
1

Vol.:(0123456789)

Scientific Reports |         (2024) 14:1774  | https://doi.org/10.1038/s41598-024-52185-2

www.nature.com/scientificreports

Multimodal classification 
of Alzheimer’s disease and mild 
cognitive impairment using 
custom MKSCDDL kernel over CNN 
with transparent decision‑making 
for explainable diagnosis
V. Adarsh 1, G. R. Gangadharan 1, Ugo Fiore 2 & Paolo Zanetti 3*

The study presents an innovative diagnostic framework that synergises Convolutional Neural 
Networks (CNNs) with a Multi‑feature Kernel Supervised within‑class‑similar Discriminative Dictionary 
Learning (MKSCDDL). This integrative methodology is designed to facilitate the precise classification 
of individuals into categories of Alzheimer’s Disease, Mild Cognitive Impairment (MCI), and Cognitively 
Normal (CN) statuses while also discerning the nuanced phases within the MCI spectrum. Our 
approach is distinguished by its robustness and interpretability, offering clinicians an exceptionally 
transparent tool for diagnosis and therapeutic strategy formulation. We use scandent decision trees 
to deal with the unpredictability and complexity of neuroimaging data. Considering that different 
people’s brain scans are different, this enables the model to make more detailed individualised 
assessments and explains how the algorithm illuminates the specific neuroanatomical regions that are 
indicative of cognitive impairment. This explanation is beneficial for clinicians because it gives them 
concrete ideas for early intervention and targeted care. The empirical review of our model shows that 
it makes diagnoses with a level of accuracy that is unmatched, with a classification efficacy of 98.27%. 
This shows that the model is good at finding important parts of the brain that may be damaged by 
cognitive diseases.

Alzheimer’s disease (AD) is a deeply impactful, chronic neurological condition that stands as the leading cause 
of dementia worldwide. It transforms the very fabric of our cognitive functions, affecting memory, thought pro-
cesses, and behaviour in profound ways. The disease causes beta-amyloid plaques and tau protein tangles to build 
up in the brain, making a complicated web. These harmful deposits do not just sit there; they actively interfere 
with the important signalling between neurons. Over time, this leads to a terrible chain of events, including 
the death of neurons, a loss of cognitive ability, and a loss of the ability to do things. The condition is not only 
a medical issue but also a complicated system that has not been fully  understood1,2. AD typically begins with 
mild memory loss and confusion and gradually progresses to severe dementia and loss of basic bodily functions, 
eventually leading to death. This progressive neural and synaptic deterioration leads to a range of cognitive and 
functional deficits, including memory impairment, language difficulties, confusion, and behavioural changes. 
The impacts of Alzheimer’s disease are substantial and can have a considerable influence on the overall quality of 
daily life of an individual, as well as that of their caregivers and family members. Despite ongoing research efforts, 
there is currently no known cure for AD, making it a significant public health challenge. It is a complicated and 
multifaceted disease whose pathogenesis is still unknown. According to recent studies, there may be up to 50 
million instances of Alzheimer’s disease  globally3,4.

MCI is a neurodegenerative condition that affects a sizeable portion of the population. MCI is marked by 
memory loss and is thought to be an early sign of AD. MCI is generally considered to be a transitional state that 
occurs between healthy ageing and the onset of  AD5,6. However, the precise boundary between MCI and AD is 
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often unclear, and there may also be changes in healthy ageing that are of interest to  neuroscientists7. Understand-
ing the complex relationship between MCI, healthy ageing, and AD is crucial to developing effective interven-
tions for this debilitating neurological disease. It is worth noting that not all people with MCI will develop  AD8. 
While some individuals with MCI never develop dementia, others stay in the MCI state indefinitely. Identifying 
people with MCI at an early stage, however, is critical for slowing the development of AD, even though there is 
presently no cure for this disease. Studies have shown that early treatment can delay the start of AD symptoms, 
and therapies have been made to control cognitive and behavioural symptoms. MCI and AD diagnosis require 
precise and dependable indicators, and several advances have been achieved in this  area9–11.

Related work
Advancements in AI/ML have enabled rapid detection and confirmation of  AD12. In the rapidly evolving field 
of AD diagnosis, several machine learning and deep learning methods have come to the fore, each with unique 
strengths and limitations. Ortiz et al.13 make a significant contribution by applying deep belief networks to 3D 
patches of Gray Matter images segmented according to the Automated Anatomical Labelling atlas. This approach 
is particularly noteworthy for its high accuracy rates and Area Under the Curve (AUC) values, indicating a 
robust ability to classify not just AD patients but also those with MCI. One limitation, however, is the substantial 
computational power required due to the complexity of deep learning models. Nanni et al.14 tackle the issue 
of the ’curse-of-dimensionality,’ a common problem when dealing with high-dimensional MRI feature vectors. 
They propose a hybrid ensemble approach that integrates Support Vector Machines (SVMs) trained on differ-
ent texture descriptors with SVMs trained on voxel-based markers. By employing feature selection algorithms 
for dimensionality reduction, their system achieves a high classification performance on AD. Despite this, the 
approach does not fully explore the potential of more advanced machine learning techniques like Convolutional 
Neural Networks. Feng et al.15 introduced AD-WTEF, a method that leverages Wavelet Transformation Energy 
Features (WTEF) to capture subtle energy distribution differences in Structural Magnetic Resonance Imaging 
(sMRI) for AD classification. This method is designed to overcome the limitations of traditional spatial analysis 
techniques. While effective, the approach is not without its challenges, including information redundancy due 
to the non-downsampling nature of the wavelet transformation. Leming et al.16 contributed by addressing the 
challenge of confounding factors in clinical MRI data. Utilising a massive dataset of 467,464 clinical brain MRI 
scans from the Mass General Brigham healthcare system, they identified 18 significant confounding factors and 
curated a confounder-free training set for AD and MCI. They then applied an ensemble of 3D ResNet-50 mod-
els, achieving an impressive AUC score of 0.82. However, the study’s confinement to a single healthcare system 
raises questions about its broader applicability. In essence, Ortiz et al. and Leming et al. achieve high model 
performance but require broader validation to confirm their general applicability. In contrast, Nanni et al. and 
Feng et al. tackle specific issues in the feature space but could benefit from the integration of more advanced 
machine-learning methods.

