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A B S T R A C T

There has been a railway renaissance in Britain since the 1990s, with passenger kilometres approximately 
doubling between 1990 and 2019. Despite changing habits caused by the COVID-19 pandemic, the latest data 
show that passenger journeys are almost back to their 2019 levels. Without building new lines (HS2 being not yet 
open and recently downgraded in scope), increased use has led to increased rates of infrastructure deterioration 
and a need for more maintenance and renewal to create the capacity on the aged existing railway network to 
meet this demand. Against this background, there have been on-going efforts in the field of railway track 
deterioration modelling to limit component failures and prolong the remaining useful life of the infrastructure. 
Analysis and modelling techniques have become increasingly detailed owing to advances in real-time data- 
acquisition and computational methods and the emergence of ‘big data’ approaches to interpretation. However, 
previous studies have generally merely confirmed the complexity of modelling track deterioration. There are few 
if any systematic reviews of deterioration models aimed at informing infrastructure managers (IM) from a whole- 
life asset management perspective. This paper addresses this knowledge gap by building on previous research to 
present a systematic taxonomy of track deterioration models, and proposing a hierarchical classification based on 
level of detail and functionality.

Introduction

Great Britain has seen a railway renaissance since the 1990s, with 
passenger kilometres approximately doubling between 1990 and 2019. 
Similar passenger and freight trends have been observed elsewhere in 
Europe (EU-27), with traffic rising on average by 3% per year between 
2015 and 2020 [1]. The global COVID-19 pandemic caused a marked 
decrease in rail usage [1,2], although numbers have since recovered and 
the latest data show passenger journeys almost back to pre-pandemic 
levels [3–5]. These trends have exposed the fragility of the network, 
revealing the long-term deterioration of the infrastructure and a sub
stantial backlog of maintenance and renewal (M&R) that needs to be 
undertaken.

To reduce track-related costs and limit component failures, scientific 
techniques such as mathematical optimization have attracted increasing 
attention in the recent years. These methods are often used to support 
the long-term assessment of decisions for systems with varying degrees 
of granularity. In the context of railway infrastructure, models can be 
roughly divided into those focused on either deterioration or recovery 

(restoration). Models in the first group are utilized to approximate and 
predict the actual ageing process in terms of condition or reliability. 
Models in the second group aim to determine the optimal times of in
spection and maintenance (or replacement), based on maintenance 
management policies. More recently, advances in real-time data-acqui
sition and computational methods have generated a growing interest in 
the development of models to efficiently support asset management. 
Additionally, a large number of studies have confirmed the complexity 
of modelling track deterioration. Key difficulties include [6]:

1) The distributed nature of the system (termed section-to-section 
variability), characterized by the existence of several covariates, 
which vary along the section lengths;

2) Lack of a complete understanding of the multiple interactions be
tween different track components;

3) How to model the effect of a renewal on track quality, it being 
commonly assumed that the track returns to an ‘as-built’ condition 
per renewal cycle regardless of any changes in train use and/or the 
comprehensiveness of the renewal;
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4) How to express actual decision-making (in maintenance modelling), 
which can vary between infrastructure manager (IM) organizations 
depending on (i) their organizational structure, (ii) budget con
straints, (iii) network constraints (track time, availability of main
tenance resources, crew scheduling), (iv) organizational cultures 
(attitudes, beliefs, and sentiments), (v) other technical and organi
zational factors (design standards, in-house or outsourcing mainte
nance contracts). The introduction of rules based on expert 
knowledge or crisp values may partial resolve this (considering both 
dimensions of time and space);

5) Lack of a complete understanding of the cause and effect relation
ships between vehicle dynamics and track quality (displaying vary
ing relationships even on sites of ‘identical’ track quality);

6) How to model different failure modes jointly (such as shock and 
deterioration failures). It is important to consider these processes 
together, as they tend to depend on each other;

7) How to jointly consider different track component M&R models, due 
to their different deterioration patterns, therefore losing important 
benefits of integrated planning through compromised M&R 
decisions.

There have been several review papers published related to tech
niques targeting different facets of the modelling process, for example: 
empirical track settlement equations [7–9], data collection [10], dete
rioration prediction modelling [11,12], maintenance planning/sched
uling [13–20], and expert/decision support system (DSS) frameworks 
[16,21], as well as reviews considering a mixture of the above [22–24]. 
The main purpose of this review is to build on previous relevant studies 
to provide a taxonomy of the existing deterioration modelling literature, 
which can then be enhanced by a summary of the latest research prog
ress. Comments on the merits, limitations and applications of existing 
modelling approaches are also provided.

Section 2 of this paper presents an overview of selected track dete
rioration models in the academic literature, and proposes a hierarchical 
classification based on their level of detail, functionality, and modelling 
technique used. This section also provides a description of these models, 
emphasizing recent developments and setting the scene for further 
research. Section 3 presents a discussion of future research challenges.

Railway Track Deterioration Models

Some authors divide track geometry deterioration into three phases, 
bed-in, useful life, and wear-out [23]. The first phase starts immediately 
after tamping as the track beds in and the ballast grains pack closer 
together to form a structure able to stably support the track super
structure on a long-term basis [7,8,25,26]. This phase is relatively fast 
and the deterioration in geometry can be highly variable along the track, 
which makes it hard to model. The second phase commences after some 
time at a slower rate, with the deterioration path following an approx
imately linear relationship with time (or cumulative load) [7,25,26]. 
This is governed by numerous factors, such as vibration, deterioration, 
deviatoric stresses, and subgrade stiffness [7,27–29]. In the third and 
final phase, the interval required for maintenance becomes too short to 
be economically viable as a function of time; thus, entering this phase 
should be avoided [30].

