000000 1000
SAmax number of iterations 1000
α cooling rate 0.99 0.90
βmin minimum rate of shaking 0.005 0.005 0.005 0.10
βmax maximum rate of shak-

ing
0.05 0.10 0.30

kmax number of neighbor-
hoods

10

hs start grid dense 0.125
he end grid dense 0.00012
c1 cognitive coefficient 2.05
c2 social coefficient 2.05
w inertia weight 0.73

Table 4 summarises the results for the NCGPP. The Gurobi solver successfully
identified optimal solutions for all smaller instances (up to 40 nodes) and proved opti-
mality for three instances with 100 nodes. For larger instances, the average optimality
gap was 15.24% (100-node instances), 80% (200-node instances), and 99% (400-node
instances). Gurobi obtained the best-known solution (BKS ) in 49 instances.
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The GevPR (Morán-Mirabal et al., 2013) heuristic and RKO methods, except
RKO-BRKGA, found optimal solutions for the smallest instances. RKO-BRKGA
failed to identify the optimum in one instance. Across the benchmark set, GevPR
identified the BKS in 56% of instances (47 out of 83). The individually run RKO
metaheuristics generally outperformed GevPR, with RKO-PSO being the exception,
finding the BKS in 42 instances. RKO-SA demonstrated the best performance, identi-
fying the BKS in 86% of instances, with a best relative percentage deviation (RPDbest)
of 0.02% and an average computational time of 73 seconds. The parallel implemen-
tation of RKO further enhanced the performance of the individual metaheuristics,
identifying the BKS in 76 instances (91%) within 70 seconds. The average RPDbest

was 0.01% and the average RPDaver was 0.08%.

Table 4 Summary of the NCGPP results for the benchmark instances.

Method Best RPDbest RPDaver best found at (s) #BKS
Gurobi 232534.93 24.39 - 487.83 49
GRASP1 157464.01 4.46 - - 47
GevPR2 139098.19 0.64 - - 47
BRKGA2 142737.82 1.69 - - 37
RKO 136605.66 0.01 0.08 70.71 76
RKO-BRKGA 137395.28 0.20 11.11 75.91 56
RKO-SA 136680.94 0.02 0.12 73.04 72
RKO-GRASP 137690.41 0.21 0.55 91.52 59
RKO-ILS 137994.82 0.29 0.56 80.59 55
RKO-VNS 137701.45 0.21 0.56 78.79 58
RKO-PSO 140043.08 0.91 1.60 27.22 42
RKO-GA 137656.60 0.27 2.18 66.81 50
RKO-LNS 137827.69 0.26 0.50 82.79 58
Mateus et al. (2011)1 Morán-Mirabal et al. (2013)2

As in Section 5.1, we subjected the RKO methods to statistical evaluation using the
Friedman and Nemenyi tests. The Friedman test results rejected the null hypothesis at
a 95% confidence level, with a p-value of 1.22E-199, indicating statistically significant
differences among the methods’ results. Consequently, we conducted pairwise compar-
isons of the RKO methods using the Nemenyi test, with results presented in Figure
12. Cells highlighted in green denote cases with statistically significant differences.
Our analysis indicated that the parallel RKO algorithm exhibited significant differ-
ences from all individually applied metaheuristics except for RKO-SA. Additionally, we
observed no statistically significant differences among RKO-BRKGA, RKO-GRASP,
RKO-ILS, RKO-VNS, and RKO-LNS metaheuristics.

We also evaluated the computational time performance of the RKO methods with
the performance profile plot. Figure 13 presents the performance profiles of the RKO
methods on a log2 scale. We utilized a performance profile incorporating a conver-
gence test to assess the methods’ accuracy (tolerance threshold was RPDbest = 1%).
The RKO method showed superior computational efficiency and solution quality, out-
performing individual metaheuristics when applied to benchmark instances. For a 1%
accuracy threshold, RKO found the target solution across all instances with a perfor-
mance ratio of τ = 16 (equivalent to log2(τ) = 4). In comparison, the RKO-SA, the
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Fig. 12 Heat map of the results (p-values) of the Nemenyi test for the RKO methods to solve the
NCGPP.

only metaheuristic that also found all the target solutions, has a performance ratio of
τ = 181 (log2(τ) = 7.5). Furthermore, RKO emerged as the most efficient solver for
50% of the instances, while RKO-BRKGA showed in 28% of cases, and other meth-
ods each accounted for less than 10%. At a performance ratio of τ = 2 (log2(τ) = 1),
RKO identified the target solution for 92% of instances within twice the time of the
best performer, compared to 55% for RKO-BRKGA and under 40% for the remaining
methods.