Deep Learning (DL) methods are gaining recognition for their ability to improve AD diagnosis. One of the 
best things about DL methods is that they can find hidden characteristics across many layers independently. 
Su et al.17 developed the Firefly Algorithm for Anomaly Detection (FAAD) and FAAD + Entropy-Conditional 
adversarial Domain AdaptatioN (CDANE) algorithms, specialised for few-shot cross-site anomaly detection 
in mental disorders based on fMRI Functional Connectivity (FC). The inclusion of visualisation analysis for 
discriminative FC and brain regions adds a layer of biological authenticity to our methods, potentially aiding 
in the discovery of imaging biomarkers. However, the algorithms are limited by their reliance on a few labelled 
samples from the target domain, which may introduce a degree of uncertainty in settings with highly variable 
feature distributions. Pan et al.18 proposed AD and MCI diagnosis; the Disease-image-Specific Deep Learning 
(DSDL) framework offers a novel solution to the pervasive issue of incomplete multimodal neuroimaging data. 
Unlike extant methodologies, DSDL integrates neuroimage synthesis and disease diagnosis, ensuring a diagnosis-
oriented approach to data imputation. Comprising a Disease-image-Specific Network and a Feature-consistency 
Generative Adversarial Network, the framework excels at capturing disease-specific traits from whole-brain scans 
and imputing missing data seamlessly. However, the effectiveness of the framework is intrinsically linked to the 
quality of the imputed neuroimages, making it susceptible to variations in the inherent data quality and poten-
tially limiting its generalizability across diverse clinical settings. Basaia et al.19 leveraged CNNs to offer a robust, 
automated diagnostic solution. Capitalising on 3D T1-weighted MRI scans, they achieved exceptional accuracy 
levels, particularly in distinguishing AD from healthy controls (up to 99%). A distinct advantage lies in the use 
of a simplified CNN architecture that minimises computational complexity while maximising performance. 
However, the model’s performance in discerning c-MCI from s-MCI is not as robust as its ability to classify AD 
or MCI from healthy controls. Additionally, the algorithm’s predictive capabilities could be further enhanced by 
incorporating other types of data, such as PET scans, CSF biomarkers, and neuropsychological scores. Lei et al.20 
introduced a novel framework for predicting clinical scores in AD using longitudinal MRI data. Unlike traditional 
approaches that rely on single time-point data, this framework employs multiple time points to enhance predic-
tion accuracy. It consists of a sophisticated ensemble of feature selection, deep polynomial networks for feature 
encoding, and support vector regression for longitudinal score prediction. However, the model currently uses 
only longitudinal MRI data from ADNI, overlooking the potential insights from other modalities like fMRI, PET, 
and DTI. Lian et al.21 introduce a Hierarchical, Fully Convolutional Network (H-FCN) for AD diagnosis using 
sMRI. Unlike existing methods that rely on predetermined informative locations, H-FCN autonomously identifies 
discriminative local patches and regions in the brain. These are then used for multi-scale feature representations, 
upon which hierarchical classification models are constructed. However, the study’s scope is limited to sMRI data 
and does not incorporate other imaging modalities or clinical variables. It remains to be seen how the method 
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performs when integrated with other diagnostic markers or when applied to diverse clinical populations. Future 
work could focus on multimodal integration for a more comprehensive diagnostic tool.

In the current landscape of AD research, there has been a marked increase in the application of multimodal 
data for the usage of early identification and diagnosis. The integration of data from diverse sources, including 
but not limited to MRI, genetics, and clinical data, has led to a significant improvement in the accuracy and reli-
ability of indicators for AD. Jain et al.22 used a pre-trained CNN, VGG-16, for classification tasks on brain sMRI 
slices. By employing transfer learning, the study ingeniously bypasses a common limitation in deep learning: the 
need for large datasets. The VGG-16 model proves adept at extracting relevant features for classifying AD, MCI, 
and CN states, achieving an impressive 95.73% accuracy on the validation set. However, the transfer learning 
approach, while innovative, risks potential incongruities between general image features and the specialised fea-
tures relevant to neurodegenerative diseases. Spasov et al.23 aimed to distinguish between MCI patients at elevated 
risk for AD conversion and those less likely to convert. Leveraging a multi-tasking approach, the model concur-
rently tackles MCI-to-AD conversion and AD vs. healthy control classification, facilitating a more robust feature 
extraction for AD prognosis. In terms of predictive power, the model achieved an AUC of 0.925 and a tenfold 
cross-validated accuracy of 86% in classifying MCI patients. Although the model utilised various input metrics, 
the warp field characteristics added little to predictive value. To improve data exchange between layers, Wang 
et al.24 used an ensemble of 3D Densely Connected Convolutional Networks (3D-DenseNets). The use of dense 
connections within the network ensures optimised information flow and gradient propagation, making it more 
trainable while using fewer parameters—a critical advantage when dealing with limited training data. However, 
the focus is solely on MRI data, ignoring potential synergies with other modalities or clinical variables. Cheng 
et al.25 introduce a novel Multimodal Manifold-Regularized Transfer Learning (M2TL) method aimed at effec-
tively predicting the conversion from MCI to AD. Unlike conventional approaches that focus solely on the target 
domain, M2TL leverages both auxiliary domains and unlabelled samples to enhance predictive performance. 
Furthermore, the inclusion of group sparsity regularisation allows the model to auto-select informative samples, 
adding robustness to the classifier. However, it primarily focuses on imaging data, bypassing other potentially 
valuable diagnostic information like genetic or lifestyle factors. Suk et al.26 present an innovative methodological 
framework that merges Deep Auto-Encoder (DAE) with Hidden Markov Models (HMM) for diagnosing MCI 
through resting-state functional Magnetic Resonance Imaging (rs-fMRI). However, the study’s limitations include 
its focus solely on computational modelling without incorporating other types of diagnostic data. Furthermore, 
the method’s generalizability beyond the datasets used for validation remains untested. Li et al.27 introduce a 
novel approach for diagnosing AD and MCI using structural MRI scans. The method employs multiple cluster 
Dense Convolutional Neural Networks (DenseNets) to learn localised features of brain images. The approach 
achieved a remarkable accuracy of 89.5% for AD vs. Normal Control (NC) and 73.8% for MCI vs. NC, outper-
forming existing methods. However, its limitations include a focus solely on structural MRI, leaving room for 
future integration of other imaging modalities like PET for a more comprehensive diagnosis. Additionally, the 
method’s applicability to broader datasets beyond the ADNI database used for validation remains unexplored.

