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The Measurement of Expert Judgement Uncertainty in Central Bank Forecasting

by Yujia Chang

This thesis provides a comprehensive analysis of the determinants of performance and
behavioural uncertainty in professional forecasters’ macroeconomic predictions. It in-
troduces a novel framework that integrates statistical, psychological, and computa-
tional techniques to model behavioural uncertainty under rational expectations. Addi-
tionally, it makes empirical contributions by reanalysing the UK-SPF datasets, offering
fresh insights into the use of survey-based projections for real-world decision-making.

The thesis comprises three main chapters. Chapter 2 introduces a knowledge elicitation
framework to assess expert performance based on statistical accuracy and knowledge
informativeness, highlighting substantial variations in experts’ abilities. Chapter 3 ex-
tends this analysis by exploring expert behaviour from a cognitive perspective, clas-
sifying forecasters into risk attitude groups (optimists vs. pessimists) and evaluating
whether their predictions align with rational behaviour. Chapter 4 presents a hybrid
framework combining machine learning (SVR, RF) and deep learning (DNN, LSTM)
models to optimise the Bank of England’s external professional macroeconomic fore-
casts. This approach offers an innovative solution to selecting optimal hyperparame-
ters, a key challenge in machine learning, and demonstrates the effectiveness of these
methods, even with limited data.

The key contributions of this thesis lie in developing new methods to evaluate expert
performance, including scoring forecasting accuracy and informativeness, introducing
a cognitive perspective to forecasting behaviour, and advancing the application of ma-
chine learning in macroeconomic prediction. These findings enhance our understand-
ing of expert biases, improve predictive accuracy, and offer practical implications for
decision-making in economic forecasting.
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Definitions and Abbreviations

w Weight vector is used to aggregate expert judgements.

λ Regularization parameter in statistical models.

α Learning rate or significance level in hypothesis testing.

β Coefficient representing relationships between variables in regression models.

γ Scale parameter in Cauchy-Lorentz distribution.

δ Change or difference in values, often used in time series analysis.

σ Standard deviation, representing data dispersion.

θ Parameter or angle in optimization problems.

µ Mean or expected value of a distribution.

ρ Correlation coefficient between variables.

ϕ Probability density function in statistics.

ξ Represents random variables or shocks in econometric models.

CM Classical Model for expert judgement .

EXCALIBUR Expert judgement aggregation procedure.

UK-SPF UK Survey of Professional Forecasters.

SVR Support Vector Regression.

RF Random Forest.

DNN Deep Neural Networks.

LSTM Long Short-Term Memory network.

ME Mean Error, measures the average error between predictions and actual values.

MAE Measures the average absolute error between predictions and actual values.

RMSE Quantifies the differences between predicted and observed values.
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Chapter 1

Introduction

1.1 Research Background

1.1.1 Background

In recent decades, there has been a substantial growth in academic attention across
various disciplines towards using judgement-based methods for making predictions.
Particularly, the attitudes of researchers regarding the role of expert judgement experi-
ence a significant reverse turn (Lawrence et al., 2006). Previously, it was commonly
believed that judgement was inherently subjective. Certain subjective components,
especially those that involve unquantifiable elements, were perceived as obstacles to
achieving accuracy. However, subsequently, expert opinion and judgement have been
better understood for their significant strengths in forecasting by researchers. Expert
judgement has been recognised as one of the most widely used estimation methods.
It has now been integrated into the practice of supporting statistical inference and
decision-making in various ways. Judgemental knowledge inevitably entails subjec-
tivity; however, through the process of careful, objective, and scientific elicitation, it is
feasible to mitigate potential biases (O’Hagan, 2019).

In the field of macroeconomic forecasting, expert judgement—also referred to as “pro-
fessional forecasters’ forecasting”—plays a pivotal role in shaping economic activities,
market interactions, and sentiments, whether in an overt or subtle manner. Central
banks provide estimates of future economic growth, where positive growth projec-
tions can bolster market confidence, while lower-than-expected projections may raise
concerns about an economic slowdown or recession, thereby influencing market senti-
ment. As highlighted by (Huang et al., 2022), when economic agents face substantial
or dynamic uncertainty, these signals are first propagated to different layers of iterative
economic markets. Subsequently, the resulting emotions and moods influence individ-
ual decision-making behaviours underlying economic activities. These emotions are
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often interconnected and can shift rapidly, driving market trends and outcomes. Con-
sequently, they play a significant role in shaping market movements, which can lead to
fear, panic, or doubt.

Does the central bank’s projection report affect market activity and sentiment? The
answer is a definitive yes. Central banks, such as the Federal Reserve in the United
States, the European Central Bank, and the Bank of England, play a pivotal role in shap-
ing monetary policy and economic conditions. Their projection reports provide crucial
insights into future economic trends, including interest rates, inflation, and other key
factors. These reports directly influence market expectations, often driving changes
in investor behaviour, financial market performance, and overall market sentiment
(Gürkaynak et al., 2004). As a result, markets closely monitor these reports, reacting
to signals about potential shifts in economic policy or outlook.

Otway and von Winterfeldt (1992) proposed that expert judgement has always played
a significant role in the forecasting analysis of regulation and management even though
it is often unrecognised. Especially, the hazard activities increasingly rely on formal ex-
pert judgement processes to provide wisdom that is unable to be directly supplied from
practical science. Brito et al. (2008) emphasised that risk assessment of complex systems
is heavily dependent on expert judgement elicitation. This is particularly the case for
problems where there is no hard data, and the consequences of potential hazards can
be catastrophic. Marti et al. (2021) confirmed expert elicitation plays a prominent role
in fields where the data are scarce. As consulting multiple experts is critical in expert
elicitation practices, combining various expert opinions is an important topic.

Forecasting plays an important role in economic analysis and affects the decisions of
households, firms, and policymakers. This, in turn, has important consequences for
macroeconomic dynamics as emphasised for instance by (Lucas, 1973). How agents
form expectations and, particularly, whether they are rational and efficiently incorpo-
rate all available information into their forecasts is thus a question of fundamental eco-
nomic importance (Elliott and Timmermann, 2008). Debaere (2008) described that GDP
growth, Inflation, and Unemployment are the “big three” indicators that are carefully
monitored by consumers, firms, and policymakers worldwide. They are the scorecard
of an economy and allow people to understand its overall health. Inflation reflects
changes in the overall price level. Inflation is a key indicator for the central banks
around the world. Although the academic debate about expectation formation is still
open, the role played by inflation expectations and accurate measurements of the pub-
lic’s beliefs is important to both researchers and policymakers. In addition, to monitor
the effectiveness of its communication, a central bank needs to regularly assess the con-
sistency of the public’s beliefs with policy objectives.

When complex decisions must be made while data is unavailable, structured expert
judgement can be used to combine uncertainty distributions resulting from experts’
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assessments. Expert opinions are frequently sought when complex decisions must be
made in situations where appropriate information cannot be acquired from existing
data and models. Experts are asked to quantify their uncertainty over quantities of in-
terest that inform the decision-making process. Furthermore, the experts are unlikely
to be in complete agreement with one another. In such situations, expert judgement
can be employed to quantify the uncertainty that ensues and to aggregate expert opin-
ion. Structured expert judgement methods are intended to quantify uncertainty, not to
remove it from the decision process.

1.1.2 Challenges in Forecasting Accuracy

Forecasting, especially by professional forecasters, presents significant challenges in
achieving accuracy due to a variety of factors. One major challenge is the inherent
uncertainty and volatility of economic and financial environments, which can render
even the most sophisticated models prone to errors (Keane and Runkle, 1990). Profes-
sional forecasters must continuously adapt to rapidly changing conditions, such as un-
expected geopolitical events, natural disasters, and sudden market shifts, all of which
can disrupt previously stable patterns (Elliott et al., 2005). Moreover, the reliance on
historical data as a basis for predictions often falls short when unprecedented scenarios
arise, leading to potential biases and inaccuracies (Armstrong, 2001). Cognitive bi-
ases and heuristic-driven decision-making further complicate the forecasting process,
as forecasters may inadvertently project their subjective views onto objective analyses
(Tversky and Kahneman, 1974). These challenges underscore the complexity of pro-
ducing reliable forecasts and highlight the need for continual refinement of forecasting
methodologies to enhance their robustness and accuracy (Fildes and Goodwin, 2007).

1.1.3 Definition of Expert Judgement

An expert is an individual with extensive knowledge, skills, and experience gained
through both education and practical engagement in a specific field. Informally, an
expert is someone who is widely acknowledged as a dependable source of techniques
or skills, and their ability to make sound, just, or wise judgements is granted authority
and recognition by their peers or the general public within a well-defined domain char-
acterised by established cognitive structures and processes (Ericsson and Staszewski,
2013). In a broader sense, expertise refers to a person’s in-depth knowledge or pro-
ficiency rooted in research, hands-on experience, or a particular occupation within a
specific area of study.

In particular domains, the definition of an expert is commonly accepted through con-
sensus, and formal professional or academic qualifications may not always be a pre-
requisite for expert recognition. For instance, consider a shepherd with five decades
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of practical experience in tending flocks; such an individual is widely regarded as pos-
sessing comprehensive expertise in areas such as sheepdog training and sheep care.
Another example is found in the realm of computer science, where an expert system
can be taught by a human and subsequently regarded as an expert, often surpassing
human performance in specific tasks.

The definition of experts and expert judgement used in this study focuses on UK-SFP
professional forecasters. Central banks, such as the Bank of England, routinely collect
and assess economic forecasts from various sources, including academic institutions,
financial organisations, research bodies, and independent economists. These forecasts
provide valuable insights into collective expectations for economic conditions, which
can significantly influence the central bank’s decisions on monetary policy.

1.2 General Research Contributions

The general research contributions of this thesis are threefold:

• Expanding the literature by bridging measurable statistical accuracy with impli-
cate expert knowledge informativeness: This research establishes a novel con-
nection between quantifiable statistical precision and the insights provided by
expert judgement. It introduces an innovative approach to understanding and
managing uncertainty, offering a more intuitive framework for decision-making
in complex, uncertain environments.

• Offering a fresh perspective on the interpretation of attitudinal differences among
experts in macroeconomic forecasting: This thesis provides a new lens for
analysing how experts’ attitudes towards uncertainty and bounded rational-
ity influence their predictions. By recognising the limitations of human cogni-
tion in decision-making, it highlights how judgements made under conditions
of bounded rationality shape forecasting outcomes. Furthermore, this research
bridges cognitive theory and statistical models, creating a clearer pathway for
understanding the complex interplay between human judgement, rational limi-
tations, and predictive accuracy in economic forecasting.

• Developing an advanced explainable hybrid machine learning framework for
macroeconomic prediction: This research introduces a robust hybrid approach
that combines different machine learning techniques to significantly enhance
the accuracy and interpretability of macroeconomic forecasts. By integrating
Support Vector Regression (SVR), Random Forest (RF), Deep Neural Networks
(DNN), and Long Short-Term Memory (LSTM) models, this hybrid framework
addresses the limitations of individual models and improves prediction perfor-
mance. Moreover, the framework emphasizes explainability, providing insights
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into how various input features influence the predictions. This level of trans-
parency enables policymakers and analysts to better understand the drivers be-
hind forecast outcomes, fostering trust and facilitating more informed decision-
making.

1.3 Research Aims

Specific research aims of each main chapter are displayed as follows:

The research aim of Chapter 2 is to explore the utilization of known historical SPF data
in forming a novel expert expectation for macroeconomic predictions. We quantify
each individual expert performance uncertainty by assessing their performance using
calibration scores and information scores. Subsequently, these scores are employed
to assign new weights to each expert, resulting in a combined expert expectation for
forecasting macroeconomic indicators.

The research aim of Chapter 3 is to investigate whether professional forecasters exhibit
behaviourally rational tendencies when making macroeconomic predictions. Instead
of directly assuming rationality, we establish rational boundaries to evaluate whether
expert forecasts fall within a rational range. This approach allows us to identify differ-
ences in their risk attitudes, categorising these forecasters as either optimistic or pes-
simistic.

The research aim of Chapter 4 is to develop a hybrid machine learning framework to
optimise macroeconomic predictions. Recognising the limitations of traditional macroe-
conomic forecasting models and the inefficiencies of relying solely on a single machine
learning model, this chapter seeks to address these challenges. Our approach involves
constructing a robust hybrid framework that integrates multiple machine learning tech-
niques to enhance predictive accuracy. Specifically, we combine Support Vector Regres-
sion (SVR), Random Forest (RF), Deep Neural Networks (DNN), and Long Short-Term
Memory (LSTM) models. This hybrid methodology is designed to address and min-
imise prediction errors, offering an innovative solution for macroeconomic forecasting.

1.4 Research Objectives

The research aims of this thesis can be expressed as specific research objectives in each
main chapter, followed by corresponding conclusions.

The research objectives of Chapter 2:
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• To introduce the application of structured expert judgement into macroeconomic
prediction.

• To transform expert predictions from time-series numerical data into probability
distributions representing expert beliefs.

• To score and weight expert performance based on their predictions of key macroe-
conomic indicators.

• To elicit the aggregation of experts’ judgements to form a new expert expectation
for the macroeconomic outlook.

The research objectives of Chapter 3:

• To visually depict the shape of expert attitudes based on the cumulative proba-
bility distribution of expert judgement.

• To measure and combine the classification methods of identifying expert risk-
taking attitudes under different methods.

• To understand the methods of establishing rational boundaries for understanding
forecasters’ behaviour.

• To connect and extend the individual difference of expert prediction behaviour
into psychology theory.

The research objectives of Chapter 4:

• To address a gap in the literature by utilising machine learning applications to
optimize macroeconomic expert predictions.

• To measure the performance between different algorithms (ML and DL) to un-
derstand their respective contributions to the process of improving prediction
accuracy.

• To validate machine learning and deep learning work on small data samples.

• To explore the integration of hybrid machine learning frameworks that combine
traditional and advanced algorithms, aiming to enhance robustness and adapt-
ability in macroeconomic forecasting.

1.5 Structure of the Thesis

This thesis is structured around three core papers, beginning with an overall introduc-
tion and concluding with remarks on key findings, limitations, and future directions.
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FIGURE 1.1: The basic structure of this thesis
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Chapter 2

Scoring and Eliciting Expert
Judgemental Knowledge under
Uncertainty

2.1 Introduction

Professional forecasters’ accuracy and uncertainty identification is an ongoing research
topic in macroeconomic variable forecasting (Dror and Charlton, 2006). In macroeco-
nomic decision-making, professional forecasters play a significant role in informing
central bank policymakers, businesses, and the general public about the potential fu-
ture trends of some key economic indicator variables, such as GDP growth, inflation,
interest rates, unemployment, and exchange rate (Ball et al., 2005; Manski, 2004; Pa-
ciello and Wiederholt, 2014; Angeletos and Lian, 2017). Thus, the performance of pro-
fessional forecasters in predicting the future state of leading macroeconomic indica-
tors has received great attention. Galı́ (2011) questioned if central banks’ projections
are meaningful by the concern of central banks’ forecasts conditional on a given path,
which are often criticised on the grounds that their assumptions are inconsistent with
the existence of a unique equilibrium in many forward-looking models. In addition to
this, Fildes and Stekler (2002) argued that traditional methods of measuring accuracy,
such as ME, MAE, and RMSE, do not provide sufficiently meaningful information and
have been subject to significant criticism. These concerns motivate this study to assess
the performance uncertainty of the Bank of England’s external professional forecasters
from two key dimensions: forecast accuracy and knowledge informativeness.

Morgan et al. (1990) indicated statistical models prove inadequate in supplying the
necessary inputs for modelling problems or policy analysis, the best course of action is
to seek insights from experts. This is in line with Kynn (2008) emphasised that although
statistical modelling has a valid but limited application, it cannot fully replace expert
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judgement. Colson and Cooke (2018) pointed to existing data and modelling tools that
cannot provide decision-makers with all of the information they need to design and
implement effective policies and make optimal management choices. Thus, decision-
makers often supplement other forms of information with the judgement of experts.
McAndrew et al. (2021) mentioned the key concern is that even though many statistical
models can produce accurate forecasts with abundant training data, they may struggle
to capture underlying dynamics when data is sparse or rapidly changing. McAndrew
et al. (2021) further highlighted statistical models heavily rely on correlations between
data to identify patterns, but when the data is inadequate for modelling, the accuracy of
predictions may fall short. As a solution, McAndrew et al. (2021) suggested overcoming
data limitations in statistical models by adapting judgemental forecasting and eliciting
expert knowledge.

Furthermore, Clements and Hendry (2011) found that while the optimal combinations
of survey and model-based forecasts always outperform the latter, they do not sys-
tematically do so over the former. And survey forecasts provide an effective way of
removing expected variations in macroeconomic series. Casey (2020) highlighted sub-
jective forecasts by professionals have often been found to be more accurate than fore-
casts from econometric models, especially over short horizons. However, going back
to earlier works, we find that few studies discuss the formalization of the aggregation
expert process; even the professional forecasters in macroeconomic predictions repre-
sent a critical role. However, even though professional forecasts are important, the
measurement of economic forecast accuracy remains under debate. As Mankiw et al.
(2003) revealed the concern of assumption in most theories in macroeconomics is no
disagreement among agents. It is assumed that everyone shares the same information
and that all are endowed with the same information processing technology. Conse-
quently, everyone ends up with the same expectation. However, they provide evidence
to reveal three facts of disagreement by examining inflation expectations and indicating
that disagreement is crucial to macroeconomic dynamics.

We encounter similar concerns when examining the projection data of external pro-
fessional forecasters from the Bank of England. Two primary issues arise: firstly, the
survey data is incomplete, with many participants failing to provide their expected
values for the following year’s outlook. Secondly, preliminary analysis reveals that the
prediction data significantly deviates from historical actual values. These issues moti-
vate us to assess the performance of these professional forecasters and investigate the
factors contributing to inefficiencies in forecasting the main macroeconomic indicators.

We introduce Cooke’s Classical Model (CM), developed by Cooke (1991), to evaluate
the performance of professional forecasters by assessing their prediction accuracy and
the informativeness of their knowledge. First, the study identifies varying degrees of
prediction deviations between the forecasts made by external professional forecasters
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and actual historical data for key economic indicators, including GDP growth, CPI in-
flation (CPI), the Bank of England base rate (BoE), the LFS unemployment rate (UR),
and the Sterling Exchange Rate Index (ERI). This finding illustrates the observable dif-
ferences between these forecasts and actual historical data, prompting further explo-
ration into the underlying causes. Subsequently, two scores—the calibration score and
the information score—are calculated using the CM for all experts. These scores are
then used to derive a performance-based weight for each expert. Finally, an aggre-
gated forecast is generated by combining the performance-weighted contributions of
all experts, resulting in a forecast that demonstrates improved accuracy compared to
those of individual forecasters.

This study is organised into five main sections. Section 2 reviews the literature on un-
certainty measurement in economics and introduces the application of the Classical
Model (CM). Section 3 outlines our methodology, including calibration and informa-
tion scoring principles. Section 4 provides a detailed description of the data used in
this study. Section 5 concludes with a summary of the research findings, a discussion
of the study’s limitations, and suggestions for future research.

2.2 Literature Review

2.2.1 Forecast Accuracy and Uncertainty

Bloom (2009) mentioned uncertainty is also a ubiquitous concern of policymaker. Abel
et al. (2016) claimed that uncertainty is of great significance for understanding the ex-
pectation formation process and potentially explaining changes in key economic and
financial time series. However, they also confirmed that the measurement of uncer-
tainty remains challenging due to its difficulty in observing the subjective magnitude
of an individual. In their study, they examined the matched point and density forecasts
of output growth, inflation, and unemployment from the ECB survey of professional
forecasters. Jo and Sekkel (2019) defined macroeconomic uncertainty as the conditional
time-varying standard deviation of a factor that is common to the forecast errors for
various macroeconomic indicators from the Survey of Professional Forecasters (SPF).

Professional macroeconomic forecasting encourages confidence-building in financial
market activities and allows for more informed decision-making. With this said, inac-
curate prediction, whether the future state of the economy is underestimated or over-
estimated, will invariably lead to losses stemming from irrational decisions and rising
costs Buturac (2021). In addition, Hess and Orbe (2013) found some surprising data
and unanticipated information in regular scheduled macroeconomic outlook releases,
which will change market participants’ perceptions and behaviours in their engage-
ment in economic activities.
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In addition to forecast accuracy, forecast uncertainty has attracted much attention in the
evaluation process of macroeconomic forecasting. Uncertainty arises in prediction is at-
tributable to forecasters need to express their uncertainty in their forecasts. This uncer-
tainty has received the focus of government policymakers, analysts, and researchers to
find out its proxy variables in the process of evaluating the current economic situation
and future economic states (Boero et al., 2015). Further, Abel et al. (2016) highlighted
that uncertainty is of great significance for understanding the expectation formation
process and potentially explaining changes in economic behaviours. The challenge
remains to empirically assess the behaviour of uncertainty and the corresponding in-
fluences on macroeconomic market activity (Jurado et al., 2015).

Uncertainty affects a variety of decision-makers in the world including governments
and a large number of tools have been established to deal with these uncertainties, and
there is no need to eliminate uncertainty if it can be quantified by Oppenheimer et al.
(2016). In contrast, Huang et al. (2022) approached uncertainty in a macroeconomic set-
ting as a systemic risk that poses challenges for most economic actors regarding mea-
surement. For instance, when participants in the economic market perceive heightened
unpredictability, it can influence their decision-making behaviour.

2.2.2 Expert Judgement and Knowledge Elicitation

Expert judgement elicitation (EJE) is described by Dias et al. (2018) as the process of
aiding experts in quantitatively expressing their subjective judgements, encompass-
ing both factual and evaluative aspects. The process involves a facilitator extracting
assessments from highly knowledgeable experts to identify and measure risks and un-
certainties. This approach aims to minimize bias introduction and enhance the repro-
ducibility of results. The initial application of this approach took place during safety as-
sessments carried out by the US Nuclear Regulatory Commission in 1975. Kynn (2008)
introduced a formal process for eliciting judgements aimed at addressing and minimiz-
ing biases, thereby improving the replicability of outcomes. This process encompasses
multiple phases. Various formal expert judgement elicitation (EJE) techniques, such as
the Delphi method Turoff and Linstone (2002), the SHELF-R framework Morgan et al.
(1990), and the EXCALIBUR approach Cooke and Solomatine (1992), offer different
approaches to model and aggregate expert judgements.

Burnham et al. (1998) outlined a process involving the interaction of experts, followed
by some basic mathematical manipulation of each expert’s judgement to yield a sin-
gle aggregated probability density function per variable. Typically, these approaches
employ straightforward combination techniques, such as assigning equal weight to all
participating experts. There are various approaches for aggregating expert judgements;
these approaches are categorised as ”mathematical” and ”behavioural” Clemen and
Winkler (1999). Mathematical methods aim to create a single composite assessment for
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each variable or item of interest by applying procedures or analytical models that treat
each variable independently (Budnitz et al., 1998). Morris (1977) stated that Bayesian
aggregation methods necessitate decision-makers to define their prior probability dis-
tribution. The a priori decision-maker’s belief is updated after acquiring the probabil-
ities from the experts. In addition, the linear weighted opinion pool method is widely
adopted for its simplicity as described by (Clemen and Winkler, 1999). The mathemat-
ical equation for aggregating expert judgement technique is expressed as follows in
Equation 2.1 by (Clemen and Winkler, 1999).

p(θ) = k ·
n

∑
i=1

wi pi(θ), (2.1)

where n is the number of experts, θ represents expert’s probability distribution for un-
known θ, p (θ) represents the combined probability distribution, and the weights wi

are non-negative and sum to one. This method aggregates Expert Judgements (EJs)
by calculating the weighted average of the assessments offered by the experts. Ad-
ditionally, to address situations where the decision-maker or facilitator must update
probabilities when new relevant information becomes available, Clemen and Winkler
(1999) introduced the method of logarithmic opinion pool, as an add. On the other
hand, Hanea et al. (2018) noted behavioural aggregation involves convening experts,
providing them with comprehensive information, and encouraging open discussions
of their viewpoints.

Subsequently, they collectively generate distributions (Phillips and Phillips, 1993;
O’Hagan et al., 2006). During these interactions, certain behavioural approaches, such
as the expert information approach (Kaplan, 1992), strive to achieve a consensus among
experts regarding each variable’s ultimate probability density function. Popular meth-
ods for this purpose include Group Elicitation (Porthin et al., 2018), the Delphi method
by (Rowe and Wright, 2001), and the Nominal Group Technique (McMillan et al., 2016).
Behavioural methods are time-intensive and can lead to systematic biases from group
polarization, in contrast to mathematical aggregation methods (Isenberg, 1986).

A collective of experts often demonstrates superior performance compared to an indi-
vidual expert. Nevertheless, there are instances where the most proficient individual
within a group can still outshine the entire group, as noted by (Clemen and Winkler,
1999). This observation encourages using methods that solicit evaluations from indi-
vidual experts without fostering interaction among them during the actual elicitation
phase. Subsequently, a straightforward mathematical aggregation process is employed
to derive a single assessment for each variable. This approach ensures that assessments
from individual experts are obtained impartially and are weighted based on the per-
formance and merit of each expert.
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2.2.3 Expert Performance Evaluate Techniques

The Classical Model (CM) has found extensive use in various professional applications
aimed at quantifying uncertainties to facilitate informed decision-making (Hanea et al.,
2021). These uncertainties often pertain to unmeasured variables that exist on a con-
tinuous scale. Simply providing point or ”best” estimates proves inadequate when the
primary objective is to quantify uncertainty since they fail to convey the potential range
within which the actual (unknown) values may plausibly deviate from these point es-
timates. In the CM approach, expert uncertainties are thus quantified as subjective
probability distributions. Experts are asked to provide points that describe the distri-
bution in the form of a fixed and finite number of percentiles (usually three). From these
percentiles, a minimally informative non-parametric distribution is constructed. Para-
metric distributions may be fitted instead, but these will add extra information to the
three percentiles provided by the experts when compared to the minimally informa-
tive non-parametric distribution. This extra information may or may not be following
experts’ views.

2.3 Methodology

Our baseline model, originally proposed and designed by (Cooke, 1991), is intended
for science-based quantitative uncertainty analysis. It is widely recognised as a
performance-based approach for mathematically aggregating judgements from a panel
of experts, facilitating reasoning about target questions under conditions of uncertainty
(Quigley et al., 2018).

2.3.1 (Expert) Knowledge Elicitation Framework

What is knowledge elicitation? As Shadbolt et al. (2015) described, knowledge elicita-
tion consists of techniques and methods that attempt to elicit knowledge from experts
in their domain. They emphasize that the conceptualizations of knowledge elicitation
have varied from extracting or mining knowledge from experts’ brains in the early
stage to developing the process as a modelling exercise oriented. It combines the collab-
oration of knowledge elicitor (analyst) and domain experts to create a model of expert
knowledge. Verdolini et al. (2018) further indicated that expert elicitation is a structured
approach for obtaining expert judgements about items of interest to decision-makers.

This study builds upon a well-known elicitation approach, the EXCALIBUR proce-
dure, formulated and documented by (Cooke, 1991). The standard procedure includes
six main steps: selecting experts, eliciting knowledge, assessing variables, scoring ex-
perts’ performance, forming weights, and combining experts’ uncertainty distributions
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(Quigley et al., 2018). Further details can be found in Table A.1 in Appendix A. How-
ever, this study faces challenges in data availability in several aspects. One key issue
is the format of the expert prediction: the EXCALIBUR approach requires experts to
express their beliefs as probabilities to construct distributions. However, since we are
working with time series data from 1998, it is impossible to revise the data format retro-
spectively. and the experts are seen as anonymous when the Bank of England collects
the data from them, so we can not interview the expert panel further to collect their
beliefs in probability.

To address this limitation, we extend the approach by incorporating the probability in-
version method developed by (Oppenheimer et al., 2016), allowing us to infer expert
subjective distributions through the inversion of a function or parameter within a given
distribution. This extension partially addresses the challenge of adapting expert point
forecasts into interval forecasts. By applying probability inversion, we transform the
single-value predictions provided by experts (point forecasts) into probability distri-
butions that capture uncertainty, ultimately forming a probability belief distribution.
This transmission allows us to better evaluate the accuracy and informativeness of ex-
pert judgements by providing a more nuanced view of their predictions. By capturing
a single forecast value and a range of possible outcomes, we can assess how well ex-
perts understand the underlying uncertainty and how rich their insights convey prob-
abilistic information. This method is especially valuable in time series analysis, where
understanding the range of potential future outcomes is crucial for informed decision-
making.

2.3.2 Classical Model Basics

The Classical Model (CM), also known as structured expert judgement (SEJ), intro-
duced by (Cooke, 1991), is a method that uses performance scores to aggregate and val-
idate expert judgements. In this approach, experts’ uncertainty is quantified through
two types of elicitation questions: target questions and calibration questions. Target
questions involve variables of interest that cannot be adequately addressed through
other methods, requiring expert judgement. Calibration questions, on the other hand,
are related to the experts’ domain but contain uncertainties. While the true values of
these calibration questions are not known or accessible to the experts, they are known
to the analyst, allowing for evaluating the experts’ accuracy.

A key feature of the CM is its scoring mechanisms for assessing expert performance. It
compares expert calibration and classical statistical hypothesis testing, employing two
primary scores: calibration and information scores. The calibration score evaluates how
well the experts’ probability distributions align with observed empirical data, assessing
the accuracy of their predictions. The information score measures the concentration
of an expert’s uncertainty distribution, reflecting how precisely an expert expresses
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their beliefs. These scores are used to assign performance-based weights to experts,
facilitating a more reliable aggregation of their judgements.

Moreover, in the CM, experts express their subjective estimates using a quantile-based
format. Specifically, they provide estimates for an uncertain quantity by specifying
predetermined percentiles of their uncertainty distribution, typically at the 5th, 50th,
and 95th percentiles. The 50th percentile represents the median estimate, indicating the
point where the expert believes the true value is equally likely to be above or below.
The 5th and 95th percentiles define a 90% confidence interval, suggesting that experts
believe there is a 90% chance that the true value lies within this range (Quigley et al.,
2018).

2.3.3 Scoring Mechanisms

The calibration score is a metric for assessing the expert performance based on the seed
questions in terms of statistical accuracy. In statistics science, it indicates the Kullback-
Leibler (KL) distance between the expert’s belief probability distribution and the refer-
ence distribution. According to the definition of (Kullback and Leibler, 1951; Kullback,
1997), the KL distance is denoted as DKL(P ∥ Q) , it measures how the expert probabil-
ity distribution P is different from the reference distribution Q.

Definition 2.1.: Setting each expert to express their belief using four inter-quantile in-
tervals, represented by a probability vector (P1, P2, P3, P4), which is used to form an
expert probability distribution.

Namely,

• P1 = 0.05 is for realization value, P1 ≤ 5% value,

• P2 = 0.45 is for realization value, 5% ≤ P2 ≤ 50% value,

• P3 = 0.45 is for realization value, 50% ≤ P3 ≤ 95% value,

• P4 = 0.05 is for realization value, 95% ≤ P4 ≤ 1 value.

p = {0.05, 0.45, 0.45, 0.05} (2.2)

Remark 2.1.: In this approach, we set the realization value to 0, implying that the ex-
pert’s belief is consistent with the true value. We propose an inverse reasoning method
to deduce the expert’s belief probability distribution from their predicted value.

Step 1. Define the realization value as 0, which means that ideally it is expected no
errors between the expert prediction values and true value. It denotes the KL diver-
gence measure will be 0. It will be as a baseline for dividing expert’s belief intervals in
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FIGURE 2.1: An example of a cumulative count graph.

Note: This graph illustrates the information on the cumulative count of errors during the
fitting process, represented by the red histogram and the blue cumulative line. The numbers
inside the bars indicate the counts of errors between the expert predictions and the true values
within each range. The X-axis represents the error percentage (difference between predicted
and actual values); the left Y-axis displays the count of errors, and the right Y-axis shows the

cumulative percentage of errors.

reverse. Here we calculate the actual differences in values between expert predictions
in the target’s variables (GDP, Inflation, BR, UR, and ERI) and their corresponding true
values.

Step 2. Plot a histogram for the difference points of the time series for each viable to
create a cumulative count graph and let it fit in a Cauchy - Lorentz distribution.

Assumption 2.1:

A1: We assume that the cumulative distribution function (CDF) follows a Cauchy-
Lorentz distribution due to its specific properties.

Property 1: According to (Chyzak and Nielsen, 2019), the Kullback–Leibler (KL) diver-
gence between two Cauchy distributions has a symmetric closed-form expression:

KL = DKL(px0,1γ1 : px0,2γ2) = log
(
(γ1 + γ2)2 + (x0,1 − x0,2)2

4γ1γ2

)
(2.3)

Property 2: As noted by Nielsen and Okamura (2022), any f - divergence between
two Cauchy distributions is symmetric and can be expressed as a function of the chi-
squared divergence.