Fig. 13 Performance profile of runtime for RKO methods to solve the NCGPP.
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5.3 Tree Hub Location Problem

The Tree Hub Location Problem (THLP) is an optimization problem that defines a
set of ph hub nodes in a network, which are then connected by an undirected tree
(Contreras et al., 2010). Each non-hub node must be assigned to one of the designated
hubs, and all flows between nodes must travel through the hub network. Each arc
in the network has an associated transportation cost per unit of flow, and there is a
known demand between each pair of nodes in the network.

The objective function of the THLP has two main components. The first compo-
nent calculates the transportation costs incurred by routing all demands from non-hub
nodes to their assigned hubs. The second component accounts for the costs associated
with the flows within the hub tree. A discount factor is applied to the latter com-
ponent to reflect the potential economies of scale or efficiency gains inherent in the
transportation model.

The literature on THLP has explored a variety of solution approaches, both
exact and heuristic. Exact methods have included Mixed Integer Linear Programming
(MILP) models (Contreras et al., 2009, 2010) and Benders decomposition techniques
(de Sá et al., 2013). On the heuristic side, researchers have proposed approaches such
as the primal heuristic (Contreras et al., 2009) and the Biased Random-Key Genetic
Algorithm (BRKGA) (Pessoa et al., 2017). Furthermore, variants of the THLP have
been studied in the literature, expanding the problem scope (de Sá et al., 2015;
Kayışoğlu and Akgün, 2021). Notably, the BRKGA has emerged as a state-of-the-art
method for the THLP, finding the best-known results in the literature.

In this study, we adopt the encoding proposed by Pessoa et al. (2017) for our anal-
ysis. Consequently, the THLP solution is denoted by a random-key vector composed
of three distinct segments. As depicted in Figure 14, the first segment of the vector,
of dimension |N |, corresponds to the network nodes. The second segment, sized at
|N |−p, assigns non-hub nodes to their corresponding hubs. Finally, the third segment,
sized at p(p− 1)/2, represents all possible pairs of edges connecting the hubs.

Our decoder is also based on the decoder presented in Pessoa et al. (2017). It
begins by sorting the vector’s first segment to delineate hubs and non-hubs: the initial
p positions denote hubs, while the subsequent |N |−p positions are the non-hub nodes.
Subsequently, the second segment undertakes the task of assigning non-hub nodes to
their respective hubs. Achieving this involves partitioning the interval [0, 1] into p
equal intervals, each associated with a specific hub per the preceding ordering. Lastly,
the decoder arranges the random keys corresponding to inter-hub arcs in ascending
order. The resulting tree structure is then constructed using the Kruskal algorithm
applied to the sorted arcs. Figure 14 shows an example of the THLP decoder with
|N | = 10 and p = 3.

To evaluate the efficacy of our proposed RKO, we utilized two sets of benchmark
instances, referred to AP (Australian Post) and CAB (Civil Aeronautics Board), as
described in previous studies (Contreras et al., 2009, 2010). The AP dataset contains
information on postal districts across Australia, while the CAB dataset includes infor-
mation on the American cities with the highest volume of airline passenger traffic.
These datasets have 126 instances divided between smaller-scale instances (10, 20, and
25 nodes), medium (40, 50, and 60 nodes), and large-scale (70, 75, 90, and 100 nodes).
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Fig. 14 Example of the THLP decoder with ten nodes and three hubs.

Each instance has three different values of ph (3, 5, and 8) and discount factors (0.2,
0.5, and 0.8). We compared our RKO methods and methods from the literature, such
as an exact method (Contreras et al., 2009, 2010), a primal heuristic (Contreras et al.,
2009), and a BRKGA (Pessoa et al., 2017). We implemented a stop condition based
on a maximum computational time for our RKO methods. This time limit was set to
correspond with the number of network nodes in each instance, measured in seconds.