In terms of fundamental mechanisms in operation within the ballast, 
it is suggested by Grossoni et al. [9] that the initial bedding-in stage is 
associated primarily with ballast densification (reduction in void ratio). 
Settlement magnitude and variability could both be reduced substan
tially by the adoption of a better (more controlled and precise) method 
of ballast bed preparation than tamping. The second stage is largely 
associated with lateral spread. Settlement could be minimized by lateral 
containment of the ballast or reducing the shoulder slope. The final stage 
may be associated with ballast grain degradation, possibly as a result of 

Nomenclature

Acronym Description
ANFIS Adaptive Neural network-based Fuzzy Inference System
ANN Artificial Neural Networks
AR Autoregressive
ARMA Autoregressive Moving Average model
BBI Ballast Breakage Index
CAR Conditional Autoregressive
CART Classification and Regression Tree method
DEM Discrete Element Method
DSS Decision Support System
EMGT Equivalent Million Gross Tons
FCM Fuzzy C-Means
FE Finite Element
FIS Fuzzy Inference System
GM(s) Grey box Model(s)
IG Inverse Gaussian
IM Infrastructure Manager
KPI Key Performance Indicator
LCC Life Cycle Costs
M&R Maintenance and Renewal
MCMC Markov Chain Monte Carlo
MCS Monte Carlo Simulation
MLP(s) Multilayer perceptron(s)
MPE Mean Percentage Error
MSE Mean Squared Error
MVA Multivariate Analysis
PN Petri Nets
PSD Power Spectral Density

SD Standard Deviation
SFE Stochastic Finite Element method
SVM Support Vector Machines
TAN-TQI Bayes-track Quality Index
TGC Track Geometry Car
TQI Track Quality Index
USP(s) Under Sleeper Pad(s)
VTI Vehicle-track Interaction
Symbol Definition
Df Deterioration factor
Es Young’s modulus of the subgrade
Fy Yield force
S1 Settlement at the end of the first load application
SN Accumulated settlement
ks Reaction modulus
p ʹ Mean effective stress
qf Deviatoric stress at failure
qmax Maximum deviatoric stress
sN Settlement rate
su Ultimate stress
sy Yield stress
ε1 Strain at the end of the first load application
εN Strain
σu Ultimate (failure) vertical stress
σy Yield stress
H Hardening stiffness
N Number of load cycles/Load cycle
T Variation track stiffness
q Deviatoric stress

G. Rempelos et al.                                                                                                                                                                                                                              Transportation Geotechnics 49 (2024) 101377 

2 



mechanical damage caused by tamping.
Track settlement may also be attributed to settlement of the subgrade 

or interpenetration between the ballast and the subgrade. However, at 
least on a well-performing track, most plastic deformation occurs in the 
ballast itself [31,32].

By understanding and analysing track deterioration processes, an IM 
can make appropriate decisions on scheduling optimization of inspec
tion intervals, estimate residual asset life, calculate life cycle costs (LCC), 
and determine suitable times and intervals for renewal interventions 
[33].

Broadly, approaches to deterioration modelling can be classified into 
mechanistic, empirical, and hybrid models (Fig. 1).

Mechanistic Models

Mechanistic or physical models are based on a priori physical infor
mation. This involves establishing, by theory or testing, the underlying 
mechanical behaviour and properties of the elements constituting the 
railway track and railroad vehicles [34]. Most studies focus on the 
trackbed as differential settlement causes most of the vertical geometry 
deterioration.

Despite extensive research, the mechanical behaviour and deterio
ration mechanisms of track geomaterials (ballast and subgrade) are 
difficult to capture in a generic model because of the multi-faceted na
ture of potential mechanisms, locally differing circumstances and a lack 
of comprehensive data. Ballast deterioration is generally defined as the 

combination of accumulated permanent deformation and grain deteri
oration. It is the product of complex interdependent mechanisms at the 
grain scale. At a macro-scale, four processes govern plastic deformation: 
densification, spreading, grain deterioration, and subgrade issues 
including ballast-foundation interpenetration [7,9,35–37].

Permanent settlement depends on multiple factors, which may be 
grouped into three major categories: (1) characteristics of the constitu
ent grains (size, shape, mineralogy and mechanical properties), (2) bulk 
properties of the granular assembly (grain size distribution, fines con
tent, void ratio and density, and possibly degree of saturation), and (3) 
stress state (past, current and future magnitudes of stresses and 
vibrations).

Owing to the relatively large size of ballast stones, standard 
geotechnical laboratory tests and apparatus (for example, triaxial and 
direct shear tests) are unsuitable. In response, researchers often build 
bespoke or individual large laboratory test facilities, which makes 
comparison between results problematic. Moreover, typical laboratory 
tests are not easily able to replicate the operating stress conditions of 
ballast (for example, rotation of principal stresses during loading, 
attenuation of in situ stresses and loads with depth, rapid or dynamic 
loading).

Mechanistic models suffer from an inability to cope with the uncer
tainty of the deterioration path to different heterogeneous factors [38]. 
However, they may highlight the leading variables affecting ballast 
settlement (for example, ballast compaction state, rail seat load, fouling 
content, foundation stiffness). Recent research has attempted to 

Fig. 1. Hierarchical classification of railway track deterioration prediction models based on their level of detail, functionality, and modelling technique (based on an 
elaboration of Ferreira and Murray [17]).
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investigate the development of differential settlement using mechanistic 
models to simulate dynamic vehicle-track interaction (VTI). VTI models 
provide estimates of the response of the track (dynamic sleeper deflec
tion, sleeper-ballast force, stresses propagated into the trackbed) for use 
as iterative input to mechanistic models either implicitly (for example, 
through a constitutive model [39]) or explicitly (for example, through a 
settlement equation [40–44]) to calculate the accumulation of differ
ential permanent settlement. The VTI and mechanistic track settlement 
models are run iteratively to update and output the track level with 
number of load cycles [40,43]. Mechanistic models may be distin
guished into discrete element, continuum mechanics, empirical, and 
semi-empirical (Fig. 2).

Discrete Element
The discrete element method (DEM) is perhaps the most funda

mental approach for simulating the mechanical behaviour and deterio
ration of a granular material. The granular layer is represented as an 
assembly of two- or three-dimensional elements interacting according to 
a specified contact model. Each grain position, the potential contact 
points, and the force exchange with the surrounding elements are 
calculated at each calculation step [45]. DEM allows the quantification 
of ballast behaviour at the grain scale, which cannot easily be directly 
measured experimentally. For example, it permits the visualisation of 
the distribution of local stresses through force chains to better under
stand the effect of gradation, grain characteristics (size, shape and 
texture), fouling content and intergrain friction in the evolution of 
permanent settlement. It has also been used to investigate the influence 
of ballast gradation [46,47], to better understand the effect of USPs 
[48,49] and sleeper material [50] on ballast settlement.

However, there are some limitations to its use: (i) the computation
ally intensive nature of the analysis, (ii) the lack of an established 
methodology to determine the grain properties, (iii) the limited 
knowledge surrounding the grain-to-grain interaction mechanisms, (iv) 
the difficulty in capturing the irregular and variable shape of ballast 
stones, and (v) the limited understanding of granular material behaviour 
under dynamic loadings.