Step 3: Perform nonlinear curve fitting using the Cauchy-Lorentz model. The resulting
parameter values from the fitted curve will be displayed.
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FIGURE 2.2: A cumulative count graph fits in a Cauchy - Lorentz distribution.

FIGURE 2.3: Parameter values in a nonlinear curve fitting of Cauchy - Lorentz distri-
bution.
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FIGURE 2.4: Calculation of Quantiles from a Cauchy-Lorentz Distribution.

Note: This calculation demonstrates the process for calculating the 5%, 50%, and 95% quan-
tiles from a Cauchy-Lorentz distribution. The code defines the distribution parameters, com-
putes the Probability Density Function (PDF), and then generates the Cumulative Distribu-
tion Function (CDF) through a cumulative sum of the PDF values. After normalising the
CDF, the code identifies the quantile values by finding the points where the CDF approximates
5% and 95%. The 50% quantile, or median, is calculated based on the distribution’s centre,

with precision adjustments.

Step 4. Here is a function generated from the above nonlinear curve fitting. The values
of parameters derived in step 3 will be the input value to rebuild a new function for
each time. Each expert’s prediction for each variable will generate a new function.

Definition 2.2.: We draw on (Aspinall, 2008) to define if the realizations are indeed
drawn independently from a distribution with three quantiles (5%, 50%, and 95%),
then the quantity:

2N · I(s(e1, . . . , e10) | p) = 2N ·
4

∑
i=1

{si · ln
(

si

p

)
} (2.4)

Where I(s(e) | p) is the relative information of distribution s with respect to p for each
expert (e1, . . . , e10). Let a discrete distribution have a probability function s, and let a
second discrete distribution have a probability function p. Then the relative informa-
tion of p with respect to s is: s · ln

(
s
p

)
.
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FIGURE 2.5: Output of Expert Probability Distribution Intervals Bounded by Values.

Hypothesis 2.1.: We have a Hypothesis (He): “the inter-quantile interval containing
the true value for each variable is drawn independently from probability vector p” (As-
pinall, 2008). Unlike general statistical hypotheses, this one does not require acceptance
or rejection. Instead, it is used to assess the extent to which each expert’s probabilities
align with the hypothesis, thereby measuring the accuracy of their assessments.

A simple test for this hypothesis uses the information likelihood ratio statistic using the
above Equation 2.4, and the probability value for this hypothesis is used to shape the
calibration score. The equation can be expressed as follows:

CalibrationScore = Prob{2N · I(s(e) | p ≥ r | He} (2.5)

Where, Prob{|} denotes the probability that the information likelihood ratio statistic is
greater than or equal to r, given the hypothesis is true, where r is the relevant quantity
value from the expert’s sample distribution. Thus, the calibration score is the probabil-
ity under hypothesis He that a deviation at least as great as r could be observed on N
realizations if He were true (Aspinall, 2008).

2.3.4 Information Scoring

The information score can be described as the degree how which the expert’s distribu-
tion is concentrated or spread out.

For a uniform background measure, the probability density is constant between the
assessed quantiles and is such that the total mass between the quantiles agrees with
the probability vector p. In addition, both the uniform and log-uniform background
measures require an intrinsic range on which these measures are concentrated. The
CM implements the so-called “k% overshoot rule”: for each item. First, the smallest
interval I = [q5, q95] is determined to contain all the assessed quantiles of all experts
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and contains the realization for that item. The interval is extended to a new, wider
interval:

I∗ = [qL, qH ] (2.6)

where,

• qL = q5 − k · (q95 − q5)/100

• qH = q95 + k · (q95 − q5)/100

The value of k is established based on the extent to which the range is expanded, and
this choice is made by the analyst. In this study, we have set k to 10 to generate a
10% overshoot. Once the intrinsic range is defined, the information score for expert e
concerning assessments for N uncertain quantities can be expressed as:

In f ormationscore(e) = (1/N) ·
N

∑
i=1

I( fe,i | gi) (2.7)

Where, gi represents the underlying probability density for variable I across the ex-
tended intrinsic range, while fe,i stands for the probability density function provided
by expert e for item i. The relative information for all variables is aggregated and then
adjusted based on the N quantities under consideration. This adjusted sum is pro-
portionate to the relative information derived from the combined distribution of the
experts in comparison to the background distribution. This is under the assumption
that the variables are independent.

2.3.5 Pooling Weights

Considering the following scoring weight for expert e:

wα(e) = ln (dα(calibration score(e) ∗ calibration score(e) ∗ information score(e)))
(2.8)

Where, ln dα(·) denotes an indicator function with ln dα(x) = 0, if x < α, and ln dα(x) =
1. In this case, ln dα(·) is based on the expert’s calibration score and only allows e to gain
a non-zero weight wα(e) if his score exceeds a threshold level defined by some value, α.
Cooke (1991) showed that the expert’s score wα(e) is an asymptotically strictly proper
scoring rule for average probabilities. The scoring rule constraint requires the term
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ln dα(calibration score(e)) to be applied to the expert’s score but does not say what the
value of α should be. Thus, α can be chosen to maximize the combined score of the
resulting decision maker when all the experts’ distributions are pooled together.

2.4 Data

2.4.1 Survey of Professional Forecasters data

This section outlines the data sources and data collection procedures employed in this
research. The data comprises both primary data from the SPF surveys conducted by
the Bank of England and secondary data obtained from the Bank of England and the
UK’s official national statistical database. The survey data, specifically, was gathered
from a group of experts for whom five seed questions were designed. The variables
included in the secondary data are detailed in Table 2.1.

This study introduces a novel source of survey data: the Bank of England Survey of
Professional Forecasters (SPF). As noted by Cooke et al. (2021), expert-based surveys
differ from simpler surveys due to a credentialing process that ensures participants
meet professional standards before selection. The Bank of England collects this survey
data annually, with updates provided regularly.

As described by Boero et al. (2008) and Boero et al. (2015), the Bank of England engages
a panel of external professional forecasters each quarter to gather their expectations for
the macroeconomic outlook over the next year. These forecasts focus on key indicators,
including real GDP growth, inflation, the Bank Rate, the unemployment rate, and the
Sterling Exchange Rate Index. Each panellist is recognised as a formal professional
forecaster, providing their personal estimations for these five variables one year ahead.

The external experts represent diverse backgrounds, including city firms, academic
institutions, and private consultancies based in London. While participants remain
anonymous, they are assigned unique identification numbers, enabling their responses
to be tracked over time without compromising confidentiality.

2.4.2 Variables Description

Our raw data comprises two datasets. The first dataset consists of quarterly SPF data
for five key UK macroeconomic indicators: GDP growth (GDP), the CPI inflation rate
(Inflation), the Bank Rate (BoE), the LFS unemployment rate (UR), and the Sterling
Exchange Rate Index (ERI). This dataset spans the period from 2000Q4 to 2022Q4. The
second dataset contains the corresponding actual values for these indicators over the
same period.
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TABLE 2.1: Overview of Variables Description

Variables Definition Data Source

Real GDP growth
(%)

GDP growth, also called economic
growth or simply “growth” – is a
key measure of the economy’s overall
strength.

Bank of England

Inflation Rate (%) Inflation is a measure of how much the
prices of goods (such as food or televi-
sions) and services (such as haircuts or
train tickets) have gone up over time.

Office for National Statis-
tics

Base Bank Rate (%) Bank Rate is the most important in-
terest rate in the UK. In the news, it’s
sometimes called the ‘Bank of England
base rate’ or ‘the interest rate’.

Bank of England

LFS Unemploy-
ment Rate (%)

The level and rate of UK unemploy-
ment measured by the Labour Force
Survey (LFS), using the International
Labour Organisation’s definition of
unemployment

Office for National Statis-
tics

Sterling Exchange
Rate Index (%)

The sterling exchange rate index (ERI)
measures the overall change in the
trade-weighted exchange value of ster-
ling. It is designed to measure changes
in the price competitiveness of traded
goods and services.

Bank of England

Note: The five variables are referred to as ”seed variables” in the Classical Model (CM). Experts
are asked to provide their forecasts for these variables, focusing on expectations for each quarter
of the next year. The specific questions posed to the experts are as follows: 1. What is next year’s
real GDP growth for each quarter? 2. What is next year’s inflation rate for each quarter? 3.
What is next year’s base bank rate for each quarter? 4. What is next year’s unemployment rate

for each quarter? 5. What is each quarter’s sterling exchange rate index for next year?

2.4.3 Preliminary Analysis

We perform an ANOVA test as a preliminary analysis to determine whether the differ-
ences between expert prediction values and actual values for each variable are statisti-
cally significant. This initial test evaluates whether the variations in predictions across
different experts or variables arise from systematic differences or are merely the result
of random fluctuations. By comparing the variance within groups (expert predictions)
to the variance between groups (actual values), the ANOVA test provides a framework
for identifying whether further, more detailed analysis is warranted. Accordingly, the
null hypothesis (H0) and alternative hypothesis (H1) are defined as follows:

H0: There is no difference between each expert prediction and true value.

H1: There is an existing difference between each expert prediction and true value.

The results of the ANOVA tests, presented in Tables 2.2 to 2.6, indicate statistically sig-
nificant differences between the prediction values provided by the ten experts and the
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actual values for key macroeconomic indicators, including GDP growth, the inflation
rate, the unemployment rate, the bank rate, and the Sterling Exchange Rate Index (ERI).
These findings provide an initial statistical assessment, highlighting measurable dis-
crepancies between forecasts and actual outcomes. Moreover, the observed differences
exhibit systematic patterns, suggesting the need for further investigation to understand
the underlying causes and their implications.

TABLE 2.2: Analysis of variance test for GDP growth

Real - Expert Obs. Mean1 Mean2 Dif. St Err t
value

p
value

Real - B1 62 .024 1.903 -1.879 .36 -5.2 0
Real - G1 70 .424 2.264 -1.84 .413 -4.45 0
Real - I1 57 .702 1.945 -1.243 .321 -3.85 .001
Real - L1 64 .575 2.833 -2.258 .319 7.1 0
Real - N1 75 .49 2.374 -1.883 .398 -4.75 0
Real - O1 69 .339 2.111 -1.772 .422 -4.2 0
Real - S1 72 .366 2.068 -1.701 .104 -16.25 0
Real - T1 74 .486 2.045 -1.558 .447 -3.5 0.001
Real - X1 70 .668 2.093 -1.424 .271 -5.25 0
Real - B2 73 .688 1.872 -1.185 .29 -4.1 0

Note: Summary of ANOVA results for the comparison between the forecasters’ value sand the
true values in GDP growth.

TABLE 2.3: Analysis of variance test for Inflation rate

Real - Expert Obs. Mean1 Mean2 Dif. St Err t
value

p
value

Real - B1 62 1.895 1.957 -.061 .126 -.5 .627
Real - G1 49 2.161 2.265 -.104 .136 -.75 .449
Real - I1 57 1.958 2.085 -.127 .136 -.95 .352
Real - L1 64 2.011 2.057 -.045 .135 -.35 .737
Real - N1 75 1.895 1.814 .08 .111 .75 .471
Real - O1 69 1.95 1.965 -.016 .129 -.1 .902
Real - S1 72 1.952 2.079 -.128 .115 -1.1 .271
Real - T1 75 1.911 2.141 -.23 .118 -1.95 .053
Real - X1 72 1.935 2.136 -.201 .106 -1.9 .064
Real - B2 73 1.998 2.055 -.058 .114 -0.5 .614

Note: Summary of ANOVA results for the comparison between the forecasters’ value and the
true values in Inflation rate.

2.4.4 Data Augmentation

As indicated by Little et al. (1995), the social and behavioural sciences frequently suf-
fer from missing data. For instance, sample surveys often have some individuals who
either refuse to participate or do not supply answers to certain questions, and panel
studies often have incomplete data due to attrition. Brick and Kalton (1996) also men-
tioned missing data problems occur in survey data-based research because an element
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TABLE 2.4: Analysis of variance test for Base Bank rate

Real - Expert Obs. Mean1 Mean2 Dif. St Err t
value

p
value

Real - B1 62 2.038 2.386 -.348 .116 -3 .004
Real - G1 70 2.196 2.614 -.418 .118 -3.55 .001
Real - I1 55 2.303 2.738 -.435 .14 -3.1 .003
Real - L1 62 2.194 2.558 -.364 .08 -4.55 0
Real - N1 75 1.957 2.271 -.314 .098 -3.2 .002
Real - O1 69 2.21 2.708 -.499 .118 -4.25 0
Real - S1 58 2.671 3.191 -.52 .146 -3.55 .001
Real - T1 75 2.056 2.631 -.575 .13 -4.45 0
Real - X1 72 2.308 2.744 -.436 .12 -3.6 .001
Real - B2 72 2.276 2.585 -.308 .095 -3.25 .002

Note: Summary of ANOVA results for the comparison between the forecasters’ value and the
true values in Bank rate.

TABLE 2.5: Analysis of variance test for Unemployment rate

Real - Expert Obs. Mean1 Mean2 Dif. St Err t
value

p
value

Real - B1 21 4.585 5.229 -.643 .087 -7.35 0
Real - G1 22 4.686 5.509 -.823 .189 -4.35 .001
Real - I1 15 4.854 5.388 -.534 .138 -3.85 .002
Real - L1 15 4.787 5.407 -.62 .147 -4.2 .001
Real - N1 28 4.572 5.000 -.428 .137 -3.1 .005
Real - O1 16 4.694 5.150 -.456 .201 -2.25 .038
Real - S1 20 4.565 5.305 -.74 .114 -6.5 0
Real - T1 23 4.635 5.411 -.776 .164 -4.75 0
Real - X1 19 4.679 5.405 -.726 .12 -6 0
Real - B2 20 4.685 5.280 -.595 .144 -4.15 .001

Note: Summary of ANOVA results for the comparison between the forecasters’ value and the
true values in Unemployment rate.

TABLE 2.6: Analysis of variance test for ERI

Real - Expert Obs. Mean1 Mean2 Dif. St Err t
value

p
value

Real - B1 62 2.038 2.386 -.348 .116 -3 .004
Real - G1 70 2.196 2.614 -.418 .118 -3.55 .001
Real - I1 55 2.303 2.738 -.435 .14 -3.1 .003
Real - L1 62 2.194 2.558 -.364 .08 -4.55 0
Real - N1 75 1.957 2.271 -.314 .098 -3.2 .002
Real - O1 69 2.21 2.708 -.499 .118 -4.25 0
Real - S1 58 2.671 3.191 -.52 .146 -3.55 .001
Real - T1 75 2.056 2.631 -.575 .13 -4.45 0
Real - X1 72 2.308 2.744 -.436 .12 -3.6 .001
Real - B2 72 2.276 2.585 -.308 .095 -3.25 .002

Note: Summary of ANOVA results for the comparison between the forecasters’ value and the
true values in ERI.



26Chapter 2. Scoring and Eliciting Expert Judgemental Knowledge under Uncertainty

in the target population is not included in the survey’s sampling frame (noncoverage),
because a sampled element does not participate in the survey (total nonresponse) and
because a responding sampled element fails to provide acceptable responses to one or
more of the survey items (item nonresponse).

Andridge and Little (2010) proposed that missing data are often a problem in large-
scale surveys, arising when a sampled unit does not respond to the entire survey (unit
non-response) or a particular question (item non-response). Van Buuren (2018) indi-
cated missing data poses challenges to real-life data analysis. Its occurrence of missing
data can cause serious issues, including decreased sample size, biased estimates, and
algorithmic problems. Therefore, properly treating missing data is a significant part of
statistical data analysis. Considering the possible issue that missing data may cause,
we learn the technique of data augmentation from (Little and Rubin, 2002) to deal with.

In this study, we also address a common limitation of survey-data-based research. We
review the many ways to perform data imputations to address this concern. Zhang
(2016) emphasised that, like complete case analysis, imputations with mean, median,
and mode are simple but can introduce bias on mean and deviation. Because they
ignore relationships with other variables, regression imputation can preserve the rela-
tionship between missing values and other variables. Learned from Little and Rubin
(2002) stated that when sample sizes are small, a useful alternative to ML is adding a
prior distribution for the parameters and computing the posterior distribution of the
parameters of interest.

The posterior distribution for a model with an ignorable missing data mechanism is:

p(θ | Yobs, M) ≡ p(θ | Yobs) = constant × p(θ)× f (Yobs | θ) (2.9)

Where p(θ) is the prior distribution, and f (Yobs | θ) is the density of the observed data.
The likelihood was factored into complete data components.

L(∅ | Yobs) =
Q

∏
q=1

Lq(∅q | Yobs) (2.10)

Assuming the parameters ∅1, . . . , ∅Q were also a prior independent, the posterior dis-
tribution factored in an analogous way, with ∅1, . . . , ∅Q posterior independent. A
draw, ∅(d) = (∅(d)

1 , . . . , ∅(d)
Q ) could be obtained directly from the factored complete-

data posterior distribution. Draws of the θ were then obtained as ∅(d) = θ(∅(d)), where
θ(∅) is the inverse distribution from ∅ to θ.
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2.5 Main Results and Findings

2.5.1 Calibration Score

This section presents the calibration scores of ten experts across five seed variables. To
compute these scores, ten experts were given five seed questions. Each expert provided
distributional belief for the following target variables: GDP growth, Inflation, Bank
rate, Unemployment, and ERI. The realization values for each expert’s predictions were
aggregated across these five variables, as illustrated in Figure 2.6. It is evident that for
Expert B1, four true realization values fall between the 5th and 95th quantiles, while one
realization value is below the 5th quantile. Similar patterns are observed for Experts
G1, L1, N1, T1, and X1. In contrast, for Experts I1, O1, and S1, one realization value lies
below the 5th quantile, three fall between the 5th and 50th quantiles, and one is between
the 50th and 95th quantiles. Expert B2’s five true realization values are between the
5th and 50th quantiles. Table 2.7 summarises the overall performance, detailing the
proportion of realization values observed in each of the four intervals.

FIGURE 2.6: Distribution of the belief of ten experts on five seed questions.

Table 2.7 summarises the observed proportions of realisations across the specified
quantile intervals for each expert. The expected proportions for these intervals are
0.05 for both tails (below the 5th percentile and above the 95th percentile) and 0.45 for
the central intervals (5th to 50th percentile and 50th to 95th percentile). The results in-
dicate that none of the experts displayed overconfidence, as the majority of realisations
are concentrated within the central quantile intervals. Notably, none of the experts’
realisations fell into the distribution’s extreme tails.
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TABLE 2.7: Comparison of Experts’ Realisations Distributions and Expected Propor-
tions Across Quantile Intervals

Observations Quantile Intervals
Below 5th 5th to 50th 50th to 95th Above 95th

Expected Proportion 0.05 0.45 0.45 0.05

Expert B1 0.2 0.8 0 0
Expert G1 0.2 0.8 0 0
Expert I1 0.2 0.6 0.2 0
Expert L1 0.2 0.8 0 0
Expert N1 0.2 0.8 0 0
Expert O1 0.2 0.6 0.2 0
Expert S1 0.2 0.6 0.2 0
Expert T1 0.2 0.8 0 0
Expert X1 0.2 0.8 0 0
Expert B2 0 1 0 0

In this analysis, the expected standard is set at 0.5 (10% of the total number of seed ques-
tions). To further quantify the extremity of the realisations relative to the experts’ spec-
ified distributions, the Kullback-Leibler (KL) divergence measure is employed. This
measure evaluates the divergence between two probability distributions and is used
here to compare the distribution specified by each expert with the empirical distribu-
tion derived from the raw frequencies. Table 2.7 illustrates an example by comparing
the observed and expected frequencies, highlighting the disparities between the two
distributions.

TABLE 2.8: KL Divergence for Experts

Experts KL Divergence

B1 0.73
G1 0.73
I1 0.28
L1 0.73
N1 0.73
O1 0.28
S1 0.28
T1 0.73
X1 0.73
B2 0.79

The formula for the divergence measure, denoted by I(s,p) is:

I(s, p) =
n

∑
i=1

Si · ln
(

Si

Pi

)
(2.11)

Where,
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FIGURE 2.7: An example demonstrating the relationship between an expert’s Calibra-
tion Score, C(expert), and qI(s, p) where q represents the number of seed questions
and I(s, p) denotes the KL divergence) illustrates a sharp decline in the score as the
divergence moves away from 0, displayed on a logarithmic scale, as shown by (Dias

et al., 2018).

• Si is the observed proportion of realizations in interval i

• Pi is the expected proportion of realizations in interval i

• n is the number of intervals

In the KL divergence measure, if the observed proportions perfectly match the expected
proportions, the divergence measure equals 0. As the difference between the observed
and expected proportions increases, the divergence value also increases. From Table
2.8, it is evident that no expert perfectly matches the expected proportions. However,
Experts I1, O1, and S1 exhibit relatively smaller divergence values compared to the
other experts, indicating that their probability distributions are closer to the expected
distributions. In the following section, we will examine all experts’ calibration and
information scores. The calibration score used within Cooke’s Classical Model (CM)
represents the probability of observing a more extreme divergence statistic than that
observed between specified and actual proportions. An ideal expert would achieve a
calibration score of 1, while a score of 0 would indicate the worst performance.

Fig. 2.7 provides an example illustrating the relationship between the calibration score
of an expert, denoted as C(expert), and qI(s, p), where q represents the count of seed
questions and I(s, p) denotes the KL divergence. Notably, the graph is presented on
a logarithmic scale. Starting from a maximum score of 1 when the divergence is 0,
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there is a rapid decline in the score as the divergence value increases. This logarithmic
representation of the calibration score demonstrates an almost linear relationship with
I(s, p). Across the range of qI(s, p) ∈ [1, 11], there exists an approximate relationship
denoted as C(expert) ≈ 1.44 · e−0.9qI(s,p). It’s important to note that this expression
is a rough indicator of the relationship between these variables. It suggests that the
logarithm of the ratio of any two calibration scores is roughly 0.9q times the difference
in their KL divergence measures.

2.5.2 Information Score

An expert can create the illusion of achieving exceptional, or even flawless, calibra-
tion by employing excessively large quantile intervals. However, this approach ul-
timately offers limited informational value. The ideal expert demonstrates two key
attributes: being well-calibrated and providing valuable information. While various
conventional methods exist for gauging the degree of dispersion within a probabil-
ity distribution—such as measuring the standard deviation or the width of prediction
intervals—these methods have limitations, particularly when dealing with variables
measured in different units (e.g., transitioning from grams to kilograms may affect cer-
tain variables disproportionately). In this context, the Calibration Model (CM) utilises
the Kullback-Leibler (KL) divergence measure due to its scale-invariant properties.

To assess the extent of dispersion in the experts’ probability distributions, a reference
range is established in relation to a background context. During the elicitation pro-
cess, the expert does not specify exact minimum or maximum values. Consequently, it
becomes necessary to determine the lengths of the lower and upper intervals. This is
achieved using the intrinsic range, which is based on the range of judgements provided
by all experts for a given variable, whether it is a target or a seed.

An intrinsic range is computed for each question, both seed and target. By default, this
intrinsic range extends 10% beyond the span of the lowest and highest assessed values.
(It should be noted that the extent of this extension is determined by the analyst and
impacts only the information score; a larger extension tends to make all information
scores more uniform, while a smaller extension accentuates differences.)

To measure the informativeness of an expert’s probability distribution, the KL diver-
gence measure is applied relative to a uniform distribution mapped onto the intrinsic
range. This uniform distribution represents the least informative scenario across the
entire collected range.
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2.5.3 Calibration Scores, Information Scores and Weights

From Table 2.9, the performance of the experts can be categorised into two distinct
groups based on their calibration and information scores. Experts B1, G1, L1, N1, T1,
and X1 demonstrate low calibration scores (approximately 0.0521) and moderate in-
formation scores ranging between 0.0398 and 0.0651. These values indicate consistent
but modest performance in both calibration and information metrics, reflected in their
relatively stable average weights, which are clustered around 0.0034.

In contrast, Experts I1, O1, and S1 exhibit significantly higher calibration scores (ap-
proximately 0.3950), suggesting greater accuracy in aligning their predictions with ob-
served data. Their information scores are also notably higher, with I1 achieving the
highest information score of 0.0910 among all experts. This indicates that these experts
contribute substantially to the overall information content of the forecasts, which is
further supported by their higher average weights, particularly for Expert I1 (0.1050),
indicating a stronger influence in the aggregation process.

Expert B2, however, stands out for having the lowest average weight (0.0017). This is
attributable to both its low calibration score (0.0396) and a modest information score
(0.0441), suggesting a limited contribution to the aggregated decision-making process.

Overall, the results highlight a clear distinction between the consistently moderate per-
formance of one group of experts (B1, G1, L1, N1, T1, X1) and the higher variability but
greater informational contributions of another group (I1, O1, S1).

TABLE 2.9: Performance metric score of each expert

Experts Calibration Scores Information Scores Average Weights

B1 0.0521 0.0552 0.0029
G1 0.0521 0.0651 0.0034
I1 0.3950 0.0910 0.1050
L1 0.0521 0.0434 0.0023
N1 0.0521 0.0653 0.0034
O1 0.3950 0.0314 0.0124
S1 0.3950 0.0721 0.0285
T1 0.0521 0.0398 0.0021
X1 0.0521 0.0646 0.0034
B2 0.0396 0.0441 0.0017

Notes: The average weights are calculated by averaging each expert’s information score across
all seed questions, following the method by Dias et al. (2018).

Table 2.10 presents the relative rankings of calibration scores, information scores, and
resulting weights, ordered from highest to lowest. Interestingly, experts with excep-
tionally high performance-based scores, such as Expert I1 and Expert S1 (the top
two highest-scoring experts), demonstrate consistency across statistical accuracy and
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knowledge informativeness. Their calibration scores, information scores, and resulting
weights are all notably high, reflecting strong overall performance.

Conversely, experts such as Expert T1 and Expert B2, whose weight scores are very
low, consistently perform poorly in both calibration and information metrics, indicating
limited contributions to the aggregation process. However, for experts whose scores
fall within the middle range, a noticeable inconsistency emerges between statistical
accuracy and informativeness. Notably, the weight scores tend to align more closely
with variations in the calibration scores rather than the information scores, suggesting
a stronger emphasis on calibration in the weighting process.

TABLE 2.10: Calibration, Information, and Average Weights Scores

Calibration scores Information scores Average Weights
Expert I1 Expert I1 Expert I1
Expert S1 Expert S1 Expert S1
Expert O1 Expert N1 Expert O1
Expert N1 Expert G1 Expert G1
Expert G1 Expert X1 Expert X1
Expert X1 Expert L1 Expert N1
Expert B1 Expert B1 Expert B1
Expert L1 Expert B2 Expert L1
Expert T1 Expert T1 Expert T1
Expert B2 Expert O1 Expert B2

2.5.4 Normalised Weights

TABLE 2.11: Normalised Weights for Experts

Experts Normalised Weights

I1 0.6360
S1 0.1726
O1 0.0751
G1 0.0206
N1 0.0206
X1 0.0206
B1 0.0176
L1 0.0139
T1 0.0127
B2 0.0103

Note: The rank is described as the expert’s normalised weight in descending order.

Table 2.11 presents the normalised weights of the experts, re-ranked in descending or-
der. Expert I1 is assigned the highest weight (0.6360), signifying the highest level of
expertise among the panel of experts. This substantial weight indicates exceptional
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performance in terms of both calibration and the provision of valuable information
within Cooke’s Classical Model (CM).

In contrast, the weights assigned to the other experts are considerably lower, with the
second-highest weight (Expert S1) being 0.1726—significantly smaller than that of Ex-
pert I1. This notable disparity suggests that the remaining experts are perceived as less
well-calibrated and less informative. The findings highlight the dominance of Expert
I1 in the weighting process, which underscores their critical contribution to the aggre-
gated results.

2.5.5 Aggregated Expert Prediction

From Figs. 2.8 to 2.12, we compare the expert predictions, aggregated with their as-
signed weights, to the true value data series. Overall, the aggregated expert predictions
demonstrate a notable performance improvement compared to individual forecasts.

For GDP growth, the aggregated expert predictions are generally higher than the true
values, indicating a systematic overestimation by experts for the one-year-ahead hori-
zon. This suggests a potential optimism bias in their forecasting process. Additionally,
we observe a consistent one-year lag in the expert predictions compared to the actual
values, highlighting a tendency for experts to rely on past trends rather than current
economic signals. This reliance on historical data may limit the responsiveness of their
predictions to recent changes in the economic environment.

Overestimation and lagging trends are particularly pronounced during periods of eco-
nomic downturns, such as the 2008 financial crisis and the 2019 COVID-19 pandemic.
During these periods, experts’ predictions not only overestimated the speed of eco-
nomic recovery but also fail to capture the immediate impacts of the downturns. This
behaviour suggests that experts might be anchored to pre-crisis economic conditions,
leading to a slower expectation adjustment.

In the comparison of Inflation forecasts, we have identified another noteworthy pat-
tern. During two specific periods, namely the 2008 economic crisis and the 2019 pan-
demic, experts’ inflation expectations were consistently higher than the actual inflation
rates. This discrepancy suggests that experts tend to overestimate inflation during pe-
riods of significant economic disruption. However, in the later stages of these two
periods, the experts’ expectations exhibited a clear downward trend, aligning more
closely with actual inflation rates. This shift indicates a correction in their forecasts as
the economic situation stabilised.
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FIGURE 2.8: Comparison of true GDP value with aggregated expert expectation value

This pattern reveals a broader trend in expert behaviour: during periods of economic
stability, experts tend to adopt a cautious or even pessimistic stance on inflation, pos-
sibly reflecting a conservative approach to forecasting in the absence of significant eco-
nomic pressures. Conversely, during periods of economic turbulence, experts display a
more optimistic outlook, often predicting higher inflation rates than those that eventu-
ally materialise. This optimistic bias in uncertain times may arise from expectations of
increased economic activity or policy interventions designed to stimulate the economy,
which experts anticipate will drive inflation upwards.

At the Bank rate, we find that expert predictions are very close to the actual values.
However, we have identified distinctive features. Firstly, in 2008, we noticed a lagging
trend in expert predictions. This lag can be attributed to the unprecedented nature of
the global financial crisis, which likely caught many experts by surprise. During this
period, the rapid economic downturn and significant policy interventions by central
banks, including drastic cuts in interest rates, led to delays in adjusting forecasts to
reflect the rapidly changing economic environment.

Furthermore, after 2008, the overall stance of experts towards bank rate predictions
shifted from being slightly below the actual values to an overall overestimation. This
shift suggests a recalibration of expert expectations post-crisis, as central banks main-
tained lower interest rates for an extended period to support economic recovery. Ex-
perts may have overcorrected their initial conservatism, leading to overestimation. Un-
derstanding these prediction patterns is crucial for both policymakers and market par-
ticipants. Recognising the tendency of experts to lag during crises and overestimate
rates, post-crisis can inform communication strategies and policy decisions at the Bank
of England while also enhancing investment strategies and risk management practices
for market participants.
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FIGURE 2.9: Comparison of true Inflation rate value with aggregated expert expecta-
tion value.

In addition, the expert predictions have exhibited a systematic overestimation regard-
ing the Unemployment rate, with only a brief underestimation observed in 2020-2021.
This suggests that the actual employment situation has been consistently better than
what the experts predicted, reflecting a long-term conservative stance of the experts
towards the job market and the economy. This conservative outlook implies that ex-
perts tend to underestimate the resilience and adaptability of the labour market during
economic fluctuations. One potential reason for this conservative stance could be the
inherent uncertainty and risk aversion that experts exhibit when forecasting economic
indicators. Experts might be factoring in worst-case scenarios and potential economic
shocks, leading to more cautious predictions.

Furthermore, the overestimation of the Unemployment rate could be influenced by his-
torical contexts and the memory of past economic downturns, such as the 2008 finan-
cial crisis. These events may have instilled a sense of caution and a tendency to predict
higher unemployment rates as a protective measure against unexpected negative de-
velopments. The brief period of underestimation in 2020-2021, during the COVID-19
pandemic, is also notable. This could be attributed to the unprecedented nature of the
pandemic and the initial underestimation of the swift policy responses and fiscal mea-
sures taken by governments worldwide to mitigate the economic impact. The rapid
deployment of stimulus packages, support for businesses, and unemployment bene-
fits likely contributed to a better-than-expected employment situation, which experts
failed to fully anticipate.

In predicting the Sterling Exchange Rate Index, experts exhibit a notable tendency for
overestimation following the two critical periods mentioned: the 2008 global financial
crisis and the 2019 pandemic. This pattern indicates that experts maintain a slightly
optimistic outlook on the exchange rate market, especially after significant economic
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FIGURE 2.10: Comparison of true Bank rate value with aggregated expert expectation
value.