Table 5 presents the parameters of each metaheuristic used by the RKO to solve
the THLP.

Table 5 Parameters of the RKO metaheuristics to solve the THLP.

Parameters Definition BRKGA GA SA ILS VNS GRASP PSO LNS

p population size 1597 600 200
pe elite set 0.15
pm mutant set 0.20
ρ inherit probability 0.70
pc crossover probability 0.99
µ mutation probability 0.005
T0 initial temperature 1000000 1000000
SAmax number of iterations 1500
α cooling rate 0.99 0.97
βmin minimum rate of shak-

ing
0.01 0.05 0.005 0.10

βmax maximum rate of
shaking

0.05 0.20 0.30

kmax number of neigbor-
hoods

10

hs start grid dense 0.125
he end grid dense 0.00012
c1 cognitive coefficient 2.05
c2 social coefficient 2.05
w inertia weight 0.73

Tables 6 and 7 present the results for the THLP. The exact methods proposed by
Contreras et al. (2009, 2010) proved optimal solutions for 59 out of 63 small instances.
The RKO algorithm identified these optimal solutions and discovered the best-known
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solutions (BKS ) for the remaining four instances. All RKO metaheuristics performed
well for small instances, with the exception of BRKGA, which found only 37 BKS .
Similarly, the BRKGA proposed by Pessoa et al. (2017) found only 45 BKS . Conse-
quently, the methodologies of the other metaheuristics demonstrated greater efficacy
than BRKGA for this set of THLP instances. RKO methods also obtained the BKS for
medium and large instances. While the primal heuristic (Contreras et al., 2009) iden-
tified the BKS for only 29 out of 63 instances, the parallel RKO algorithm successfully
found the BKS for 60 instances. RKO-LNS found the BKS for the remaining three
instances. Besides, RKO-GRASP, RKO-ILS, and RKO-VNS each found the BKS in
one of these instances. Notably, RKO was the method that obtained the lowest value
for RPDbest and RPDaver.

Table 6 Summary of the THLP results for the CAP and AP small instances.

Method Best RPDbest RPDaver best found at (s) #BKS
Exact method1 26620.58 0.04 - 1436.51 59
BRKGA2 26685.72 0.22 - 53.93 45
RKO 26608.76 0.00 0.04 1.04 63
RKO-BRKGA 26826.06 0.66 1.59 4.19 37
RKO-SA 26609.03 0.00 0.05 3.54 62
RKO-GRASP 26608.76 0.00 0.04 1.69 63
RKO-ILS 26608.76 0.00 0.07 1.29 63
RKO-VNS 26608.76 0.00 0.00 1.08 63
RKO-PSO 26608.76 0.00 0.00 1.69 63
RKO-GA 26612.17 0.02 0.09 3.64 58
RKO-LNS 26608.76 0.00 0.00 1.30 63
Contreras et al. (2009, 2010)1 Pessoa et al. (2017)2

Table 7 Summary of the THLP results for the AP medium and large instances.

Method Best RPDbest RPDaver best found at (s) #BKS
Primal heuristic1 66203.51 0.89 - 1616.26 29
RKO 65639.39 0.005 0.12 16.75 60
RKO-BRKGA 67281.20 2.71 5.10 9.62 1
RKO-SA 65940.80 0.46 1.02 30.04 35
RKO-GRASP 65651.48 0.03 0.31 28.64 56
RKO-ILS 65642.42 0.009 0.57 21.53 58
RKO-VNS 65642.51 0.009 0.12 27.26 59
RKO-PSO 65683.33 0.07 0.20 24.90 48
RKO-GA 65777.66 0.22 0.71 30.06 34
RKO-LNS 65642.73 0.01 0.10 23.66 59
Contreras et al. (2009)1

The Friedman and Nemenyi statistical tests corroborate this analysis. The Fried-
man test rejects the null hypothesis at a 95% confidence level with a p-value of 0,
indicating a statistically significant difference among the methods. However, the results
of the Nemenyi test, illustrated in Figure 15, indicate that RKO exhibits a statistically
significant difference only when compared to RKO-BRKGA, RKO-SA, and RKO-GA.
No statistically significant differences were observed among the other methods.
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Fig. 15 Heat map of the results (p-values) of the Nemenyi test for the RKO methods to solve the
THLP.