The limits and ranges of acceptable simplifications to adopt in the 
representation of stone geometry, physical properties and interactions 
are uncertain. At the same time, simplifications are needed to minimise 
both the calibration and computational time. Capturing ballast stone 
geometry mathematically is challenging owing to their irregular and 
variable size, shape and texture. Early applications represented grains as 
spheres [37,45]. Later applications, aided by imaging technologies such 
as X-ray tomography, proposed more advanced mathematical formula
tions and empirical indexes to quantify their geometrical characteristics. 

Ballast grains have been represented using circle/sphere pairs [51,52]
and clusters [53,54], superquadratics [55,56], ellipses/ellipsoids 
[57–59], polygons/polyhedrons [60–64] and potential particles 
[65–68]. Lumping together spheres to form clusters is the easiest 
approach but also the least efficient as it requires many spheres to obtain 
a realistic shape [69]. However, Ni et al. [51] and Powrie et al. [52]
show that pairs of differently sized spheres bonded together can give 
reasonably realistic soil-like behaviour. Each cluster moves rigidly with 
the sphere-to-sphere bond strength within each cluster set effectively to 
infinity. However, setting a threshold value of bond strength, after 
which spheres separate, offers a way of simulating internal grain 
breakage [48,70].

More advanced mathematical representations may better represent 
angularities, but this may be at the expense of greater computational 
time, particularly for detecting and calculating grain contacts [71]. 
Nevertheless, in simulations with detailed shape modelling a certain 
degree of simplification is unavoidable. For example, effects resulting 
from the macroscopic grain texture (surface roughness) cannot be 
considered in the grain shape and are thus accounted for in modelling 
grain contacts (for example, by adapting the inter-grain coefficient of 
friction).

Intergrain contact forces comprise normal, tangential, and rolling 
components [72]. The choice of model depends on the chosen element 
shape. Commonly used models include the linear elastic (L) and 
nonlinear elastic Hertz-Mindlin (NL). However, research has shown that 
these cannot reproduce the suppression of dilation and reduction in peak 
strength that occur in triaxial tests on specimens of a given void ratio as 
the cell pressure is increased. However, this can be achieved through the 
introduction of damage models [69] or breakage criteria [73,74]. Con
tact parameters are calibrated based on the macroscopic behaviour of 
ballast (shear strength), owing to the challenges in reproducing and 
monitoring (experimentally) the friction forces between individual 
stones.

Owing to its high computational time demand, a DEM analysis is 
applicable for studying small track sections (usually up to three sleepers) 
and/or for a few loading cycles (usually between 1,000 and 5,000). A 
typical application of DEM is to mimic the ballast behaviour observed 
during triaxial tests under monotonic [68,75] or cyclic [54,76] loading, 
box [77,78] or full-scale cyclic tests [79]. Some studies have extended 
DEM to dynamic analysis or combined them with FE (finite element) 
models (Section 2.1.2) to consider longer track sections [80–84] where 
the ballast is modelled using DEM and the rest of the track using FE.

Continuum Mechanics
In continuum mechanics models, the material representing the 

Mechanistic
Empirical

Mechanistic
Analytical

Mechanistic Discrete
Element

Mechanistic
Continuum

Mechanics Models

No. of cycles

Track conditions

Load conditions

Logarithmic

Exponential

Mechanistic models

Fig. 2. Mechanistic models.
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ballast layer is assumed to be continuously distributed. Mechanical 
properties are averaged and defined within its body at every point 
(ignoring intergrain interactions). The suitability of this simplification is 
debatable given that a single ballast grain (typically between 31 to 63 
mm in size) occupies a significant proportion of the depth (usually 
around 300 mm) of the ballast bed. Ballast deformation is computed 
through constitutive models that generally relate stress to strain.

Usually, plastic settlement per cycle of load varies from millimetres 
on a newly tamped or poorly performing track to nanometres on a well 
performing bedded-in track [8,85]. Classical soil mechanics theories 
(elasticity, Cam clay and Mohr-Coulomb and Drucker-Prager plasticity) 
are unsuitable for modelling such small settlements, their variations and 
gradual accumulation over potentially millions of cycles.

To be suitable for cyclic loading analysis, models need to account for 
long-term mechanisms such as ratcheting (the accumulation of plastic 
deformation with number of loading cycles at a constant or increasing 
rate) and shakedown (the accumulation of plastic deformation with 
number of loading cycles at a decreasing rate). Experimental evidence 
suggests different long-term mechanisms depending on the stress, which 
may be captured by the shakedown theory [86–88]. Some researchers 
have proposed constitutive equations to reproduce the cyclic perfor
mance of ballast, usually using empirical or semi-empirical equations to 
account for shakedown and ratcheting [89–95].

Suiker and de Borst [89] proposed a mechanistic model, resembling 
the Perzyna [96] viscoplastic model, based on a shakedown concept. 
Plastic deformation is assumed to be generated by frictional sliding and 
volumetric compaction mechanisms, and their evolution with loading is 
assumed to follow a power law. Drucker-Prager cones delimit failure 
planes (frictional and tensile). The model was calibrated using cyclic 
triaxial test data and integrated into a 2D FE plane-strain model, and 
later extended into a 3D framework by Elsworth and Yasuhara [97], and 
applied in a dynamic VTI analysis by Varandas et al. [39].

Salim and Indraratna [90] proposed an elasto-plastic model based on 
critical state concepts, which incorporates the effect of grain breakage 
on ballast settlement. They proposed a semi-empirical relation between 
the deviatoric and mean stresses, based on an energy balance and 
assuming that a portion of energy dissipates through breakage [98]. 
Niemunis et al. [93] and Nguyen et al. [94] used a hypoplastic model 
[99] with intergranular strain [100] and the Matsuoka and Nakai [101]
failure criterion. Hypoplastic models are superficially advantageous (but 
arguably less scientifically rigorous) because they do not separate 
deformation into elastic and plastic components or define a yield sur
face. In Niemunis et al. [93] the accumulated plastic deformation is 
defined empirically as the product of six functions accounting for the 
peak strain amplitude, number of load cycles, average mean pressure 
and stress ratio, void ratio and change of the orientation of the strain 
loop. However, using the strain amplitude as a principal variable might 
lead to computational problems and errors in dynamic analysis, where 
strain oscillates and is formed by small and large amplitudes [95].

François et al. [95] assumed the same plastic deformation mecha
nisms as Suiker and de Borst [89]. Frictional sliding was again derived 
using the Drucker-Prager criterion, and empirical equations were used 
for the volumetric compaction, with the deviatoric and volumetric 
plastic strain rates decreasing exponentially with accumulated plastic 
deformation. The model was calibrated with triaxial test data and 
employed in a 3D dynamic FE soil-structure problem.