The application of explainable artificial intelligence (XAI) methods has made these models more open and 
easier to understand, which is important for building trust and getting people to use therapies. Essemlali et al.28 
employed a modified BrainNet CNN on diffusion-weighted MRI (DW-MRI) tractography connectomes to delve 
into the structural connectomics of AD and MCI. By leveraging the BrainNetCNN for brain image classification 
paired with XAI techniques, the researchers accentuated brain regions and their interconnections implicated 
in AD. This work not only reinforces the potential of deep convolution networks in neurodegenerative disease 
analysis but also establishes a bridge with traditional AD research findings. Using binary categorisation and layer-
by-layer data analysis, El-Sappagh et al.29 present a highly accurate and interpretable machine-learning model 
for AD diagnosis and progression detection. Using 11 modalities and data from 1048 subjects, the two-layer 
model employs a Random Forest (RF) classifier optimised with key biological and clinical markers. The explain-
ability feature addresses a significant gap in clinical uptake, as it makes the model transparent and trustworthy 
for physicians. Yu et al.30 The study presents an innovative framework that integrates attention mechanisms and 
multi-scale features for enhanced accuracy and explainability in the visual classification of medical images, spe-
cifically for AD. However, the model has limitations: it lacks integration of medical domain knowledge, which 
could refine its predictive capability, and its latent features are weakly supervised due to a scarcity of publicly 
available pathological annotations, which could potentially overlook crucial pathological locations in the brain. 
Lombardi et al.31 introduce a machine learning (ML) framework with an XAI component that not only classifies 
subjects into healthy, cognitively impaired, and dementia categories but also provides explainability via SHapley 
Additive exPlanations (SHAP) values. However, the study focuses on a fixed set of cognitive and clinical indexes, 
potentially overlooking other important variables. Also, while it addresses variability within diagnostic catego-
ries, the model may not fully capture the complexity of different subcategories within the neurodegenerative 
spectrum. Shojaei et al.32 used a 3D Convolutional Neural Network (3D-CNN) model coupled with a genetic 
algorithm-based Occlusion Map and Backpropagation-based explainability methods employed for AD diagnosis 
using MRI scans. The model not only achieves a commendable 87% accuracy in fivefold cross-validation but 
also successfully identifies key brain regions corroborated by existing AD literature, enhancing its reliability 
and medical relevance. The focus remains on algorithmic accuracy, potentially missing out on the integration 
of domain-specific medical knowledge.

Our innovative diagnostic framework stands as a significant advancement in the field of AD and MCI detec-
tion, offering a compelling combination of precision, robustness, and interpretability that sets it apart from 
existing methodologies (see Table 1). While many approaches specialise in either diagnostic accuracy or model 
interpretability, our framework synergises CNNs with the cutting-edge MKSCDDL algorithm to achieve both. 
Unlike traditional machine learning methods that often require substantial computational resources or lack 
adaptability across different imaging data types, our model leverages scandent decision trees to accommodate 
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S. No Authors Year Technique Contribution Advantages Limitations

Traditional ML Methods

1 Ortiz et al 2016 Deep Belief Networks
High accuracy and AUC 
in classifying AD and MCI 
subjects

High accuracy and robust-
ness in classification

Requires substantial com-
putational resources

2 Nanni et al 2019 SVM Ensemble
Tackled the ’curse-of-
dimensionality’ in MRI 
feature vectors

High classification perfor-
mance

Limited use of advanced 
ML techniques like CNNs

3 Feng et al 2020 AD-WTEF
Captured subtle energy 
distribution differences 
in sMRI

Effective in capturing 
subtle differences

Information redundancy in 
wavelet transformation

4 Leming et al 2022 3D ResNet-50 Ensemble Addressed confounding 
factors in clinical MRI data

High AUC score and 
addresses confounding 
factors

Confined to a single health-
care system

Deep Learning Methods

5 Su et al 2021 FAAD + CDANE Anomaly detection in 
fMRI for mental disorders

Superior accuracy and 
robustness; biological 
authenticity through 
visualisation; better than 
traditional methods

Limited by dependency on 
few labelled samples; uncer-
tainty in variable feature 
distributions

6 Pan et al 2022 DSDL Framework Multimodal AD and MCI 
diagnosis

Seamlessly integrates 
neuroimage synthesis and 
disease diagnosis; superior 
performance in both tasks

Effectiveness tied to 
the quality of imputed 
neuroimages; this may 
limit generalizability across 
diverse clinical settings

7 Basaia et al 2019 3D T1-weighted CNNs AD and MCI diagnosis

Exceptional accuracy in 
distinguishing AD from 
healthy controls; performs 
well across multiple MRI 
protocols

Limited performance in 
c-MCI vs. s-MCI classifica-
tion; could benefit from 
incorporating other data 
types

8 Lei et al 2021 Ensemble Learning Longitudinal AD score 
prediction

Uses multiple time points 
for enhanced prediction 
accuracy; handles data 
incompleteness

Restricted to ADNI MRI 
data; does not include other 
imaging modalities or clini-
cal details

9 Lian et al 2022 H-FCN AD diagnosis using sMRI

Autonomously identifies 
discriminative local 
patches and regions; shows 
promising performance in 
both atrophy localisation 
and disease diagnosis

Limited to sMRI data; does 
not incorporate other diag-
nostic markers or adapt to 
diverse clinical populations

Multimodal

10 Jain et al 2019 Transfer Learning using 
VGG-16

AD and its variants diagno-
sis using sMRI

Bypasses the need for large 
datasets; high accuracy 
(95.73%)

Limited to general image 
features, potentially not 
capturing disease-specific 
nuances

11 Spasov et al 2019 Multi-tasking Deep Learn-
ing Model

Developed a model to 
distinguish between MCI 
patients at high and low 
risk for AD conversion

Minimizes data overfitting 
with fewer parameters; 
high predictive power

Limited additional value 
from warp field charac-
teristics

12 Wang et al 2019
Ensemble of 3D Densely 
Connected Convolutional 
Networks

Used dense connections 
within 3D-DenseNets to 
improve data exchange 
between layers

Optimised information 
flow and gradient propaga-
tion; improved trainability

Solely focused on MRI data, 
ignoring other modalities 
or clinical variables

13 Cheng et al 2015
Multimodal Manifold-Reg-
ularized Transfer Learning 
(M2TL)

Proposed M2TL method to 
predict MCI to AD conver-
sion, achieving 80.1% 
accuracy on the ADNI 
database

Incorporates both target 
and auxiliary domains for 
improved performance; 
auto-selects informative 
samples

Focused only on imaging 
data, missing other poten-
tial diagnostic markers like 
genetic or lifestyle factors

14 Suk et al 2016 Deep Auto-Encoder (DAE) 
with (HMM)

Developed a framework 
using DAE and HMM for 
diagnosing MCI through 
resting-state functional 
MRI

Unveils complex functional 
networks and their dynam-
ics; outperforms existing 
methods

Focuses solely on compu-
tational modelling, lacks 
incorporation of other diag-
nostic data; generalizability 
untested

15 Li et al 2018
Multiple Cluster Dense 
Convolutional Neural 
Networks (DenseNets)

Introduced a novel 
approach for diagnosing 
AD and MCI using sMRI 
scans without requiring 
pre-processing like regis-
tration and segmentation

Eliminates the need for 
rigid pre-processing;
high accuracy (89.5% for 
AD vs. NC and 73.8% for 
MCI vs. NC.)