Finally, we evaluated the computational time performance of the RKO methods
with the performance profile. Figure 16 presents the performance profiles of the RKO
methods on a log2 scale. We employed a performance profile that included a conver-
gence test to evaluate the accuracy of the methods, with a tolerance threshold set at
RPDbest = 1%. The RKO method consistently outperformed the other methods indi-
vidually. However, its superiority is less pronounced compared to the previous two
problems. RKO was the most efficient method for solving 35% of the instances, while
RKO-ILS was the most efficient in 25% of the cases. With a performance factor of
τ = 2 (log2(τ) = 1), RKO solved up to 70% of the instances, and RKO-ILS solved
65%. RKO-VNS, RKO-PSO, and RKO-LNS each solved 50% of the instances. How-
ever, when τ = 4 (log2(τ) = 2), RKO-LNS and RKO-PSO solved more instances
than RKO (86% versus 82%). These methods and RKO-VNS achieved 100% of solved
instances with a better performance factor than RKO.

5.4 RKO with Q-Learning

This section presents the results of applying RKO with online parameter control using
the Q-Learning method. The sets of possible values for each metaheuristic parameter
were derived from Tables 1, 3, and 5. These parameter sets were then used to create
a Markov Decision Process (MDP) for each metaheuristic, enabling Q-Learning to
identify the most appropriate configurations (policy) for each problem, instance, and
at various stages of the search process.

In the RKO framework with Q-Learning, users only need to implement problem-
specific decoders, while the proposed approach dynamically adjusts the metaheuristic
parameters during the search. This adaptive behavior allows the exploration of the
random-key solution space, improving the likelihood of finding high-quality solutions.

Table 8 presents the results of RKO using both parameter tuning and parameter
control. The performance of RKO with Q-Learning was similar to that of the offline
parameter configuration version. Both approaches often effectively identified the best
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Fig. 16 Performance profile of runtime for RKO methods to solve the THLP.

solutions across the three optimization problems, exhibiting comparable relative per-
centage deviations. However, RKO with Q-Learning exhibited longer computational
times, which can be attributed to the need for multiple iterations to learn an effective
policy for parameter adjustment. Nemenyi’s statistical test indicated no significant
difference between the RKO versions (p-value > 0.05).

Table 8 Comparison of RKO results with parameter tuning and parameter control.

Method Best RPDbest RPDaver best found at (s) #BKS p-value

THLP
RKO 46124.08 0.003 0.08 8.89 123

0.900
RKO-QL 46125.86 0.007 0.10 10.15 121

αNpMP
RKO 84300.39 0.003 0.02 28.70 65

0.900
RKO-QL 84304.00 0.006 0.03 29.63 60

NCGPP
RKO 136605.66 0.01 0.08 70.71 75

0.202
RKO-QL 137391.78 0.11 0.20 91.77 65

6 Conclusion

This paper introduced the Random-Key Optimizer (RKO), a novel and versatile
optimization framework designed to tackle a wide range of combinatorial opti-
mization problems. By encoding solutions as vectors of random keys and utilizing
problem-specific decoders, RKO provides a unified approach that integrates multiple
metaheuristics, including simulated annealing, iterated local search, and greedy ran-
domized adaptive search procedures. The RKO framework’s modular design allows
it to adapt to various optimization challenges, consistently yielding high-quality
solutions.
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Our extensive testing on NP-hard problems such as the α-neighborhood p-
median problem, the tree of hubs location problem, and the node-capacitated
graph partitioning problem demonstrated RKO’s effectiveness in producing opti-
mal or near-optimal solutions efficiently. The framework’s flexibility in incorporating
diverse metaheuristics, coupled with its superior performance across different prob-
lem domains, underscores its robustness and potential as a foundational tool for
combinatorial optimization.