FIGURE 2.11: Comparison of true unemployment rate value with aggregated expert
expectation value.

disruptions. The observed optimism likely stems from expecting a strong recovery and
stabilization in the exchange rate following economic turmoil. This tendency under-
scores the need for caution in interpreting expert forecasts, as their predictions might
not fully account for ongoing vulnerabilities and uncertainties in the exchange rate
market. It also highlights the importance of incorporating a range of scenarios and
more robust modelling techniques to mitigate the impact of overly optimistic forecasts
on policy and financial decisions.
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FIGURE 2.12: Comparison of true sterling exchange rate value with aggregated expert
expectation value.

2.6 Conclusion

To summarize, this study begins with two fundamental questions: (i) How accurate
and reliable are the predictions made by the Bank of England’s External Forecasters
regarding the target variables, namely GDP growth, CPI inflation rate, Bank rate, LFS
unemployment rate, and Sterling ERI ? (ii) What characteristics can be discerned from
expert judgement? These questions are crucial for understanding the presence of un-
certainty in expert judgement.

Furthermore, we present an analytical framework for scoring the calibration and infor-
mativeness provided by each expert. The normalised weights are derived from these
experts’ calibration and information scores. The results indicate the presence of cen-
tralised features that are less well-calibrated and uninformative among these experts.
Existing literature has consistently shown empirical evidence that experts are often less
efficiently calibrated, and while some may be well-calibrated, they may possess limited
knowledge (Boero et al., 2015).

Therefore, we form a new expectation by aggregating the judgements of a panel of ex-
perts to address the limitations of each individual expert. This aggregated approach
leads to a significant improvement in prediction accuracy. However, we also find that
experts’ predictions exhibit a systematic bias toward the values of the previous year.
This indicates that experts rely heavily on historical data when providing economic ex-
pectations for the year ahead, potentially overlooking changes in the current economic
market environment.

Additionally, we have identified that experts tend to be overconfident in macroeco-
nomic growth during systemic shocks, such as the global financial crisis and the 2019
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pandemic. They maintain an overly optimistic outlook on the speed of economic re-
covery, potentially introducing another bias into their attitudes. This overconfidence
can skew predictions, making them less reliable during periods of economic instability.

In conclusion, while the aggregation of expert judgements improves overall prediction
accuracy, the inherent biases in expert predictions, such as over-reliance on historical
data and overconfidence during systemic shocks, must be addressed. Future work
should focus on developing methods to mitigate these biases and further enhance the
reliability of aggregated forecasts. This study contributes to a better understanding
the complexities involved in expert judgement and economic forecasting, providing a
foundation for more robust predictive models.
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Chapter 3

Measuring the Attitude Divergence
in Expert Prediction under Bounded
Rationality

3.1 Introduction

In the real world, making a straightforward accept or reject decision in the decision-
making process can be challenging due to the presence of incomplete and inaccurate
information. This complexity is particularly pronounced in risk-related models, where
objective and subjective factors both play a role. In such decision-making contexts,
it becomes crucial not only to consider the objectively available risk information but
also to factor in the subjective judgment and initiative of the decision-makers them-
selves. Additionally, as early as the 1970s, Tversky and Kahneman (1974) introduced
three heuristics that are used in making judgements under uncertainty. They also em-
phasized the issue of identifying human inadequacies in assessing probabilities. While
these heuristics are highly efficient and often effective, it is essential to note that they
can also lead to systematic and predictable errors.

However, despite the significance of heuristics and biases in influencing the accuracy
and quality of the judgement and decision-making process, it has not received sufficient
attention. As indicated by Kynn (2008), biases in the heuristics process have largely
gone unnoticed, even though the heuristic method itself has been a definitive ground-
breaking research in probability assessment. He also highlights that bias in cognitive
models has been nearly completely overlooked by the statistical literature on expert
elicitation. Moreover, Montavon et al. (2018) also expressed concern that the study of
cognitive biases in judgement and decision-making is not as extensive as it should be.
They also point up that the reasons behind these cognitive biases, whether conscious
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or subconscious, stem from various factors such as self-interest, social pressures, and
organizational context.

Like any other forecasters, professional forecasters inherently follow a ‘strategic’ be-
haviour. These forecasters possess ‘bounded rationality’ and often work with incom-
plete information. This incompleteness arises partly because they lack full knowledge
of the strategies employed by other forecasters and partly due to unexpected policy
changes and external shocks. However, a notable distinction is that these forecasters
are among the most well-informed participants in the economic market. Their decision-
making processes are always influenced by a multitude of factors, both known and
measurable, as well as those that remain unknown and immeasurable. Consequently,
it is often reasonable to assume that their forecasts are driven by strategic considera-
tions at various points in the forecasting process.

Existing theories that characterise the behaviour of professional forecasters have been
developed based on the implicit assumption that the economy is “stable and poten-
tially predictable”. Even if there is some degree of randomness, this randomness is not
explicitly modelled but is indirectly concealed within the strategies they employ. This
raises a profound question: regardless of their knowledge of the economic environ-
ment, an agent will behave differently depending on whether they are confronted with
ongoing uncertainty or an environment characterised by average recovery uncertainty.
From a psychological theory perspective, we already know that rational forecasters
may behave differently in an “uncertain” environment than in stable environments.
A common example is “herding behaviour”. Assuming that uncertainty leads to be-
havioural differences, it can also be hypothesised that the next best strategy that expert
forecasters adopt under uncertainty will differ from those in a relatively uncertain en-
vironment.

Forecasting the economy has always been a significant and complex task that relies
heavily on subjective professional forecaster’s judgement and knowledge in addition
to analysing historical data. Most forecasting judgements are made without advance
knowledge of their consequences. Thus, it is imperative to capture this expert knowl-
edge quantitatively. Although the initial focus of the expert study is the accuracy of
their judgements, here, we called it explicit traits. Based on this aim, but not only, this
study is going to deeply explore the tacit characteristic behind expert behaviour. Hess
and Orbe (2013) found that macroeconomic survey forecasts are anchoring biased and,
therefore, inefficient. However, despite highly significant test coefficients, a bias adjust-
ment does not improve the forecasts’ quality. We find that cognitive bias is a statistical
artefact because the anchoring test is biased in itself.

Combining these concerns has prompted us to explore potential biases to contribute
to the literature in this area. This study will first provide a new perspective for ex-
amining the attitudinal differences among experts in macroeconomic forecasting while
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leaving other forms of bias for our future research. As denoted by with Tversky and
Kahneman (1974), a better understanding of heuristics and their resulting biases can
enhance judgement and decision-making under uncertainty. This research is grounded
in both psychology and cognitive theory, and our specific aim is to reverse-reasoning
expert uncertainty attitudes based on their prediction behaviours in the judgement and
decision-making process.

On the definition of differences in expert attitudes, this study relies on the classification
by Brito et al. (2008), which suggested that experts can be categorised into two main
groups based on their emotional characteristics: optimistic experts and pessimistic ex-
perts. This classification approach is based on the width of the “S” shape of the ex-
pert’s cumulative probability distribution. Additionally, we also learn from (Huang
et al., 2022; Engelberg et al., 2009) that to classify professor forecasters into optimists
and pessimists by using the measure of central tendency.

This paper is organised into five sections. The first section introduces the background,
motivation, and objective of this study. The second section outlines the previous find-
ings on behaviour bias in expert judgement. The third section describes the approach
used in modelling the classification of experts’ different attitudes and the data. The
fourth section contains the data description. The fifth part presents the main results
and discussion. It ends with a brief conclusion with future work.

3.2 Literature Review

3.2.1 Judgemental Bias in Cognitive Theory

Following the ground-breaking findings of Tversky and Kahneman (1974) set in the
notion of the heuristics and biases, the underlying principle of which is that people’s
judgements are often made based on heuristics, which are quick, short-cut reasoning
processes. Daniel (2017) used the terms “system 1” and “system 2” in the context of
intuitive judgement to illustrate the concepts of rapid and deliberate thinking. System
1 functions automatically and swiftly, requiring minimal effort and lacking a sense of
voluntary control. On the other hand, System 2 directs attention toward mentally de-
manding tasks, such as intricate calculations. The activities of System 2 are frequently
linked to the subjective feelings of agency, choice, and focused concentration.

Here, we cross-cite the summary of Rezaei (2021) and highlight that decisions are typi-
cally made through decision-maker’s assessments. These individuals form judgements
by comparing various options across multiple criteria. Often, decision-makers lack ac-
cess to or choose not to use objective data, relying instead on their personal evalua-
tions. Behavioural psychologists have observed that people simplify this complex task
by employing specific shortcuts or heuristics (Gilovich et al., 2002). Various heuristics
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are employed by individuals (Gigerenzer and Gaissmaier, 2011; Gilovich et al., 2002),
and, in many instances, people are unaware of these heuristics’ roles in their decision-
making processes, and they cannot consciously control them. Nevertheless, individuals
can potentially recognize and rectify resulting biases (Tversky and Kahneman, 1974).
While, in general, heuristics are immensely useful for decision-making, there are occa-
sions when they lead to significant errors that can incur substantial costs (Arkes, 1991).
These errors are known as cognitive biases and result in skewed decision-making.

While cognitive biases have been extensively explored in fields such as psychology
(Gigerenzer, 1991; Hilbert, 2012; West et al., 2008), marketing (Fisher and Statman, 2000;
Thompson et al., 2011), healthcare (Phillips-Wren et al., 2019), organizational studies
(Das and Teng, 2001; Schwenk, 1984; Tetlock, 2000), business intelligence (Ni et al.,
2019), and political science (Arceneaux, 2012; Rouhana et al., 1997), it is surprising that,
as also noted by (Montibeller and Von Winterfeldt, 2015), we have come across only
a limited number of studies in the realm of multi-attribute decision-making, most of
which remain theoretical in nature.

3.2.2 Expert Errors and Bias

Counter to the common belief that expert knowledge and expertise can reflect superior
abilities and capacities, recent studies find an ongoing debate on it. The initial focus of
psychological investigations into experts centred on assessing the psychometric prop-
erties, particularly validity, as discussed by (Bower and Cohen, 2014). For instance, in
a study conducted by Trumbo et al. (1962). observed that expert grain assessors often
exhibited both invalidity and unreliability. They discovered that nearly one-third of
wheat samples were incorrectly graded, and upon re-evaluation, more than one-third
of these samples received different grades. Interestingly, Trumbo et al. (1962) noted that
while greater experience heightened the judges’ confidence, it did not necessarily cor-
relate with the accuracy of their grain assessments. Notably, the experts were unaware
of these various shortcomings.

Similar findings have been observed among other experts, including those in the med-
ical field. Previous research on expert decision-makers (SHANTEAU, 1988; Einhorn,
1974; Goldberg, 1959) consistently suggests that, due to cognitive constraints, experts
tend to be generally inaccurate, unreliable, susceptible to biases, lack self-awareness,
and show limited improvement with increasing experience. Moreover, Baddeley et al.
(2004) revealed that when making probabilistic judgements, most individuals tend to
commit common errors in their assessments of probabilities, as demonstrated in the
work of (Burnham et al., 1998). Nevertheless, experts are not immune to these biases,
individually and when considering group-level biases. These biases persist due to cog-
nitive limitations inherent in the human mind’s processing capabilities, a notion sup-
ported by the works of (Anderson, 2009; Tversky and Kahneman, 1974). Further, Dror
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and Charlton (2006) pointed out that expert performance and accuracy are still impor-
tant issues in almost all specialised domains.

It has greatly discussed how judgemental bias can affect expert judgemental accuracy.
Overall, previous studies have painted a rather bleak picture of the decision-making
abilities of experts. Dror and Charlton (2006) pointed out that being an expert does
not necessarily mean error-free performance and argued that errors are made in almost
every professional field. Unfortunately, Daniel (2017) also indicated that professionals’
intuitions do not all arise from true expertise.

3.2.3 Overconfidence Bias

There is a growing demand for expert opinions when evaluating expert performance
and uncertainties. However, a limitation arises when experts assess single events due
to the influence of heuristics, as demonstrated by heuristics (Ursacki and Vertinsky,
1992; Tversky and Kahneman, 1974). These heuristics have been shown to introduce
systematic and predictable biases, as highlighted by (Finucane et al., 2000). The pri-
mary heuristics are detailed in Table 3.1.

TABLE 3.1: Heuristics/Biases and Related Studies

Heuristics/Biases Definition Related Studies

Representativeness
heuristic

Judgement is made with an over-
reliance on certain characteristics,
neglecting others.

(Taffler, 2010; Grether, 1992,
1980)

Availability
heuristics

The probability of events are often
judged based on how easily they
can be imagined or recalled.

(Keller et al., 2006; Folkes,
1988; Tversky and Kahne-
man, 1973)

Anchoring
and Adjust-
ment

Individuals generally struggle to
make accurate judgements starting
from a given point and then mak-
ing related adjustments.

(Epley and Gilovich, 2006;
Northcraft and Neale, 1987)

Overconfidence
Bias

Individuals often overestimate
their abilities, knowledge, and
the accuracy of their beliefs and
predictions.

(Berthet, 2021; Moore and
Schatz, 2017; Baker and Nof-
singer, 2002)

Confirmation
Bias

People tend to seek out and place
more weight on information that
confirms their pre-existing beliefs,
while ignoring contradictory infor-
mation..

(Peters, 2022; Kelly and
Sharot, 2021; Kappes et al.,
2020)
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Overconfidence remains a prevalent issue in human judgement and decision-making
Binnendyk and Pennycook (2023). Researchers from various fields, including psychol-
ogy, economics, statistics, and engineering, have sought to understand and mitigate
overconfidence in expert judgements (Kaustia and Perttula, 2012; Lambert et al., 2012;
Lin and Bier, 2008; Angner, 2006). Drawing on concepts from (Clemen and Lichten-
dahl, 2002; Morris, 1974; Cox, 1958), a model was developed that uses historical data
to estimate ”inflation factors” for evaluated distributions retrospectively. Moore and
Schatz (2017) outline three distinct manifestations of overconfidence.

Overestimation is the belief that one has greater abilities than one actually does,
whereas overplacement is an inflated sense of one’s abilities compared to others. Over-
precision involves excessive confidence in one’s knowledge of the truth. As sum-
marised by Montibeller and von Winterfeldt (2018), both laypeople and experts tend
to provide estimates for a given parameter that exceed actual performance (overesti-
mation) (Lichtenstein et al., 1977) or give a range of variation that is too narrow (over-
precision) (Moore and Healy, 2008). This bias has been demonstrated in various quan-
titative estimates across fields such as defence, law, finance, and engineering (Lin and
Bier, 2008; Moore and Healy, 2008). It is also evident in judgements regarding the com-
pleteness of a hypothesis set (Fischhoff et al., 2013; Mehle, 1982).

(Russo et al., 1992; Skala, 2008; Moore and Schatz, 2017) argued that the inclination
to feel more self-assured than what is justified by one’s knowledge, expertise, or ex-
perience can be viewed as a meta-bias that serves as the foundation for various other
decision-making biases. In fact, overconfidence can result in flawed reasoning (Russo
et al., 1992; Soll and Klayman, 2004; Deaves et al., 2010; Kahneman, 2011; Chen et al.,
2015; Ortoleva and Snowberg, 2015) or, in some cases, entirely supplant the process of
reasoning itself (Thompson et al., 2011; Ackerman and Thompson, 2017). When applied
to broader societal issues, overconfidence may play a significant role in assessing the
reliability of information. For instance, overconfidence has been associated with belief
in conspiracy theories (Vitriol and Marsh, 2018), adopting anti-scientific viewpoints
(Light et al., 2022), and increased vulnerability to misinformation in general (Lyons
et al., 2021).

3.2.4 Mood Effects in Judgement

Previous research has extensively explored expert judgement bias and disagreement,
particularly in relation to emotions, from various psychological perspectives. Many
studies have examined how emotions influence human memory, perception, judge-
ment, and thinking, revealing the powerful impact that feelings can have on cognitive
processes.
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Sleboda and Lagerkvist (2022) identified a connection between attitudes and be-
havioural intentions, aligning with earlier studies and theories such as the Theory of
Planned Behaviour (Armitage and Conner, 2001; Kahneman et al., 2000; Ajzen, 1991).
Kahneman et al. (2000) highlighted that economics and psychology provide differing
views on how people value things, suggesting that choices are better understood as ex-
pressions of attitudes rather than economic preferences. Phelps et al. (2014) found that
moods influence decisions and hinted at the neural changes that may mediate these
effects. Many studies have demonstrated that moods also impact risky choices; for
instance, sad moods tend to increase preferences for high-risk options, while anxious
moods bias preferences towards low-risk options (Raghunathan and Pham, 1999).

Wright and Bower (1992) discovered that an individual’s mood can directly influence
their judgement regarding the uncertainty of future events. They had subjects report
subjective probabilities for personal and nonpersonal events while in happy, neutral, or
sad moods. Further, Wright and Bower (1992) pointed out that traditional explanations
for disagreements among experts, such as incompetence, venality, and ideology, fall
short. Even skilled, honest, and impartial experts can have persistent disagreements
because of human judgement’s inherent characteristics and limitations. Additionally,
Kahneman and Ritov (1994) and Kahneman et al. (2000) proposed that automatic affec-
tive valuation, which is the emotional core of an attitude, plays a crucial role in shaping
many judgements and behaviors.

Kahneman et al. (2000) proposed that economics and psychology offer differing per-
spectives on how people value things. They emphasized that people’s choices can be
better understood as expressions of attitudes rather than as indications of economic
preferences. After that, Loewenstein et al. (2001) introduced an alternative theoretical
perspective known as the risk-as-feelings hypothesis, which underscores the influence
of emotions experienced during decision-making. Moreover, Moyer and Song (2016)
noted that affective feelings have either a ”positive” or ”negative” quality and that af-
fective reactions often serve as initial responses to uncertainty, aiding individuals in
navigating a complex, uncertain, and potentially hazardous world efficiently. Phelps
et al. (2014) demonstrated that moods influence decision-making and provided insights
into the neural changes that may mediate these effects. Numerous studies have shown
that moods also impact risky choices; for instance, sad moods can lead to a prefer-
ence for high-risk options, while anxious moods can bias preferences toward low-risk
options (Raghunathan and Pham, 1999). More recent, Sleboda and Lagerkvist (2022) in-
dicated a connection between attitudes and behavioural intentions, aligning with prior
studies and theories like the Theory of Planned Behaviour (Armitage and Conner, 2001;
Kahneman et al., 2000; Ajzen, 1991).
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3.3 Methodology

The purpose of this chapter is to identify the attitude disagreement in judgemental
prediction. We investigate the expert individual differences in terms of risk attitudes in
forecasting the UK’s main macroeconomic indicators. The risk attitude is defined here
as the expert confidence level on one-year-ahead UK macroeconomy expectation. Here
we define an expert who overall overestimates as an optimist expert and an expert who
overall underestimates as a pessimist expert.

3.3.1 Construction of Experts’ Judgements in Distributed Shape

In previous work, Brito et al. (2008) classified expert judgement with different attitudes
into optimists and pessimists and also captured the expert judgement variability across
different environments. They define an optimist expert as someone whose cumulative
probability judgement distribution forms a narrow ‘S’ shape. A pessimistic expert is
someone whose cumulative probability judgement distribution displays a broad ‘S’
shape. The construction of the ‘S’ shape is based on the cumulative frequency distribu-
tion of the expert’s judgement. It is used to describe the cumulative probability distri-
bution of the relative frequency at which P(loss) lies in different ranges of probability
judgements is plotted to support analysis.

Here, we add a new perspective for depicting the shape of a cumulative probability
distribution of expert judgement. Firstly, making an assumption that the expert error
function fits its probability density function (PDF) to the Cauchy distribution. This as-
sumption is based on the nature of properties of the Cauchy distribution, which itself
contains the location parameter x0 for specifying the location of the peak of the dis-
tribution, and the scale parameter γ which specifies the half-width at half-maximum.
By applying this assumption, we can determine the location of the probability den-
sity distribution for each expert’s point estimate. This approach simplifies the process
of assessing the frequency of expert judgements occurring within different ranges of
intervals.

According to Feller (1991) and Johnson et al. (1995), the model of the probability density
function (PDF) in the Cauchy distribution can be expressed:

f (x; x0; γ) =
1

πr

[
1 +

(
x − x0

γ

)2
]
=

1
π

[
γ

(x − x0)2 + γ2

]
(3.1)

Where, x0 is the location parameter, specifying the location of the peak of the distri-
bution, and γ is the scale parameter which specifies the half-width at half-maximum,
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alternatively 2γ is the full width at half maximum. γ is also equal to half the interquar-
tile range and is known as the probable error. The maximum value or amplitude of the
Cauchy PDF is 1

πγ , located at x = x0.

A Cumulative distribution function (CDF) is derived from (3.1),

F(x; x0; γ) =
1
π

arctan
(

x − x0

γ

)
+

1
2

(3.2)

and the quantile function (inverse cdf) of the Cauchy distribution is:

Q(p; x0; γ) = x0 + γ tan
[

π

(
p − 1

2

)]
(3.3)

It follows that the first and third quartiles are (x0 − γ, x0 + γ), and hence the interquar-
tile range is 2γ. For the standard distribution, the cumulative distribution function
simplifies to the arctangent function arctan(x).

F(x; 0; 1) =
1
π

arctan(x) +
1
2

(3.4)

In this study, we extend the analysis to include the Cumulative Distribution Function
(CDF) for each expert and compare the width of the ’S’ shape of the CDFs. Experts
whose CDFs display an obviously broad ’S’ shape will be identified as pessimistic ex-
perts, while those with an obviously narrow ’S’ shape in their CDFs will be regarded
as optimistic experts. Each expert’s S - shaped cumulative distribution is shown to be
rotationally symmetric around the axis of the standard Cauchy CDF distribution.

3.3.2 Construction of Central Tendency

Another approach that will be employed to identify whether forecasters lean towards
pessimism or optimism involves applying the central tendency measurement, as de-
rived from the insights of Huang et al. (2020) and Engelberg et al. (2009) employed a
non-parametric approach, with a specific focus on the asymmetry within forecasters’
point predictions. That is if the majority of forecasters’ point predictions show mini-
mal deviation from the median/mean/mode, but a small fraction deviates noticeably
(approximately 10%). These forecasts display an asymmetry that indicates the fore-
casters tend to underestimate inflation and overestimate economic growth. To arrive
at these findings, they focus on the limited number of forecasts that fall beyond the
limits set by the median/mean/mode. Then, they analyse whether there is an asym-
metry in these forecasts to shape their attitudes is optimism or pessimism. However,



48
Chapter 3. Measuring the Attitude Divergence in Expert Prediction under Bounded

Rationality

Huang et al. (2020) mentioned that the approach of Engelberg et al. (2009) encoun-
tered a notable challenge: forecasts may occasionally deviate from the bounds set by
the mean/mode/median due to the inherent randomness of forecasting. Addition-
ally, forecasters might make occasional errors when generating their point forecasts, or
they could incorporate asymmetric loss functions when determining their optimal fore-
casts. These factors can introduce inaccuracies in assessing whether a forecaster slopes
toward optimism or pessimism. Expanding on this, Huang et al. (2020) presented an
alternative method for evaluating the proportions of forecasters’ point predictions that
fall within the intervals spanning the 25th and 75th quartiles of the forecast’s distribu-
tion. This method offers a more in-depth and informative assessment of the underlying
optimism or pessimism within these forecasts. Additionally, it strengthens our capacity
to derive more insightful insights into the potential loss functions that forecasters may
employ. When it comes to the asymmetric linear loss function, it’s crucial to specifically
review the Bayesian decision theory, particularly in the discussion of optimal Bayesian
point estimates under loss functions in Theorem 6.7.1 of (Poirier (1995)). It defines the
concept of asymmetric loss functions, which allow for different quartiles of a distribu-
tion to be considered optimal forecasts. Forecasters who adopt such loss functions may
generate point forecasts that either exceed or fall short of the median.

This loss function is given by Eq. (3.5)

C(θ̂, θ) =

C1 |θ̂ − θ|, if θ̂ ≤ θ

C2 |θ̂ + θ|, if θ̂ ≥ θ
(3.5)

According to Theorem 6.7.1 in the study of (Poirier, 1995), the optimal prediction cor-
responds to the η-th quantile denoted as qη , where η is calculated as η = c1

c1+c2
. If we

set c1 = 1 and c2 = 3, this results in the optimal forecast being q0.25. To understand
this loss function, it’s important to note that when the forecast, denoted as θ̂, exceeds
the realized value, θ, it incurs a more significant penalty compared to a forecast that is
lower than θ.

3.4 Data

3.4.1 Description of Variables

The data we use is sourced from the Bank of England Survey of Professional Forecast-
ers (BoE-SPF). This dataset includes projections of the value for one year ahead of real
GDP growth, inflation rate, base bank rate, unemployment rate, and sterling index in
the UK. The survey commenced in 1999Q1, with quarterly publication of results. Point
forecasts and probability distributions are provided by a panel of external professional
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forecasters in London representing financial and academic institutions. For our analy-
sis in this study, we restrict to data time horizon from 2000:Q1 to 2021:Q4.

Table 3.2 below displays fundamental data descriptions, abbreviations, sampling peri-
ods, and corresponding units for the indicators employed in this study. In analysing
the point values of each variable in five indicators (GDP, Inflation, BoE, UR, and ERI),
we examine the point value predicted by experts and its corresponding actual value.
However, a limitation exists: for subjective estimation data by experts, the Bank of
England did not provide information for the Sterling exchange rate index (ERI). Con-
sequently, our evaluation is limited to four indicators GDP, Inflation, Bank rate, and
Unemployment rate based on the available data for their subjective values.

TABLE 3.2: Indicator Details and Sample Periods

Indicator Abbreviation Start End Unit

Real GDP growth GDP 2000Q1 2021Q4 Percentage %
Inflation rate Inflation 2000Q1 2021Q4 Percentage %

Base bank rate BoE 2000Q1 2021Q4 Percentage %
Unemployment rate UR 2014Q4 2021Q4 Percentage %

Sterling exchange rate index ERI 2000Q1 2021Q4 Percentage %
Note: 1. Sample periods indicate the start and end quarters of the data. 2.The overall period of
the Unemployment rate is different from others due to the data access and availability limited.

Besides, it has a lack of data for 2006Q1-Q3 and 2007Q1 for the other four indicators.

3.4.2 Point Prediction Data and Subjective Probabilistic Forecasts.

Table 3.3 presents a comprehensive overview of statistical measures for the differ-
ence between point-predicted data and the actual value for each of the five indicators.
Specifically, it includes the means µ and standard deviations σ related to various vari-
ables. These variables comprise the actual announced value (referred to as ”Actual”),
the predicted value by experts (”Experts”), and the resulting surprise, which is derived
from the disparity between the Actual and Expert values.

The collection of subjective probabilistic data is similar with the point prediction col-
lection. The SPF instrument divides the real number line into several intervals and ask
respondents to report their subjective probabilities that the variable of interest and take
a value in each interval. For example, in GDP growth, The intervals are [−1%, 0%),
[0%, 1%), [1%, 2%), [2%, 3%), [3%, 5%), [5%, 7%), [7%, 9%), [9%, ∞), and the sum of
each interval expressed is 100%. Table 3.4 provides useful summary information on the
subjective prediction data. Table 3.5 lists the total interval quantity for each variable
and its corresponding subset interval value.
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TABLE 3.3: Actual, Expert Forecast, and Surprise Statistics for Point Data

Actual Expert Forecast Surprise

N µ σ µ σ µ σ

GDP 681 0.4179 3.0994 2.1508 1.6736 1.7329 1.4258
Inflation 668 2.0 0.0913 1.8499 0.8112 0.1025 0.1020
Bank rate 221 2.0929 2.1541 3.0933 1.9299 1.0005 0.2242

Unemployment 205 4.7452 0.7767 5.3082 2.4248 0.5631 1.6481
ERI 598 88.1971 9.5592 92.963 40.0396 4.7659 30.4803

Note: In this case, we do not consider predictions from all forecasters. Instead, we select ten
experts who provide the most informative values to form a panel. The amount of observation is
theoretically the data number we should have. However, due to certain forecasters not provid-

ing their beliefs at some time points, we encounter missing data.

TABLE 3.4: Variable, Experts, Observations, Missing Observations

Variable Experts Observations Missing Observations

GDP 10 681 129
Inflation 10 668 131

Unemployment 10 205 87
Bank rate 10 221 124

ALL - 1775 471
Note: In this case, we do not consider predictions from all forecasters. Instead, we select ten
experts who provide the most informative values to form a panel. The amount of observation
amount is theoretically the data number we should have. However, due to certain forecasters

not providing their beliefs at some time points, we encounter missing data.

TABLE 3.5: Variable, Intervals Number, Intervals Values

Variable Intervals Number Intervals Values

GDP 8 [−1%, 0%), [0%, 1%), [1%, 2%), [2%, 3%), [3%, 5%), [5%, 7%), [7%, 9%), [9%, ∞)
Inflation 8 [−∞, 0%), [0%, 1%), [1%, 1.5%), [1.5%, 2%), [2%, 2.5%), [2.5%, 3%), [3%, 3.5%), [3.5%, ∞)

Unemployment 10 [−∞, 4%), [4%, 4.5%), [4.5%, 5%), [5%, 5.5%), [5.5%, 6%), [6%, 6.5%), [6.5%, 7%), [7%, 7.5%), [7.5%, 8%), [8%, ∞)
Bank rate 10 [∞, 0%), [0%, 0.5%), [0.5%, 1%), [1%, 1.5%), [1.5%, 2%), [2%, 2.5%), [2.5%, 3

3.4.3 Preliminary Analysis

Table 3.6 presents the average values of experts’ upper bounds on median, mean, mode
point predictions, and quantiles. The upper bound on the median point prediction rep-
resents the maximum value that the median of the predictive model can attain. Sim-
ilarly, the upper bound on the mean point prediction indicates the highest possible
value for the mean of a predictive model. The upper bound on the mode point predic-
tion reflects the highest achievable value for the mode of your predictive model.

Additionally, the upper bounds on quantiles, specifically the 75th percentile, signify
the maximum values that these quantiles can reach within the predictive model. These
upper bounds on the 25th quantile provide insight into the potential range of values
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within specific data intervals, contributing to a better understanding of the data distri-
bution.

TABLE 3.6: Average of upper bounds on median/mean/mode point predictions and
quantiles.

Variable Median Mean Mode 25th quartile 75th quartile

GDP 53.80% 59.78% 57.79% 21.92% 47.28%
Inflation 40.27% 40.57% 37.13% 21.56% 19.76%

Unemployment 20.98% 12.68% 14.63% 9.76% 10.73%
BoE 16.29% 11.31% 15.84% 13.57% 12.67%
ALL 49.46% 50.00% 48.47% 24.16% 33.97%

3.5 Main Results

The main results of the study are presented in two key parts. Firstly, the parameter
values used to construct the cumulative ”S” shapes are highlighted, with a focus on
identifying the key points in forming the cumulative distribution functions (CDFs) of
the experts’ predicted values. Table 3.7 summarises the parameter values, including the
location of the distribution peak and the scale parameter (measured by the half-width),
for ten experts (B1 to X1) across the five target observation variables: GDP, inflation,
bank rate, unemployment, and ERI. All values are reported in percentage format for
consistency.

Subsequently, Fig. 3.1 illustrates the differences between the cumulative ”S” shapes of
the ten experts when predicting the five target variables. This visual comparison pro-
vides insights into the variability in the predictive distributions of individual experts.
Furthermore, Table 3.8 presents the classification of each expert’s predictive attitude,
indicating tendencies in their approach to forecasting the target variables.

3.5.1 Summary of the Value of the Location of the Peak of the Distribution
and the Scale Parameter with the Half-width

The results in Table 3.7 provide key information on the parameters used to fit the ex-
perts’ cumulative distribution functions (CDFs) within a Cauchy distribution. These
parameters include the location of the peak, the scale parameter, and the correspond-
ing half-widths. These values enable the construction of ”S”-shaped CDFs for each
expert, reflecting their subjective probability distributions when predicting the UK’s
five key macroeconomic indicators.
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3.5.2 Frequency Distribution of Experts’ Judgements

This section examines two types of variability typically found in expert probability
judgements. We will then infer the forecaster’s preference in prediction based on evi-
dence from these variabilities. Firstly, we explore expert judgement variability across
different target variables. Secondly, we delve into the variability in the totality of their
assessments between experts. The analysis of judgement variability begins by exam-
ining how often experts use different ranges of probability judgements. In our initial
analysis, we utilize ten probability intervals. The cumulative distribution of the relative
frequency, depicting the difference between the forecaster’s prediction and the actual
value within each range, is plotted to support the analysis—refer to Fig. 3.1.