Pasten et al. [102] calculated the volumetric and shear plastic strain 
in the first cycle using modified Cam clay [103] and used them as an 
input to a set of empirical equations for estimating the evolution of 
plastic strain with cumulative loading. Sun et al. [104] proposed a 15- 
parameter model with a nonlinear function relating a ballast breakage 
index (BBI) to the accumulated plastic deviatoric strain and initial 
effective mean stress. Sun et al. [105] combined bounding surface 
plasticity theory (Cam-clay) with fractional calculus to reduce compu
tational time.

Continuum models are advantageous as they can be used alongside 

FE. This enables the practitioner to test stress–strain relationships and 
classical geotechnical concepts (for example, critical state theory); also 
to investigate the effect of state parameters (such as void ratio) on 
ballast settlement. Nonetheless, they have several disadvantages. First, 
they require a large number of parameters in their definition, which 
must often be obtained using nonstandard geotechnical laboratory tests 
(for example, hollow cyclic cylinder and large cyclic triaxial tests) and in 
some cases are not directly independently measurable. Secondly, the 
calibration process is time-consuming and not straightforward as there 
may be more than a single set of parameter values that fit the underlying 
laboratory data set.

Empirical equations are often integrated with constitutive models to 
account for long-term mechanisms such as ratcheting and shakedown. In 
conclusion, although continuum models are generally less computa
tionally expensive than DEM, their application is still limited to short to 
medium term analysis (100 to 100,000 cycles). Also, further research is 
needed to test these models in real 3D dynamic conditions.

Mechanistic-Empirical
Mechanistic-empirical models are usually derived by fitting a set

tlement curve from the experimental data expressed in terms of one or 
more measuring variables. A common feature is that the permanent 
settlement of the ballast increases with the number of load cycles N; and 
in most (but not all) cases at a decreasing rate. Otherwise, most of the 
equations fall into one of four categories, which assume that the rate of 
development of permanent settlement depends on one of (i) track and 
traffic characteristics [25,106], (ii) the load at the superstructure/sub
structure interface [7,25,40], (iii) the peak elastic sleeper/rail de
flections during a (possibly the initial) load cycle [107,108], and (iv) 
stress state (deviatoric stress q and mean effective stress p’) at a repre
sentative depth in the track support system (ballast and/or subgrade) 
[109–112]. Settlement equations have been formulated in terms of 
accumulated settlement, SN, or strain, εN, at load cycle, N (but could also 
be expressed in terms of cumulative loading). Other expressions use the 
concept of settlement rate, sN, at a load cycle, N, defined as the ratio of 
the increment of settlement to the increment of number of cycles.

The settlement, SN, or strain, εN, at load cycle N is usually defined to 
depend on the permanent deformation (or strain) at the end of the first 
load application, S1 (or ε1). Both the initial settlement, S1, and settle
ment rate, sN, are strongly influenced by the initial level of ballast 
compaction and the stress conditions (cyclic vertical load and confining 
stress). Some authors suggested a range of values for S1 (or ε1) 
depending on the state of compaction and load applied, obtained from 
triaxial or full-scale tests [113–115]. Others attempt a more general 
interpretation, by defining S1 as a function of the (constant) load applied 
[116,117], or give different factors related to the track type and con
dition [118].

Some settlement equations are defined using two or more terms 
based on the assumption that the evolution of settlement with number of 
load cycles can be distinguished into two [7,8,26,108,119–121] or 
possibly three stages [91]. Mechanistic-empirical equations expressed as 
a function of the number of cycles are usually of logarithmic, expo
nential, hyperbolic, or power form.

The logarithmic equations fit the short-term but not the long-term 
settlement, as highlighted, for example, by Chrismer and Selig [122]
and Abadi et al. [22]. An example of a settlement equation that can 
successfully reproduce the same curve shape is given by Saussine et al. 
[123]. However, this does not replicate long-term settlement; this is 
better represented by the exponential equation of Sato [25], which in
cludes a linear term, γN.

Settlement equations based only on the number of load cycles are not 
suited to predicting track geometry deterioration because they lead to a 
uniform settlement along the length of the track.

Mechanical empirical equations for settlement expressed as a func
tion of track and traffic characteristic were proposed by Sato [25] and 
Hecke [106]. These were obtained by analysing track data of vertical rail 
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level acquired by monitoring one or more track sections over a certain 
time period and establishing correlations between inputs (traffic and 
track conditions) and output (track settlement). While such an approach 
considers actual data, it does not give insights into the underlying 
mechanisms involved in track settlement. Other issues include the dif
ficulty of defining (adequately) the track characteristics and conditions 
(sleeper dimensions, ballast depth, soil types). Additionally, the scarcity 
of available field data limits the extent to which different factors 
affecting track settlement and its variation along the track length are 
accounted for.

Formulae based on the load at the superstructure/substructure 
interface [7,124] or peak elastic sleeper deflection [108] have been 
applied in iterative VTI simulations to estimate the development of 
differential settlement along the track, and hence maintenance re
quirements. Examples of such approaches are given by [42–44]. The 
state parameters used are the maximum stress (or force) under the 
sleeper, and maximum elastic sleeper deflection, respectively.

To allow explicitly for a settlement rate that reduces with the number 
of load cycles, Varandas et al. (2014) proposed a function, h(F,N) ac
counting for the loading history and the amplitude of the rail seat load to 
control the settlement rate. This was used in a 2D VTI dynamic model 
and demonstrated with reference to 7 months of field data from track 
crossing a culvert [125].

Formulae based on these two alternatives (load at the superstruc
ture/substructure interface and peak elastic sleeper deflection) give 
different trends in the calculated rate of development of permanent 
settlement with number of loading cycles as the track support system 
stiffness is increased. This arises because a stiffer track support system 
results in increased sleeper-ballast pressure (owing to reduced load 
spreading along the track), but reduced sleeper dynamic displacements. 
Hence an increased rate of development of permanent settlement with 
increasing track support system stiffness is calculated by empirical 
equations assuming that settlement increases with load, but a reduced 
rate by formulations assuming that settlement increases with elastic 
deflection. The second – a trend of reducing permanent settlement with 
increasing support stiffness – is more consistent with general empirical 
evidence. The issue is discussed with reference to a threshold stress 
approach to track settlement calculation by Grossoni et al. [9].