Focused solely on structural 
MRI; lacks integration with 
other imaging modalities or 
broader datasets

Continued
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the complexity and variability of neuroimaging data. This feature allows for more individualised assessments, a 
granularity often missing in other models. Moreover, our approach includes advanced interpretability methods 
like Local Interpretable Model-agnostic Explanations (LIME) and Class Activation Maps (CAMs), filling the 
interpretability gap often noted in deep learning methods like 3D CNNs. These interpretability features not only 
build trust in the diagnostic process but also provide clinicians with actionable insights for early intervention and 
targeted care. Even within the realm of XAI, where models like MAXNet and BrainNet CNN have made strides in 
clarifying their decision-making processes, our model goes a step further. It provides a comprehensive diagnostic 
tool that is both exceptionally accurate—with a classification efficacy of 98.27%—and transparent in its reason-
ing. This dual strength makes it a particularly valuable asset for clinicians aiming for precise yet understandable 
diagnostic results. In summary, our model represents a pinnacle of balanced excellence, offering unparalleled 
diagnostic accuracy without sacrificing the nuances of interpretability and individualised assessment.

The salient contributions in the paper can be summarised as follows:

The framework uses a CNN and a within-class-similar Discriminative Dictionary Learning method to reduce 
misclassification by using structural and anatomical similarities between comparable images in the trained set.
A decision tree mechanism and a transfer learning process are used to check and improve the accuracy of 
the classification. LIME and CAM are used to make a model that can be understood and whose decisions 
can be trusted.
A new classification method is proposed that combines the CNN’s end-to-end pixel-wise mapping with the 
MKSCDDL kernel, using class similarity as matrices to group medical data. This increases the domain-specific 
information by testing two slices with a set distance on both sides of the comparison.
To make the model easy to understand, a scandent decision tree is used to check the ground truth with the 
CNN and fill in missing data in the multimodality dataset.

The remainder of the paper is organised as follows: "Materials and methods" describes the Discriminant 
Dictionary Learning algorithm and Scandent Decision Tress, the proposed methodology and implementation 
of the model. "Result analysis" explains the result analysis, followed by the conclusion and future directions in 
"Conclusions and future directions".

Materials and methods
Discriminant dictionary learning
Discriminant dictionary learning (DDL) is a type of machine learning algorithm used for classification tasks. 
It is a supervised learning method that involves the creation of a dictionary of features that can be used to dis-
criminate between different classes of data. In DDL, the dictionary is learned by minimising a cost function that 
includes both a reconstruction error term and a discriminant term. The reconstruction error term ensures that 
the dictionary can accurately represent the input data, while the discriminant term ensures that the dictionary is 
optimised for the specific classification task at hand. The discriminant term in the cost function is typically based 
on a measure of the distance between the dictionary atoms of different classes or on the classification error rate 
of a linear classifier trained on the learned dictionary. By optimising the dictionary for both reconstruction and 
discriminant performance, DDL can create a set of features that are well-suited for classification tasks.

Consider that Y =

{

y
j
i

}N

i=1
 be a set of MRI medical images under consideration for N number of patients. 

Each image yi =
{

yJi

}ni

j=1
 consists of a sequence of ni slices. The aim is to produce a valid classification for the 

stream of slices of images to produce a robust, interpretable classification model. The classification of individual 

Table 1.  Summary of related works.

S. No Authors Year Technique Contribution Advantages Limitations

XAI Methods

16 Essemlali et al 2020 Modified BrainNet CNN 
on DW-MRI

Investigated structural con-
nectomics of AD and MCI

Identified AD-implicated 
brain regions; pioneering 
use of XAI

Limited to CNN’s scope; 
potential biases in tractog-
raphy data

17 El-Sappagh et al 2021 Two-layer Random Forest 
classifier

AD diagnosis and progres-
sion detection using 11 
modalities

High accuracy; integrates 
explainability, bridging the 
gap for clinical applications

Exclusively reliant on 
available modalities; trans-
parency does not ensure 
clinical adoption

18 Yu et al 2022 MAXNet with attention 
mechanisms

Enhanced visual classifica-
tion of medical images 
for AD

Outperforms in accuracy 
and explainability; suitable 
for clinical applications

Absence of integrated 
medical domain knowl-
edge; weakly supervised 
latent features

19 Lombardi et al 2022 ML framework with XAI 
using SHAP

Classifies subjects and 
provides explainability on 
AD progression

Offers insights into AD 
as a continuum; tracks 
longitudinal changes

Focuses on specific cogni-
tive and clinical indexes; 
might not capture the full 
complexity of AD subcat-
egories

20 Shojaei et al 2023
3D-CNN with Occlusion 
Map and Backpropagation-
based Explainability

AD diagnosis using MRI 
scans with explainability

High accuracy; identi-
fies key brain regions; 
addresses the "black box" 
problem

Requires further valida-
tion; potential oversight in 
integrating domain-specific 
medical knowledge
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slices often poses a complex challenge, particularly when these slices come from unknown statistical distribu-
tions. Common approaches to tackle this issue involve the use of deep learning algorithms combined with linear 
classifiers. While these methods can be effective, especially if a classifier is developed alongside the feature-
dictionary, they tend to neglect critical details—specifically, the inherent similarities within classes and the 
relationships between different classes represented by coding coefficients. To address these shortcomings, a more 
specialized approach called Supervised within Class-similar Discriminative Dictionary Learning (SCDDL)33 has 
been formulated. SCDDL refines the classification process by constructing a specialized dictionary that captures 
the intrinsic similarities within each class through specific coding coefficients. These coefficients are meticulously 
engineered to echo the relationships between slices in the same category, enhancing the overall model’s discrimi-
natory power. Further precision is achieved by incorporating a linear classification error term, which guides the 
selection of the most optimal classifier for use with the established dictionary. Building on this foundation, the 
methodology has been extended into a more advanced form known as  MKSCDDL33. This enhanced version 
integrates the concept of within-class similarity with kernel theory, facilitated by a multiple kernel fusion tech-
nique. This fusion allows for a more nuanced and granular differentiation between classes, capturing complex 
relationships that conventional methods may overlook.