Differing from Brito et al. (2008), who constructed the “S” shape of experts’ subjective
probability distribution with ten intervals of probability, we employ a simpler varia-
tion on their original model to facilitate a more intuitive comparison. We standardize
all subjective “S” shapes by gathering them at a central point and allowing their vari-
ations to rotate around this central point. This approach enables us to intuitively com-
pare each individual expert’s confidence level when making predictions for each target
variable. Consequently, we can derive a preliminary observation of each individual
expert’s preference in prediction.
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FIGURE 3.1: Cumulative probability distributions. GDP (top left), Inflation (top mid-
dle), ERI (top right), BoE (bottom left), and Unemployment (bottom right).

3.5.3 Classification of Expert’s Attitude Based on “S” Shape.

Table 3.8 summarises the attitudes of each expert when providing predictions for the
five observed variables. These classifications are derived from the results presented in
Fig. 3.1. Experts are categorised based on the distance (rotation angle) between the
shape of their ”S” curve and the axis centre. The width of the ”S” shape reflects the
confidence level of an expert in predicting that their estimated interval will contain the
actual value.
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If an expert’s ”S” shape rotates significantly away from the axis centre, it indicates a
wider belief interval, suggesting a pessimistic attitude towards their prediction. Con-
versely, a narrower rotation closer to the centre represents higher confidence, typically
associated with an optimistic attitude. This analysis provides a systematic approach to
characterising the subjective confidence and prediction tendencies of each expert across
the observed variables.

TABLE 3.8: Variables, Attitude, and Experts

Observation Variables Attitude Experts

GDP Optimist G1
Pessimist B1, L1, B2, I1, N1, O1, S1, T1, X1

Inflation Optimist G1, B2
Pessimist B1, I1, N1, O1, T1, L1, S1, X1

Bank rate Optimist B1, X1, B2
Pessimist I1, T1, G1, L1, N1, O1, S1

Unemployment rate Optimist I1, L1
Pessimist G1, B1, B2, N1, O1, S1, T1, X1

ERI Optimist L1, N1
Pessimist B1, G1, I1, O1, S1, T1, X1, B2

In the process of quantifying the frequency of classifying each expert’s attitudes as
either optimistic or pessimistic, a preliminary analysis suggests that experts G1, L1,
and B2 adopt a notably optimistic outlook regarding the UK’s five key macroeconomic
indicators. Meanwhile, experts B1, X1, I1, and N1 display a relatively optimistic stance,
albeit less pronounced than the aforementioned experts. By contrast, the remaining
experts, O1, S1, and T1, exhibit a distinctly pessimistic attitude. Overall, across all
variables, the number of experts with a pessimistic outlook significantly exceeds those
with an optimistic perspective.

3.5.4 Bounding Means, Medians, and Modes and Quartiles

The rationality of the forecasts can be evaluated in terms of non-parametric statistical
theory. Since the BoE-SPF asks forecasters to provide their subjective probability dis-
tribution and point forecast, we can use the distribution to construct bounds on the
relevant median/mean/mode forecasts. We follow (Engelberg et al., 2009), who ex-
plained how to calculate bounds on the median, mean, and mode. In addition, we
follow (Huang et al., 2020) calculated bounds intervals for lower and upper bounds on
the 25th and 75th quartiles. In summary, the central tendency of median/mean/mode
and the lower bound 25th and upper bound 75th quartiles are used to shape the inter-
val bounds for counting the frequency of subjective probability distribution where they
fall into or exceed.
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TABLE 3.9: Summary Statistics for Experts on GDP

Experts Median Mean Mode 25th Quartile 75th Quartile

B1 42.00% 56.00% 44.00% 22.00% 60.00%
G1 50.00% 53.33% 55.00% 20.00% 55.00%
I1 44.68% 48.94% 48.94% 21.28% 51.06%
L1 58.97% 58.97% 64.10% 15.38% 61.54%
N1 61.29% 74.19% 70.97% 20.97% 40.32%
O1 64.41% 71.19% 55.93% 20.34% 23.73%
S1 55.56% 63.49% 61.90% 25.40% 55.56%
T1 70.21% 70.21% 74.47% 17.02% 53.19%
X1 48.39% 51.61% 54.84% 17.74% 53.23%
B2 44.44% 49.21% 49.21% 34.92% 28.57%

TABLE 3.10: Summary Statistics for Experts on Inflation

Experts Median Mean Mode 25th Quartile 75th Quartile

B1 35.29% 41.18% 35.29% 25.49% 41.18%
G1 36.84% 39.47% 31.58% 23.68% 10.53%
I1 44.00% 40.82% 26.53% 22.45% 26.53%
L1 56.76% 54.05% 56.76% 24.32% 21.62%
N1 66.67% 60.00% 65.00% 35.00% 11.67%
O1 45.76% 54.24% 35.59% 15.25% 18.64%
S1 57.14% 52.38% 55.56% 34.92% 28.57%
T1 56.00% 52.00% 52.00% 30.00% 36.00%
X1 45.45% 46.97% 42.42% 10.61% 21.21%
B2 51.56% 57.81% 54.69% 43.75% 28.13%

TABLE 3.11: Summary Statistics for Experts on Unemployment

Experts Median Mean Mode 25th Quartile 75th Quartile

B1 35.29% 41.18% 35.29% 25.49% 41.18%
G1 36.84% 39.47% 31.58% 23.68% 10.53%
I1 44.00% 40.82% 26.53% 22.45% 26.53%
L1 56.76% 54.05% 56.76% 24.32% 21.62%
N1 66.67% 60.00% 65.00% 35.00% 11.67%
O1 45.76% 54.24% 35.59% 15.25% 18.64%
S1 57.14% 52.38% 55.56% 34.92% 28.57%
T1 56.00% 52.00% 52.00% 30.00% 36.00%
X1 45.45% 46.97% 42.42% 10.61% 21.21%
B2 51.56% 57.81% 54.69% 43.75% 28.13%

Following the interpretation by (Engelberg et al., 2009), if the point prediction lies
within the bound for the median, then we cannot reject the hypothesis that the point
prediction is the median. We can reject this hypothesis if the point prediction does
not lie within the bound for the median. The same reasoning applies to the mean and
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TABLE 3.12: Summary Statistics for Experts on Bank Rate

Experts Median Mean Mode 25th Quartile 75th Quartile

B1 41.18% 29.41% 41.18% 41.18% 35.29%
G1 33.33% 28.57% 33.33% 23.81% 33.33%
I1 28.57% 0.00% 14.29% 0.00% 42.86%
L1 - - - - -
N1 47.83% 21.74% 47.83% 34.78% 26.09%
O1 - - - - -
S1 - - - - -
T1 33.33% 33.33% 33.33% 0.00% 0.00%
X1 26.67% 26.67% 33.33% 40.00% 33.33%
B2 33.33% 16.67% 33.33% 41.67% 8.33%

mode. Thus, we can determine the frequency with which point predictions are incon-
sistent with the three measures of central tendency. Combining the results in Table 3.9
(the average of expert’s point prediction), we found that in GDP growth prediction, the
experts G1, L1, and S1 are consistent with the experts’ average performance. Experts
N1, O1, and T1’s consistency is slightly above the average performance. In Inflation
rate prediction, the overall consistency of experts is above the average level except for
expert B1. In unemployment prediction, the experts are above average overall, except
for B2. In Base bank rate prediction, all experts are above average overall. We need
to learn more about the evidence to further understand the expert’s point prediction’s
favorableness. More evidence will be interpreted in the following section.

By examining the percentage frequency of point prediction consistency with a sub-
jective probability distribution on the intervals of central tendency, we cannot infer
whether these forecasters tend toward holding an optimistic or pessimistic attitude to-
ward the state of the UK macroeconomy when predicting key indicators. However, if
we consider in addition to the lower bound and upper bound for analysing the expert’s
favourable scenarios, we will infer the skewness of each individual expert’s and sub-
jective probability distribution. More specifically, if it has more forecasters’ predictions
align with the interval for the 75th quartile, as opposed to the 25th quartile of their dis-
tribution, it suggests that forecasters often make predictions favouring the higher end
of expectations. This implies optimism in their forecasts for GDP growth and the Base
bank rate but tends to be pessimistic in their predictions for Inflation and Unemploy-
ment rates.

Analysis by variables in GDP growth, combined with Table 3.6 and Table 3.9, shows
that there is a larger proportion of forecasters’ point predictions consistent with the
75th quartile of their subjective distributions, ranging from 28.57% to 60% across all
forecasters, compared to those consistent with the 25th quartile which ranges from 22%
to 34.92% across all forecasters. This suggests that forecasters are relatively typical
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optimists since their GDP growth predictions are more toward the right tail of their
subjective distribution than towards the left tail.

For inflation predictions, Table 3.10 indicates that there are slightly fewer forecasters
whose point predictions align with the 75th quartile. This percentage ranges from
28.13% to 41.18% across all forecasters. In comparison, the proportion of predictions
consistent with the 25th quartile ranges from 25.49% to 43.75% across all forecasters
within their subjective distributions. This suggests that, overall, forecasters tend to
be pessimists when it comes to reporting inflation predictions. Their predictions lean
more slightly towards the left tail of their subjective distribution than towards the right
tail.

Regarding unemployment rate predictions, Table 3.11, shows the proportion of point
predictions aligning with the 75th quartile ranges from 26.67% to 28.57%, whereas those
consistent with the 25th quartile range from 13.33% to 14.29% across all forecasters.
This suggests that, in general, forecasters in the UK-SPF tend to be optimistic in their
unemployment predictions. The predictions are more towards the right tail of their
subjective distribution than towards the left tail.

Finally, for the bank rate predictions, Table 3.12 reveals that the percentage of fore-
casters’ point predictions align with the 75th quartile of their subjective distributions
ranging from 8.33% to 35.29% across all forecasters. In contrast, the proportion of pre-
dictions consistent with the 25th quartile ranges from 41.18% to 41.67% across all fore-
casters. This observation implies that forecasters tend to lean toward pessimism in
their BoE predictions. The overall predictions are more towards their subjective distri-
bution’s left tail than the right tail.

3.5.5 Inconsistency Tend to Present Favorable Scenarios

Now consider the SPF panel members whose point predictions are inconsistent with
their subjective medians, means, or modes. Table 3.13 reports the percentage of cases
in which point predictions lie above or below the bounds. A clear finding emerges:
most inconsistent point predictions reflect a view of the economy that is favourable
relative to the central tendencies of the experts’ subjective distributions. This suggests
that forecasters who skew their point predictions often present optimistic scenarios.

For instance, when forecasting GDP growth, point predictions inconsistent with mea-
sures of central tendency are far more likely to exceed the upper bounds than fall
below the lower bounds of the means, medians, and modes. This trend indicates a
preference for more optimistic forecasts of economic growth, suggesting that forecast-
ers view the economy as performing better than indicated by their subjective distribu-
tions. Conversely, for inflation forecasts, point predictions tend to fall below the lower
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bounds rather than above the upper bounds, implying a bias towards projecting more
favourable (i.e., lower) inflation outcomes.

The unemployment rate predictions follow a similar pattern to GDP growth, with in-
consistent point predictions skewed towards the upper bounds, reflecting a more op-
timistic view of labour market conditions. On the other hand, for the Base Bank Rate
forecasts, the inconsistent point predictions tend to fall below the lower bounds, indi-
cating a more cautious or pessimistic stance on monetary policy outcomes.

We cannot definitively determine why forecasters skew their point predictions in this
manner. One potential explanation could involve behavioural tendencies, such as op-
timism bias, where forecasters inherently overestimate positive outcomes for certain
variables while underestimating risks for others. Alternatively, strategic considerations
may play a role. For example, Capistrán and Timmermann (2009) proposed a model
in which forecasters have incentives to under- or overpredict due to asymmetries in
the cost functions associated with prediction errors. These strategic biases might reflect
forecasters’ attempts to align their predictions with perceived expectations of stake-
holders or decision-makers.

However, since individual forecasts are anonymised in the public release of the panel
data, and forecasters are ostensibly unaware of each other’s responses during the sur-
vey process, it is unlikely that herding behaviour or career-related concerns are the pri-
mary drivers of these findings. Further research is required to explore the motivations
and mechanisms behind these observed patterns of inconsistency.

3.5.6 Additional Analysis

This section provides additional analysis aimed at further elucidating the differences
in preferences among expert predictions. This is achieved by comparing the average
subjective distribution of each individual expert with the actual value for each variable.

Beginning with Fig. 3.2, the red dotted line represents the average true value of each
variable, depicted as a straight line since the true value at each quarterly time point
is a numerical value. The distributions reflect the average of each expert’s subjective
probability distribution. Notably, expert predictions for all four variables consistently
appear on the right side of the true value, indicating a tendency among experts to
overestimate the macroeconomy.

For more granular insights, Fig. 3.3 provides complementary perspectives on experts’
forecasting preferences, focusing on the width and position of their subjective distri-
butions. This figure further demonstrates that experts’ predicted values systematically
fall to the right of the true value distributions, reinforcing the observation of a general
overestimation bias.
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Differences in the shapes of distributions reveal additional insights. For GDP growth
predictions, a steep slope and systematically narrow ”S” shapes suggest that experts ex-
hibit an optimistic outlook towards economic growth. Conversely, inflation predictions
display flatter ”S” shapes, and a high expectation value indicates a more pessimistic
perspective on the economic environment.

Similarly, for unemployment forecasts, the interpretation aligns with inflation. Higher
predicted values imply an economic downturn, reflecting a pessimistic stance among
experts. Finally, for bank rate predictions, experts tend to exhibit optimism, evidenced
by steep slopes and consistently skewed distributions to the right of the true values.

3.5.6.1 Comparison of Expert Average Subjective Prediction with True Value.

FIGURE 3.2: Comparison of expert average subjective prediction with true value.



62
Chapter 3. Measuring the Attitude Divergence in Expert Prediction under Bounded

Rationality

FIGURE 3.3: Comparison of expert average subjective prediction with true value in
CDF.

3.6 Conclusion

This research paper makes several significant contributions to understanding whether
expert behaviour in macroeconomic forecasting is rational. Firstly, it introduces a novel
approach to understanding attitudinal differences among experts by classifying them
into optimists and pessimists based on the ”S” shape width of their cumulative proba-
bility distributions, rooted in their emotional characteristics and prediction behaviours.
Secondly, the study is deeply grounded in psychology and cognitive theory, drawing
on the foundational work of (Tversky and Kahneman, 1974) on heuristics and biases
to enhance judgement and decision-making under uncertainty. Thirdly, it examines
the impact of cognitive biases on expert judgement, emphasising how heuristics can
lead to skewed decision-making despite their general utility. Additionally, the paper
employs a robust approach, integrating Bayesian decision theory to assess the consis-
tency of forecasts with central tendency values and interquartile ranges, thereby eval-
uating the rationality of these predictions. This is supported by extensive data analysis
of economic indicators like GDP growth, unemployment rate, bank rate, and infla-
tion. These contributions collectively advance the literature on expert judgement and
decision-making, offering new insights into the rationality, or lack thereof, in economic
forecasting.
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Moreover, our research expands on some of the recent literature on survey-based mea-
sures of macroeconomic uncertainty and forecasters’ rationality. It also contributes to
understanding the optimism or pessimism of point forecasts made by participants in
the BoE-SPF. To do this, we employ the BoE-SPF, which uses 21 years of quarterly sur-
vey data covering 84 surveys with ten experts’ point predictions in a time series format.

Our results, viewed from different perspectives, indicate that forecasters exhibit less ra-
tionality in the process of making macroeconomic predictions. The method proposed
by presents the evidence (Brito et al., 2008). First, we broadly categorize experts’ atti-
tudes into different moods based on the width of their subjective distribution in an “S”
shape. Additionally, we establish bounds for a rational threshold to examine whether
forecasters’ point predictions are consistent or inconsistent with the central tendencies
of their subjective distributions.

The results reveal that most BoE-SPF point predictions are inconsistent with these cen-
tral tendencies. This inconsistency implies that the forecasters’ point predictions do not
align well with their subjective probability distributions’ central values (mean, median,
mode). In other words, the specific numerical forecasts provided by the experts differ
significantly from the central tendency measures that summarize their overall expecta-
tions. This misalignment suggests potential biases or errors in the experts’ forecasting
process, highlighting a lack of coherence between their predictions and broader prob-
abilistic assessments. This discrepancy can undermine the rationality of the forecasts
and indicates the need for improved methods to ensure consistency in expert judge-
ment.

Furthermore, we observe that deviations between point predictions and the central ten-
dencies of forecasters’ subjective distributions tend to be asymmetric. The point predic-
tions consistently present a more favourable view of the economy than suggested by
subjective means, medians, modes, and the 25th and 75th quartiles. This skewness in
subjective distribution reports indicates predictions that give a more favourable view of
the economy. Our findings align with the results of (Batchelor, 2007), which document
the presence of systematic bias in real GDP and inflation forecasts.

However, when classifying experts into optimists or pessimists, establishing a strict
rule for the spread of the ’S’ shape poses a challenge. This study does not reflect an ob-
vious criterion for distinguishing experts into the two groups. We classify them based
on their relative performance with their peers. The limitation is that, when predicting
some variables, there is a possibility that they are all optimists or pessimists, so the
comparison with peers is not efficient. One way to address this limitation could be
to introduce a dynamic threshold that adapts to the overall distribution of predictions
within the group. Instead of having a fixed threshold, consider using statistical mea-
sures like standard deviations or percentiles to determine the optimism or pessimism



64
Chapter 3. Measuring the Attitude Divergence in Expert Prediction under Bounded

Rationality

of each expert relative to the group. This way, the classification takes into account the
broader context of predictions within the peer group.

In conclusion, this study significantly impacts the understanding and practice of eco-
nomic forecasting. By highlighting the inconsistencies and biases in expert predictions,
it provides a foundation for improving forecasting methods, ensuring more accurate
and reliable economic predictions. These insights are particularly relevant for the Bank
of England as they inform the need for refined approaches in eliciting and aggregat-
ing expert judgements, ultimately enhancing the reliability of macroeconomic forecasts
used in policy-making.
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Chapter 4

Machine Learning in Expert
Prediction Optimization

4.1 Introduction

The development of measurement in macroeconomic forecasting has a long history.
As early as 1936, the econometrist known as the father of macroeconomics, Keynes,
discussed in his study, ”The General Theory of Employment, Interest, and Money”,
that state intervention was necessary to moderate the ”boom and bust” cycles of eco-
nomic activity (Keynes, 1937). Keynes advocates using fiscal and monetary policies
to alleviate the adverse effects of economic recessions and depressions. However, this
work was criticised by Pigou (1936), who argued that Keynes’ method is less appro-
priate in the way of scientific modelling and develops a far-reaching generalization.
More recently, Diebold (1998) noted that many observers interpret the failure of the
early models as indicative of a bleak future for macroeconomic forecasting more gener-
ally. Diebold (1998) further indicated that following the decline of Keynesian theory, a
powerful new dynamic stochastic general equilibrium theory has been developed, and
structural macroeconomic forecasting is poised for resurgence.

Likewise, numerous modern researchers also emphasize the importance of macroeco-
nomic forecasting, as Schuh et al. (2001) highlighted that macroeconomic forecasts are a
useful tool and can be used extensively in industry and government. However, Heile-
mann and Stekler (2007) indicated that the accuracy of macroeconomic forecasts in the
G7 has not improved over the last fifty years. He further comments on the concern that
predicting the future of economic forecasting is more difficult than the forecasting it-
self because there is no theory we can use, and few clear trends are evident. Moreover,
Mullainathan and Spiess (2017) demonstrated traditional economic forecasting models
rely on established variables and typically adopt a top-down, theory-driven approach
that considers the cause-and-effect relationships between dependent and independent
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variables. However, how efficiency of these models depends on the economic insight
and judgement of forecasters concerning both data and methodologies employed. If
there are any errors or irrationality in the assumptions made by forecasters, it can lead
to inaccurate predictions by these models.

On the other hand, as described by Lu et al. (2009), there has been an increasing interest
in economic time series forecasting in recent years, driven by the importance of accurate
economic index predictions for investment decision-making. However, financial time
series are inherently noisy and non-stationary (Deboeck, 1994; Yaser and Atiya, 1996).
The noise characteristic refers to incomplete information from past economic market
behaviour, making it difficult to fully capture the dependency between future and past
states. Information not included in the forecasting model is considered noise, while
the non-stationary characteristic implies that the distribution of economic time series
changes over time. Therefore, economic time series forecasting is considered one of the
most challenging tasks in time series forecasting. As a result, there is a continuous need
to explore and refine optimal methods for economic forecasting.

Additionally, Clemen (1989) proposed a persistent issue with statistical-based forecast-
ing models is their heavy reliance on correlations between data to identify patterns.
However, the accuracy of predictions may fall short when the data is inadequate for
modelling. Thus, we refer to Varian (2014) pointed out that machine algorithms pri-
marily focus on pure prediction, unlike many traditional economic forecasting mod-
els. Yoon (2021) evidenced that machine learning models exhibit greater flexibility
than their traditional counterparts, as they can generate predictions without needing
pre-established assumptions or human judgement. In fact, with advancements in tech-
nology and enhanced predictive capabilities, machine learning models have found ex-
tensive applications across various domains, ranging from predicting transportation
patterns to forecasting housing prices. Notably, machine learning methods often out-
perform traditional econometric models, as evidenced in the case of forecasting US
housing prices by (Plakandaras et al., 2015). Furthermore, machine learning models are
effective when applied to datasets with relatively lower frequencies, as demonstrated
in studies on inflation prediction conducted by (Inoue and Kilian, 2008; Medeiros et al.,
2021).

On the other hand, the fusion of machine learning and econometrics has emerged as a
significant research domain within the field of economics. ML has gained importance
primarily due to the availability of extensive datasets, particularly in microeconomic
contexts, as highlighted by (Belloni et al., 2017; Abadie and Kasy, 2019). While the in-
terest in ML grows, comprehending how ML techniques can effectively contribute to
forecasting macroeconomic outcomes remains a remarkable challenge. However, this
understanding holds significant value, potentially surpassing the reliance on a singular
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algorithm. Applied econometricians often find it more appealing to augment a conven-
tional framework with specific insights from ML rather than replacing it entirely with
an ML model (Goulet Coulombe et al., 2022).

As Huang et al. (2020) denoted deep learning (DL) is an advanced technique of ma-
chine learning (ML) based on artificial neural network (NN) algorithms. Deep learning
has been widely applied in computer vision (Guo et al., 2016), natural language pro-
cessing (Collobert et al., 2011), and audio-visual recognition (Chai and Li, 2019). The
overwhelming success of deep learning as a data processing technique has sparked
the interest of the research community. However, a detailed study of the applications
of deep learning in the finance and banking field is lacking in the existing literature.
This study provides a powerful comprehensive framework to compare how different
for improving macroeconomic prediction by using deep learning logarithms and ma-
chine learning algorithms. It helps to understand how the DL and ML procedures can
address the remaining challenge described (Goulet Coulombe et al., 2022).

In this context, we contribute to the literature by conducting an extensive empirical
study, employing a comprehensive framework that integrates both deep learning and
machine learning as a hybrid approach to optimize UK macroeconomic forecasts. The
algorithm architectures are constructed using well-known deep learning models, in-
cluding deep neural networks (DNN) and Long Short-Term Memory (LSTM), along
with machine learning models such as Support Vector Regression (SVR) and Random
Forest (RF). We establish the optimal combination of machine learning algorithms tai-
lored for UK professional forecasters in macroeconomic forecasting. Our results in-
dicate that machine learning models demonstrate a significant predictive ability, and
including deep learning models proves effective in achieving optimization goals in
macroeconomic forecasting. Additionally, our contribution lies in finding solutions for
selecting optimal hyperparameters, addressing a critical problem in machine learning.
Furthermore, our findings provide evidence that the application of machine learning
remains valid even with a small data sample. Our exploration introduces a new per-
spective on strategies for optimising macroeconomic forecasting.

This paper is organised into several sections. The first section summarizes the research
background and objectives. The second section describes data construction and prepro-
cessing. We will then introduce each individual ML model (SVR and RF) and DL model
(DNN and LSTM) applied in this study. The following section presents the details of
prediction results and discussion. The final part will conclude with some findings, fu-
ture work, and limitations.

4.2 Literature Review

Barboza et al. (2017) pointed out that machine learning and deep learning as useful
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tools that have been found applied across a wide range of research fields. El Naqa and
Murphy (2015) summarised techniques based on machine learning and deep learn-
ing have been applied successfully in diverse fields ranging from pattern recognition
(Melati et al., 2019), computer vision (Khan et al., 2021), engineering (Panchal et al.,
2019), finance (Gogas and Papadimitriou, 2021), arts (Fiebrink, 2019), education (Gi-
annakos et al., 2020) and computational biology (Tarca et al., 2007) and medical appli-
cations (Magoulas and Prentza, 1999). However, recent Goulet Coulombe et al. (2022)
indicated the gap that only recently did macroeconomic forecasting experience a surge
in the number of studies applying (successfully) ML methods, and many tasks remain
to be explored. This section reviews the application of machine learning and deep
learning in macroeconomic fields.

In traditional econometrics, multiple linear regression and Ordinary Least Squares
(OLS) are seen as the two frequently used econometric techniques in the process of
analysing economic data (Shobana and Umamaheswari, 2021). The main goal of econo-
metricians is to determine such an estimator that can possess certain desirable statis-
tical properties like consistency, efficiency, and unbiasedness. However, (Shobana and
Umamaheswari, 2021) further highlighted the limitation of traditional econometrics is
that certain econometric models may end up with a result that gives a relationship that
is spurious among two variables.

Goulet Coulombe et al. (2022) described ML has a long history in econometrics. As ear-
lier as Lee et al. (1993) proposed a new test - neural network test for testing neglected
nonlinearity in time series models by comparing neural network methods with alter-
native tests (White dynamic information matrix test, the McLeod-Li test, the Ramsey
RESET test, the Brock-Dechert-Scheinkman test, and the Bispectrum test). They found
their results suggest that the neural network test can play a valuable role in evaluat-
ing model adequacy. Then, Breiman (2001b) proposed the two cultures in the use of
statistical modelling to reach conclusions from data. The statistics community has, by
and large, accepted the machine learning (ML) revolution that Breiman refers to as the
algorithm modelling culture, and many textbooks discuss ML methods alongside more
traditional statistical methods (e.g., (Hastie et al., 2009; Hartford et al., 2016).

In the macro forecasting area, Moshiri and Cameron (2000) compared the perfor-
mance of Back-Propagation Artificial Neural Network (BPN) models with the tradi-
tional econometric approaches to forecasting the inflation rate. Their results show the
hybrid BPN models can forecast as well as all the traditional econometric methods,
and outperform them in some cases. Nakamura (2005) evaluated the usefulness of
neural networks for inflation forecasting, their results especially suggest that the early
stopping procedure contributes considerably to the predictive success of the NN ap-
proach and should be incorporated into future forecasting experiments involving NNs.
Choudhary and Haider (2012) assessed the power of diverse Artificial neural network
(ANN) models as forecasting tools for monthly inflation rates for 28 Organization for
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Economic Co-operation and Development (OECD) countries. They develop arithmetic
combinations of several ANN models and find that these may also serve as credible
tools for forecasting inflation.

Sermpinis et al. (2014) introduced a hybrid genetic algorithm–support vector regression
(GA-SVR) model in economic forecasting and macroeconomic variable selection. The
proposed machine learning algorithm is applied to the task of forecasting US inflation
and unemployment. Their results imply the proposed GA-SVR algorithm outperforms
all benchmark models. Milunovich (2020) compared the accuracy of forecasting Aus-
tralia’s real house price index by applying machine learning methods and traditional
time series models. They provide evidence on forecasts generated by deep learning
nets rank well across medium and long forecast horizons.

With the application of machine learning in macroeconomic forecasting, Yoon (2021)
denoted forecasting macroeconomic data, such as real GDP growth, is not a simple pro-
cess. To forecast data, considering the causal relationship between the dependent vari-
able and independent variable, traditional economic forecasting models require prede-
termined relevant variables to make predictions and often take top-down and theory-
driven approaches. Goulet Coulombe et al. (2022) referred to as ML also has success-
fully applied in microeconomic applications attributable to the availability of large data
sets. Mullainathan and Spiess (2017) indicated the process of macroeconomic forecast-
ing also requires economic intuition and judgement by forecasters regarding the data
and methods used. If there is any flaw in the assumptions made by the forecasters, the
models could produce inaccurate predictions. Varian (2014) emphasised conventional
statistical and econometric techniques such as regression often work well, but there are
issues unique to big datasets that may require different tools. By contrast, machine
learning models mostly deal with pure prediction tasks in contrast to many traditional
economic forecasting models.

Yoon (2021) highlighted machine learning models are more flexible than traditional
economic forecasting models and can produce predictions without predetermined as-
sumptions or judgements. As Jung et al. (2018) proposed a key advantage of ML is that
ML views empirical analysis as “algorithms” that estimate and compare many alter-
native models. This approach contrasts with economics, where (in principle, though
rarely in reality) the researcher picks a model based on principles and estimates it once.
Instead, ML algorithms build in “tuning” as part of the algorithm. The tuning is essen-
tially model selection, and in an ML algorithm that is data-driven.

4.3 Methodology

We propose a hybrid approach that combines two machine learning models—support
Vector Regression (SVR) and Random Forest—with two deep learning models—deep
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Neural Network (DNN) and Long Short-Term Memory (LSTM). All four models are
supervised learning algorithms that analyze training data to construct predictive func-
tions for new, unseen data.

4.3.1 Hyperparameters Selection and Tuning Strategies

Cupallari (2020) highlighted the necessity of addressing a set of hyperparameter selec-
tions before constructing and training models. Kim and Chung (2019) believed that
the critical problem in machine learning is determining the hyperparameters, such as
the learning rate, mini-batch size, and regularization coefficient. (Bergstra and Bengio,
2012; Young et al., 2015) identified three widely used methods for hyperparameter se-
lection in deep learning: (1) manual search, (2) grid search, and (3) random search. This
work applies a framework for optimising the hyperparameters of a deep network by
using the grid search method.

• Grid search

Probst et al. (2019) proposed one of the simplest strategies is grid search, in which
all possible combinations of given discrete parameter spaces are evaluated. This is
typically done by creating a dictionary in which the keys are the hyperparameters, and
the values are the different values to test for each hyperparameter. For example, in
Fig. 4.1, we aim to identify the best combinations of batch size and learning rate. Each
blue point represents a combination of batch size and learning rate. We then score
each combination and find the best combination of hyperparameters by using cross-
validation tests. The main strength of grid search is that it is guaranteed to find the
optimal combination of parameters specified in the grid. However, its weakness is that
it can be computationally expensive and time-consuming, especially when the space of
the hyperparameter is large or the dataset is very large.

•Cross-validation

Learned from Kamal (2021) by using the function of train test split to create a train-
ing set and testing set. The TimeSeriesSplit is introduced to create walk-forward
cross-validation sets when tuning the model parameters. The data will be split into
training and testing datasets, where 80% of the data will be used for training and 20%
of the data will be used for testing. An example of TimeSeriesSplit can be seen in Fig.
4.2.

We construct a grid that encompasses all possible combinations of hyperparameters. To
identify the optimal hyperparameters, we apply cross-validation specifically tailored
to the time series nature of our data. This method ensures that future observations
are not used to inform predictions of past values. In particular, we utilise the Time-
SeriesSplit technique from the Scikit-learn library, which is specifically designed for
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FIGURE 4.1: Time Series Split.
Note: The figure illustrates the grid search process used for hyperparameter tuning. The x-axis
represents different values for the learning rate, and the y-axis represents different batch sizes.
Each blue dot represents a combination of hyperparameters (learning rate and batch size) that
is evaluated during the grid search process. The goal of grid search is to exhaustively search
through these combinations to identify the best-performing hyperparameters for the model.

FIGURE 4.2: Roll-forward cross validation splits with TimeSeriesSplit.
Note: The figure illustrates the rolling-forward cross-validation splits using the

TimeSeriesSplit method. The x-axis represents the index or time steps of the data points in the
time series, progressing sequentially from left to right. The y-axis represents the different
cross-validation iterations (CV Iteration), where each iteration uses a progressively larger
portion of the time series for training (shown in blue) and a subsequent portion for testing

(shown in red). This approach ensures that future data is not used to predict past data,
maintaining the temporal order essential for time series analysis.
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time-series datasets. Unlike other data types where observations can be randomly as-
signed to training and testing sets, time-series data is characterised by the sequential
order of observations, and disrupting this sequence would compromise the integrity of
the analysis.