Some settlement equations [107,126,127] use the subgrade stiffness 
(elastic modulus) as the controlling parameter. The variation of track 
stiffness, T (or reaction modulus ks or Young’s modulus of the subgrade 
Es) from a hypothetical reference value Tref (or ks,ref or Es,ref) is used to 
control the sensitivity to settlement at a number of cycles, SN. Kennedy 
et al. [128] and Woodward et al. [107] calibrated their equations using 
data from full scale cyclic loading tests, reproducing the settlement 
evolution of a single sleeper.

Empirical formulations that consider the stress state in the trackbed 
layers provide a clear linkage to established soil mechanics behaviour. 
For a given soil or granular material, the plastic strain generally in
creases with the ratio q/p’ above a threshold value [129–131]. The 
stress parameters p’ and q also relate more directly to the bulk and shear 
deformations of the material, respectively. ORE [109] proposed an 
equation in which the permanent strain after the first cycle is propor
tional to the porosity of the ballast (n) and the magnitude of the 
deviatoric stress (qmax).

The equations given by Sayeed and Shahin [112], based on Li and 
Selig [132], relate the maximum deviatoric stress qmax to the deviatoric 
stress at failure from static compressive triaxial tests, qf, such that a 
higher stress ratio qmax/qf results in greater permanent strains. Another 
approach assumes that the plastic strain is proportional to the distance 
between the maximum deviatoric stress applied (qmax) and the failure 
line; for example, Ramos et al. [111], based on Chen et al. [133]. The 
problem with these definitions is that the failure line may change with 
cumulative loading due to ballast grain degradation and breakage [134].

Permanent settlement originates mainly from the ballast on well 
performing track built to modern standard. However, on the most 

problematic sites, there is usually a more significant contribution from 
the subgrade. Problematic sites include locations where dynamic 
stresses are high (for example, bridge transitions) or where the subgrade 
is highly compressible (for example, peat) or otherwise volumetrically 
unstable (such as a high plasticity clay subject to seasonal cyclic varia
tions in soil water content). Few iterative VTI studies incorporating the 
evolution of track settlement as the sum consider the ballast and sub
grade explicitly. Varandas et al. [40] and Wang and Markine [43]
approximated the contribution of the subgrade settlement as a linear 
function of time (or load cycles). Shan et al. [135] and Punetha et al. 
[136] evaluated subgrade settlement using empirical equations based on 
the stress state in the subgrade calculated with a VTI model. A useful 
review of mechanistic-empirical settlement models for subgrade mate
rials is given by Ramos et al. [137].

Semi-Empirical
Recently, a new type of modelling approach has been proposed, 

based on a one-dimensional constitutive equation relating the vertical 
sleeper-ballast force (or stress) to the elastic and plastic settlement at 
sleeper level. This type of ‘macro-model’, used in geotechnical engi
neering to simulate soil-structure interaction (e.g., Houlsby et al. [138]), 
captures the entire response of the sleeper/trackbed support in a single 
formulation. The main advantage over traditional empirical settlement 
equations is that they are time-incremental (that is, they can be inte
grated into a time step analysis by means of a numerical integration 
algorithm) rather than cycle-incremental (only able to be used at the end 
of a time step analysis at the end of a given cycle such as the passage of a 
train/bogie/wheel). Thus, they can be implicitly integrated into VTI 
models. In this case the settlement (or strain) rate is a function of loading 
and plastic parameters.

Examples of such approaches given by Grossoni et al. [9] and 
Ognibene et al. [139] use the vertical stress in the ballast and the 
sleeper-ballast force as driving parameters, respectively. Plastic pa
rameters are yield (sy) and ultimate (su) stresses in Grossoni et al. [9]; 
and a yield force (Fy) and hardening stiffness (H) in Ognibene et al. 
[139]. These change with cumulative plastic settlement (or strain) to 
account for ratcheting. Specification of a single threshold value 
(whether force or stress), which delimits an elastic from a plastic regime, 
may be not realistic as irreversible strains in granular materials develop 
even at small strains. More laboratory tests are needed to assess the 
cumulative ballast settlement as a function of varying axle load and 
loading pattern.

In Grossoni et al. [9] a deterioration factor, Df, is integrated into the 
definition of σy and σu so that a lower soil stiffness leads to a higher track 
settlement rate, in accordance with general experiential evidence. 
Including a deterioration factor, Df, in the definition of the yield stress 
seems reasonable. However, owing to the lack of laboratory and field 
data, relationships between these factors have not yet been validated. A 
simple linear evolution of Df with the subgrade Young’s modulus, Es, 
may not be realistic.

Empirical Models

Track geometry behaviour has uncertainty as one of its prime char
acteristics, which by their nature the approaches discussed so far are 
unable to capture. It is important to incorporate uncertainty into dete
rioration modelling to facilitate more comprehensive decision-making. 
This requires the use of concepts from statistics, such as probability 
theory and stochastic modelling processes. A drawback with these ap
proaches is their heavy reliance on large data sets. Recent developments 
in condition-monitoring techniques [140] have enabled access to so- 
called ‘big data’ [141] that can deliver valuable information and 
reveal the underlying condition of the track geometry. Real-time data- 
acquisition complements and enhances recent developments in 
computational methods. Against this background, there is an ever- 
growing trend towards the application of statistical techniques for 
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modelling the deterioration of track geometry.
Statistical models (Fig. 3) are structured from a given set of inputs 

and outputs, formulating relationships between them by utilising a large 
amount of data [34,142]. They constitute a powerful class of models 
able to account for many descriptors [23].

The main advantage of statistical models is that, being rooted in real 
data, an accurate estimation of the track deterioration profile can be 
obtained [142,143]. However, the absence of a mechanical background 
of any sort in relation to track components and their interactions with 
influencing factors (that is, a lack of insight into the underlying physics) 
can lead to invalid results [38,143]. Other pitfalls include spurious re
gressions and ecological fallacies. Yousefikia et al. [142] posit that sta
tistical models should be preferred over the mechanistic ones when 
sufficient data are available. According to Jovanović et al. [144], to 
develop a robust deterioration model the following data requirements 
should be addressed: (1) layout and operating data, (2) superstructure 
and infrastructure inventory/register, (3) condition measurements, and 
(4) work history. They posit that a (reasonably) accurate long-term track 
quality prediction is feasible through the identification of condition 
parameters, suitable curves for deterioration behaviour, essential and 
temporal activities, and a rectification model.

Stochastic Process Methods
A significant class of statistical approaches for modelling failure 

progression are the stochastic approaches, including the Wiener, 
Gamma, and the Inverse Gaussian (IG) processes. Of these, the most 
commonly used model is the Gamma process [145]. An important 
advantage of Gamma processes is their ability to model the temporal 
variability associated with the evolution of deterioration [145]. 

