Elementary-level intrusive coupling of machine learning for efficient mechanical analysis of variable stiffness composite laminates: a spatially-adaptive fidelity-sensitive computational framework
Elementary-level intrusive coupling of machine learning for efficient mechanical analysis of variable stiffness composite laminates: a spatially-adaptive fidelity-sensitive computational framework
Garg, A.
270ec1e5-3112-4a22-a6c2-1dd3dd67ab72
Naskar, S.
5f787953-b062-4774-a28b-473bd19254b1
Mukhopadhyay, T.
2ae18ab0-7477-40ac-ae22-76face7be475
Garg, A.
270ec1e5-3112-4a22-a6c2-1dd3dd67ab72
Naskar, S.
5f787953-b062-4774-a28b-473bd19254b1
Mukhopadhyay, T.
2ae18ab0-7477-40ac-ae22-76face7be475
Garg, A., Naskar, S. and Mukhopadhyay, T.
(2024)
Elementary-level intrusive coupling of machine learning for efficient mechanical analysis of variable stiffness composite laminates: a spatially-adaptive fidelity-sensitive computational framework.
Engineering With Computers.
(In Press)
Text
abc
- Accepted Manuscript
Restricted to Repository staff only until 27 October 2025.
Available under License Other.
Request a copy
More information
Accepted/In Press date: 27 October 2024
Identifiers
Local EPrints ID: 495894
URI: http://eprints.soton.ac.uk/id/eprint/495894
ISSN: 0177-0667
PURE UUID: 4b89f338-78a7-48dc-949a-030a188139d9
Catalogue record
Date deposited: 27 Nov 2024 17:32
Last modified: 28 Nov 2024 03:00
Export record
Contributors
Author:
A. Garg
Author:
T. Mukhopadhyay
Download statistics
Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.
View more statistics