The TimeSeriesSplit method provides a mechanism to progressively ’roll forward’ data
splits in accordance with the time order. It ensures that, in each iteration, the test set
advances in time, incorporating all preceding data into the training set for the next
iteration. Initially, the first part of the sequence is designated as the training set, with a
subsequent, smaller segment assigned as the test set. In each subsequent iteration, the
test set progresses forward in time by a specified number of steps, and all data up to
the new test set, including the previous one, forms the new training set. This process
continues until the test set spans the entire time series.

4.3.2 Machine Learning Models

This section introduces the principles underlying the four models employed in this
study: Support Vector Regression (SVR), Random Forest (RF), Deep Neural Network
(DNN), and Long Short-Term Memory (LSTM). The study evaluates and compares the
forecasting accuracy of these machine learning and deep learning models against a
linear regression benchmark, providing insights into their respective predictive capa-
bilities.

4.3.2.1 Support Vector Regression (SVR):

Support Vector Regression (SVR) is a machine learning algorithm used for regression
problems. It attempts to fit the data and find a hyperplane to minimize the gap between
actual values and model predictions. Its characteristics is applicable to both linear and
nonlinear regression problems, with its performance often influenced by the choice
of kernel functions and hyperparameters. Its role in an ensemble, SVR can provide
modelling for regression problems, especially when dealing with complex regression
relationships.

To address a nonlinear regression problem, Support Vector Regression (SVR) first maps
the inputs nonlinearly into a high-dimensional feature space (F) where they become
linearly correlated with the outputs. The SVR formalism then uses the following linear
estimation function (Vapnik, 1999):

f (X) = (V · Φ(X)) + b (4.1)
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Where V represents the weight vector, b is a constant,Φ(X) describes a mapping func-
tion in the feature space, and V · Φ(X) denotes the dot product in the feature space
F.

A number of cost functions such as the Laplacian, Huber’s Gaussian, and ε-insensitive
can be used in the SVR formulation. Among these, the robust ε-insensitive loss function
(Lε), given below, is the most commonly adopted (Vapnik, 1999).

Lϵ( f (X), q) =

| f (x)− q| − ϵ if | f (x)− q| ≥ ϵ

0 otherwise
(4.2)

The parameter ε serves as a precision measure, defining the radius of the tube sur-
rounding the regression function f (x) (depicted by the broken lines in Fig. 4.3). Fig.
4.3 provides a schematic illustration of Support Vector Regression employing the ε-
insensitive loss function. The area within the tube is referred to as the ”ε-insensitive
zone,” as the loss function assigns a value of zero within this region, thereby ignoring
prediction errors with magnitudes smaller than ε.

The weight vector v and constant b in Eq. (4.1) are determined by minimising the
following regularised risk function:

R(C) = C
1
n

n

∑
i=1

Le( f (xi), qi) +
1
2
|W|2 (4.3)

Where Le( f (x), q) denotes the ε-insensitive loss function, as specified in Eq. (4.2);
1
2 ∑j w2

j represents the regularisation term, which balances model complexity against
approximation accuracy to ensure better generalisation performance; and C is the reg-
ularisation constant that controls the trade-off between empirical risk and the regulari-
sation term. Both C and ε are parameters determined by the user.
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FIGURE 4.3: The SVR using ε-insensitive loss function (Yaser and Atiya, 1996).

4.3.2.2 Random Forest (RF)

The random forest model, as introduced by Breiman (2001a) presented another tech-
nique closely resembling boosting models. As noted by Dietterich (2000), the random
forest stands out as one of the highly effective ensemble models in the realm of ma-
chine learning. Like the gradient boosting model, the random forest model employs
regression trees. However, in contrast to the gradient boosting approach, the random
forest trains regression trees independently using bootstrapped data, and the predic-
tions from these trees are then averaged to generate the final predictions.

We follow the basic steps for the random forest model as outlined in Yoon (2021).

Step 1. For m = 1 to M: Generate a bootstrapped sample set, Z, of size N from the
training data. Develop a random forest tree, Tm, for the bootstrapped data by perform-
ing the following steps for each terminal node of the tree until the minimum node size,
nmin, is attained.

• Randomly select x variables from the p variables.

• Choose the optimal variable and split point among the x variables.

• Divide the node into two daughter nodes. The split is determined in a manner
that minimizes the Mean Squared Error (MSE), which is calculated as follows:

F0(x) =
1
n

n

∑
i=1

(yi − γ)2 (4.4)
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FIGURE 4.4: Cross-validation process (Yoon, 2021).

Where, yi is an observed value and λ is a predicted value.

In addition to generating unique datasets through bootstrapping for each tree predic-
tor, further randomness is introduced at each node by randomly selecting a subset of
variables for node splitting. This stochastic process significantly reduces the interde-
pendence among individual trees and enhances the model’s ability to handle potential
overfitting issues.

When a tree is allowed to grow without restrictions, it can often lead to overfitting, im-
plying that it fits the training data perfectly but may not generalize well to new, unseen
data. In other words, a model composed of nearly perfectly fitting trees might not pro-
vide accurate predictions when confronted with new data. To mitigate this problem, a
random forest model may opt to prune the trees or limit the number of nodes, even if
it comes at the expense of the in-sample fit.

Step 2. Output the ensemble of trees, {Tm}M
m=1:

F̂M
rf (x) =

1
M

M

∑
m=1

Tm(x) (4.5)

The final prediction, denoted as, F̂M
rf (x) is derived by calculating the mean of the out-

puts generated by all individual decision trees in the forest. By aggregating multiple
predictions, this approach effectively reduces the overall variance, thereby improving
the robustness and consistency of the model’s predictive performance.

4.3.2.3 Deep Neural Network (DNN):

DNN is a powerful model used for complex nonlinear modelling and feature learning.
They can adapt to various types of data. Its characteristics is can automatically extract
features from data and model them through multiple layers. Their performance is of-
ten affected by factors like network structure, activation functions, and regularization.
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FIGURE 4.5: An example of a neural network is one made up of numerous intercon-
nected neurons, which assigns a probability to the input x being linked to a specific

concept ωc, by (Montavon et al., 2018).

Its role in an ensemble is it can offer highly flexible modelling capabilities, especially
excelling in recognising complex patterns and features.

As the description of (Montavon et al., 2018), in a DNN model, the typically abstract
concept that needs interpretation is often symbolised by a neuron situated in the top
layer. These top-layer neurons are inherently abstract, meaning they cannot be visually
examined. Conversely, the input domain of the DNN, such as an image or text, is
typically something that can be understood and interpreted. Below, we explain the
process of constructing an interpretable prototype within this input domain, which
serves as a representative of the abstract concept learned by the model. This prototype
construction can be framed within the activation maximization framework.

Activation maximization is an analytical method that seeks an input pattern which
elicits the highest possible response from a model for a specific quantity of interest
(Simonyan et al., 2013; Erhan et al., 2009; Berkes and Wiskott, 2006). Consider a DNN
classifier that maps data points x to a set of classes (ωc)c. The output neurons represent
the estimated class probabilities p(ωc|x). To find a prototype x that is representative of
the class ωc, one can optimize the following:

- Activation maximization (AM)

max
x

log p(ωc | x)− λ∥x∥2 (4.6)

To derive more meaningful prototypes, the regularizer can be substituted with a more
advanced one, referred to as an ”expert” (Nguyen et al., 2017; Mahendran and Vedaldi,
2015). The expert could be, for instance, a model p(x) of the data. This results in a new
optimization problem:
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FIGURE 4.6: An illustration of how the choice of expert p(x)affects the prototype x
- found by AM. The horizontal axis represents the input domain, (Montavon et al.,

2018).

- Improving AM with an expert

max
x log p(ωc|x) + log p(x) (4.7)

A viable choice for the expert is the Gaussian RBM (Nguyen et al., 2017). It is capable
of representing complex distributions and has a gradient in the input domain. Its log-
probability function can be expressed as:

The terms f j(x) = log(1 + exp(ωjx + bj)) are learned from the data and are combined
with the original L2-norm regularization. More complex density models like convo-
lutional RBMs/DBMs (Nguyen et al., 2017) or pixel-RNNs (Van Buuren, 2018) can be
utilised for interpreting concepts such as natural image classes. In practice, the choice
of the expert p(x) significantly influences the appearance of the resulting prototype.
Fig. 4.6 demonstrates the dependence of the prototype on the chosen expert.

log p(x) = ∑
j

f j(x)− λ∥x∥2 + cst (4.8)

When using Activation Maximization (AM) to validate a DNN model, it is crucial to
avoid an overfitted expert (d), as it could obscure important failure modes of the DNN.
Instead, a slightly under-fitted expert (b), which may simply favor images with natural
colors, can be sufficient.
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Conversely, when employing AM to understand a concept ωc that the DNN correctly
predicts, the primary concern should be to prevent underfitting. An underfitted expert
(b) might reveal optima of p(ωc|x) that are far from the actual data, resulting in a pro-
totype x that does not accurately represent ωc. Therefore, in this scenario, it is essential
to learn a density model that closely approximates the true data distribution (c).

4.3.2.4 Long Short-Term Memory (LSTM):

LSTM is a deep learning model used for processing sequence data, particularly adept at
capturing long-term dependencies in time series and sequential data. Its characteristics
is suitable for handling sequence data like text, time series, and speech. It can capture
temporal information and sequence patterns. It’s role in an ensemble, LSTM can pro-
vide modelling for sequence data, especially when considering temporal relationships
in problems.

Data mining techniques are utilised to extract valuable insights from large datasets and
present them in easily interpretable visualizations. Decision trees, introduced in the
1960s, stand out as one of the most effective methods among these techniques. They
have been widely adopted across various fields. According to Hastie et al. (2009), de-
cision trees are favoured for their user-friendliness, lack of ambiguity, and robustness,
even when dealing with missing values. Moreover, discrete and continuous variables
can be employed as target or independent variables (Song and Ying, 2015).

One-step-ahead prediction in financial time series necessitates the most recent data and
the preceding data. Thanks to the self-feedback mechanism within the hidden layer,
the RNN model holds an advantage in addressing long-term dependency challenges.
However, Bengio et al. (1994) indicated its practical application has posed difficulties.
To tackle the problem of vanishing gradients in RNNs, Hochreiter and Schmidhuber
(1997) introduced the LSTM model in their research, which has more recently been
enhanced and popularised by Alex Graves (Graves, 2013). The LSTM unit comprises
a memory cell that stores information and is updated by three distinct gates: the input
gate, the forget gate, and the output gate. The structural layout of an LSTM unit is
depicted in Fig. 4.7.

At time t, xt is the input data of the LSTM cell, ht−1 is the output of the LSTM cell at
the previous moment, ct is the value of the memory cell, ht is the output of the LSTM
cell. The calculation process of the LSTM unit can be divided into the following steps,
as outlined by (Cao et al., 2019).

(1) First, calculate the value of the candidate memory cell c̃t, where wc is the weight
matrix, and bc is the bias.
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FIGURE 4.7: LSTM unit structure, Cao et al. (2019).

c̃t = tanh(Wc · [ht−1, xt] + bc) (4.9)

(2) Calculate the value of the input gate it, where the input gate controls the update of
the current input data to the state value of the memory cell. σ is the sigmoid function,
wi is the weight matrix, and bi is the bias.

it = σ(Wi · [ht−1, xt] + bi) (4.10)

(3) Calculate the value of the forget gate ft, where the forget gate controls the update of
the historical data to the state value of the memory cell. W f is the weight matrix, and
b f is the bias.

ft = σ(W f · [ht−1, xt] + b f ) (4.11)

(4) Calculate the value of the current moment memory cell (ct), and c(t − 1) is the state
value of the last LSTM unit.

ct = ft · ct−1 + it · c̃t (4.12)

Where “*” represents the dot product. The update of the memory cell depends on the
state value of the last cell and the candidate cell, and it is controlled by the input gate
and forget gate.
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(5) Calculate the value of the output gate ot, where the output gate controls the output
of the state value of the memory cell. W0 is the weight matrix, and b0 is the bias.

ot = σ(W0 · [ht−1, xt] + b0) (4.13)

(6) Finally, calculate the output of LSTM unit (ht).

ht = ot · tanh(ct) (4.14)

Overall, their common characteristics are that these models can learn complex data
relationships. They can be improved through hyperparameter tuning and feature en-
gineering. All models can be used for regression tasks, but they may excel in different
scenarios.

4.3.3 Objective Function

Briefly, the definition of objective function is the function that is ultimately to be pre-
dicted. In this paper, we study the objective function, which is composed by formu-
lating the optimization problem to minimize the error between the expert-predicted
value and the true value in the training data, along with a regularization term for each
evaluation.

4.3.3.1 Loss Function

The loss function measures the performance of each prediction model mentioned in
Section 4.2.2. As Wang et al. (2020) described, the loss function plays an important
role in constructing machine learning algorithms and improving their performance.
It is a crucial component that serves as an index, measuring the performance of our
prediction models by quantifying the differences between predicted values and true
values. In the following section, we investigate the role of the loss function, particularly
in the context of its application to predictions, shedding light on its significance in
enhancing the accuracy and effectiveness of machine learning algorithms.

Bickel and Doksum (2015) indicated that the Mean Square Error (MSE) is one of the
most common regression loss functions, which refers to the mean value of the squared
deviations of the predictions from the true values, that is given by:

MSE =
1
n

n

∑
i=1

(yi − ŷi)
2 (4.15)
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Where a vector of n predictions is generated from a sample of n data points on all
variables, and Y is the vector of observed values of the variable being predicted, with Ŷ
being the predicted values. Hyndman and Koehler (2006) mentioned that MSE is more
sensitive to outliers than MAE.

Mean Absolute Error (MAE) is a measure of errors between paired observations ex-
pressing the same phenomenon. It describes the average model-performance error ex-
amined. Willmott and Matsuura (2005) indicated that MAE is a more natural measure
of average error.

MAE =
1
n

n

∑
i=1

|yi − ŷi| (4.16)

It is an arithmetic average of the absolute errors |ei| = |yi − ŷi|, where yi is the predicted
value and ŷi is the true value. Wang et al. (2020) indicated absolute loss is more robust
than square loss when there are outliers in the training set, and absolute loss should be
selected when outliers are detected and have an impact on the learning of the model.

The Huber loss function is defined by (Huber, 1992; Wang et al., 2020) indicated that
this loss is a piecewise function of square loss and absolute loss. Huber loss uses the
parameter as the boundary to judge whether it is a more singular sample. The samples
within this boundary use square loss, and the samples beyond this boundary use ab-
solute loss, to reduce the weight of the loss of outliers in the total loss and avoid the
model overfitting.

Huber Loss =
1
n

n

∑
i=1

{
1
2 (yi − ŷi)

2, if |yi − ŷi| ≤ σ

δ
(
|yi − ŷi| − 1

2 δ
)

, otherwise
(4.17)

As Vovk (2015) mentions the log loss function is the standard loss function used in the
literature on probabilistic prediction

Log Loss = − 1
n

n

∑
i=1

(yi log(ŷi) + (1 − yi) log(1 − ŷi)) (4.18)

The R2 score is the coefficient of determination, it is a very important metric that is
used to evaluate the performance of a regression-based machine learning model. It is
also known as the coefficient of determination. It works by measuring the amount of
variance in the predictions explained by the dataset. If the value of the r-squared score
is 1, it means that the model is perfect, and if its value is 0, it means that the model will
perform badly on an unseen dataset. This also implies that the closer the value of the
r-squared score is to 1, the more perfectly the model is trained. It is calculated as:
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R2 score = 1 − ∑n
i=1(yi − ŷi)

2

∑n
i=1(yi − ȳ)2 (4.19)

In statistics, it is used to determine the proportion of variation in the dependent vari-
able that is explained by the independent variables, thereby assessing the explanatory
power of the regression model Draper and Smith (1998).

4.3.4 Penalised Estimation

Overfitting occurs when a model performs worse on test data compared to training
data. Common reasons include the model being too complex, insufficient training data,
or the sample having too many characteristics. One solution to overfitting is the use of
Lasso and Ridge regularization techniques (Pereira et al., 2016).

Method 1: L1 (Lasso)

For the linear regression model Y = β0 + β1X1 + β2X2 + . . . + βpXp + ξ, if only some
independent variables are significant, you can use Lasso regression for variable selec-
tion, removing non-significant variables to prevent overfitting and improve the model’s
predictive accuracy.

For the solution of linear regression models, the ordinary least squares (OLS) involve
minimising the sum of squared residuals:

1
n

n

∑
i=1

(yi − β0 − β1xi1 − . . . − βpxip)
2 (4.20)

Lasso regression minimizes the least square’s objective function with the addition of an
L1 penalty:

1
n

n

∑
i=1

(yi − β0 − β1xi1 − . . . − βpxip)
2 + λ

p

∑
j=1

|β j| (4.21)

Then, the optimal tuning parameter λ is obtained by minimising the generalised cross-
validation:

λ̂ = arg minλ

 1
n
∥Y − X(β̂λ)∥2(

1 − df(λ)
n

)2

 (4.22)

Method 2: L2 (Ridge)
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L2 (Ridge) for the linear regression model Y = β0 + β1X1 + β2X2 + . . .+ βpXp + ξ when
there is complete multicollinearity between the variables X1, . . . , Xp. In such cases,
when the regression coefficient β has no solution, one can consider ridge regression.
This method involves introducing a certain bias to reduce variance, resulting in a biased
estimate of the regression coefficients.

1
n

n

∑
i=1

(yi − β0 − β1xi1 − . . . − βpxip)
2 (4.23)

Ridge regression minimizes the least square’s objective function with the addition of
an L2 penalty:

1
n

n

∑
i=1

(yi − β0 − β1xi1 − . . . − βpxip)
2 + λ

p

∑
j=1

β2
j (4.24)

To obtain the minimum value mentioned above, we can express it as how to express it
in mathematics:

β̂ridge = (X′X + nλIp)
−1X′Y (4.25)

where λ ≥ 0 is the adjustment of parameters. With an increase in λ, to make the objec-
tive function reach a minimum, it is evident that reducing the value of b will compress
it towards zero. The optimal value for x can be selected through cross-validation.

Typically, obtaining the optimal tuning parameter λ involves minimising the gener-
alised cross-validation:

λ̂ = arg min
λ

1
n
∥(In − H(λ))Y∥2[

tr(In−H(λ))
n

]2 (4.26)

Where, H(λ) = (X′X + nλIp)−1X′, then we solve (4.21), it is equivalent to solving the
constrained least squares:

min
β

1
n

n

∑
i=1

(yi − β0 − β1xi1 − . . . − βpxip)
2

s.t.
p

∑
j=1

β2
j ≤ c

(4.27)
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With c → 0, the constraint on the regression coefficients becomes stronger.

4.3.5 Evaluation Metrics:

We evaluate the performance of our ensemble model using standard regression metrics,
focusing on the Mean Absolute Error (MAE). Chai and Draxler (2014) highlighted that
both the root mean square error (RMSE) and MAE are commonly used to assess model
accuracy. RMSE is often favoured for its sensitivity to larger errors, which makes it use-
ful when outliers are particularly important. However, Willmott and Matsuura (2005)
argued that RMSE may not effectively represent the average performance of a model,
as it disproportionately emphasizes larger deviations, potentially leading to mislead-
ing conclusions when assessing overall accuracy. In contrast, MAE provides a more
balanced measure of average errors by giving equal weight to all differences between
predicted and actual values, making it a more suitable metric for evaluating model
performance in many scenarios.

4.3.6 Model Generative Process

Tables 4.1 to 4.4 present the generative processes of four models: SVR, RF, DNN, and
LSTM. Each table details the initialization of parameters, the training process, and the
evaluation method for each model. SVR employs ϵ-insensitive loss and quadratic pro-
gramming for optimization, while the Random Forest model generates multiple deci-
sion trees and aggregates their predictions to reduce overfitting and enhance accuracy.
Meanwhile, using error gradients, DNN and LSTM adjust weights through forward
and backward passes. These tables comprehensively overview how each model pro-
cesses various data types and addresses prediction tasks.
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TABLE 4.1: The generative process of our SVR model

1. Initialize model parameters:

• Weight vector w ∼ N (0, I).

• Bias term b ∼ N (0, 1).

2. For each training data point i = 1, . . . , N:

(a) Map the input features xi to a higher-dimensional feature space using a map-
ping function ϕ(xi).

(b) Compute the linear function output f (xi) = w⊤ϕ(xi) + b.

(c) Calculate the ϵ-insensitive loss Lϵ(yi, f (xi)):

– If |yi − f (xi)| ≤ ϵ, the loss is 0.

– Otherwise, the loss is |yi − f (xi)| − ϵ.

3. Minimize the regularised risk R(C) to update model parameters:

(a) Minimize 1
2∥w∥2 + C ∑N

i=1 Lϵ(yi, f (xi)).

(b) Use optimization techniques such as quadratic programming to solve for op-
timal w and b.

4. Solve the dual problem to find optimal Lagrange multipliers αi and α∗
i :

(a) Minimize the dual objective function with constraints: 0 ≤ αi, α∗
i ≤ C and

∑N
i=1(αi − α∗

i ) = 0.

(b) Use the kernel function K(xi, xj) to compute inner products in the high-
dimensional space.

5. Make predictions for a new input x∗:

(a) Calculate ŷ∗ = ∑N
i=1(αi − α∗

i )K(xi, x∗) + b.

(b) Output ŷ∗ as the predicted value for the new input.
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TABLE 4.2: The generative process of our RF model

1. Initialize parameters:

• Number of trees T in the forest.

• Number of features m to consider at each split.

• Maximum depth of each tree dmax.

2. For each tree t = 1, . . . , T:

(a) Draw a bootstrap sample Dt of size n from the training data.

(b) Grow a decision tree ht(x) from the bootstrap sample Dt:

– For each node, randomly select m features from the d features.

– Choose the best split from the m features based on a certain criterion
(e.g., Gini impurity or entropy).

– Repeat until the maximum depth dmax is reached or the node cannot be
split further.

3. Aggregate the predictions of all trees:

(a) For regression: Compute the final prediction ŷ by averaging the predictions
of all trees:

ŷ =
1
T

T

∑
t=1

ht(x).

(b) For classification: Compute the final prediction ŷ by majority voting among
the predictions of all trees.

4. Evaluate the Random Forest model:

(a) Calculate performance metrics such as Mean Squared Error (MSE) for regres-
sion or accuracy for classification.

(b) Use Out-of-Bag (OOB) samples to estimate the generalization error of the
model.
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TABLE 4.3: The generative process of our DNN model

1. Initialize the network architecture:

• Number of layers L and number of neurons in each layer nl for l = 1, . . . , L.

• Activation functions σl for each layer l (e.g., ReLU, Sigmoid, Tanh).

• Learning rate η for gradient descent optimization.

2. Initialize weights and biases:

(a) Initialize weights Wl ∼ N (0, 1√
nl
) and biases bl = 0 for each layer l.

3. For each training epoch:

(a) For each training example (xi, yi):

– Forward pass: Compute the output of each layer using the activation
function:

al = σl(Wlal−1 + bl), l = 1, . . . , L.

– Compute the loss (e.g., Mean Squared Error for regression or Cross-
Entropy Loss for classification).

(b) Backward pass: Calculate the gradients of the loss with respect to the weights
and biases using backpropagation.

(c) Update the weights and biases using gradient descent:

Wl := Wl − η
∂L

∂Wl
, bl := bl − η

∂L
∂bl

.

4. Evaluate the DNN model:

(a) Calculate performance metrics such as Mean Squared Error (MSE) for regres-
sion or accuracy for classification on validation data.

(b) Adjust hyperparameters (e.g., learning rate, number of neurons) based on
performance.
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TABLE 4.4: The generative process of our LSTM model

1. Initialize the LSTM architecture:

• Number of LSTM layers L and number of units in each layer nl for l =

1, . . . , L.

• Learning rate η and sequence length T.

2. Initialize weights and biases for each gate:

(a) Initialize weights W f , Wi, Wo, Wc and biases b f , bi, bo, bc for the forget, input,
output gates, and cell state, respectively.

3. For each training epoch:

(a) For each training sequence (x1:T, y1:T):

– Forward pass for each time step t = 1, . . . , T:

* Forget gate: ft = σ(W f [ht−1, xt] + b f ).

* Input gate: it = σ(Wi[ht−1, xt] + bi).

* Output gate: ot = σ(Wo[ht−1, xt] + bo).

* Cell state: c̃t = tanh(Wc[ht−1, xt] + bc).

* Update cell state: ct = ft ⊙ ct−1 + it ⊙ c̃t.

* Compute hidden state: ht = ot ⊙ tanh(ct).

– Compute the loss based on the output ht and the true output yt.

(b) Backward pass: Calculate the gradients using Backpropagation Through
Time (BPTT).

(c) Update the weights and biases using gradient descent.

4. Evaluate the LSTM model:

(a) Calculate performance metrics such as Mean Squared Error (MSE) for regres-
sion or accuracy for classification on validation data.

(b) Adjust hyperparameters (e.g., learning rate, number of units) based on per-
formance.
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4.4 Dataset Construction

4.4.1 Sample Variables

We focus on predicting five key macroeconomic indicators of the UK economy: GDP
growth (GDP), Inflation rate (Inflation), Base Bank rate (BoE), Unemployment rate
(UR), and Sterling exchange rate Index (ERI). We collect data from the Bank of Eng-
land’s survey of professional forecasts, which includes predictions from 56 experts for
each variable, providing quarterly values for one-year ahead expectations on the five
main UK macroeconomic indicators.

Additionally, we gather historical data for these five indicators to evaluate and compare
with professional forecasts. Table 4.5 provides basic statistics for the raw data input.
The Bank of England collects survey data from a total of 56 forecasters. We apply a rule
to filter out experts who provide responses relatively less frequently, with a response
rate below 50%. Subsequently, we perform data imputation to address missing values
in the data series for these selected experts.

TABLE 4.5: Descriptive statistics for data sample.

Variable Total Experts Counted Experts (%) Sample period Observations

No. % Original with imputation

GDP 56 25 44.64 2000Q1:2022Q4 1615 2200
Inflation 56 25 44.64 2000Q1:2022Q4 1611 2200
Unemployment 56 20 35.71 2014Q4:2022Q4 400 640
BoE 56 24 42.86 2000Q1:2022Q4 1534 2112
ERI 56 15 26.79 2000Q1:2022Q4 922 1320

Total 280 109 39.29 - 6084 8472

Note: We exclusively consider data from experts whose response rate remained above 50% for
the entire period from 2000: Q4 to 2022: Q4 for each variable. The original observation number
denotes the count of included experts. We also present the amount of data after processing the

data imputation.

4.4.2 Data Preparation

Kotsiantis et al. (2006) mentioned that the issue of incomplete data is an unavoidable
problem when dealing with most real-world data sources. Emmanuel et al. (2021) pre-
sented that missing values are usually attributed to human error, machine error, re-
spondent refusal to answer certain questions, dropout in studies, and merging unre-
lated data. Kotsiantis et al. (2006) also demonstrated that the data pre-processing can
often have a significant impact on the generalization performance of a supervised ML
algorithm. They summarise data pre-processing including data cleaning, normaliza-
tion, transformation, feature extraction and selection, etc.
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In this study, the survey data of professional forecasts has revealed a sparsity feature,
with more than half of the forecasters not providing frequent responses. The presence
of missing data can adversely impact the performance and accuracy of machine learn-
ing models. As indicated by Rasmussen and Bro (2012) the concept of using sparsity
actively for achieving simpler models has received huge attention within fields such as
statistical learning, data mining, and signal processing (Lu et al., 2009; Donoho, 2006;
Tibshirani, 1996; Chen and Donoho, 1994).

To address the limitation of data sparsity and ensure that the dataset is more robust
and suitable for training machine learning models to achieve the best performance For
the missing data, we are employing the technique of Bayes and Multiple Imputation
as discussed in Little and Rubin (2002) to process a data imputation. It utilizes a use-
ful alternative approach to multiple imputation is to add a prior distribution for the
parameters and compute the posterior distribution of the parameters of interest. In
summary, data imputation is an essential pre-processing step to handle missing values
and create a well-structured dataset for training machine learning models.

4.5 Results and Discussion

Figs 4.8 - 4.11 compare the true and predictive values by DNN, LSTM, RF, and SVR
models for each target indicator. Each figure (b) represents additional analysis elimi-
nating two crisis periods: the global financial crisis: 2007Q3-2009Q3 and the COVID-19
crisis: 2020Q1-2022Q1. (The start time for COVID-19 differs for each country, depend-
ing on the date of the first case for each country (Rizwan et al., 2020).

4.5.1 Prediction Accuracy

In deep learning models, as shown in Fig 4.8, DNN displays notable efficiency in pre-
dicting GDP during periods of normal economic conditions. However, it falls short of
capturing the output growth direction during two crisis periods. Upon excluding these
crises, the model captures the general direction of the GDP trend, albeit with reduced
efficiency and without a perfect fit to the true values.

Turning to LSTM, as shown in Fig 4.9, this algorithm excels in accurately predicting
UR and ERI, successfully capturing the direction of the inflation trend, and providing
partial predictions for BOE. Remarkably, it anticipates the onset of the COVID crisis in
GDP predictions. Furthermore, in the subsample excluding the two crises (b), LSTM
showcases its ability to capture the directional trends associated with global crises.
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FIGURE 4.8: The comparison of DNN model predictive value and true value in each
target indicator.

In machine learning models, as depicted in Fig 4.10, Random Forest (RF) stands out
with a robust overall predictive ability across various indicators, including unemploy-
ment, bank rate, and ERI. Notably, RF exhibits outstanding performance in GDP fore-
casting, especially in data series without crises. Furthermore, in the realm of inflation
forecasting, RF accurately predicts the direction of the inflation trend.

In addition, as illustrated in Fig 4.11, Support Vector Regression (SVR) also showcases
an overall strong predictive ability in each target indicator, albeit slightly trailing be-
hind RF. In GDP forecasting, SVR demonstrates a consistent predictive ability, although
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FIGURE 4.9: The comparison of LSTM model predictive value and true value in each
target indicator.
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FIGURE 4.10: The comparison of RF model predictive value and true value in each
target indicator.

it falls short in capturing the impact of the Covid crisis. However, SVR successfully
captures a downturn trend after a data revision that removes the crisis-related data.

Overall, we found that machine learning models have stronger predictive capabilities
than deep learning models, but deep learning models can be used as a complement and
combined with machine learning to build optimal predictive estimators.
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FIGURE 4.11: The comparison of SVR model predictive value and true value in each
target indicator.

4.5.2 Performance Evaluation

This section will first present the details of hyperparameter selection and tuning (see
details in Table 4.6 and Table 4.7). Then, It Will be followed by the figures comparing
data training and testing results (see details in Fig 4.13 and Fig 4.14).
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4.5.3 Hyperparameter Tuning

Table 4.6 presents the hyperparameters used by the machine learning models, which
are selected by the cross-validation process. As Table 4.6 shows, since the training data
receive new data for each new year, the hyperparameters change accordingly to adjust
to the new data set.