However, they are unsuitable for modelling damage from sporadic 
shocks [145,146], or for making long-term predictions [147]. Thus, this 
approach is more suitable for modelling component life between indi
vidual maintenance cycles.

Fundamentally, the Gamma process is stochastic with independent, 
non-negative increments; hence, like the compound Poisson process, it is 
a jump process. The primary distinction between the two is that the 
Poisson process has a finite number of jumps in finite time intervals, 
whereas the Gamma process has an infinite one (number of jumps).

Meier-Hirmer et al. [148] adopted the Gamma process for modelling 
the changes in standard deviation (SD) of the longitudinal level. They 
postulated a dependency between environmental variables, such as 
ascending and descending gradients, tonnage, ballast type, and curves 
with the deterioration rates mean and variance. They applied the clas
sification and regression tree method (CART) to predict the geometry 
deterioration of individual track sections, and subsequently classify 
them depending on their deterioration behaviour. The Gamma process 
evolves monotonically, which is useful when the deterioration behav
iour is in the form of cumulative damage and wear accumulating in a 
sequence of tiny increments over time [145,149–151]. However, if the 
path of deterioration follows both positive and negative increments, it 
may lead to inaccuracies [150,151]. In such circumstances, the Wiener 
process may be employed. When the objective is to model the evolution 
of a deterioration path characterised by a linear increase over time with 
random noise, a stationary Wiener process is particularly useful [152]. 
However, this approach is unsuitable in modelling deterioration that 
proceeds in a strictly monotonic fashion or involves jump behaviour. 
Moreover, its underlying property of time homogeneity, makes it invalid 
for modelling deterioration processes that do not possess this property 
[150]. Another important issue is that modelling deterioration through 
either the Wiener or the Gamma process implies a memoryless behav
iour, so that the arrival to any future states of the model depends entirely 
on its current state, with the associated evolution being independent of 
its past behaviour [150]. This property restricts how the degraded state 
of geometry can account for the maintenance history. In essence, Wiener 
processes are mostly suitable for modelling non-monotonic deteriora
tion resulting from reduced intensity of use, minor repair, or self-healing 
[151].

Zhu et al. [153] modelled irregularities in the alignment and vertical 
profile as Gaussian random processes. They showed that methods such 
as power spectral density (PSD) analysis, and cross-level statistics about 
irregularities of track geometry could be used to enhance current ap
proaches to track deterioration modelling.

An important issue for deterioration modelling is the simultaneous 
consideration of different measures of track condition. Mercier et al. 
[154] used a bivariate Gamma process constructed by trivariate reduc
tion to model the development of two interdependent deterioration in
dicators, longitudinal and transversal level.

Vale and Lurdes [155] were the first to use the Dagum distribution in 
railway track deterioration modelling. They demonstrated that it fits 
well the track geometry deterioration process in terms of longitudinal 
level. They classified the changes in longitudinal level into three speed 
classes and inspection intervals.

Sedghi et al. [156] developed a DSS framework integrating track 
condition prediction at the tactical level based on a stochastic Wiener 
process and adopted the IG distribution to calculate the probabilities of 
surpassing certain predefined deterioration thresholds. This choice was 
made based on the argument that the stochastic process model will not 
provide repeatable deterioration point estimates, thus, the use of the IG 
distribution for calculating these thresholds could reduce the variability 
of modelling estimates.

While stochastic processes can capture the time variability of dete
rioration and may lead to a more robust maintenance plan, they also 
have some drawbacks [23]. As highlighted by Soleimanmeigouni et al. 
[23], inaccuracies may arise from their use in cases where the model 
mean is significantly lower than its variance.

Regression Models

Exponential 
regression

Linear regression

Stochastic Process

Neuro-fuzzy

Grey Box Model

Data Mining

Artificial Neural 
Networks

Hierarchical 
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Fig. 3. Empirical models.

G. Rempelos et al.                                                                                                                                                                                                                              Transportation Geotechnics 49 (2024) 101377 

7 



Path Analysis Methods
A different statistical tool that has been extensively used in deteri

oration modelling, and more specifically to identify the effect of 
different influencing factors on it, is Path Analysis. Such techniques can 
improve our understanding of the selection of suitable parameters for 
modelling track geometry deterioration.

A similar tool is multivariate analysis (MVA), which is often used to 
identify relationships among two or more variables of interest. Specif
ically, in geometry deterioration studies, this technique is employed for 
examining the influence of heterogeneous parameters along the track on 
geometry deterioration [23]. For example, Lyngby [157] proposed a 
method of evaluating track deterioration for geometry irregularities. He 
adopted an MVA regression model to determine the underlying re
lationships between different influencing parameters and the track 
deterioration variable. He modelled both the first and second phases of 
ballast settlement using exponential functions. Since different track 
sections are not identical, he segmented the track into homogeneous 
sections, clustered depending on their influencing parameters. Based on 
his analysis, he concluded that (1) axle load influences deterioration rate 
with a nonlinear relationship being identified, (2) deterioration after 
tamping is related to the tamping history since the last renewal, (3) light 
rail tracks settle at a higher rate than heavy ones, (4) the rate of dete
rioration is more rapid following heavy rainfall, and (5) clayey soils 
settle faster than others.

Sections of track may exhibit different deterioration behaviour even 
though they may have similar influencing variables. The most 
commonly adopted track segmentation approach is the division along its 
length into short sections of fixed length. However, since different sec
tions may display different behaviour, the deterioration of each should 
be modelled separately. Alternatively, track segmentation can be based 
on similar track, traffic, maintenance history, and environmental con
ditions. Guler et al. [158] proposed a deterioration prediction model for 
different track geometry parameters utilising MVA. They first segmented 
the track into homogeneous sections based on their track structure 
characteristics, such as age, cant, curvature, rail type, and length, 
gradient, and speed. They then modelled the deterioration rate in terms 
of different independent variables by adopting a linear multiple 
regression model.

Westgeest et al. [159] modelled track deterioration and rectification 
processes using a regression method. They formulated a key perfor
mance indicator (KPI) by considering a combination of track geometry 
parameters. The KPI was considered as the response variable, with the 
examined variables being two forms of tamping (mechanical and 
manual), and different types of subsoil, engineering structures, tonnage, 
and sleeper. Their analysis demonstrated the ability of the model to 
reproduce changes in KPI over time, but revealed its inefficiency in 
predicting track behaviour. They then argued that the different deteri
oration rates on different segments of track depended on the presence of 
several heterogeneous factors. This work further emphasises the 
importance of, and the need to consider, section-to-section variation in 
track deterioration modelling.