Assuming that we have a training space A =  [A1,  A2, …,  Ak] ∈ a ’d’-dimensional space consisting of ’k’ classes, 
and let X be the coefficients obtained during the training of samples on the dictionary D. The model for SCDDL 
can be expressed as follows:

where � A− DX�2F : represents the Frobenius norm of the difference between A and DX . � H −WX�2F : similar 
to the first term, this term aims to find W and X such that WX approximates H . The α term is a weighting fac-
tor. ‖ W‖2F : this term is a regularisation term for W using the Frobenius norm. β is the regularisation parameter 
that controls the magnitude of W . ‖ X‖1 : this term is an L1 regularisation term for X , making the optimisation 
problem sparse. �1 is the regularisation parameter. 

∑k
i=1

(

� Xi −Mi �
2
F + η� Xi �

2
F

)

 represents the within-Class-
similar term. �2 and η are the regularisation parameters. � dj�

2
2 = 1 for all j = 1, . . . ,m : this is a constraint on the 

columns dj of D , stating that they should be unit vectors in terms of the L2 norm.
With reference to the elastic net theory, the term ‖ Xi ‖

2
F combined with the term ‖ X‖1 makes the Eq. (1) 

stable. Here, we consider η = 1 for simplicity. Then the Eq. (1) can be reconstructed as follows:

Equation (2)’s optimisation approach has been examined  in34 and demonstrated to increase the dictionary’s 
discriminative categorisation.

The integration of Mercer kernels into the Sparse Classifier with Discriminative Dictionary Learning (SCDDL) 
algorithm, leading to the MKSCDDL extension, offers enhanced capabilities for handling high-dimensional data. 
Mercer kernels, such as linear and Gaussian kernels, facilitate the mapping of original feature space into a higher-
dimensional space where linearly inseparable problems often become separable. Given φ(.) as a mapping function 
that transforms the original feature vectors into a higher-dimensional feature space, the kernelised version of 
the SCDDL algorithm can be defined by replacing the training sample vectors in Eq. (2) of the original SCDDL 
algorithm with their higher-dimensional counterparts φ(x) . This extension allows the algorithm to exploit the 
geometric properties of the higher-dimensional space, potentially improving the classification performance.

The objective function for MKSCDDL is given by Eq. (3):

By introducing the kernelised term � φ(A)− φ(A)VX�2F MKSCDDL not only captures the non-linearities in 
the data but also combines multiple features into a unified dictionary learning framework.

Scandent decision trees
The Scandent decision tree (SDT)35 addresses a crucial problem in multimodal classification tasks—namely, the 
nonuniformity of data. In many clinical or diagnostic settings, not all subjects have complete records with every 
possible feature or diagnostic marker. This could be due to a variety of reasons, including cost constraints or the 
advanced nature of certain diagnostic tests. The SDT model provides a robust solution to this issue by allowing 
for classification even when some features are missing from the records.

The SDT model works by first training a Support Decision Tree (DT) on a subset of the data where all features 
are available. This tree serves as the "gold standard" for classification based on all available attributes. In situations 
where all attributes are not available, the SDT comes into play. At each node in the SDT where a feature from 
the unavailable set is used for decision-making, a subtree Ti is grown using only the available features (denoted 
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by set S . The objective is to replicate, as closely as possible, the decision structure of the SDT using only the 
available attributes.

A major challenge in this approach is the potential sparsity of data at deeper levels of the SDT. As you go 
deeper into the decision tree, fewer records are available at each node, leading to less reliable and less accurate 
decisions. To counter this, a RF strategy is often employed. Multiple such subtrees are grown, and their outcomes 
are averaged or voted upon to form a more robust classification model. This ensemble approach helps mitigate the 
impact of decisions made based on sparse data. Furthermore, it has been shown that performance is  enhanced36 
when a feature enrichment strategy is employed. In this approach, the class labels produced by the subtrees Ti 
are used to augment the feature set for records that only have features available from set L.This not only provides 
additional discriminative power but also improves the robustness of the classifier.

By addressing the nonuniformity in data availability, SDT offers a flexible and robust mechanism for clas-
sification tasks in settings where complete data may not always be available.

Proposed methodology
We present an innovative framework aimed at achieving two critical objectives in medical image classification: 
high accuracy and interpretability. Our methodology uniquely integrates state-of-the-art techniques in CNNs, 
kernel methods, and explanation algorithms to classify medical images into five predetermined categories: AD, 
CN, MCI, Late-stage MCI, and early-stage MCI. The proposed framework is a composite of multiple compo-
nents, each designed to address specific challenges in medical image classification and interpretation (see Fig. 1). 
Before feeding medical images into the neural network, we undertake a meticulous pre-processing routine. This 
involves dividing each image into "superpixels," which are clusters of pixels that share common characteristics. 
This segmentation enables more precise explanations later in the pipeline.

The core of our framework is a custom-designed CNN that has been trained to classify medical images into 
one of the five aforementioned classes. To further refine the classification process, we utilise the MKSCDDL 
kernel in the second layer of the CNN. This specialised kernel leverages the structural and anatomical similari-
ties within images in the training set to minimise misclassification errors. By doing so, it produces a similarity 
measure that aids in categorising the images more accurately. A major challenge in using complex models like 
CNNs is the ’black box’ nature, which makes it difficult to understand the rationale behind classifications. To 
counter this, we employ LIME and CAMs to construct a surrogate model. This interpretable model provides 
insights into why CNN classified a given image into a specific category.

Post-classification, the Scandent Decision Trees are used to segregate the tasks into appropriate categories. 
These decision trees validate the regions of interest within the images identified by LIME to ensure that the final 
classification aligns with the interpretive data. Lastly, we utilise a decision tree mechanism coupled with transfer 
learning techniques to confirm and enhance the classification accuracy. This dual-methodology approach ensures 
that the model is not only precise but also generalisable to new, unseen data. Through the integrated use of LIME 

Figure 1.  Proposed methodology.
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and CAMs, we manage to generate an interpretable model that makes the decision-making process transparent 
and trustworthy, thereby instilling confidence in the medical practitioners who rely on this technology.