TABLE 4.6: Hyperparameter Ranges for Different Models

Model Hyperparameters Grid Search Range

DNN Learning Rate (lr) 0.00001, 0.0001, 0.001, 0.01, 0.1
Lr Decay Rate 0.55, 0.65, 0.75, 0.85, 0.95
Dropout 0.25, 0.35, 0.45, 0.55, 0.65
Regularizer (L2) 0.000001, 0.00001, 0.0001, 0.001
Loss Function MSE, Huber

LSTM Learning Rate (lr) 0.00001, 0.0001, 0.001, 0.01, 0.1
Lr Decay Rate 0.55, 0.65, 0.75, 0.85, 0.95, 1.00
Dropout 0, 0.4, 0.5, 0.6
Regularizer (L2) 0.00001, 0.0001, 0.001, 0.01
Metrics MAE, Accuracy
Algorithm Optimizer Nadam, SGD
Batch Size 16, 32, 64
Hidden Unit 1, 2

Random For-
est

No. of trees 100, 150, 200, 250, 300, 400, 500

Max. depth of the tree None, 11, 13, 15, 17, 19, 21, 23, 30, 40,
50, 60, 70, 80

SVR C (Penalty Factor) 0.1, 0.5, 1, 2, 3, 4, 5, 10, 15, 20, 25, 50,
100, 200, 500, 1000

Epsilon (epsilon-tube) 0.0001, 0.0005, 0.001, 0.005, 0.01, 0.1

Note: The optimised parameters of each model.
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TABLE 4.7: Hyperparameters Test for Different Variables

Model Hyperparameters ERI GDP GDP/E UR BoE Inflation

DNN Learning Rate (lr) 0.001 0.001 0.001 0.001 0.01 0.001
Lr Decay Rate 0.75 0.85 0.35 0.55 0.85 0.75
Dropout 0.25 0.35 0.35 0.55 0.35 0.35
Regularizer (L2) 0.001 0.0001 0.0001 0.00001 0.001 0.001
Loss Function Huber MSE MSE Huber MSE MSE

LSTM Learning Rate (lr) 0.1 0.001 0.00001 0.001 0.01 0.00001
Lr Decay Rate 1 1 1 1 1 1
Dropout 0 0 0 0.4 0 0
Regularizer (L2) 0.001 0.001 0.01 0.00001 0.001 0.01
Metrics MAE Accuracy Accuracy Accuracy Accuracy MAE
Algorithm Opti-
mizer

SGD Nadam Nadam Nadam Nadam Nadam

Batch Size 32 16 16 64 16 16
Hidden Unit 1 1 1 1 1 2

Random For-
est

No. of trees 200 150 150 100 100 150

Max. depth of the
tree

23 11 15 15 11 60

SVR C (Penalty Fac-
tor)

4 15 5 10 2 0.5

Epsilon (epsilon-
tube)

0.1 0.1 0.1 0.1 0.0001 0.0005
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TABLE 4.8: Statistics of model performance for each indicator

Indicator Model MSE RMSE MAE Running time (s) Scoring

GDP DNN 1.73 1.31 0.45 0.449 0.436
LSTM 4.28 2.07 1.03 2.486 1.067

Random Forest 3.54 1.88 0.87 0.020 1.268
SVR 1.58 1.26 0.59 0.001 1.070

GDP/E DNN 0.41 0.64 0.50 0.315 1.028
LSTM 0.42 0.64 0.59 2.127 1.038

Random Forest 0.41 0.64 0.55 0.018 1.268
SVR 0.40 0.63 0.56 0.001 1.149

Inflation DNN 0.52 0.72 0.53 0.326 0.960
LSTM 0.51 0.71 0.49 1.981 1.028

Random Forest 0.34 0.58 0.37 0.020 2.031
SVR 0.32 0.57 0.34 0.001 1.081

UR DNN 0.66 0.81 0.73 0.396 0.454
LSTM 0.07 0.26 0.21 1.005 0.817

Random Forest 1.24 1.11 1.02 0.016 4.685
SVR 0.17 0.42 0.33 0.001 0.982

BoE DNN 0.03 0.17 0.14 0.350 0.403
LSTM 0.03 0.17 0.14 2.710 0.491

Random Forest 0.03 0.18 0.12 0.028 6.095
SVR 0.02 0.15 0.11 0.008 0.619

ERI DNN 0.16 0.40 0.27 0.367 0.337
LSTM 0.05 0.23 0.17 1.744 0.754

Random Forest 0.13 0.36 0.27 0.018 3.181
SVR 0.08 0.28 0.20 0.001 0.726

When comparing the predictive performance of various models, particularly the dis-
tinction between Machine Learning (ML) and Deep Learning (DL), we conduct a com-
prehensive evaluation using four loss functions (MSE, RMSE, MAPE, and MAE), as
outlined in Table 4.8. The results exhibit variability depending on the indicators and
predictive models.

As details are shown in Table 4.8 and Table 4.9, the results reveal an apparent differ-
ence in the accuracy obtained by the various machine/deep learning methods across
the variables and parameter settings. However, when interpreting the models’ perfor-
mance by variables, we found that the prediction of the bank rate demonstrates signif-
icant accuracy, and forecasting GDP growth after deleting the crisis period data also
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shows a significant improvement. Similarly, machine algorithms experience success in
predicting inflation, unemployment, and the exchange index.

FIGURE 4.12: The comparison of train loss and test loss in DNN model.
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FIGURE 4.13: The comparison of train loss and test loss in LSTM model.

TABLE 4.9: Performance metrics summary

MSE RMSE MAE Running Time (s) Scoring

Min 0.02 0.15 0.11 0.00 0.34
Max 4.28 2.07 1.03 2.71 6.10
Avg 0.71 0.67 0.44 0.60 1.37
St.dev. 1.10 0.52 0.27 0.89 1.39

Note: Accuracy of model performance obtained from all the indicators.
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Additionally, Bai et al. (2022) pointed out that the time cost of models serves as a valu-
able evaluation index when assessing algorithms’ performance. They indicate its sig-
nificance in practical applications and highlight the need to precisely control the time
spent on model inference to meet equipment requirements. In this study, we incorpo-
rate the time cost of each model as an additional evaluation index. A shorter time cost
implies that data patterns and features are easier to identify, reflecting an efficiently
applicable model. In comparison, a longer time suggests that the feature is concealed
in more layers or the model is less efficient. This holds important analytical value for
machines seeking to enhance predictive ability. Our results show that the time cost of
machine learning models (RF and SVR) is significantly less than that of deep learning
models (DNN and LSTM). Furthermore, the time cost of DNN is noticeably less than
LSTM’s. If we were to rank time cost from smallest to largest, the order would be: SVR
– RF – DNN – LSTM.

4.5.4 Additional Analysis with Visualization

To enhance the interpretability of our findings, we’ve crafted violin plots (Figs 4.14 -
4.19) that illustrate the comparative data distributions across various variables under
different machine models. We’ve also incorporated the aggregated predictions detailed
in Chapter 2. Our results underscore a notable improvement in experts’ prediction
performance by integrating machine algorithms.

For GDP, the data distribution within the LSTM model remarkably aligns with real-
world data. Examining the reconstructed data series of GDP without crises reveals a
consistent and stable predictive capacity across all four models. Particularly intriguing
is the observation that most machine models adeptly capture outliers in the real data
in the case of inflation.

Shifting the focus to unemployment, both the LSTM and SVR models align with the
data distribution observed in the real world. Noteworthy patterns emerge in bank rate
and ERI domains, where the data distribution tendencies of machine models notably
mirror those observed in real-world data.



4.5. Results and Discussion 101

FIGURE 4.14: Comparison of Data Distributions in GDP.

FIGURE 4.15: Comparison of Data Distributions in GDP without crisis.
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FIGURE 4.16: Comparison of Data Distributions in Inflation.

FIGURE 4.17: Comparison of Data Distributions in Unemployment.
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FIGURE 4.18: Comparison of Data Distributions in Bank rate.

FIGURE 4.19: Comparison of Data Distributions in ERI.
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4.6 Conclusion

Agreed with Feuerriegel and Gordon (2019) stated that predicting macroeconomic vari-
ables is difficult for many reasons and requires the time-intensive collection of eco-
nomic data, which, as a result, is often out of date. Professional macroeconomic fore-
casts, such as those from central banks, usually stem from quantitative predictions and
economic experts’ judgement (Matsypura et al., 2018). However, numerous studies
have analysed professional forecasts for their predictive performance and ability to
identify potential biases (Blanc and Setzer, 2015; Mostard et al., 2011). In particular,
Jansen et al. (2016) revealed that subjective estimates by experts are less efficient pre-
dictors of gross domestic product as compared with statistical models.

Our study introduces a new perspective on strategies for optimising macroeconomic
forecasting. We build a comprehensive framework by applying both machine learning
and deep learning as a hybrid approach to optimize UK macroeconomic forecasts. The
algorithm architectures are constructed by utilising the most well-known deep learn-
ing models: deep neural networks (DNN) and Long Short-Term Memory (LSTM), and
machine learning models: Support Vector Regression (SVR) and Random Forest (RF).
We build the optimal combination of machine learning algorithms for UK professional
forecasters in macroeconomic forecasting. We suggest that machine learning exhibits
a significant predictive ability, while deep learning can also be effective as an addition
to achieving an optimization goal in macroeconomic forecasting. Moreover, our results
also highlight in the use of the UK professional forecaster survey data in making such
subjective estimation be predictive. Since there is no model or methodology that pro-
duces the best result for every type of data set, this study contributes to the literature.

However, as demonstrated in this study and in numerous prior research endeavours,
machine learning models consistently exhibit robust predictive capabilities. In con-
clusion, based on the validated outcomes, this study also advocates and encourages
further exploration and utilization of machine learning models for economic variable
forecasting and addressing economic inquiries.

In our future work, as Ribeiro et al. (2016) indicated interpretability is a paramount
quality that machine learning as it helps to understand why machine learning mod-
els behave the way they do and empowers both system designers and end-users in
many ways: in model selection, feature engineering. Lipton (2018) defined and formu-
lated interpretability can be divided (but not limited) into two main categories: model
transparency and post-hoc interpretability. Turbé et al. (2023) denoted that the machine
learning model, e.g., the neural network interpretability for time-series data, was only
recently explored. Thus, in our future work, the particular care on model interpretabil-
ity is also highlighted as an addition to the literature gap.



105

Chapter 5

Conclusion and Future works

5.1 Conclusion

In chapter 2, we establish a framework for knowledge elicitation to assess expert perfor-
mance in two critical dimensions: statistical accuracy (calibration score) and the infor-
mativeness of their knowledge (information score). To accomplish this, we introduce
Cooke’s classical model. Within this chapter, we initially observe substantial variations
in the predictive abilities of individual experts. Subsequently, we assign new weights
to each expert based on their individual performance. With these adjusted weights, we
form a new set of expert predictions by combining their original forecasts. Addition-
ally, we validate these new predictions and note a significant overall improvement.

Furthermore, we detect a collective overestimation tendency among the experts,
prompting us to delve into whether these experts are following rational strategies, a
question we explore in subsequent work. Additionally, we uncover a systematic bias
in expert predictions associated with the values of the preceding one-year-ahead re-
leases. This discovery aligns with the findings of (Campbell and Sharpe, 2009), who
suggested that such a bias is consistent with the anchoring and adjustment heuristic
proposed by (Tversky and Kahneman, 1974).

In Chapter 3, we extend our investigation to gain insights into expert prediction per-
formance from a cognitive perspective. Our goal is set to assess whether professional
forecasters make predictions based on rational behaviour. To achieve this, we develop
a classification method inspired by the work of (Brito et al., 2008) to categorize expert
preferences into different risk attitude groups, such as optimists or pessimists, based
on the shape of their cumulative probability. Moreover, we gain inspiration from En-
gelberg et al. (2009), who investigate the outlook of forecasters, discerning whether
they exhibit optimism or pessimism by considering the fraction of a limited subset that
falls beyond the central tendency measures. In addition, Huang et al. (2022) expanded
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upon this approach by appraising the proportions of forecasters’ specific predictions
that align with the intervals encompassing the 25th and 75th quartiles of the forecast’s
distribution.

In Chapter 4, we initially highlight the limitations of traditional macroeconomic pre-
diction models and the suboptimal predictive ability associated with relying solely
on a single machine learning model for forecasting tasks. To address the persistent
issue in macroeconomic forecasting, we establish a comprehensive machine learning
framework by integrating two machine learning algorithms—Support Vector Regres-
sion (SVR) and Random Forest (RF) — and two deep learning algorithms—Deep Neu-
ral Networks (DNN) and Long Short-Term Memory (LSTM). This approach aims to
enhance predictive power and improve the accuracy of macroeconomic predictions.
Our results suggest that machine learning exhibits a significant predictive ability, while
deep learning can also be effective as an addition to achieve an optimization goal in
macroeconomic forecasting. Our contribution lies in finding the solution to selecting
optimal hyperparameters, which is a critical problem in machine learning. Our results
also provide evidence on the application of machine learning is valid even with a small
data sample.

5.2 Research Limitations

While this paper presents insightful results and a unique perspective on improving the
use of forecasts by professional forecasters, it also acknowledges some of the following
limitations and shortcomings.

The challenge is about the issue of constrained data availability. we notice the potential
limitation about data vintage and data revision from the literature. First, we learned
the concern of data vintage from Stark and Croushore (2002), they discuss the vintage
of the data makes difference for forecast accuracy. The choice of the horizon (long and
short term), or the number of forecast observations used to evaluate models are critical.
Furthermore, Croushore and Stark (2003) verified some key results in the macroeco-
nomic literature are affected by the choice of vintage. In some cases, the results are
significantly upended. Second, Croushore (2006) described reasons why forecasts will
be affected by data revisions in three aspects: 1, revisions change the data input into
the forecasting model. 2, revisions change the estimated coefficients; and 3, revisions
lead to a change in the model itself (such as the number of lags).

5.3 Future Research Directions

Future work direction of Chapter 2:
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Learned from Timmermann (2006) the amalgamation of forecasts presents diversifi-
cation benefits, rendering the consolidation of individual predictions more appealing
than relying solely on forecasts from a single model. Therefore, in our upcoming re-
search, we intend to delve into the significance of combining forecasts, especially in
scenarios involving asymmetric loss functions. Our investigation will also involve a
thorough examination of integrating point, interval, and probability forecasts. Addi-
tionally, we aim to explore how a consistent panel of experts behaves when making
predictions over extended timeframes, comparing their performance across various pe-
riods.

Future work direction of Chapter 3:

Based on insights from Moore and Schatz (2017), we now recognize that overconfidence
is not a singular, uniform concept. Instead, it can be categorised into three distinct
forms:

1. Overestimation involves overestimating one’s own abilities, leading to the belief that
one is better than one’s actual reality. 2. Overplacement, characterised by an exagger-
ated belief in one’s superiority over others. 3. Overprovision, entailing an excessive
faith in one’s knowledge and the conviction of possessing absolute truth. These three
dimensions of overconfidence manifest in various circumstances, originate from differ-
ent sources, and result in diverse outcomes. It is crucial not to treat them as identical or
assume they share the same psychological foundations. In our upcoming research, we
intend to explore expert behaviour by taking into account these distinct dimensions of
overconfidence.

Future work direction of Chapter 4

In this chapter, we delve into the application of optimising expert predictions. The fu-
ture trajectory of our work aligns with ribeiro2016model, emphasising interpretability
as a crucial attribute in machine learning. Interpretability aids in understanding the
behaviour of machine learning models, empowering system designers and end-users
in tasks such as model selection and feature engineering. Lipton (2018) categorised in-
terpretability into two main types: model transparency and post-hoc interpretability.
Notably, Turbé et al. (2023) pointed out that the interpretability of machine learning
models, particularly neural networks for time-series data, has only recently gained at-
tention. Therefore, in our forthcoming research, we will place particular emphasis on
ensuring model interpretability, addressing a gap in the existing literature.
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Appendix A

Supplement to Chapter 2

A.1 MATLAB code:

1. 25% Quantile

clear all

clc

interval =[];% prediction % range

Real =[];%real data

Predict =[];% prediction data

A=[];%Raw data

% prediction null data filling

for m=1:1: length(Predict)

if Predict(m ,1)==0

Predict(m,1)= -100;

else

end

end

% definition of 25 quartile calculation

x=size(A);

q25=zeros(x(1,1),5);

B=zeros(x(1 ,1),3);%number of observations ;

NULL_p=find(Predict (:)== -100);%null data position;

Predict_p=find(Predict (:) > -100);%valid prediction position;

Predict_No=length(Predict_p );%number of predictions ;

% 25 quartile calculation

for n=1:1:x(1,1)

a=0;

mode_p =[];

mode_p=find(A(n ,:)== max(A(n ,:))); %mode location;

if mode_p (1 ,1)==1

z=1;%first column is mode location;
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elseif mode_p (1 ,1)==13

z=-1;%last column is mode location;

else

z=0;

end

for i=1:1:x(1,2)

b=A(n,i);

a=a+b;

if i==1 & a==25

q25(n ,1)=0;

q25(n,2)= interval(1,i);

B(n ,1)=1;

if Predict(n,1)<q25(n,2) & Predict(n,1)>-100

q25(n ,4)=1;

elseif Predict(n,1)>=q25(n,2) & Predict(n,1)>-100

q25(n ,5)=1;

else

end

elseif i==1 & a>25;

q25(n ,1)=0;

q25(n,2)= interval(1,i)-(0.5-(a-25)/a);

B(n ,1)=1;

if Predict(n,1)<q25(n,2) & Predict(n,1)>-100

q25(n ,4)=1;

elseif Predict(n,1)>=q25(n,2) & Predict(n,1)>-100

q25(n ,5)=1;

else

end

elseif i>=2 & i<=x(1,2) & a>=0 & (a-25) >=0 & (a-b-25) <0;

if a>=25 & i<=x(1,2)-1;

q25(n,1)=(25 -(a-b))/b-0.5+ interval(1,i-1);

q25(n,2)=(25 -(a-b))/b-0.5+ interval(1,i);

B(n ,1)=1;

if Predict(n,1)<q25(n,2) & Predict(n,1)>=q25(n,1)

q25(n ,4)=1;

elseif Predict(n,1)<q25(n,1) & Predict(n,1)>-100

q25(n ,3)=1;

elseif Predict(n,1)>=q25(n,2) & Predict(n,1)>-100

q25(n ,5)=1;

else

end

else a>=25 & i==x(1,2);

q25(n,1)=(25 -(a-b))/b-0.5+ interval(1,i-1);

q25(n ,2)=0;

B(n ,1)=1;

if Predict(n,1)<q25(n,1) & Predict(n,1)>-100

q25(n ,3)=1;

elseif Predict(n,1)>=q25(n,1) & Predict(n,1)>-100

q25(n ,4)=1;

else

end

end

end

end

end

% valid prediction number

for j=1:1: length(NULL_p)

B(NULL_p(j,:) ,2)= -100;
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end

for k=1:1:x(1,1)

if B(k ,1)==1 & B(k,2)>-100

B(k ,3)=1;

else

end

end

Sub_Ob_No=sum(B(: ,1));

Valid_No=sum(B(: ,3));

2. 50% Quantile

clear all

clc

interval =[];% prediction % range

Real =[];%real data

Predict =[];% prediction data

A=[];%Raw data

% prediction null data filling

for m=1:1: length(Predict)

if Predict(m ,1)==0

Predict(m,1)= -100;

else

end

end

% definition of Median , Mean and Mode calculation

x=size(A);

Median=zeros(x(1 ,1),5);

Mean=zeros(x(1,1),5);

Mode=zeros(x(1,1),5);

B=zeros(x(1 ,1),3);%number of observations ;

NULL_p=find(Predict (:)== -100);%null data position;

Predict_p=find(Predict (:) > -100);%valid prediction position;

Predict_No=length(Predict_p );%number of predictions ;

% Median , Mean and Mode calculation

for n=1:1:x(1,1)

a=0;

mode_p =[];

mode_p=find(A(n ,:)== max(A(n ,:)));%mode location;

if mode_p (1 ,1)==1

z=1;%first column is mode location;

elseif mode_p (1 ,1)==13

z=-1;%last column is mode location;

else

z=0;

end

for i=1:1:x(1,2)

b=A(n,i);

a=a+b;

if i==1 & a==50

Median(n ,1)=0;

Median(n,2)= interval(1,i);

Mean(n ,1)=0;
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Mean(n,2)= interval(1,i);

Mode(n ,1)=0;

Mode(n,2)= interval(1,i);

B(n ,1)=1;

if Predict(n,1)< interval(1,i) & Predict(n,1)>-100

Median(n ,4)=1;

Mean(n ,4)=1;

Mode(n ,4)=1;

elseif Predict(n,1)>= interval(1,i) & Predict(n,1)>-100

Median(n ,5)=1;

Mean(n ,5)=1;

Mode(n ,5)=1;

else

end

elseif i==1 & a>50;

Median(n ,1)=0;

Median(n,2)= interval(1,i);

Mean(n ,1)=0;

Mean(n,2)= interval(1,i)-(0.5-(a-50)/a);

Mode(n ,1)=0;

Mode(n,2)= interval(1,i);

B(n ,1)=1;

if Predict(n,1)< Median(n,2) & Predict(n,1)>-100

Median(n ,4)=1;

elseif Predict(n,1)>= Median(n,2) & Predict(n,1)>-100

Median(n ,5)=1;

else

end

if Predict(n,1)<Mean(n,2) & Predict(n,1)>-100

Mean(n ,4)=1;

elseif Predict(n,1)>= Mean(n,2) & Predict(n,1)>-100

Mean(n ,5)=1;

else

end

if Predict(n,1)<Mode(n,2) & Predict(n,1)>-100

Mode(n ,4)=1;

elseif Predict(n,1)>= Mode(n,2) & Predict(n,1)>-100

Mode(n ,5)=1;

else

end

elseif i>=2 & i<=x(1,2) & a>=0 & (a-50) >=0 & (a-b-50) <0;

if a>=50 & i<=x(1,2)-1;

Median(n,1)= interval(1,i-1);

Median(n,2)= interval(1,i);

Mean(n,1)=(50 -(a-b))/b-0.5+ interval(1,i-1);

Mean(n,2)=(50 -(a-b))/b-0.5+ interval(1,i);

if z==-1;%last column is mode location;

Mode(n,1)= interval(1,mode_p (1 ,1)-1);

Mode(n ,2)=0;

elseif z==1;%first column is mode location;

Mode(n ,1)=0;

Mode(n,2)= interval(1,mode_p (1 ,1));

else z==0;

Mode(n,1)= interval(1,mode_p (1 ,1)-1);

Mode(n,2)= interval(1,mode_p (1 ,1));

end

B(n ,1)=1;

if Predict(n,1)< Median(n,2) & Predict(n,1)>= Median(n,1)

Median(n ,4)=1;
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elseif Predict(n,1)< Median(n,1) & Predict(n,1)>-100

Median(n ,3)=1;

elseif Predict(n,1)>= Median(n,2) & Predict(n,1)>-100

Median(n ,5)=1;

else

end

if Predict(n,1)<Mean(n,2) & Predict(n,1)>= Mean(n,1)

Mean(n ,4)=1;

elseif Predict(n,1)<Mean(n,1) & Predict(n,1)>-100

Mean(n ,3)=1;

elseif Predict(n,1)>= Mean(n,2) & Predict(n,1)>-100

Mean(n ,5)=1;

else

end

if Predict(n,1)<Mode(n,2) & Predict(n,1)>= Mode(n,1) & z==0

Mode(n ,4)=1;

elseif Predict(n,1)<Mode(n,1) & Predict(n,1)>-100 & z==0

Mode(n ,3)=1;

elseif Predict(n,1)>= Mode(n,2) & Predict(n,1)>-100 & z==0

Mode(n ,5)=1;

elseif Predict(n,1)<Mode(n,2) & Predict(n,1)>-100 & z==1

Mode(n ,4)=1;

elseif Predict(n,1)>= Mode(n,2) & Predict(n,1)>-100 & z==1

Mode(n ,5)=1;

elseif Predict(n,1)>= Mode(n,1) & Predict(n,1)>-100 & z==-1

Mode(n ,4)=1;

elseif Predict(n,1)<Mode(n,1) & Predict(n,1)>-100 & z==-1

Mode(n ,5)=1;

else

end

else a>=50 & i==x(1,2);

Median(n,1)= interval(1,i-1);

Median(n ,2)=0;

Mean(n,1)=(50 -(a-b))/b-0.5+ interval(1,i-1);

Mean(n ,2)=0;

Mode(n,1)= interval(1,mode_p (1,1)-1);

Mode(n,2)= interval(1,mode_p (1 ,1));

B(n ,1)=1;

if Predict(n,1)< Median(n,1) & Predict(n,1)>-100

Median(n ,3)=1;

elseif Predict(n,1)>= Median(n,1) & Predict(n,1)>-100

Median(n ,4)=1;

else

end

if Predict(n,1)<Mean(n,1) & Predict(n,1)>-100

Mean(n ,3)=1;

elseif Predict(n,1)>= Mean(n,1) & Predict(n,1)>-100

Mean(n ,4)=1;

else

end

if Predict(n,1)<Mode(n,2) & Predict(n,1)>= Mode(n,1) & z==0

Mode(n ,4)=1;

elseif Predict(n,1)<Mode(n,1) & Predict(n,1)>-100 & z==0

Mode(n ,3)=1;

elseif Predict(n,1)>= Mode(n,2) & Predict(n,1)>-100 & z==0

Mode(n ,5)=1;

elseif Predict(n,1)<Mode(n,2) & Predict(n,1)>-100 & z==1

Mode(n ,4)=1;

elseif Predict(n,1)>= Mode(n,2) & Predict(n,1)>-100 & z==1
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Mode(n ,5)=1;

elseif Predict(n,1)>= Mode(n,1) & Predict(n,1)>-100 & z==-1

Mode(n ,4)=1;

elseif Predict(n,1)<Mode(n,1) & Predict(n,1)>-100 & z==-1

Mode(n ,5)=1;

else

end

end

end

end

end

% valid prediction number

for j=1:1: length(NULL_p)

B(NULL_p(j,:) ,2)= -100;

end

for k=1:1:x(1,1)

if B(k ,1)==1 & B(k,2)>-100

B(k ,3)=1;

else

end

end

Sub_Ob_No=sum(B(: ,1));

Valid_No=sum(B(: ,3));

3. 75% quantile

clear all

clc

interval =[];% prediction % range

Real =[];%real data

Predict =[];% prediction data

A=[];%Raw data

% prediction null data filling

for m=1:1: length(Predict)

if Predict(m ,1)==0

Predict(m,1)= -100;

else

end

end

% definition of 75 quartile calculation

x=size(A);

q75=zeros(x(1,1),5);

B=zeros(x(1 ,1),3);%number of observations ;

NULL_p=find(Predict (:)== -100);%null data position;

Predict_p=find(Predict (:) > -100);%valid prediction position;

Predict_No=length(Predict_p );%number of predictions ;

% 75 quartile calculation
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for n=1:1:x(1,1)

a=0;

mode_p =[];

mode_p=find(A(n ,:)== max(A(n ,:))); %mode location;

if mode_p (1 ,1)==1

z=1;%first column is mode location;

elseif mode_p (1 ,1)==13

z=-1;%last column is mode location;

else

z=0;

end

for i=1:1:x(1,2)

b=A(n,i);

a=a+b;

if i==1 & a==75

q75(n ,1)=0;

q75(n,2)= interval(1,i);

B(n ,1)=1;

if Predict(n,1)<q75(n,2) & Predict(n,1)>-100

q75(n ,4)=1;

elseif Predict(n,1)>=q75(n,2) & Predict(n,1)>-100

q75(n ,5)=1;

else

end

elseif i==1 & a>75;

q75(n ,1)=0;

q75(n,2)= interval(1,i)-(0.5-(a-75)/a);

B(n ,1)=1;

if Predict(n,1)<q75(n,2) & Predict(n,1)>-100

q75(n ,4)=1;

elseif Predict(n,1)>=q75(n,2) & Predict(n,1)>-100

q75(n ,5)=1;

else

end

elseif i>=2 & i<=x(1,2) & a>=0 & (a-75) >=0 & (a-b-75) <0;

if a>=75 & i<=x(1,2)-1;

q75(n,1)=(75 -(a-b))/b-0.5+ interval(1,i-1);

q75(n,2)=(75 -(a-b))/b-0.5+ interval(1,i);

B(n ,1)=1;

if Predict(n,1)<q75(n,2) & Predict(n,1)>=q75(n,1)

q75(n ,4)=1;

elseif Predict(n,1)<q75(n,1) & Predict(n,1)>-100

q75(n ,3)=1;

elseif Predict(n,1)>=q75(n,2) & Predict(n,1)>-100

q75(n ,5)=1;

else

end

else a>=75 & i==x(1,2);

q75(n,1)=(75 -(a-b))/b-0.5+ interval(1,i-1);

q75(n ,2)=0;

B(n ,1)=1;

if Predict(n,1)<q75(n,1) & Predict(n,1)>-100

q75(n ,3)=1;

elseif Predict(n,1)>=q75(n,1) & Predict(n,1)>-100

q75(n ,4)=1;

else

end

end

end
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end

end

% valid prediction number

for j=1:1: length(NULL_p)

B(NULL_p(j,:) ,2)= -100;

end

for k=1:1:x(1,1)

if B(k ,1)==1 & B(k,2)>-100

B(k ,3)=1;

else

end

end

Sub_Ob_No=sum(B(: ,1));

Valid_No=sum(B(: ,3));

A.2 The Procedure of EXCALIBUR in Expert Judgement Elici-
tation

TABLE A.1: The structured procedure of EXCALIBUR in Expert Judgement Elicitation.

1 To select a group of experts in the economic domain.

2 To ensure that these experts are elicited individually regarding their
uncertainty over the results of possible measurements or observations
within their domain of expertise.

3 Experts also assess variables within their field, and the true values of
these variables are known or known after the fact.

4 Experts are treated as statistical hypotheses and are scored regarding
statistical likelihood and informativeness.

5 Scores are combined to form weights. With these weights, statistical
accuracy strongly dominates informativeness one cannot compensate
for poor statistical performance with very high information.

6 Likelihood and informative scores are used to derive performance-
based weighted combinations of the experts’ uncertainty distributions.