The innovation of combining random-key encoding with a modular metaheuris-
tic approach opens new avenues for addressing complex optimization problems that
were previously intractable. Tuning the parameters of metaheuristics can be a time-
consuming and computationally expensive task. To address this, we enhance the
framework by developing a hybrid approach that integrates RKO with machine learn-
ing techniques to predict optimal parameter configurations during the search process.
Future research could focus on incorporating adaptive mechanisms that dynamically
select the most effective metaheuristic based on the problem instance. Expanding
the elite solution pool’s role in guiding the search process and exploring alternative
solution-sharing strategies could further improve the framework’s performance.

As the field of optimization continues to evolve, the RKO framework is well-
positioned to serve as a powerful tool for researchers and practitioners alike. Its
adaptability and effectiveness suggest broad applicability in other combinatorial opti-
mization challenges, including emerging fields such as network design, logistics, and
bioinformatics. Future research could apply a linear programming method to explore
the search space of random keys, potentially enhancing the framework’s efficiency.
By continuing to refine and expand this framework, we can unlock new possibilities
for solving optimization problems with greater efficiency and effectiveness, ultimately
advancing the state of the art in operations research.
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Mladenović, N., Hansen, P.: Variable neighborhood search. Computers & Operations
Research 24(11), 1097–1100 (1997)
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Appendix A - Results of statistical tests

This appendix presents the tables containing the p-values obtained from the Nemenyi
statistical test. The Nemenyi test is commonly used for post-hoc comparisons in exper-
iments involving multiple algorithms, particularly when evaluating their performance
across different datasets or problem instances. The p-values provide insights into the
significance of the differences between the algorithms, allowing us to assess which ones
exhibit statistically significant superior performance.

Table 9 Results (p-values) of the Nemenyi test for the RKO methods to solve the ANpMP

RKO BRKGA SA GRASP ILS VNS PSO GA LNS
RKO 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
BRKGA 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
SA 0.001 0.001 0.001 0.001 0.007 0.001 0.001 0.001
GRASP 0.001 0.001 0.001 0.001 0.047 0.540 0.001 0.001
ILS 0.001 0.001 0.001 0.001 0.001 0.001 0.900 0.001
VNS 0.001 0.001 0.007 0.047 0.001 0.900 0.001 0.001
PSO 0.001 0.001 0.001 0.540 0.001 0.900 0.001 0.001
GA 0.001 0.001 0.001 0.001 0.900 0.001 0.001 0.001
LNS 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001

Table 10 Results (p-values) of the Nemenyi test for the RKO methods to solve the NCGPP.

RKO BRKGA SA GRASP ILS VNS PSO GA LNS
RKO 0.001 0.900 0.001 0.001 0.001 0.001 0.001 0.001
BRKGA 0.001 0.001 0.900 0.900 0.900 0.001 0.001 0.862
SA 0.900 0.001 0.001 0.001 0.001 0.001 0.001 0.001
GRASP 0.001 0.900 0.001 0.900 0.900 0.001 0.001 0.900
ILS 0.001 0.900 0.001 0.900 0.900 0.001 0.001 0.705
VNS 0.001 0.900 0.001 0.900 0.900 0.001 0.001 0.900
PSO 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
GA 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
LNS 0.001 0.862 0.001 0.900 0.705 0.900 0.001 0.001

Table 11 Results (p-values) of the Nemenyi test for the RKO methods to solve the THLP

RKO BRKGA SA GRASP ILS VNS PSO GA LNS
RKO 0.001 0.900 0.001 0.001 0.001 0.001 0.001 0.001
BRKGA 0.001 0.001 0.900 0.900 0.900 0.001 0.001 0.862
SA 0.900 0.001 0.001 0.001 0.001 0.001 0.001 0.001
GRASP 0.001 0.900 0.001 0.900 0.900 0.001 0.001 0.900
ILS 0.001 0.900 0.001 0.900 0.900 0.001 0.001 0.705
VNS 0.001 0.900 0.001 0.900 0.900 0.001 0.001 0.900
PSO 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
GA 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
LNS 0.001 0.862 0.001 0.900 0.705 0.900 0.001 0.001
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Appendix B - Metaheuristics pseudocode

In the appendix, we provide the pseudocode for the metaheuristics used in the RKO.
These algorithms play a crucial role in the RKO by efficiently exploring and exploit-
ing the search space. The pseudocode outlines each metaheuristic’s key steps and
procedures, clearly and concisely representing their mechanisms. This supplementary
material is intended to enhance the understanding of the implementation details. It
can be a reference for those looking to replicate or extend the methodologies presented
in this paper.