Similarly, He et al. [160] modelled the relationship between various 
influencing parameters and the track deterioration rate by means of a 
statistical exponential model for each geometry defect. Their results 
showed different deterioration rates for different types of geometry 
defects, with most, but not all, of them exhibiting higher sensitivity to 
traffic volume.

Data-driven Methods
A wide range of data-driven approaches has been adopted in dete

rioration modelling, including data-driven statistical methods, filtering, 
fuzzy, and machine learning.

Machine Learning Methods. Machine learning methods can be sub
divided into support vector machines (SVM), Bayesian networks, and 

artificial neural networks (ANNs) [149].
Artificial Neural Networks. ANNs are biologically inspired computa

tional models of the human brain. By using a large number of input 
parameters, these models can make predictions of the approximate 
behaviour of the track over time. They comprise a large number of 
simple processing elements termed neurons, coupled to each other by 
numerous direct links known as connections. These are associated with a 
synaptic weight incorporating information utilised by the networks to 
solve the given problem at hand. In turn, by using an activation function 
(also known as transfer or threshold function), each neuron generates an 
output. The activation function expresses the underlying relationship 
existing between input and output parameters of a node and a network 
[161].

Since their introduction, the most extensively and successfully 
applied approach is the multilayered neural network, which is trained in 
a supervised manner. This method was adopted by Guler [162] to model 
the deterioration of different track geometry parameters. He divided the 
examined railway line into homogeneous analytical segments of uni
form properties and used linear regression to evaluate the deterioration 
rates between pairs of successive maintenance actions. His study 
demonstrated that ANNs are capable of modelling and predicting the 
deterioration of track geometry (as demonstrated by the R2 values 
produced).

Sadeghi and Askarinejad [163] developed an ANN model to establish 
correlations between geometry irregularities (sourced from automated 
inspection data) and structural defects, with a view to overcoming the 
collection cost and time-consuming visual inspection of data. In their 
study, multilayer perceptrons (MLPs) with one hidden layer were used. 
These were trained using the error back-propagation algorithm, which is 
a supervised learning rule [163]. The model inputs were chosen as the 
SD of different track geometry indicators (i.e. gauge, profile, alignment, 
and twist), and the output was the density of structural defects. Instead 
of a single neural network, four different networks were developed, each 
of which was purposed for the prediction of defects of a different 
structural component, to obtain better accuracy.

More recently, Khajehei et al. [164] developed an ANN model to 
predict the rate of track geometry deterioration of the longitudinal level. 
They evaluated the performance of their model by conducting an 
extensive case study using data collected from Swedish railway network. 
Based on their results and performance (R2 and mean squared error 
(MSE)) of their model, they concluded that ANNs can successfully cap
ture section-to-section variability in track geometry deterioration rates. 
Furthermore, their application of the Garson’s algorithm was proven 
useful on capturing the relative importance of different variables on 
track geometry deterioration. Their analysis demonstrated that param
eters such as maintenance history, post-tamping deterioration level and 
train frequency passing along the track had the strongest contribution 
among the considered set of modelling parameters.

The main advantage of ANNs is their ability to handle well large 
amounts of linear and non-linear data, and potentially extract more 
information from them [165]. Adding to this, they can be used to 
explore the relative importance of different input variables on the output 
parameters and discover patterns in noisy and complex data sets, which 
makes them useful on modelling track geometry deterioration and 
capturing track section-inhomogeneity. However, due to their inability 
to extrapolate beyond the range of the defined parameters in the training 
set, these models have to be retrained on a case study basis. It has been 
also stressed by practitioners that data curation is of great importance in 
order for these models to be accurate, as for example, the effect of shock 
events has been found to be of importance with researchers [164] sug
gesting that such effects should be identified in the data sets and 
incorporated in the modelling process.

Neuro-Fuzzy Methods. Neuro-fuzzy models are hybrid-like systems 
combining the connectionist structure and learning abilities of ANNs 
with the fuzzy system’s power of human-like reasoning [166]. These 
models seem on the verge of becoming popular. They have as yet seen 
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limited application in the field, but are a promising tool for deterioration 
modelling. This is mainly due to their ability to circumvent the rigidity 
of the decision-making mechanism in other, more traditional classes of 
model, which are essentially based on binary logic. For example, they 
tend to incorporate rigid rules and translate deterioration thresholds to 
maintenance interventions, but thereafter do not consider the amount 
by which the threshold is exceeded or its importance. Effective decision- 
making by flexible planning under a constrained budget environment is 
therefore almost impossible to model.

Dell’Orco et al. [167] constructed a DSS framework for planning 
tamping interventions by considering an adaptive neural network-based 
fuzzy inference system (ANFIS). The threshold limits for track in
terventions were chosen as linguistic variables in the fuzzy logic, while 
the deterioration process was modelled based on an adaptive neural 
network. Instead of using a length-based segmentation, they adopted a 
so-called ‘natural’ segmentation, dividing the track into homogeneous 
sections based on their maintenance requirements. For each of the 
resulting segments, the neural network was trained to calibrate the 
membership functions of the FIS (fuzzy inference system). Thereafter, 
opportunistic maintenance was considered using the fuzzy C-means 
(FCM) clustering method [168], to group maintenance interventions in 
both time and space.

Data Mining Methods. Many studies have attempted to make short- 
term predictions of track geometry deterioration. Xu et al. [169] sug
gested an approach grounded on variation in historical track irregularity 
to make short-term forecasts for track quality indices (TQIs) of different 
unit sections along the track. They then made estimates of the nonlinear 
behaviour of track irregularity throughout a maintenance cycle using 
short-range linear regression models. With continuous inspection cycles, 
a family of linear regression models can be obtained. Based on integral 
theory, a nonlinear model can be approximated using this family, and 
subsequently, used to make predictions of track irregularities two 
months beforehand. Xu et al. [170] used a track measures data mining 
model to make short-term forecasts of rail track deterioration. They 
considered alignment and twist, and subsequently observed through a 
validity test that the prediction errors for both follow a Gaussian dis
tribution with a SD of less than one and a mean close to zero. Their 
model demonstrated the ability to provide reliable forecasts of track 
condition for the next two or three months.

Similarly, Liu et al. [171] suggested a short-range prediction model 
(SRPM) to forecast irregularities over small lengths (25 m) on a single 
day basis within a future short period, using track geometry car (TGC) 
waveform data. The proposed approach uses a linear regression model 
and makes daily predictions of the track state within an adjacent in
spection cycle of the future. In each inspection cycle, the modelling 
states are sequentially updated using the latest inspection state, and the 
cycle is optimised on a rolling basis.