A.3 Comparison of expert’s predication value VS True value.
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FIGURE A.1: The comparison of ten experts’ prediction on the GDP and the real GDP
value.
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FIGURE A.2: The comparison of ten experts’ prediction on the Inflation rate and real
Inflation rate.
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FIGURE A.3: The comparison of ten experts’ prediction on the BoE and the real BoE
value.
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FIGURE A.4: The comparison of ten experts’ prediction on the Unemployment rate
and the real unemployment rate.
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FIGURE A.5: The comparison of ten experts’ prediction on the ERI and the real ERI
value.
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Appendix B

Supplement to Chapter 3

B.1 Matlab code

1. 25%Quantile

clear all

clc

interval =[];% prediction % range

Real =[];%real data

Predict =[];% prediction data

A=[];%Raw data

% prediction null data filling

for m=1:1: length(Predict)

if Predict(m ,1)==0

Predict(m,1)= -100;

else

end

end

% definition of 25 quartile calculation

x=size(A);

q25=zeros(x(1,1),5);

B=zeros(x(1 ,1),3);%number of observations ;

NULL_p=find(Predict (:)== -100);%null data position;

Predict_p=find(Predict (:) > -100);%valid prediction position;

Predict_No=length(Predict_p );%number of predictions ;

% 25 quartile calculation

for n=1:1:x(1,1)

a=0;

mode_p =[];

mode_p=find(A(n ,:)== max(A(n ,:))); %mode location;

if mode_p (1 ,1)==1

z=1;%first column is mode location;

elseif mode_p (1 ,1)==13

z=-1;%last column is mode location;

else
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z=0;

end

for i=1:1:x(1,2)

b=A(n,i);

a=a+b;

if i==1 & a==25

q25(n ,1)=0;

q25(n,2)= interval(1,i);

B(n ,1)=1;

if Predict(n,1)<q25(n,2) & Predict(n,1)>-100

q25(n ,4)=1;

elseif Predict(n,1)>=q25(n,2) & Predict(n,1)>-100

q25(n ,5)=1;

else

end

elseif i==1 & a>25;

q25(n ,1)=0;

q25(n,2)= interval(1,i)-(0.5-(a-25)/a);

B(n ,1)=1;

if Predict(n,1)<q25(n,2) & Predict(n,1)>-100

q25(n ,4)=1;

elseif Predict(n,1)>=q25(n,2) & Predict(n,1)>-100

q25(n ,5)=1;

else

end

elseif i>=2 & i<=x(1,2) & a>=0 & (a-25) >=0 & (a-b-25) <0;

if a>=25 & i<=x(1,2)-1;

q25(n,1)=(25 -(a-b))/b-0.5+ interval(1,i-1);

q25(n,2)=(25 -(a-b))/b-0.5+ interval(1,i);

B(n ,1)=1;

if Predict(n,1)<q25(n,2) & Predict(n,1)>=q25(n,1)

q25(n ,4)=1;

elseif Predict(n,1)<q25(n,1) & Predict(n,1)>-100

q25(n ,3)=1;

elseif Predict(n,1)>=q25(n,2) & Predict(n,1)>-100

q25(n ,5)=1;

else

end

else a>=25 & i==x(1,2);

q25(n,1)=(25 -(a-b))/b-0.5+ interval(1,i-1);

q25(n ,2)=0;

B(n ,1)=1;

if Predict(n,1)<q25(n,1) & Predict(n,1)>-100

q25(n ,3)=1;

elseif Predict(n,1)>=q25(n,1) & Predict(n,1)>-100

q25(n ,4)=1;

else

end

end

end

end

end

% valid prediction number

for j=1:1: length(NULL_p)

B(NULL_p(j,:) ,2)= -100;

end

for k=1:1:x(1,1)
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if B(k ,1)==1 & B(k,2)>-100

B(k ,3)=1;

else

end

end

Sub_Ob_No=sum(B(: ,1));

Valid_No=sum(B(: ,3));

2. 50% Quantile

clear all

clc

interval =[];% prediction % range

Real =[];%real data

Predict =[];% prediction data

A=[];%Raw data

% prediction null data filling

for m=1:1: length(Predict)

if Predict(m ,1)==0

Predict(m,1)= -100;

else

end

end

% definition of Median , Mean and Mode calculation

x=size(A);

Median=zeros(x(1 ,1),5);

Mean=zeros(x(1,1),5);

Mode=zeros(x(1,1),5);

B=zeros(x(1 ,1),3);%number of observations ;

NULL_p=find(Predict (:)== -100);%null data position;

Predict_p=find(Predict (:) > -100);%valid prediction position;

Predict_No=length(Predict_p );%number of predictions ;

% Median , Mean and Mode calculation

for n=1:1:x(1,1)

a=0;

mode_p =[];

mode_p=find(A(n ,:)== max(A(n ,:)));%mode location;

if mode_p (1 ,1)==1

z=1;%first column is mode location;

elseif mode_p (1 ,1)==13

z=-1;%last column is mode location;

else

z=0;

end

for i=1:1:x(1,2)

b=A(n,i);

a=a+b;

if i==1 & a==50

Median(n ,1)=0;

Median(n,2)= interval(1,i);

Mean(n ,1)=0;

Mean(n,2)= interval(1,i);

Mode(n ,1)=0;

Mode(n,2)= interval(1,i);
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B(n ,1)=1;

if Predict(n,1)< interval(1,i) & Predict(n,1)>-100

Median(n ,4)=1;

Mean(n ,4)=1;

Mode(n ,4)=1;

elseif Predict(n,1)>= interval(1,i) & Predict(n,1)>-100

Median(n ,5)=1;

Mean(n ,5)=1;

Mode(n ,5)=1;

else

end

elseif i==1 & a>50;

Median(n ,1)=0;

Median(n,2)= interval(1,i);

Mean(n ,1)=0;

Mean(n,2)= interval(1,i)-(0.5-(a-50)/a);

Mode(n ,1)=0;

Mode(n,2)= interval(1,i);

B(n ,1)=1;

if Predict(n,1)< Median(n,2) & Predict(n,1)>-100

Median(n ,4)=1;

elseif Predict(n,1)>= Median(n,2) & Predict(n,1)>-100

Median(n ,5)=1;

else

end

if Predict(n,1)<Mean(n,2) & Predict(n,1)>-100

Mean(n ,4)=1;

elseif Predict(n,1)>= Mean(n,2) & Predict(n,1)>-100

Mean(n ,5)=1;

else

end

if Predict(n,1)<Mode(n,2) & Predict(n,1)>-100

Mode(n ,4)=1;

elseif Predict(n,1)>= Mode(n,2) & Predict(n,1)>-100

Mode(n ,5)=1;

else

end

elseif i>=2 & i<=x(1,2) & a>=0 & (a-50) >=0 & (a-b-50) <0;

if a>=50 & i<=x(1,2)-1;

Median(n,1)= interval(1,i-1);

Median(n,2)= interval(1,i);

Mean(n,1)=(50 -(a-b))/b-0.5+ interval(1,i-1);

Mean(n,2)=(50 -(a-b))/b-0.5+ interval(1,i);

if z==-1;%last column is mode location;

Mode(n,1)= interval(1,mode_p (1 ,1)-1);

Mode(n ,2)=0;

elseif z==1;%first column is mode location;

Mode(n ,1)=0;

Mode(n,2)= interval(1,mode_p (1 ,1));

else z==0;

Mode(n,1)= interval(1,mode_p (1 ,1)-1);

Mode(n,2)= interval(1,mode_p (1 ,1));

end

B(n ,1)=1;

if Predict(n,1)< Median(n,2) & Predict(n,1)>= Median(n,1)

Median(n ,4)=1;

elseif Predict(n,1)< Median(n,1) & Predict(n,1)>-100

Median(n ,3)=1;

elseif Predict(n,1)>= Median(n,2) & Predict(n,1)>-100
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Median(n ,5)=1;

else

end

if Predict(n,1)<Mean(n,2) & Predict(n,1)>= Mean(n,1)

Mean(n ,4)=1;

elseif Predict(n,1)<Mean(n,1) & Predict(n,1)>-100

Mean(n ,3)=1;

elseif Predict(n,1)>= Mean(n,2) & Predict(n,1)>-100

Mean(n ,5)=1;

else

end

if Predict(n,1)<Mode(n,2) & Predict(n,1)>= Mode(n,1) & z==0

Mode(n ,4)=1;

elseif Predict(n,1)<Mode(n,1) & Predict(n,1)>-100 & z==0

Mode(n ,3)=1;

elseif Predict(n,1)>= Mode(n,2) & Predict(n,1)>-100 & z==0

Mode(n ,5)=1;

elseif Predict(n,1)<Mode(n,2) & Predict(n,1)>-100 & z==1

Mode(n ,4)=1;

elseif Predict(n,1)>= Mode(n,2) & Predict(n,1)>-100 & z==1

Mode(n ,5)=1;

elseif Predict(n,1)>= Mode(n,1) & Predict(n,1)>-100 & z==-1

Mode(n ,4)=1;

elseif Predict(n,1)<Mode(n,1) & Predict(n,1)>-100 & z==-1

Mode(n ,5)=1;

else

end

else a>=50 & i==x(1,2);

Median(n,1)= interval(1,i-1);

Median(n ,2)=0;

Mean(n,1)=(50 -(a-b))/b-0.5+ interval(1,i-1);

Mean(n ,2)=0;

Mode(n,1)= interval(1,mode_p (1,1)-1);

Mode(n,2)= interval(1,mode_p (1 ,1));

B(n ,1)=1;

if Predict(n,1)< Median(n,1) & Predict(n,1)>-100

Median(n ,3)=1;

elseif Predict(n,1)>= Median(n,1) & Predict(n,1)>-100

Median(n ,4)=1;

else

end

if Predict(n,1)<Mean(n,1) & Predict(n,1)>-100

Mean(n ,3)=1;

elseif Predict(n,1)>= Mean(n,1) & Predict(n,1)>-100

Mean(n ,4)=1;

else

end

if Predict(n,1)<Mode(n,2) & Predict(n,1)>= Mode(n,1) & z==0

Mode(n ,4)=1;

elseif Predict(n,1)<Mode(n,1) & Predict(n,1)>-100 & z==0

Mode(n ,3)=1;

elseif Predict(n,1)>= Mode(n,2) & Predict(n,1)>-100 & z==0

Mode(n ,5)=1;

elseif Predict(n,1)<Mode(n,2) & Predict(n,1)>-100 & z==1

Mode(n ,4)=1;

elseif Predict(n,1)>= Mode(n,2) & Predict(n,1)>-100 & z==1

Mode(n ,5)=1;

elseif Predict(n,1)>= Mode(n,1) & Predict(n,1)>-100 & z==-1

Mode(n ,4)=1;
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elseif Predict(n,1)<Mode(n,1) & Predict(n,1)>-100 & z==-1

Mode(n ,5)=1;

else

end

end

end

end

end

% valid prediction number

for j=1:1: length(NULL_p)

B(NULL_p(j,:) ,2)= -100;

end

for k=1:1:x(1,1)

if B(k ,1)==1 & B(k,2)>-100

B(k ,3)=1;

else

end

end

Sub_Ob_No=sum(B(: ,1));

Valid_No=sum(B(: ,3));

3. 75% quantile

clear all

clc

interval =[];% prediction % range

Real =[];%real data

Predict =[];% prediction data

A=[];%Raw data

% prediction null data filling

for m=1:1: length(Predict)

if Predict(m ,1)==0

Predict(m,1)= -100;

else

end

end

% definition of 75 quartile calculation

x=size(A);

q75=zeros(x(1,1),5);

B=zeros(x(1 ,1),3);%number of observations ;

NULL_p=find(Predict (:)== -100);%null data position;

Predict_p=find(Predict (:) > -100);%valid prediction position;

Predict_No=length(Predict_p );%number of predictions ;

% 75 quartile calculation

for n=1:1:x(1,1)

a=0;

mode_p =[];
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mode_p=find(A(n ,:)== max(A(n ,:))); %mode location;

if mode_p (1 ,1)==1

z=1;%first column is mode location;

elseif mode_p (1 ,1)==13

z=-1;%last column is mode location;

else

z=0;

end

for i=1:1:x(1,2)

b=A(n,i);

a=a+b;

if i==1 & a==75

q75(n ,1)=0;

q75(n,2)= interval(1,i);

B(n ,1)=1;

if Predict(n,1)<q75(n,2) & Predict(n,1)>-100

q75(n ,4)=1;

elseif Predict(n,1)>=q75(n,2) & Predict(n,1)>-100

q75(n ,5)=1;

else

end

elseif i==1 & a>75;

q75(n ,1)=0;

q75(n,2)= interval(1,i)-(0.5-(a-75)/a);

B(n ,1)=1;

if Predict(n,1)<q75(n,2) & Predict(n,1)>-100

q75(n ,4)=1;

elseif Predict(n,1)>=q75(n,2) & Predict(n,1)>-100

q75(n ,5)=1;

else

end

elseif i>=2 & i<=x(1,2) & a>=0 & (a-75) >=0 & (a-b-75) <0;

if a>=75 & i<=x(1,2)-1;

q75(n,1)=(75 -(a-b))/b-0.5+ interval(1,i-1);

q75(n,2)=(75 -(a-b))/b-0.5+ interval(1,i);

B(n ,1)=1;

if Predict(n,1)<q75(n,2) & Predict(n,1)>=q75(n,1)

q75(n ,4)=1;

elseif Predict(n,1)<q75(n,1) & Predict(n,1)>-100

q75(n ,3)=1;

elseif Predict(n,1)>=q75(n,2) & Predict(n,1)>-100

q75(n ,5)=1;

else

end

else a>=75 & i==x(1,2);

q75(n,1)=(75 -(a-b))/b-0.5+ interval(1,i-1);

q75(n ,2)=0;

B(n ,1)=1;

if Predict(n,1)<q75(n,1) & Predict(n,1)>-100

q75(n ,3)=1;

elseif Predict(n,1)>=q75(n,1) & Predict(n,1)>-100

q75(n ,4)=1;

else

end

end

end

end

end
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% valid prediction number

for j=1:1: length(NULL_p)

B(NULL_p(j,:) ,2)= -100;

end

for k=1:1:x(1,1)

if B(k ,1)==1 & B(k,2)>-100

B(k ,3)=1;

else

end

end

Sub_Ob_No=sum(B(: ,1));

Valid_No=sum(B(: ,3));

B.2 Table Percent of Experts using N intervals or less.

B.3 Table Evidence of favourable point predictions.

B.4 Table Evidence of favourable point predictions per expert.
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TABLE B.6: Experts Statistics for GDP Growth

2*Experts Median Mean Mode
N Below Above N Below Above N Below Above

B1 29 27.59% 72.41% 22 36.36% 63.64% 28 28.57% 71.43%
G1 30 33.33% 66.67% 28 39.29% 60.71% 27 33.33% 66.67%
I1 26 34.62% 65.38% 24 29.17% 70.83% 24 41.67% 58.33%
L1 16 18.75% 81.25% 16 25.00% 75.00% 14 28.57% 71.43%
N1 24 33.33% 66.67% 16 43.75% 56.25% 18 44.44% 55.56%
O1 21 38.10% 61.90% 17 41.18% 58.82% 26 46.15% 53.85%
S1 28 28.57% 71.43% 23 34.78% 65.22% 24 33.33% 66.67%
T1 14 21.43% 78.57% 14 28.57% 71.43% 12 33.33% 66.67%
X1 32 18.75% 81.25% 30 20.00% 80.00% 28 32.14% 67.86%
B2 35 68.57% 31.43% 32 81.25% 18.75% 32 65.63% 34.38%

TABLE B.7: Experts Statistics for Inflation

2*Experts Below Median Above Median Above Mean
N Below Above N Below Above N Below Above

B1 33 36.36% 63.64% 30 46.67% 53.33% 33 36.36% 63.64%
G1 24 29.17% 70.83% 23 34.78% 65.22% 26 34.62% 65.38%
I1 28 21.43% 78.57% 29 37.93% 62.07% 36 19.44% 80.56%
L1 16 25.00% 75.00% 17 52.94% 47.06% 16 31.25% 68.75%
N1 21 40.00% 60.00% 24 62.50% 37.50% 21 28.57% 71.43%
O1 32 37.50% 62.50% 27 55.56% 44.44% 38 34.21% 65.79%
S1 27 37.04% 62.96% 30 40.00% 60.00% 28 39.29% 60.71%
T1 22 27.27% 72.73% 24 37.50% 62.50% 24 41.67% 58.33%
X1 36 25.00% 75.00% 35 42.86% 57.14% 38 31.58% 68.42%
B2 31 38.71% 61.29% 27 59.26% 40.74% 29 34.48% 65.52%

TABLE B.8: Experts Statistics for Unemployment

2*Experts Below Median Above Median Above Mean
N Below Above N Below Above N Below Above

B1 9 11.11% 88.89% 12 16.67% 83.33% 11 9.09% 90.91%
G1 16 43.75% 56.25% 20 55.00% 45.00% 17 41.18% 58.82%
I1 7 0.00% 100.00% 9 11.11% 88.89% 9 11.11% 88.89%
L1 - - - - - - - - -
N1 77 14.29% 85.71% 13 30.77% 69.23% 14 0.00% 100.00%
O1 6 50.00% 50.00% 5 40.00% 60.00% 6 50.00% 50.00%
S1 10 10.00% 90.00% 12 25.00% 75.00% 10 10.00% 90.00%
T1 1 0.00% 100.00% 1 0.00% 100.00% 1 0.00% 100.00%
X1 7 14.29% 85.71% 9 22.22% 77.78% 7 0.00% 100.00%
B2 12 25.00% 75.00% 11 36.36% 63.64% 13 23.08% 76.92%
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TABLE B.9: Experts Statistics for Base Bank Rate

2*Experts Below Median Above Median Above Mean
N Below Above N Below Above N Below Above

B1 10 40.00% 60.00% 12 58.33% 41.67% 10 40.00% 60.00%
G1 14 42.86% 57.14% 15 53.33% 46.67% 14 42.86% 57.14%
I1 5 40.00% 60.00% 7 42.86% 57.14% 6 50.00% 50.00%
L1 - - - - - - - - -
N1 12 58.33% 41.67% 18 61.11% 38.89% 12 58.33% 41.67%
O1 - - - - - - - - -
S1 - - - - - - - - -
T1 2 50.00% 50.00% 2 50.00% 50.00% 2 50.00% 50.00%
X1 11 27.27% 72.73% 11 63.64% 36.36% 10 40.00% 60.00%
B2 8 50.00% 50.00% 8 75.00% 25.00% 9 55.56% 44.44%

TABLE B.10: Experts Statistics for GDP Growth

2*Experts Below 25th Quartile Above 75th Quartile
N Below Above N Below Above

B1 39 12.82% 87.18% 20 65.00% 35.00%
G1 48 6.25% 93.75% 27 81.48% 18.52%
I1 37 5.41% 94.59% 23 78.26% 21.74%
L1 33 6.06% 93.94% 15 66.67% 33.33%
N1 49 6.12% 93.88% 37 86.49% 13.51%
O1 47 8.51% 91.49% 45 91.11% 8.89%
S1 47 6.38% 93.62% 28 75.00% 25.00%
T1 39 0.00% 100.00% 22 100.00% 0.00%
X1 51 1.96% 98.04% 29 82.76% 17.24%
B2 41 39.02% 60.98% 45 93.33% 6.67%

TABLE B.11: Experts Statistics for inflation

2*Experts Below 25th Quartile Above 75th Quartile
N Below Above N Below Above

B1 38 21.05% 78.95% 30 76.67% 23.33%
G1 29 10.34% 89.66% 34 61.76% 38.24%
I1 38 7.89% 92.11% 36 80.56% 19.44%
L1 28 0.00% 100.00% 29 93.10% 6.90%
N1 39 15.38% 84.62% 53 90.57% 9.43%
O1 50 8.00% 92.00% 48 85.42% 14.58%
S1 41 4.88% 95.12% 45 91.11% 8.89%
T1 35 0.00% 100.00% 32 93.75% 6.25%
X1 59 10.17% 89.83% 52 78.85% 21.15%
B2 36 2.78% 97.22% 46 95.65% 4.35%
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TABLE B.12: Experts Statistics for Unemployment

2*Experts Below 25th Quartile Above 75th Quartile
N Below Above N Below Above

B1 13 0.00% 100.00% 11 45.45% 54.55%
G1 16 25.00% 75.00% 21 61.90% 38.10%
I1 9 0.00% 100.00% 7 28.57% 71.43%
L1 - - - - - -
N1 19 0.00% 100.00% 19 84.21% 15.79%
O1 4 25.00% 75.00% 7 57.14% 42.86%
S1 13 0.00% 100.00% 9 55.56% 44.44%
T1 1 0.00% 100.00% 1 100.00% 0.00%
X1 11 0.00% 100.00% 11 63.64% 36.36%
B2 12 25.00% 75.00% 10 60.00% 40.00%

TABLE B.13: Experts Statistics for Base bank rate

2*Experts Below 25th Quartile Above 75th Quartile
N Below Above N Below Above

B1 10 10.00% 90.00% 11 81.82% 18.18%
G1 16 31.25% 68.75% 14 78.57% 21.43%
I1 7 28.57% 71.43% 4 75.00% 25.00%
L1 - - - - - -
N1 15 33.33% 66.67% 17 88.24% 11.76%
O1 - - - - - -
S1 - - - - - -
T1 3 33.33% 66.67% 3 66.67% 33.33%
X1 9 11.11% 88.89% 10 80.00% 20.00%
B2 8 37.50% 62.50% 11 90.91% 9.09%
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Appendix C

Supplement to Chapter 4

C.1 Python Implementation Code

C.1.1 DNN model

import numpy as np

import pandas as pd

from tensorflow import keras

from tensorflow.keras.layers import Dropout

from tensorflow.keras.layers import Dense

from tensorflow.keras import regularizers

from tensorflow.keras.losses import MeanSquaredError , MeanAbsoluteError , Huber , LogCosh

from tensorflow.keras.callbacks import EarlyStopping , LearningRateScheduler

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error , mean_absolute_error

import matplotlib.pyplot as plt

from sklearn.model_selection import TimeSeriesSplit , GridSearchCV

from keras.wrappers.scikit_learn import KerasRegressor

import time

from keras.regularizers import l2 as l2_regularizer

from sklearn.metrics import make_scorer

from sklearn.preprocessing import MinMaxScaler , StandardScaler

import os

import_path = r"C:\Users\Yujia\Desktop\ML v3\fulfilled data\\"

output_path = r"C:\Users\Yujia\Desktop\ML v3\DNN huber results \\"

def huber_loss_scorer(y_true , y_pred ):

error = y_true - y_pred

threshold = 1 # Huber

is_small_error = abs(error) <= threshold

squared_loss = 0.5 * error ** 2

linear_loss = threshold * (abs(error) - 0.5 * threshold)

return np.where(is_small_error , squared_loss , linear_loss ).mean()

neg_huber_loss_scorer = make_scorer(huber_loss_scorer , greater_is_better=False)

performance = pd.DataFrame ()
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# Define the Huber loss

huber_loss = Huber(delta =1.0)

def import_data(dataset_filename ): # import data from dataset to DataFrame format

try:

# Construct the full file path

file_path = r"C:\Users\Yujia\Desktop\ML v2\fulfilled data\\" + dataset_filename

# Read the CSV file into a pandas DataFrame

raw_data = pd.read_csv(file_path)

print("File ’{}’ is successfully imported from file.".format(dataset_filename ))

return raw_data # DataFrame format

except FileNotFoundError as e:

print("File ’{}’ not found.".format(dataset_filename ))

except Exception as e:

print("An error occurred: {}".format(e))

def dataframe_to_numpy(dataset_filename ):

raw_data = import_data(dataset_filename)

print(" ’{}’ is successfully imported from dataframe.".format(filename ))

start_time = time.time()

# process the data to matrix

list_dataTrue = [y for y in raw_data[’TRUE’]]

y = np.array(list_dataTrue ).ravel()

columns_to_delete = [’TRUE’]

X = raw_data.drop(columns=columns_to_delete ). values

print(" ’{}’ is successfully change to numpy.".format(filename ))

return X,y

def MAPE(y_true , y_pred ): # mean_absolute_percentage_error

epsilon = 1e-7

y_true = np.array(y_true)

y_pred = np.array(y_pred)

mape = np.mean(np.abs(( y_true - y_pred) / (y_true + epsilon ))) * 100

return mape

def MAE(y_true , y_pred ): # mean_absolute_error_loss

return mean_absolute_error(y_true , y_pred)

def train_DNN(X, y, test_size , random_state , lr, dr, dropout_rate , l2 , num_features , hidden_units , activation , optimizer ,

epochs , batch_size , filename , filename1="loss.csv"):

X_train , X_test , y_train , y_test = train_test_split(X, y, test_size=test_size , random_state=random_state)

model = keras.Sequential ()

for units in hidden_units:

model.add(Dense(units , activation=activation , kernel_regularizer=regularizers.l2(l2),

input_shape =( num_features ,)))

model.add(Dropout(dropout_rate ))

model.add(Dense(units=1, kernel_regularizer=regularizers.l2(l2)))

opt = keras.optimizers.get(optimizer)

opt.learning_rate = lr

model.compile(opt , loss=huber_loss , metrics =[’mean_absolute_error ’])

def lr_schedule(epoch , lr):

if epoch < 50:

return lr # Keep initial learning rate for the first 50 epochs

else:

return lr * dr # Reduce learning rate by 5% after 50 epochs

lr_scheduler = LearningRateScheduler(lr_schedule)

early_stopping = EarlyStopping(monitor=’val_loss ’, patience =40, restore_best_weights=True)
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history = model.fit(X_train , y_train , epochs=epochs , batch_size=batch_size , validation_data =(X_test , y_test),

callbacks =[ lr_scheduler , early_stopping], verbose =3)

plt.plot(history.history[’loss’], label=’Train Loss’)

plt.plot(history.history[’val_loss ’], label=’Test Loss’)

plt.xlabel(’Epoch ’)

plt.ylabel(’Loss’)

plt.legend ()

plt.title("Training and Test Loss Over Iterations ’{}’".format(filename1 ))

file_path_plot1 = output_path + filename + "_plot1.png"

plt.savefig(file_path_plot1 , dpi =300)

# plt.show ()

loss_history_df = pd.DataFrame ({’Train Loss’: history.history[’loss’], ’Test Loss’: history.history[’val_loss ’]})

loss_file_path = output_path + "loss" + filename

loss_history_df.to_csv(loss_file_path , index=False)

loss = model.evaluate(X_test , y_test)

print(" ’{}’".format(loss))

y_pred = model.predict(X_test)

y_pred = y_pred.reshape (-1)

mse = mean_squared_error(y_test , y_pred)

mape = MAPE(y_test , y_pred)

mae = MAE(y_test , y_pred)

return model , history.history[’loss’], history.history[’val_loss ’], mse , mape , mae

def graph_with_whole_sample(trained_model , new_data ):

predictions = trained_model.predict(new_data)

return predictions

def find_hyperparameter(hidden_units =(64, 32), activation=’elu’,

optimizer=’Nadam ’, kernel_reg =0.0001 , dropout_rate =0.5,

lr=0.001 , dr =0.95):

num_features = X.shape [1]

model = keras.Sequential ()

for units in hidden_units:

model.add(Dense(units , activation=activation ,

kernel_regularizer=l2_regularizer(kernel_reg),

input_shape =( num_features ,)))

model.add(Dropout(dropout_rate ))

model.add(Dense(1, kernel_regularizer=l2_regularizer(kernel_reg )))

opt = keras.optimizers.Nadam(learning_rate=lr)

model.compile(opt , loss=’huber_loss ’, metrics =[’mean_absolute_error ’])

return model

class CustomKerasRegressor(KerasRegressor ):

def fit(self , x, y, ** kwargs ):

early_stopping = EarlyStopping(monitor=’val_loss ’, patience =20, restore_best_weights=True)

lr_scheduler = LearningRateScheduler(create_lr_schedule(kwargs.pop(’dr’, 0.95)))

callbacks = kwargs.pop(’callbacks ’, [])

callbacks.append(early_stopping)

callbacks.append(lr_scheduler)

super(CustomKerasRegressor , self).fit(x, y, validation_split =0.2, callbacks=callbacks , ** kwargs)

def create_lr_schedule(dr_value ):

def lr_schedule(epoch , lr):

if epoch < 50:
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return lr

else:

return lr * dr_value

return lr_schedule

def best_parameter_MSE(X, y):

n_splits = 10

tscv = TimeSeriesSplit(n_splits=n_splits)

regressor = CustomKerasRegressor(build_fn=find_hyperparameter , verbose=3, epochs =5000, batch_size =32)

param_grid = {

’lr’: [0.00001 , 0.0001 , 0.001] ,

’dr’: [0.93, 0.94, 0.95, 0.96],

’dropout_rate ’: [0.2, 0.3, 0.4, 0.5],

’kernel_reg ’: [0.0000001 , 0.000001 , 0.00001 , 0.0001] #

}

grid = GridSearchCV(estimator=regressor , param_grid=param_grid , cv = tscv , verbose=3,

n_jobs=-1,scoring =neg_huber_loss_scorer)

grid_search = grid.fit(X, y) # Removed the callbacks here; will be added during model training

# Now use the best ’dr’ for the LearningRateScheduler

best_dr = grid_search.best_params_[’dr’]

lr_scheduler = LearningRateScheduler(create_lr_schedule(best_dr ))

early_stopping = EarlyStopping(monitor=’val_loss ’, patience =20, restore_best_weights=True)

grid_search.best_estimator_.model.fit(X, y, validation_split =0.2, epochs =5000 ,

batch_size =32, callbacks =[ lr_scheduler , early_stopping], verbose =3)

print("Best parameters found: ", grid_search.best_params_)

print("Best cross -validation score: {:.2f}".format(np.sqrt(-grid_search.best_score_ )))

lr = grid_search.best_params_[’lr’]

scoring_method = ’Mean Squared Error ’

score = np.sqrt(-grid_search.best_score_)

dropout = grid_search.best_params_[’dropout_rate ’]

kernel_reg = grid_search.best_params_[’kernel_reg ’]

return lr, best_dr , dropout , kernel_reg , scoring_method , score

if __name__ == "__main__":

dataset_filename = ["ERI_raw.csv", "GDP_raw.csv", "GDP_without_crisis_raw.csv", "UR_raw.csv"]

for filename in dataset_filename:

start_time = time.time()

X, y = dataframe_to_numpy(filename)

scaler = StandardScaler ()

X = scaler.fit_transform(X)

y = scaler.fit_transform(y.reshape(-1, 1))

y = y.ravel ()

test_size = 0.2

random_state = 66 # help you repeat our estimates and receive the same results

num_features = X.shape [1]

hidden_units = (64, 32)

epochs = 5000

activation = ’elu’
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optimizer = ’Nadam ’

batch_size = 64

# lr , dr , dropout_rate , l2 , scoring_method , score = best_parameter_MSE (X, y)

lr = 0.001

dr = 0.95

dropout_rate = 0.5

l2 = 0.0001

"""

we can change the scoring methods above by using different functions.

"""

# let ’s train it

model , train_loss_history , test_loss_history , mse , mape , mae = train_DNN(

X = X, y = y, test_size = test_size ,random_state = random_state ,

lr=lr,dr=dr , dropout_rate = dropout_rate , l2=l2 , num_features=num_features ,hidden_units = hidden_units ,

activation = activation ,optimizer = optimizer ,epochs = epochs ,

batch_size = batch_size , filename = filename)

rmse = np.sqrt(mse)

end_time = time.time()

elapsed_time = end_time - start_time

print("mse (mean squre error) {:.2f}:".format(rmse))

print("rmse (root of mse): {:.2f}".format(rmse))

print("running t i m e {:.2f}s".format(elapsed_time ))

new_data = X

# receiving predictions by using whole sample period ’s data

new_predictions = graph_with_whole_sample(model , new_data)

new_predictions = new_predictions.reshape (-1)

print("This is data predicted by our model:", new_predictions)

file_path = output_path + filename

# Save the np to the CSV file

np.savetxt(file_path , new_predictions , delimiter=’,’, fmt=’%.20f’)

print("Data saved to ’{}’".format(file_path ))

# record performance

cleaned_output_path = output_path.rstrip(’\\’)

file_path_performance = os.path.join(cleaned_output_path , "performance.csv")

# new_row = {" MSE ": mse , "RMSE ": rmse , "MAPE ": mape , "MAE ": mae , "Filename ": filename ,

# "running time ": elapsed_time , "lr": lr ,

# "dr": dr , " dropout_rate ": dropout_rate , "l2": l2 ,

# " scoring_method ": scoring_method , "score ": score}

#

# performance = performance .append(new_row , ignore_index =True)

# performance .to_csv( file_path_performance , index=False)

# print( performance )

plt.figure(figsize =(8, 4))

plt.plot(y, label=’True value’, marker=’o’)

plt.plot(new_predictions , label=’Predicted value’, linestyle=’--’)

plt.xlabel(’Time’)

plt.ylabel(’Y’)

plt.legend ()

file_path_plot2 = output_path + filename +"_plot2.png"

plt.savefig(file_path_plot2 , dpi =300)
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# plt.show ()

C.1.2 LSTM model

import numpy as np

import pandas as pd

from tensorflow import keras

from tensorflow.keras.layers import Dropout , LSTM , Dense

from tensorflow.keras import regularizers

from tensorflow.keras.losses import MeanSquaredError , MeanAbsoluteError , Huber , LogCosh

from tensorflow.keras.callbacks import EarlyStopping , LearningRateScheduler

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error , mean_absolute_error

import matplotlib.pyplot as plt

from sklearn.model_selection import TimeSeriesSplit , GridSearchCV

from tensorflow.keras.wrappers.scikit_learn import KerasRegressor

import time

from tensorflow.keras.regularizers import l2 as l2_regularizer

from sklearn.preprocessing import MinMaxScaler , StandardScaler

import os

performance = pd.DataFrame ()

# Define the Huber loss

huber_loss = Huber(delta =1.0)

#enter data path and output path here

import_path = r"C:\Users\Yujia\Desktop\ML v3\fulfilled data\\"

output_path = r"C:\Users\Yujia\Desktop\ML v3\LSTM results \\"

def import_data(dataset_filename ): # import data from dataset to DataFrame format

try:

# Construct the full file path

file_path = import_path + dataset_filename

# Read the CSV file into a pandas DataFrame

raw_data = pd.read_csv(file_path)

print("File ’{}’ is successfully imported from file.".format(dataset_filename ))

return raw_data #DataFrame format

except FileNotFoundError as e:

print("File ’{}’ not found.".format(dataset_filename ))

except Exception as e:

print("An error occurred: {}".format(e))

def dataframe_to_numpy(dataset_filename ):

raw_data = import_data(filename)

print(" ’{}’ is successfully imported from dataframe.".format(filename ))

start_time = time.time()

# process the data to matrix

list_dataTrue = [y for y in raw_data[’TRUE’]]

y = np.array(list_dataTrue ).ravel()

columns_to_delete = [’TRUE’]

X = raw_data.drop(columns=columns_to_delete ). values

print(" ’{}’ is successfully change to numpy.".format(filename ))

return X,y

def MAPE(y_true , y_pred ): # mean_absolute_percentage_error

epsilon = 1e-7



C.1. Python Implementation Code 145

y_true = np.array(y_true)

y_pred = np.array(y_pred)

mape = np.mean(np.abs(( y_true - y_pred) / (y_true + epsilon ))) * 100

return mape

def MAE(y_true , y_pred ): # mean_absolute_error_loss

return mean_absolute_error(y_true , y_pred)

def train_LSTM(X, y, test_size , random_state , lr, dr, dropout_rate , l2, num_features , hidden_units , activation , optimizer ,

epochs , batch_size , filename , filename1="loss.csv"):

X_train , X_test , y_train , y_test = train_test_split(X, y, test_size=test_size , random_state=random_state)

# Reshape the data to be suitable for LSTM

X_train = X_train.reshape(X_train.shape[0], -1, num_features)