Dataset characteristics and pre‑processing
The ADNI dataset is a comprehensive collection of MRI scans, each represented as a three-dimensional array 
consisting of 2D grayscale slices. Each slice has a fixed resolution of 256 × 256 pixels. However, the number of 
slices can differ from one patient to another, introducing an element of variability into the dataset. To make the 
dataset compatible with the experimental setup, all slices were standardised to a consistent resolution.

Partitioning of data for training and testing
The dataset was partitioned using an 80:20 ratio, where 80% of the data was used for training the model, and the 
remaining 20% was reserved for validation and testing. This partitioning strategy was carefully chosen to ensure 
that the model had sufficient data to learn the intricate features relevant to AD, MCI, and NC while also setting 
aside a robust subset for validation and performance evaluation.

Configuration of MKSCDDL kernel
Incorporated within the CNN, the MKSCDDL kernel was configured to operate as a linear kernel. To optimise 
its performance, a grid search technique was implemented. This allowed for fine-grained tuning of the kernel’s 
weight parameters, with the search conducted in incremental steps of 0.1 to ensure precision.

Architecture and parameters of the CNN model
The CNN model was architected to have five convolutional layers followed by two fully connected dense layers 
(see Fig. 2). Each convolutional layer was succeeded by a Rectified Linear Unit (ReLU) activation function to 
introduce non-linearity into the model. The CNN was trained from scratch using a learning rate of 0.001 and a 
batch size of 10, employing a consistent optimiser and loss function for uniformity in the training process. To 
further augment the feature extraction capabilities of the CNN model, a second Multi-Layer Perceptron (MLP) 
was introduced. This MLP was specially configured with the MKSCDDL kernel to work in tandem with the CNN, 
thereby creating a hybrid architecture that leverages the strengths of both neural networks and kernel methods.

Hyperparameters and optimisation strategy
To maintain a consistent and fair evaluation across different neural network architectures, we standardised the 
hyperparameters and initialisation procedures. Specifically, the Adam optimiser was chosen with a fixed learn-
ing rate of  10–3. A batch size of 10 was also consistently used across all experiments. In our proposed architec-
ture, we deliberately restricted the use of data augmentation techniques to only include rotation. This cautious 
approach was taken to mitigate the risk of losing vital diagnostic information that could be crucial for accurate 
classification.

Pre‑processing and multimodal feature fusion
Before deploying the ADNI dataset in our framework, a series of pre-processing steps were carried out. Our 
CNN model equipped with MKSCDDL kernels was used to merge multimodal feature sets. Features from MRI 
scans, along with class labels and clinical ratings, were initially extracted. At each layer within the kernel, different 
features were identified and subsequently aggregated for comprehensive analysis. The kernel moved or "strode" 
across the image data in distinct patterns at each layer, allowing each hidden layer to filter and spotlight specific 
features indicative of particular disorders.

Handling missing values with scandent trees
One of the critical challenges in medical imaging research is dealing with missing data, especially when mul-
tiple modalities like MRI, PET imaging, cognitive assessments, and various biomarkers are involved. To tackle 
this issue, we implemented the scandent tree methodology. This technique enhances classification accuracy by 
generating single-modality trees that mimic the feature space partitioning performed by a multimodal decision 

Figure 2.  Architectural overview of the custom CNN (CNN + MKSCDDL).
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tree. The use of scandent trees enables the system to interpolate and fill in missing values, thereby improving the 
overall classification model’s performance and robustness.

Training and evaluation procedures
All input images were resized to a uniform 256 × 256 resolution to ensure consistency. The processed MRI 
volumes generated volumetric distributions of AD distinct from MCI. We performed this differentiation by 
identifying occurrences of Gray Matter and White Matter in the brain scans and computing their respective 
probabilities. Saliency maps were then created based on these distributions to evaluate the model’s classification 
consistency. These maps helped identify the brain regions most responsible for accurate disease classification. 
Figure 6 in our study delineates these critical regional areas, and Table 2 presents the quantitative metrics derived 
from these analyses.

Loss function and latent feature learning
In our proposed model, we advocate the use of a combined loss function—specifically, cluster loss and contras-
tive loss techniques—to encourage effective latent space learning. The model employs a categorical loss func-
tion, which stimulates the neural network to cluster latent features into semantically meaningful spaces. This 
innovative approach not only enhances the accuracy of the classification but also allows for the development of 
fine-grained models that can make highly specific predictions.

Result analysis
Comparative analysis
For our analysis, we used the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset, focusing on multi-
ple evaluation metrics, including AUC, Receiver Operating Characteristic (ROC), accuracy, sensitivity, recall, 
and precision. To enhance the robustness and credibility of our results, we deployed a ten-fold cross-validation 
technique. In this approach, the dataset was partitioned into ten distinct subsets, each serving as a test set while 
the remaining subsets were used for training.

The comparative analysis between a Convolutional Neural Network (CNN) and the proposed model (see 
Table 2) offers illuminating insights into conditions including AD and various stages of cognitive impairment. 
The CNN + MKSCDDL model outpaces the CNN model across multiple key performance metrics—Accuracy, 
Precision, Recall, and F1-Score—indicating its superior capacity for predictive analysis. For instance, in diagnos-
ing AD, the CNN + MKSCDDL model registers an impressive leap in accuracy, soaring from 85.23 to 97.72%, 
accompanied by an F1-Score jump from 0.83 to 0.97. This holds significant clinical relevance given the criti-
cal nature of early and accurate AD diagnosis. The enhanced model also proves its mettle in identifying Early 
and Late Mild Cognitive Impairment (EMCI and LMCI), showcasing marked improvements in Recall and 
F1-Score—metrics that are pivotal for capturing the maximum number of positive cases without inflating false 
positives. Specifically, for EMCI, the F1-Score ascends from 0.77 to 0.92, while for LMCI, it inches up from an 
already high 0.96 to 0.97.

Moreover, the advanced model significantly elevates the Recall in almost all categories, a critical improve-
ment in medical settings where missing a positive case could lead to severe consequences. In the case of MCI, 
the Recall jumps remarkably from 0.70 to 0.93. This balanced performance across metrics, barring the anomaly 
in the CN category, underscores the CNN + MKSCDDL model’s well-rounded capabilities. Thus, the fusion of 
CNN with MKSCDDL not only boosts the model’s accuracy but also refines its balance between Precision and 
Recall, thereby advancing it a step closer to being a robust, clinically viable diagnostic tool for complex neuro-
logical conditions.