Algorithm 8: BRKGA

Data: time limit
Output: Best solution found χbest

1 Randomly generate the population P with p solutions;

2 Evaluate and sort P by the objective function. Store the best solution in χbest ;
3 while time limit is not reached do
4 Classify P as elite or non-elite solutions;
5 Create elite set Pe using pe as a guide;
6 Create the offspring set Pc through the Blending method, using ρe and

factor = 1 as guides;
7 Create the mutant set Pm using pm as guide;
8 P ← Pe ∪ Pc ∪ Pm;
9 Evaluate and sort P by the objective function;

10 if the best solution improved then
11 χbest ← RVND(P 1);

12 Store the best solution in χbest ;

13 return χbest ;
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Algorithm 9: GA

Data: time limit
Output: Best solution found χbest

1 Randomly generate the population P with p solutions;

2 Evaluate P by the objective function. Store the best solution in χbest ;
3 while time limit is not reached do
4 Select parents with the tournament method;
5 Create P ′ recombining pairs of parents with the Blending method with

probability pc, using ρe = 0.5, factor = 1, and µ as guides;
6 P ← P ′;
7 Evaluate P by the objective function;
8 Randomly select a solution χi from P ;
9 P i ← RVND(χi);

10 if the best solution improved then
11 Store the best solution in χbest ;

12 return χbest ;

Algorithm 10: SA

Data: time limit
Result: Best solution found χbest

1 Randomly generate an initial solution χ;

2 χbest ← χ, T ← T0 ;
3 while time limit is not reached do
4 iter ← 0;
5 while iter < SAmax do
6 χ′ ← Shaking(χ, βmin , βmax );
7 Calculate the energy difference ∆E ← f(D(χ′))− f(D(χ));
8 if ∆E ≤ 0 then
9 χ← χ′;

10 if f(D(χ)) < f(D(χbest)) then
11 χbest ← χ;

12 else
13 Calculate the acceptance probability τ ← exp

(
−∆E

T

)
;

14 if UnifRand(0, 1) < τ then
15 χ← χ′;

16 iter ← iter + 1;

17 χ← RVND(χ);
18 Update temperature T ← α× T ;

19 return χbest ;
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Algorithm 11: GRASP

Data: time limit
Result: Best solution found (χbest)

1 Randomly generate an initial solution χ;

2 χbest ← χ;
3 while time limit is not reached do
4 h← hs;
5 while h ≥ he do
6 χ′ ← ConstructGreedyRandomized(χ, h);
7 χ′′ ← RVND(χ′);

8 if f(D(χ′′)) < f(D(χbest)) then
9 χbest ← χ′′;

10 else
11 h← h/2;

12 if accept(χ′′, χ) then
13 χ← χ′′;

14 Randomly generate a new solution χ;

15 return χbest ;
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Algorithm 12: ConstructGreedyRandomized

Data: χ, h
Result: A constructive semi-greedy solution.

1 UnFixed ← {1, 2, ..., n};
2 α← UnifRand(0,1);
3 Reuse ← false;
4 while UnFixed ̸= ∅ do
5 min ← +∞; max ← −∞;
6 for i = 1, ..., n do
7 if i ∈ UnFixed then
8 if Reuse = false then
9 [ri, gi]← LineSearch(χ, h, i);

10 if min > gi then
11 min ← gi;

12 if max < gi then
13 max ← gi;

14 RCL← ∅;
15 for i = 1, ..., n do
16 if i ∈ UnFixed and gi ≤ min + α · (max −min) then
17 RCL← RCL ∪ {i};

18 j ← RandomlySelectElement(RCL);
19 if χj = rj then
20 Reuse ← true;
21 else
22 χj ← rj ;
23 f(D(χ))← gj ;
24 Reuse ← false;