X_test = X_test.reshape(X_test.shape[0], -1, num_features)

model = keras.Sequential ()

for units in hidden_units:

model.add(LSTM(units , activation=activation , kernel_regularizer=regularizers.l2(l2), return_sequences=True))

model.add(Dropout(dropout_rate ))

model.add(LSTM(units=hidden_units [-1], kernel_regularizer=regularizers.l2(l2))) # The last LSTM layer doesn ’t return sequences

model.add(Dense(units=1, kernel_regularizer=regularizers.l2(l2)))

opt = keras.optimizers.get(optimizer)

opt.learning_rate = lr

model.compile(opt , loss=’mean_squared_error ’, metrics =[’mean_absolute_error ’])

def lr_schedule(epoch , lr):

if epoch < 50:

return lr # Keep initial learning rate for the first 50 epochs

else:

return lr * dr # Reduce learning rate by 5% after 50 epochs

lr_scheduler = LearningRateScheduler(lr_schedule)

early_stopping = EarlyStopping(monitor=’val_loss ’, patience =5000, restore_best_weights=True)

history = model.fit(X_train , y_train , epochs=epochs , batch_size=batch_size , validation_data =(X_test , y_test),

callbacks =[ lr_scheduler , early_stopping], verbose =3)

plt.plot(history.history[’loss’], label=’Train Loss’)

plt.plot(history.history[’val_loss ’], label=’Test Loss’)

plt.xlabel(’Epoch ’)

plt.ylabel(’Loss’)

plt.legend ()

plt.title("Training and Test Loss Over Iterations ’{}’".format(filename1 ))

file_path_plot1 = output_path + filename + "_plot1.png"

plt.savefig(file_path_plot1 , dpi =300)

loss_history_df = pd.DataFrame ({’Train Loss’: history.history[’loss’], ’Test Loss’: history.history[’val_loss ’]})

loss_file_path = output_path + filename

# loss_history_df .to_csv(loss_file_path , index=False)

loss = model.evaluate(X_test , y_test)

print("loss in t e s t ’{}’".format(loss))

y_pred = model.predict(X_test)

y_pred = y_pred.reshape (-1)

mse = mean_squared_error(y_test , y_pred)
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mape = MAPE(y_test , y_pred)

mae = MAE(y_test , y_pred)

return model , history.history[’loss’], history.history[’val_loss ’], mse , mape , mae

def graph_with_whole_sample(trained_model , new_data , num_features ):

new_data = new_data.reshape(new_data.shape[0], -1, num_features) #

predictions = trained_model.predict(new_data)

return predictions

def find_hyperparameter(hidden_units =[64], activation=’elu’,

optimizer=’Nadam ’, kernel_reg =0.0001 , dropout_rate =0.5,

lr=0.001 , dr=0.95 , batch_size = 16):

num_features = X.shape [1]

model = keras.Sequential ()

for units in hidden_units:

model.add(LSTM(units , batch_size = batch_size , activation=activation ,

kernel_regularizer=l2_regularizer(kernel_reg),

return_sequences=True))

model.add(Dropout(dropout_rate ))

model.add(LSTM(units=hidden_units [-1], kernel_regularizer=l2_regularizer(kernel_reg ))) # The last LSTM layer doesn ’t return sequences

model.add(Dense(1, kernel_regularizer=l2_regularizer(kernel_reg )))

opt = keras.optimizers.Nadam(learning_rate=lr)

model.compile(opt , loss=’mean_squared_error ’, metrics =[’mean_absolute_error ’])

return model

class CustomKerasRegressor(KerasRegressor ):

def fit(self , x, y, ** kwargs ):

early_stopping = EarlyStopping(monitor=’val_loss ’, patience =200, restore_best_weights=True)

lr_scheduler = LearningRateScheduler(create_lr_schedule(kwargs.pop(’dr’, 0.95)))

# callbacks

callbacks = kwargs.pop(’callbacks ’, [])

callbacks.append(early_stopping)

callbacks.append(lr_scheduler)

super(CustomKerasRegressor , self).fit(x, y, validation_split =0.2, callbacks=callbacks , ** kwargs)

def create_lr_schedule(dr_value ):

def lr_schedule(epoch , lr):

if epoch < 50:

return lr

else:

return lr * dr_value

return lr_schedule

def best_parameter_MSE(X, y):

n_splits = 10

tscv = TimeSeriesSplit(n_splits=n_splits)

regressor = CustomKerasRegressor(build_fn=find_hyperparameter , verbose=3, epochs =5000, batch_size =32)

param_grid = {

’batch_size ’:[16, 32, 64],

’lr’: [ 0.1, 0.01, 0.001, 0.0001] ,

’dr’: [ 1 ],

’dropout_rate ’: [0],

’kernel_reg ’: [0.001] # L2

}

grid = GridSearchCV(estimator=regressor , param_grid=param_grid , cv=tscv , verbose=3,

n_jobs=-1, scoring="neg_mean_squared_error")

X = X.reshape ((X.shape[0], 1, X.shape [1])) # Reshape the data

grid_search = grid.fit(X, y) # Removed the callbacks here; will be added during model training
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# Now use the best ’dr’ for the LearningRateScheduler

best_dr = grid_search.best_params_[’dr’]

lr_scheduler = LearningRateScheduler(create_lr_schedule(best_dr ))

early_stopping = EarlyStopping(monitor=’val_loss ’, patience =20, restore_best_weights=True)

grid_search.best_estimator_.model.fit(X, y, validation_split =0.2, epochs =5000 ,

batch_size =32, callbacks =[ lr_scheduler , early_stopping], verbose =3)

print("Best parameters found: ", grid_search.best_params_)

print("Best cross -validation score: {:.2f}".format(np.sqrt(-grid_search.best_score_ )))

lr = grid_search.best_params_[’lr’]

scoring_method = ’Mean Squared Error ’

score = np.sqrt(-grid_search.best_score_)

batch_size = grid_search.best_params_[’batch_size ’]

dropout = grid_search.best_params_[’dropout_rate ’]

kernel_reg = grid_search.best_params_[’kernel_reg ’]

return batch_size , lr, best_dr , dropout , kernel_reg , scoring_method , score

if __name__ == "__main__":

# input data

dataset_filename = [ "GDP_raw.csv", "GDP_without_crisis_raw.csv", "Inflation_raw.csv"]

for filename in dataset_filename:

start_time = time.time()

X, y = dataframe_to_numpy(filename)

scaler = StandardScaler ()

X = scaler.fit_transform(X)

y = scaler.fit_transform(y.reshape(-1, 1))

y = y.ravel ()

test_size = 0.2

random_state = 66 # help you repeat our estimates and receive the same results

num_features = X.shape [1]

hidden_units = [64]

epochs = 5000

activation = ’relu’

optimizer = ’Nadam ’

# batch_size = 16

batch_size , lr, dr, dropout_rate , l2 , scoring_method , score = best_parameter_MSE(X, y)

"""

we can change the scoring methods above by using different functions

"""

# let ’s train it

model , train_loss_history , test_loss_history , mse , mape , mae = train_LSTM(

X=X, y=y, test_size=test_size , random_state=random_state ,

lr=lr, dr=dr, dropout_rate=dropout_rate , l2=l2, num_features=num_features , hidden_units=hidden_units ,

activation=activation , optimizer=optimizer , epochs=epochs ,

batch_size=batch_size , filename=filename)

rmse = np.sqrt(mse)

end_time = time.time()

elapsed_time = end_time - start_time

print("mse (mean squre error) {:.2f}:".format(rmse))

print("rmse (root of mse): {:.2f}".format(rmse))

print("running t i m e {:.2f}s".format(elapsed_time ))

new_data = X
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# receiving predictions by using whole sample period ’s data

new_predictions = graph_with_whole_sample(model , new_data , num_features)

new_predictions = new_predictions.reshape (-1)

print("This is data predicted by our model:", new_predictions)

file_path = output_path + filename

# Save the np to the CSV file

np.savetxt(file_path , new_predictions , delimiter=’,’, fmt=’%.20f’)

print("Data saved to ’{}’".format(file_path ))

# record performance

cleaned_output_path = output_path.rstrip(’\\’)

file_path_performance = os.path.join(cleaned_output_path , "performance.csv")

new_row = {"MSE": mse , "RMSE": rmse , "MAPE": mape , "MAE": mae , "Filename": filename ,

"running time": elapsed_time , "lr": lr,

"dr": dr, "dropout_rate": dropout_rate , "l2": l2 ,

"scoring_method": scoring_method , "score": score}

performance = performance.append(new_row , ignore_index=True)

performance.to_csv(file_path_performance , index=False)

print(performance)

plt.figure(figsize =(8, 4))

plt.plot(y, label=’True value’, marker=’o’)

plt.plot(new_predictions , label=’Predicted value’, linestyle=’--’)

plt.xlabel(’Time’)

plt.ylabel(’Y’)

plt.legend ()

plt.title("True vs. Predicted :’{}’".format(filename ))

file_path_plot2 = output_path + filename +"_plot2.png"

plt.savefig(file_path_plot2 , dpi =300)

# plt.show ()

C.1.3 Support Vector Regression (SVR) model

import numpy as np

from sklearn.svm import SVR

from sklearn.metrics import mean_squared_error , r2_score ,mean_absolute_error

from sklearn.model_selection import train_test_split

import pandas as pd

import time

import matplotlib.pyplot as plt

from sklearn.model_selection import TimeSeriesSplit , GridSearchCV

from sklearn.preprocessing import MinMaxScaler , StandardScaler

import os

import_path = r"C:\Users\Yujia\Desktop\ML v3\fulfilled data\\"

output_path = r"C:\Users\Yujia\Desktop\ML v3\predicted results SVR\\"

def import_data(dataset_filename ): # import data from dataset to DataFrame format

try:

# Construct the full file path
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file_path = import_path + dataset_filename

# Read the CSV file into a pandas DataFrame

raw_data = pd.read_csv(file_path)

print("File ’{}’ is successfully imported from file.".format(dataset_filename ))

return raw_data # DataFrame format

except FileNotFoundError as e:

print("File ’{}’ not found.".format(dataset_filename ))

except Exception as e:

print("An error occurred: {}".format(e))

def dataframe_to_numpy(dataset_filename ):

raw_data = import_data(dataset_filename)

print(" ’{}’ is successfully imported from dataframe.".format(dataset_filename ))

start_time = time.time()

# process the data to matrix

list_dataTrue = [y for y in raw_data[’TRUE’]]

y = np.array(list_dataTrue ).ravel()

columns_to_delete = [’TRUE’]

X = raw_data.drop(columns=columns_to_delete ). values

print(" ’{}’ is successfully change to numpy.".format(dataset_filename ))

return X,y

def MAPE(y_true , y_pred ): # mean_absolute_percentage_error

epsilon = 1e-7

y_true = np.array(y_true)

y_pred = np.array(y_pred)

mape = np.mean(np.abs(( y_true - y_pred) / (y_true + epsilon ))) * 100

return mape

def MAE(y_true , y_pred ): # mean_absolute_error_loss

return mean_absolute_error(y_true , y_pred)

"""

train SVR model

p a r a m e t e r

X_train (numpy.ndarray ): Training set feature data

y_train (numpy.ndarray ): Training set label

kernel (str ): SVR kernel function , Default by ’rbf ’

C (float ): penalty parameter , Default by 1.0

epsilon (float ): epsilon -tube parameter , Default by 0.1

b a c k

svr (SVR ): trained SVR model

"""

"""

Evaluate SVR model performance .

p a r a m e t e r

svr (SVR ): trained SVR model

X_test (numpy.ndarray ): Training set feature data

y_test (numpy.ndarray ): Training set label

b a c k

mse (float ): mean square error

r2 (float ): coefficient of determination

"""

def svr(X, y, test_size , random_state , kernel , C, epsilon ):

# split train and test

X_train , X_test , y_train , y_test = train_test_split(X, y, test_size=test_size , random_state=random_state)

svr = SVR(kernel=kernel , C=C, epsilon=epsilon)

svr.fit(X_train , y_train)

y_pred = svr.predict(X_test)

mse = mean_squared_error(y_test , y_pred)
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r2 = r2_score(y_test , y_pred)

mape = MAPE(y_test , y_pred)

mae = MAE(y_test , y_pred)

return svr , mse , r2, mape , mae

def best_parameter_MSE(X, y): #Mean Squared Error (MSE ): ’neg_mean_squared_error ’

# initialize TimeSeriesSplit

n_splits = 10 # 5

tscv = TimeSeriesSplit(n_splits=n_splits)

# defining parameters

param_grid = {

’C’: [0.1, 0.5, 1, 2, 3, 4, 5, 10, 15, 20, 25, 50, 100, 200, 500, 1000] ,

’epsilon ’: [0.0001 , 0.0005 , 0.001 , 0.005 , 0.01, 0.1],

’kernel ’: [’rbf’]

}

"""

7 methods for scoring: neg_mean_absolute_error , neg_mean_squared_error ,r2 , neg_median_absolute_error ,

neg_mean_poisson_deviance , neg_mean_gamma_deviance , neg_mean_tweedie_deviance

"""

svr = SVR()

grid_search = GridSearchCV(estimator=svr , param_grid=param_grid ,

cv=tscv , scoring=’neg_mean_squared_error ’,

verbose=3, n_jobs =-1)

grid_search.fit(X, y)

# output best parameters

print("Best parameters found: ", grid_search.best_params_)

print("Best cross -validation score: {:.2f}".format(np.sqrt(-grid_search.best_score_ )))

C = grid_search.best_params_[’C’]

epsilon = grid_search.best_params_[’epsilon ’]

kernel = grid_search.best_params_[’kernel ’]

scoring_method = ’Mean Squared Error ’

score = np.sqrt(-grid_search.best_score_)

return C, epsilon , kernel , scoring_method , score

def graph_with_whole_sample(svr , new_data ):

predictions = svr.predict(new_data)

return predictions

performance = pd.DataFrame ()

if __name__ == "__main__":

# import data

dataset_filename = ["BOE_raw.csv", "ERI_raw.csv", "GDP_raw.csv", "GDP_without_crisis_raw.csv", "Inflation_raw.csv","UR_raw.csv"]

for filename in dataset_filename:

start_time = time.time()

X, y = dataframe_to_numpy(filename)

scaler = StandardScaler ()

X = scaler.fit_transform(X)

y = scaler.fit_transform(y.reshape(-1, 1))

y = y.ravel ()

C, epsilon , kernel , scoring_method , score = best_parameter_MSE(X, y)

"""
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we can change the scoring methods above by using different functions

"""

test_size = 0.2

random_state = 66

X, y = dataframe_to_numpy(filename)

scaler = StandardScaler ()

X = scaler.fit_transform(X)

y = scaler.fit_transform(y.reshape(-1, 1))

y = y.ravel ()

# train the model

trained_svr , mse , r2, mape , mae = svr(X, y, test_size , random_state , kernel , C, epsilon)

# (RMSE)

rmse = np.sqrt(mse)

end_time = time.time()

elapsed_time = end_time - start_time

print("mse (mean squre error):", mse)

print("rmse (root of mse): {:.2f}".format(rmse))

print("r2: {:.2f}".format(r2))

print("running t i m e {:.2f}s".format(elapsed_time ))

new_data = X

# receiving predictions by using whole sample period ’s data

new_predictions = graph_with_whole_sample(trained_svr , new_data)

new_predictions = scaler.inverse_transform(new_predictions.reshape(-1, 1)). ravel()

print("This is data predicted by our model:", new_predictions)

file_path = output_path + filename

# Save the np to the CSV file

np.savetxt(file_path , new_predictions , delimiter=’,’, fmt=’%.20f’)

print("Data saved to ’{}’".format(file_path ))

# record performance

cleaned_output_path = output_path.rstrip(’\\’)

file_path_performance = os.path.join(cleaned_output_path , "performance.csv")

new_row = {"MSE": mse , "RMSE": rmse , "MAPE": mape , "MAE": mae , "Filename": filename ,

"running time": elapsed_time , "C": C,

"kernel": kernel , "epsilon":epsilon , "scoring_method": scoring_method , "score": score}

performance = performance.append(new_row , ignore_index=True)

performance.to_csv(file_path_performance , index=False)

print(performance)

X, y = dataframe_to_numpy(filename)

# plot the figure

plt.figure(figsize =(8, 4))

plt.plot(y, label=’True value’, marker=’o’)

plt.plot(new_predictions , label=’Predicted value’, linestyle=’--’)

plt.xlabel(’Time’)

plt.ylabel(’Y’)

plt.legend ()

plt.title("True vs. Predicted :’{}’".format(filename ))

file_path_plot = output_path + filename + "_plot2.png"

plt.savefig(file_path_plot , dpi =300)
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C.1.4 Radom Forest model

import numpy as np

import pandas as pd

from sklearn.ensemble import RandomForestRegressor

from sklearn.model_selection import train_test_split

from sklearn.metrics import mean_squared_error ,mean_absolute_error

import matplotlib.pyplot as plt

from sklearn.model_selection import TimeSeriesSplit , GridSearchCV

import time

from sklearn.preprocessing import MinMaxScaler , StandardScaler

"""

key words in RF model

Parameters :

- X: characteristics

- y: target

- test_size : train vs test = 0.8 vs 0.2

- random_state : random seeds : 66

- n_estimators : number of trees

- max_depth : max depth of the tree

Returns:

- trained_model : well -trained model

- mse: loss function etc

"""

import os

import_path = r"C:\Users\Yujia\Desktop\ML v3\fulfilled data\\"

output_path = r"C:\Users\Yujia\Desktop\ML v3\predicted results RF"

# defining parameters

"""

7 methods can be used to find best hyperparameters with different scoring methods

"""

def import data(dataset filename ): # import data from dataset to DataFrame format

try:

# Construct the full file path

file path = import path + dataset filename

# Read the CSV file into a pandas DataFrame

raw data = pd.read_csv(file_path)

print("File ’{}’ is successfully imported from file.".format(dataset_filename ))

return raw_data # DataFrame format

except FileNotFoundError as e:

print("File ’{}’ not found.".format(dataset_filename ))

except Exception as e:

print("An error occurred: {}".format(e))

def dataframe_to_numpy(dataset_filename ):

raw_data = import_data(dataset_filename)

print(" ’{}’ is successfully imported from dataframe.".format(dataset_filename ))

start_time = time.time()

# process the data to matrix

list_dataTrue = [y for y in raw_data[’TRUE’]]

y = np.array(list_dataTrue ).ravel()

columns_to_delete = [’TRUE’]

X = raw_data.drop(columns=columns_to_delete ). values

print(" ’{}’ is successfully change to numpy.".format(dataset_filename ))
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return X,y

def MAPE(y_true , y_pred ): # mean_absolute_percentage_error

epsilon = 1e-7

y_true = np.array(y_true)

y_pred = np.array(y_pred)

mape = np.mean(np.abs(( y_true - y_pred) / (y_true + epsilon ))) * 100

return mape

def MAE(y_true , y_pred ): # mean_absolute_error_loss

return mean_absolute_error(y_true , y_pred)

def RF(X, y, test_size , random_state , n_estimators , max_depth ):# let ’s train the RF model

# split train and test

X_train , X_test , y_train , y_test = train_test_split(X, y, test_size=test_size ,random_state=random_state)

# create our rf model with best hyperparameters

random_forest = RandomForestRegressor(n_estimators=n_estimators , random_state=random_state ,max_depth = max_depth)

# train the model

random_forest.fit(X_train , y_train)

# predict using test set

y_pred = random_forest.predict(X_test)

# measure the performance of rf model using trained model

mse = mean_squared_error(y_test , y_pred)# mean squre error

mape = MAPE(y_test , y_pred)# mean_absolute_percentage_error

mae = MAE(y_test , y_pred) # mean_absolute_error_loss

return random_forest , mse , mape , mae

def best_parameter_MSE(X, y): #Mean Squared Error (MSE ): ’neg_mean_squared_error ’

# initialize TimeSeriesSplit

n_splits = 10

tscv = TimeSeriesSplit(n_splits=n_splits)

# defining parameters

param_grid = {

’n_estimators ’: [100, 150, 200, 250, 300, 400, 500],

’max_depth ’: [None , 11, 13, 15, 17, 19, 21, 23, 30, 40, 50, 60, 70, 80]

}

"""

7 methods for scoring: neg_mean_absolute_error , neg_mean_squared_error ,r2 , neg_median_absolute_error ,

neg_mean_poisson_deviance , neg_mean_gamma_deviance , neg_mean_tweedie_deviance

"""

rf = RandomForestRegressor () #let ’s say using rf

grid_search = GridSearchCV(estimator=rf , param_grid=param_grid ,

cv=tscv , scoring=’r2’,

verbose=3, n_jobs =-1)

grid_search.fit(X, y)

# output best parameters

print("Best parameters found: ", grid_search.best_params_)

print("Best cross -validation score: {:.2f}".format(np.sqrt(-grid_search.best_score_ )))

max_depth = grid_search.best_params_[’max_depth ’]

n_estimators = grid_search.best_params_[’n_estimators ’]

scoring_method = ’Mean Squared Error ’

score = np.sqrt(-grid_search.best_score_)

return max_depth ,n_estimators ,scoring_method ,score

# use for graph the difference between real obs and predicted obs

def graph_with_whole_sample(trained_model , new_data ):

predictions = trained_model.predict(new_data)

return predictions



154 Chapter C. Supplement to Chapter 4

#let ’s create a new empty performance list

performance = pd.DataFrame ()

if __name__ == "__main__":

# import data

dataset_filenames = ["BOE_raw.csv", "ERI_raw.csv", "GDP_raw.csv", "GDP_without_crisis_raw.csv", "Inflation_raw.csv", "UR_raw.csv"]

for filename in dataset_filenames:

start_time = time.time()

X, y = dataframe_to_numpy(filename)

scaler = StandardScaler ()

X = scaler.fit_transform(X)

y = scaler.fit_transform(y.reshape(-1, 1))

y = y.ravel ()

max_depth ,n_estimators ,scoring_method ,score = best_parameter_MSE(X,y)

"""

we can change the scoring methods above by using different functions

"""

test_size = 0.2

random_state = 66 # help you repeat our estimates and receive the same results

# let ’s train it

X, y = dataframe_to_numpy(filename)

scaler = StandardScaler ()

X = scaler.fit_transform(X)

y = scaler.fit_transform(y.reshape(-1, 1))

y = y.ravel ()

trained_model , mse , mape , mae = RF(X, y,test_size ,random_state ,n_estimators ,max_depth)

# calculate (RMSE)

rmse = np.sqrt(mse)

print("mse (mean squre error):", mse)

print("rmse (root of mse): {:.2f}".format(rmse))

end_time = time.time()

elapsed_time = end_time - start_time

print("running t i m e {:.2f}s".format(elapsed_time ))

# using new data to predict (here we use our whole sample)

new_data = X

# receiving predictions by using whole sample period ’s data

new_predictions = graph_with_whole_sample(trained_model , new_data)

print("This is data predicted by our model:", new_predictions)

file_path = output_path + filename

# Save the np to the CSV file

np.savetxt(file_path , new_predictions , delimiter=’,’, fmt=’%.20f’)

print("Data saved to ’{}’".format(file_path ))

#record performance

cleaned_output_path = output_path.rstrip(’\\’)

file_path_performance = os.path.join(cleaned_output_path , "performance.csv")

new_row = {"MSE": mse , "RMSE": rmse , "MAPE": mape , "MAE": mae , "Filename": filename ,

"running time": elapsed_time , "n_estimators": n_estimators ,

"max_depth": max_depth , "scoring_method":scoring_method ,"score":score}
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performance = performance.append(new_row , ignore_index=True)

performance.to_csv(file_path_performance , index=False)

print(performance)

#plot the figure

plt.figure(figsize =(8, 4))

plt.plot(y, label=’True value’, marker=’o’)

plt.plot(new_predictions , label=’Predicted value’, linestyle=’--’)

plt.xlabel(’Time’)

plt.ylabel(’Y’)

plt.legend ()

plt.title("True vs. Predicted :’{}’".format(filename ))

file_path_plot = output_path + filename + "_plot2.png"

plt.savefig(file_path_plot , dpi =300)
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Grégoire Montavon, Wojciech Samek, and Klaus-Robert Müller. Methods for interpret-
ing and understanding deep neural networks. Digital signal processing, 73:1–15, 2018.

Gilberto Montibeller and Detlof Von Winterfeldt. Cognitive and motivational biases in
decision and risk analysis. Risk analysis, 35(7):1230–1251, 2015.

Gilberto Montibeller and Detlof von Winterfeldt. Individual and group biases in value
and uncertainty judgments. Elicitation: The science and art of structuring judgement,
pages 377–392, 2018.

Don A Moore and Paul J Healy. The trouble with overconfidence. Psychological review,
115(2):502, 2008.

Don A Moore and Derek Schatz. The three faces of overconfidence. Social and Personality
Psychology Compass, 11(8):e12331, 2017.

Millett Granger Morgan, Max Henrion, and Mitchell Small. Uncertainty: a guide to
dealing with uncertainty in quantitative risk and policy analysis. Cambridge university
press, 1990.

Peter A Morris. Decision analysis expert use. Management Science, 20(9):1233–1241,
1974.



REFERENCES 169

Peter A Morris. Combining expert judgments: A bayesian approach. Management
Science, 23(7):679–693, 1977.

Saeed Moshiri and Norman Cameron. Neural network versus econometric models in
forecasting inflation. Journal of forecasting, 19(3):201–217, 2000.

Julien Mostard, Ruud Teunter, and Rene De Koster. Forecasting demand for single-
period products: A case study in the apparel industry. European Journal of Operational
Research, 211(1):139–147, 2011.

Rachael M Moyer and Geoboo Song. Understanding local policy elites’ perceptions
on the benefits and risks associated with high-voltage power line installations in the
state of arkansas. Risk Analysis, 36(10):1983–1999, 2016.

Sendhil Mullainathan and Jann Spiess. Machine learning: an applied econometric ap-
proach. Journal of Economic Perspectives, 31(2):87–106, 2017.

Emi Nakamura. Inflation forecasting using a neural network. Economics Letters, 86(3):
373–378, 2005.

Anh Nguyen, Jeff Clune, Yoshua Bengio, Alexey Dosovitskiy, and Jason Yosinski. Plug
& play generative networks: Conditional iterative generation of images in latent
space. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pages 4467–4477, 2017.

Feng Ni, David Arnott, and Shijia Gao. The anchoring effect in business intelligence
supported decision-making. Journal of Decision Systems, 28(2):67–81, 2019.

Frank Nielsen and Kazuki Okamura. On f-divergences between cauchy distributions.
IEEE Transactions on Information Theory, 69(5):3150–3171, 2022.

Gregory B Northcraft and Margaret A Neale. Experts, amateurs, and real estate: An
anchoring-and-adjustment perspective on property pricing decisions. Organizational
behavior and human decision processes, 39(1):84–97, 1987.

Anthony O’Hagan, Caitlin E Buck, Alireza Daneshkhah, J Richard Eiser, Paul H Garth-
waite, David J Jenkinson, Jeremy E Oakley, and Tim Rakow. Uncertain judgements:
eliciting experts’ probabilities. 2006.

Michael Oppenheimer, Christopher M Little, and Roger M Cooke. Expert judgement
and uncertainty quantification for climate change. Nature climate change, 6(5):445–451,
2016.

Pietro Ortoleva and Erik Snowberg. Overconfidence in political behavior. American
Economic Review, 105(2):504–535, 2015.

Harry Otway and Detlof von Winterfeldt. Expert judgment in risk analysis and man-
agement: process, context, and pitfalls. Risk analysis, 12(1):83–93, 1992.



170 REFERENCES

Anthony O’Hagan. Expert knowledge elicitation: subjective but scientific. The American
Statistician, 73(sup1):69–81, 2019.

Luigi Paciello and Mirko Wiederholt. Exogenous information, endogenous informa-
tion, and optimal monetary policy. Review of Economic Studies, 81(1):356–388, 2014.

Jitesh H Panchal, Mark Fuge, Ying Liu, Samy Missoum, and Conrad Tucker. Machine
learning for engineering design. Journal of Mechanical Design, 141(11):110301, 2019.

Jose Manuel Pereira, Mario Basto, and Amelia Ferreira Da Silva. The logistic lasso and
ridge regression in predicting corporate failure. Procedia Economics and Finance, 39:
634–641, 2016.

Uwe Peters. What is the function of confirmation bias? Erkenntnis, 87(3):1351–1376,
2022.

Elizabeth A Phelps, Karolina M Lempert, and Peter Sokol-Hessner. Emotion and deci-
sion making: multiple modulatory neural circuits. Annual review of neuroscience, 37:
263–287, 2014.

Lawrence D Phillips and Maryann C Phillips. Faciliated work groups: theory and
practice. Journal of the Operational Research Society, 44(6):533–549, 1993.

Gloria Phillips-Wren, Daniel J Power, and Manuel Mora. Cognitive bias, decision styles,
and risk attitudes in decision making and dss, 2019.

Arthur C Pigou. Mr. jm keynes’ general theory of employment, interest and money.
Economica, 3(10):115–132, 1936.

Vasilios Plakandaras, Rangan Gupta, Periklis Gogas, and Theophilos Papadimitriou.
Forecasting the us real house price index. Economic Modelling, 45:259–267, 2015.

Dale J Poirier. Intermediate statistics and econometrics: a comparative approach. Mit Press,
1995.

Markus Porthin, Tony Rosqvist, and Susanna Kunttu. Risk assessment using group
elicitation: Case study on start-up of a new logistics system. Elicitation: The Science
and Art of Structuring Judgement, pages 511–527, 2018.

Philipp Probst, Marvin N Wright, and Anne-Laure Boulesteix. Hyperparameters and
tuning strategies for random forest. Wiley Interdisciplinary Reviews: data mining and
knowledge discovery, 9(3):e1301, 2019.

John Quigley, Abigail Colson, Willy Aspinall, and Roger M Cooke. Elicitation in the
classical model. Elicitation: The science and art of structuring judgement, pages 15–36,
2018.



REFERENCES 171

Rajagopal Raghunathan and Michel Tuan Pham. All negative moods are not equal:
Motivational influences of anxiety and sadness on decision making. Organizational
behavior and human decision processes, 79(1):56–77, 1999.

Morten Arendt Rasmussen and Rasmus Bro. A tutorial on the lasso approach to sparse
modeling. Chemometrics and Intelligent Laboratory Systems, 119:21–31, 2012.

Jafar Rezaei. Anchoring bias in eliciting attribute weights and values in multi-attribute
decision-making. Journal of Decision Systems, 30(1):72–96, 2021.

Marco Tulio Ribeiro, Sameer Singh, and Carlos Guestrin. Model-agnostic interpretabil-
ity of machine learning. arXiv preprint arXiv:1606.05386, 2016.

Muhammad Suhail Rizwan, Ghufran Ahmad, and Dawood Ashraf. Systemic risk: The
impact of covid-19. Finance Research Letters, 36:101682, 2020.

Nadim N Rouhana, Anne O’Dwyer, and Sharon K Morrison Vaso. Cognitive biases and
political party affiliation in intergroup conflict. Journal of Applied Social Psychology, 27
(1):37–57, 1997.

Gene Rowe and George Wright. Differences in expert and lay judgments of risk: myth
or reality? Risk analysis, 21(2):341–356, 2001.

J Edward Russo, Paul JH Schoemaker, et al. Managing overconfidence. Sloan manage-
ment review, 33(2):7–17, 1992.

Scott Schuh et al. An evaluation of recent macroeconomic forecast errors. New England
Economic Review, pages 35–36, 2001.

Charles R Schwenk. Cognitive simplification processes in strategic decision-making.
Strategic management journal, 5(2):111–128, 1984.

Georgios Sermpinis, Charalampos Stasinakis, Konstantinos Theofilatos, and Andreas
Karathanasopoulos. Inflation and unemployment forecasting with genetic support
vector regression. Journal of Forecasting, 33(6):471–487, 2014.

Nigel R Shadbolt, Paul R Smart, J Wilson, and S Sharples. Knowledge elicitation. Eval-
uation of human work, pages 163–200, 2015.

J SHANTEAU. Psychological strategies of expert decision makers. In BULLETIN OF
THE PSYCHONOMIC SOCIETY, volume 26, pages 523–523. PSYCHONOMIC SOC
INC 1710 FORTVIEW RD, AUSTIN, TX 78704, 1988.

G Shobana and K Umamaheswari. Forecasting by machine learning techniques and
econometrics: A review. In 2021 6th international conference on inventive computation
technologies (ICICT), pages 1010–1016. IEEE, 2021.



172 REFERENCES

Karen Simonyan, Andrea Vedaldi, and Andrew Zisserman. Deep inside convolutional
networks: Visualising image classification models and saliency maps. arXiv preprint
arXiv:1312.6034, 2013.

Dorota Skala. Overconfidence in psychology and finance-an interdisciplinary literature
review. Bank I kredyt, (4):33–50, 2008.

Patrycja Sleboda and Carl-Johan Lagerkvist. Tailored communication changes con-
sumers’ attitudes and product preferences for genetically modified food. Food Quality
and Preference, 96:104419, 2022.

Jack B Soll and Joshua Klayman. Overconfidence in interval estimates. Journal of Exper-
imental Psychology: Learning, Memory, and Cognition, 30(2):299, 2004.

Yan-Yan Song and LU Ying. Decision tree methods: applications for classification and
prediction. Shanghai archives of psychiatry, 27(2):130, 2015.

Tom Stark and Dean Croushore. Forecasting with a real-time data set for macroe-
conomists. Journal of Macroeconomics, 24(4):507–531, 2002.

Richard J Taffler. The representativeness heuristic. Behavioral finance: Investors, corpora-
tions, and markets, pages 259–276, 2010.

Adi L Tarca, Vincent J Carey, Xue-wen Chen, Roberto Romero, and Sorin Drăghici.
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