Table 3 presents a snapshot of the performance of various machine learning models in medical diagnostics, 
each rigorously evaluated on five key metrics: Accuracy, F1-Score, Sensitivity, Specificity, and AUC.

We trained the models on 12,000 labelled MRI slices until convergence and subsequently tested them on a 
separate set of 4,600 MRI slices. Our comparative analysis, illustrated in Table 3, reveals that our proposed model 
substantially outperformed existing models like SCDDL-MRI, SCDDL-FDG-PET, and SCDDL-florbetapir PET 
in terms of accuracy and precision. The proposed Explainable CNN + MKSCDDL model emerges as the front-
runner, achieving an unparalleled accuracy of 98.27% and matching it with an AUC of 0.982. Its sensitivity and 
specificity figures, at 98.87% and 96.46%, respectively, indicate that the model excels in both identifying true 
cases and avoiding false alarms.

Table 2.  Comparison of classification results: CNN vs. CNN + MKSCDDL.

Target class

CNN CNN + MKSCDDL

Accuracy (%) Precision Recall F1-score Accuracy Precision Recall F1-score

AD 85.23 0.81 0.86 0.83 97.72 0.96 0.98 0.97

CN 69.54 0.68 0.63 0.66 84.45 0.89 0.87 0.66

EMCI 79.69 0.71 0.85 0.77 90.25 0.91 0.94 0.92

LMCI 92.35 0.94 0.98 0.96 95.36 0.96 0.98 0.97

MCI 86.69 0.91 0.70 0.79 93.75 0.97 0.93 0.94



10

Vol:.(1234567890)

Scientific Reports |         (2024) 14:1774  | https://doi.org/10.1038/s41598-024-52185-2

www.nature.com/scientificreports/

Explainability analysis: unveiling deep model decision‑making
Deep Learning (DL) methodologies have significantly impacted various scientific domains, notably healthcare, 
due to their ability to self-learn and generalise features. Despite their prowess, the "black-box" nature of these 
models has been a subject of concern, particularly when it comes to medical diagnoses. Our research makes 
strides in this direction by incorporating XAI techniques, specifically focusing on the interpretability of deep 
learning models when analysing brain scans.

Mapping salient brain regions for decision clarity
To mitigate the ’black-box’ limitations of DL models, we manually mapped salient regions of the brain, as visu-
alised in Fig. 5. By showcasing activated voxels in multiple 2D slices from diverse regions of the brain, we were 
able to statistically validate the significance of these regions in the decision-making process of the deep model. 
This makes a transparent layer to the AI algorithm, helping both clinicians and patients understand the rationale 
behind diagnostic decisions.

CN Individuals: stability in brain structures
In Figs. 3, 4, and the first row of Fig. 6, we highlight the neural regions most pivotal in distinguishing CN indi-
viduals from AD patients. The key differentiating areas include the rostral Hippocampus, medial Amygdala, 
Globus Pallidus, lateral Amygdala, and the Parahippocampal gyrus. Remarkably, these regions remain stable 
over time in CN individuals, signifying a consistent state of cognitive health.

AD: dynamic changes in neural activities
The bottom row of Figs. 5 and 6 focus on the AD scenario, illustrating how the disease manifests its impact 
across diverse brain regions. Notably, the regions most affected include the Hippocampus, medial and lateral 
Amygdala, posterior Hippocampus, dorsolateral putamen, rostroventral area, and Globus Pallidus. Our explain-
able model allows clinicians to observe these dynamically changing regions at each time point, thereby enabling 
more nuanced patient monitoring.

Tracking disease progression: from early MCI to late MCI
Our research goes a step further by scrutinising disease progression from EMCI to LMCI. Panels 2, 3, and 4 of 
Fig. 6 reveal that patients progressing from EMCI to LMCI undergo more rapid neurodegeneration than those 
already diagnosed with advanced AD. The network analysis used in our study identifies similar impacted regions 
in both MCI and converted EMCI patients, including the middle and lateral Amygdala, Parahippocampal region, 
and Hippocampus. However, as the disease progresses in converted EMCI patients, additional regions show signs 
of impairment, such as the caudal Hippocampus and dorsolateral putamen.

Ablation studies
Ablation studies are crucial for understanding the performance contributions of different components in a 
machine learning model. In the context of our CNN model for image classification, we conducted a compre-
hensive ablation study to evaluate the impact of various hyperparameters and architectural choices on model 
performance. The base model was established with Adam optimiser and MKSCDDL kernels. The performance 
metrics under consideration were Accuracy, F1-Score, and Recall. Various experiments were conducted by 
modifying one or a combination of elements, and the metrics were recorded in Table 4.

Table 3.  Comparison with the existing models.

S. No Model Accuracy (%) F1-Score Sensitivity Specificity AUC 

1 SCDDL-MRI 88.27 0.89 94.50 82.46 0.939

2 SCDDL-FDG- PET 91.18 0.93 86.40 95.61 0.970

3 SCDDL-florbetapir PET 85.64 0.84 85.50 85.61 0.937

4 MKL 93.64 0.95 96.20 91.23 0.963

5 MTFS 90.70 0.89 89.50 90.80 0.966

6 JRC 94.55 0.95 98.10 91.23 0.971

7 M2TFS 91.50 0.90 91.40 91.60 0.979

8 SVM 85.80 0.88 84.60 85.90 0.933

9 MDTC 88.40 0.87 87.20 88.50 0.950

10 Lasso 87.90 0.91 87.80 88.10 0.951

11 MDTL 94.70 0.95 94.10 94.80 0.988

12 U-Net 92.45 0.91 91.48 92.35 0.956

13 3DAN 86.12 0.89 87.33 89.32 0.912

14 VGGNet 3D 88.82 0.90 86.36 82.36 0.872

15 MaxNet 95.42 0.97 94.48 96.32 0.980

16 Explainable CNN + MKSCDDL (proposed) 98.27 0.97 98.87 96.46 0.982
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Table 4 presents an exhaustive ablation analysis meticulously designed to explore the repercussions of various 
architectural and hyperparameter modifications on the performance of the machine learning model. Focused on 
four pivotal metrics—Accuracy, F1-Score, Recall, and Sensitivity—this empirical investigation furnishes nuanced 
insights into the model’s robustness and susceptibility to changes.

Commencing with the base model, which employs Adam Optimizer in conjunction with MKSCDDL kernels, 
the performance is unequivocally superior, boasting an accuracy of 98.27%, an F1-Score of 0.97, and near-flawless 
recall and sensitivity rates of 0.988 and 98.87% respectively. This serves as a high-performance baseline against 
which all other configurations are compared.