25 UnFixed ← UnFixed\{j};
26 return χ
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Algorithm 13: ILS

Data: time limit
Result: Best solution found (χbest)

1 Randomly generate an initial solution χ0;
2 χ← RVND(χ0);

3 χbest ← χ;
4 iterNoImprov ← 0;
5 while time limit is not reached do
6 χ′ ← Shaking(χ, βmin , βmax );
7 χ′∗ ← RVND(χ′);
8 if acceptance criterion (χ′∗, χ)) then
9 χ← χ′∗;

10 if (f(D(χ′∗)) < f(D(χbest)) then
11 χbest ← χ′∗;

12 else
13 iterNoImprov ← iterNoImprov + 1;

14 if history(iterNoImprov) then
15 Randomly generate an solution χ;

16 return χbest ;
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Algorithm 14: VNS

Data: time limit
Result: Best solution found (χbest)

1 Randomly generate an initial solution χ;

2 χbest ← χ;
3 iterNoImprov ← 0;
4 while time limit is not reached do
5 k ← 1;
6 while k < kmax do
7 β ← k × βmin ;
8 χ′ ← Shaking(χ, β, β);
9 χ′∗ ← RVND(χ′);

10 if acceptance criterion (χ′∗, χ)) then
11 χ← χ′∗;

12 if (f(D(χ′∗)) < f(D(χbest)) then
13 χbest ← χ′∗;

14 else
15 k ← k + 1;
16 iterNoImprov ← iterNoImprov + 1;

17 if history(iterNoImprov) then
18 Randomly generate an solution χ;

19 return χbest ;

Algorithm 15: PSO

Data: time limit
Output: Best solution found χbest

1 Randomly generate the locations χi and velocity vi of p solutions;

2 Evaluate χi. Store the best solution in χbest ;
3 while time limit is not reached do
4 Generate new velocity vi for all solutions and dimensions using

w, r1, r2, c1, c2 as guides;
5 Calculate new locations χi ← χi + vi;
6 Evaluate objective functions at new locations χi;
7 Find the current best for each solution χi∗;
8 if the best solution improved then
9 Store the best solution in χbest ;

10 Randomly select a solution χj ;
11 χj ← RVND(χj);

12 return χbest ;
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Algorithm 16: LNS

Data: time limit
Result: Best solution found χbest

1 Randomly generate an initial solution χ;

2 χbest ← χ, T ← T0 ;
3 while time limit is not reached do
4 while T > 0.0001 do
5 remove β = UnifRand(βmin , βmax ) random keys from χ;
6 repair β random keys of χ using the Farey LS;
7 χ′ ← RVND(χ);
8 Calculate the energy difference ∆E ← f(D(χ′))− f(D(χ));
9 if ∆E ≤ 0 then

10 χ← χ′;

11 if f(D(χ)) < f(D(χbest)) then
12 χbest ← χ;

13 else
14 Calculate the acceptance probability τ ← exp

(
−∆E

T

)
;

15 if UnifRand(0, 1) < τ then
16 χ← χ′;

17 Update temperature T ← α× T ;

18 Reanelling T ← T0 × 0.3;

19 return χbest ;
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Algorithm 17: BRKGA-CS

Data: time limit
Output: Best solution found χbest

1 Initialize Q-Table values;
2 Randomly generate the population P with p solutions;

3 Evaluate and sort P by the objective function. Store the best solution in χbest ;
4 while time limit is not reached do
5 Set Q-Learning parameters (ϵ, lf , df );
6 Choose an action for each parameter (p, pe, µ, ρe) from the Q-Table using

the ϵ-greedy policy;
7 Classify P as elite or non-elite solutions;
8 Create elite set Pe using pe as a guide;
9 Create the offspring set Pc through the blending procedure, using ρe, µ,

and factor = 1 as guides;
10 P ← Pe ∪ Pc;
11 Evaluate and sort P by the objective function;
12 if the best solution improved then
13 Store the best solution in χbest ;
14 Set reward (Ri) and update Q-Table;

15 if exploration or stagnation is detected then
16 Identify communities in Pe with the clustering method;
17 Apply RVND in the best solutions of these communities;
18 Apply Shaking in other solutions;

19 return χbest ;
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