Figure 3.  Scans of CN patients.

Figure 4.  Scans of CN patients.
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The ablation study investigates the ramifications of substituting the Adam Optimizer with RMSprop and 
Stochastic Gradient Descent (SGD). Here, the Adam Optimizer emerges as the optimally efficient choice, with 
RMSprop and SGD trailing with accuracies of 97.85% and 95.20%, respectively. The marginal decline in these 
metrics accentuates the efficacy of the Adam Optimizer in this specific modelling context.

Structural alterations to the model’s architecture, such as the removal of a Conv2D layer initially possessing 32 
filters, resulted in a moderate decrement in performance, with the accuracy dropping to 97.10%. This indicates 
the layer’s non-trivial contribution to the model’s superior discriminative capability.

Moreover, when the activation functions were substituted—from ReLU to LeakyReLU—the model’s accuracy 
decreased marginally, reflecting the subtle yet impactful role of activation functions in neural networks. On 
the other hand, the removal of MKSCDDL kernels led to a more drastic reduction in accuracy, plummeting to 
95.00%. This substantiates the kernels’ pivotal role in enhancing the model’s capacity for nuanced classification.

In addition to architectural changes, the study delved into the impact of varying batch sizes and learning rates. 
While these changes did not result in drastic fluctuations in performance metrics, they did offer incremental 
improvements or reductions, thereby emphasising the need for fine-tuned hyperparameter selection.

The ablation study fortifies our confidence in the base model, characterised by the Adam Optimizer and 
MKSCDDL kernels, as the most judicious selection for this application. Its exceptional performance across a 
multitude of metrics not only attests to its robustness but also underscores its comprehensive applicability. The 
remarkable discriminative power endowed by the MKSCDDL kernels emerges as a cornerstone for the model’s 
high performance, thereby validating our decision to adopt this particular configuration.

Inferences: bridging the gap between data and diagnosis
Multimodal data fusion for robust classification
Our experimental setup leveraged a rich dataset comprised primarily of MRI scans, with additional PET scans, 
to distinguish among AD, MCI, and CN individuals. A key strength of our methodology is the integration of 
multiple data modalities via the scandent decision tree algorithm. This innovative approach enables the filling of 
missing data points, thereby enhancing the robustness and trustworthiness of the classifier. Unlike prior research 
that often sidestepped the issue of missing values, our study employed explainable techniques to identify critical 
brain regions, thereby lending verifiable credence to our predictions.

Identifying vulnerable brain regions in AD
Concurring with extant literature, our research pinpoints specific brain regions—such as the Basal Ganglia, 
Amygdala, Parahippocampal Gyrus, and Hippocampus—as being disproportionately affected by AD. These 
regions are instrumental in various cognitive and emotional functions. Thus, their impairment manifests in the 
multifaceted symptoms observed in AD patients.

Neural activation patterns: a discriminatory marker
Our proposed neural network succeeds in differentiating between CN individuals and those with AD through 
unique activation patterns, especially in the dorsolateral Putamen regions. Such patterns were exclusively 
observed in AD patients and remained absent in CN individuals. Within the AD cohort, consistent activation 
of the Amygdala and Hippocampus was noted, indicative of their central role in AD pathology.

Emotional and cognitive dysregulation in AD
Interestingly, our results show that alterations in the Amygdala are closely associated with heightened feelings of 
anger and anxiety among AD patients. Furthermore, we identified other subcortical areas, such as the Parahip-
pocampal Gyrus, Thalamus, and Putamen, as being significantly activated in AD. These regions govern a wide 
range of functions, including cognition, motor skills, and sensory perception—all of which are compromised 
in AD.

Figure 5.  AD affected regions.
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The Precuneus and decision‑making deficits
Our research underscores the deterioration of the Precuneus region, located within the Parietal lobe, as a defining 
feature of AD. In addition, we found that the Thalamus and Putamen regions showed marked degradation in AD 
patients. This decline is of significant concern as it affects critical faculties like problem-solving and decision-
making, thereby contributing to behavioural issues such as apathy and obsessive tendencies.

Normal Saliency GradCAM ScoreCAM GradCAM++ Ours

CN

EMCI

MCI

LMCI

AD

Figure 6.  The ROI as highlighted with various CAMs to ensure a robust prediction using the heat map of 
model location identification concentration Row 1: CN, Row 2: EMCI, Row 3: MCI, Row 4: LMCI, Row 5: AD.
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Implications for treatment and intervention
By elaborating on the complex neural underpinnings of AD, this study underscores the urgency for targeted 
interventions. Understanding the specific brain regions and functionalities affected by AD could pave the way 
for more precise and effective treatments.

Conclusions and future directions
Timely identification and intervention in cognitive disorders like AD and MCI are pivotal for the effective clini-
cal management of these conditions. The study presented herein contributes to this critical need by introducing 
a cutting-edge system that melds the power of advanced deep learning algorithms with the transparency of 
XAI. Our methodology utilises a CNN with an MKSCDDL algorithm. By using the structural and anatomical 
patterns that can be seen in linked neuroimaging data, this fusion greatly improves the classification accuracy 
of the model.

Crucially, the integration of LIME and CAM endows our model with a level of transparency and interpretabil-
ity that is often elusive in deep learning architectures. This explainability is invaluable for healthcare practitioners, 
as it allows them to identify specific brain regions that are most likely affected by cognitive disorders. Our model 
was rigorously evaluated using the Alzheimer’s Disease Neuroimaging Initiative (ADNI) dataset and was pitted 
against a standard CNN model for benchmarking. The actual results are readily apparent: our method is better 
than the traditional one in key measures like precision, accuracy, and recall. The saliency maps, generated via 
LIME and CAM, further enrich our understanding of AD’s underlying mechanisms.

While our results are promising, the journey towards optimal cognitive disease diagnosis is far from over. 
Future iterations of our work will investigate the potential benefits of incorporating alternative kernel functions to 
amalgamate multimodal data more effectively. We are also keen to explore the incorporation of different imaging 
modalities to broaden the scope of our diagnosis. Additionally, the utilisation of other advanced deep learn-
ing architectures, coupled with transfer learning techniques, stands to further elevate the model’s performance 
metrics. In conclusion, our research signifies a pivotal step forward in the clinical diagnosis and management 
of cognitive diseases. By harmonising high computational power with transparent decision-making, we offer 
the medical community a reliable, accurate, and intuitive tool that has the potential to revolutionise cognitive 
healthcare.

Data availability
The data is publicly available to use on the ADNI website.
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