Kawaguchi et al. [172] proposed two models to predict alignment 
irregularities based on historical track quality data. The first evaluated 
different maintenance plans by estimating the mean time to mainte
nance of track alignment through analysis of track lateral deformation. 
The second made year-in-advance predictions of alignment irregular
ities using the exponential smoothing method. They suggested that the 
first model is suitable for undertaking economic analysis of different 
maintenance strategies, while the second can form the basis for con
structing a yearly maintenance-scheduling plan.

Bai et al. [173] developed an approach termed the tree-augmented 
naïve Bayes-track quality index (TAN-TQI) to determine probable un
derlying patterns or rules for making track irregularity predictions based 
on the characteristic deterioration for a short-term horizon. A core 
component of the model is the difference in track irregularities between 
two successive points in time, which signifies the quantifiable mani
festations of the cumulative effects of different factors during this period 
[173]. They demonstrated the applicability of the proposed framework 
to forecasting the condition for the next inspection by using irregularity 
data from the four previous cycles. They concluded that their framework 

provided better predictability than the SRPM model.
Xu et al. [174] developed a machine learning model using a multi- 

stage linear fitting framework integrated with a linear regression 
model to describe the evolution of track irregularity over time using 
waveform data. Making use of control thresholds of irregularities for 
different tiers, track irregularities over these (tiers) were estimated by 
different linear regression models, each for different tiers [174].

Berggren [175] outlined techniques from the field of pattern recog
nition, and proposed a method for eliciting new information from 
existing condition data to catalogue the root causes of track issues. He 
demonstrated that by building a root-cause classifier, certain track- 
related issues could be resolved, with the main output being the classi
fication of the features based on their effect.

Time Series Models. Track geometry deterioration models can be con
structed using time series models. Sequential predictions can then be 
forecast using recent track geometry data through a stepwise autore
gressive (AR) model. Correlation analysis can then be used to enable the 
AR model to compute the number of terms required to make accurate 
forecasts. An alternative class of time series models is the autoregressive 
moving average model (ARMA).

Chaolong et al. [176] studied time series track irregularity SD data 
and applied clustering analysis to investigate the characteristic and 
trend changes of track state. They determined different patterns and 
specifications of track irregularity behaviour. They employed the linear- 
ARMA and the linear recursive model to identify and forecast the vari
ations in time series trends of track irregularity SD for a short segment of 
track.

Grey Box Models. Grey Box models (GMs) have their roots in Grey sys
tem theory [177]. In the current context, one of their main character
istics is that they do not follow a global trend, but attempt to follow the 
original deterioration pattern. Perhaps more significantly, they are ad
vantageous in not being data-intensive, and also in having the capability 
of dealing with systems having partially unknown parameters [178]. 
Famurewa et al. [179] present an approach for assessing track geometry 
data and compare it with two other quality prediction models (linear, 
exponential, and the recommended grey model GM(1,1)1). Their pro
posed model showed a lower MPE (mean percentage error) than the 
linear model, and approximately the same error as that of the expo
nential model. As the GM updates its parameters to new conditions as 
new data become available, this might give it an advantage over expo
nential or simple linear regression models [23]. Furthermore, GMs can 
make predictions based on only four measurements with a reasonable 
goodness-of-fit. However, as highlighted by Soleimanmeigouni et al. 
[23], the estimate may not be reliable, if a lack of sufficient measure
ment data hinders delineation of the deterioration path.

Liu et al. [180] found that a combination of a centre approximation 
GM(1,1) and a Markov chain model (termed the Markov-Grey GM(1,1) 
model) gave better predictability than the traditional centre approach 
Grey GM(1,1) models. They suggested that the incorporation of the 
Markov chain was able to overcome the shortcomings of the traditional 
GM(1,1), which are primarily employed for making predictions based on 
smoother data whose variation is exponential, and are thus less suited to 
forecasting data involving step-changes and randomness [180].

Chaolong et al. [181] presented a modified GM based on features of 
track cross-level data to make predictions of track irregularity at a fixed 
measuring point. Following validation, they concluded that the pro
posed approach could make accurate long-term forecasts of the chang
ing trend in track irregularity. They also compared the use of ANN, 
Kalman filtering and random linear AR models to forecast short-term 

1 In Grey systems theory, GM(n,m) represent a GM. n: the order of the dif
ferential equation, and m: the number of variables. GM(1,1) is the most 
extensively applied GM, termed as ‘Grey Model First Order One Variable’.
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state changes, concluding that the ANN model had slightly better ac
curacy than the other two.

Multistage Linear Models. To account for potential nonlinear or periodic 
deterioration profiles between two successive intervention cycles, some 
authors have used multistage linear regression models [23]. For 
example, Chang et al. [182] used multistage, exponential, and cyclic 
profiles to model the deterioration in track geometry between two 
successive intervention actions. Based on the first two, they used a set of 
linear models to model the different stages of TQI deviation, and 
attempted to validate the proposed model through a case study. They 
concluded that their approach yielded more accurate results than simple 
linear models. Guo and Han [183] adopted a multistage linear model to 
represent the different stages of track deterioration between two suc
cessive maintenance actions, as well as the exponential growth of track 
irregularity.

Multistage linear models are generally held to increase the accuracy 
of deterioration modelling predictions. Two issues restrict their appli
cability: (1) determining the number of deterioration phases is data- 
intensive, and (2) model parameter estimation is computationally 
complex. While in principle, three deterioration phases should be 
modelled, in practice, the bedding-in and wearing-out phases are rela
tively short, or in some cases nonexistent, and much of the deterioration 
path does typically evolve linearly within an intervention cycle 
[38,184]. Furthermore, the common assumption of cyclic behaviour 
means that track deterioration behaviour between different mainte
nance cycles is approximately the same. However, it is commonly 
accepted that a maintenance intervention will affect the modelling pa
rameters for the track geometry deterioration profile.

Random Coefficient Models. Consideration of section-level in
homogeneity in deterioration rates enables the variations in deteriora
tion processes between segments of the same railway line to be better 
represented [185]. This variability can be described through the incor
poration of random coefficients into the deterioration models 
[185–187]. Andrade and Teixeira [185] considered four track section 
groups: (1) bridges, (2) switches, (3) plain track, and (4) stations; and 
subsequently adopted a linear model for forecasting the development of 
the SD of longitudinal defects. Using statistical correlation analysis, they 
fitted a lognormal distribution to the deterioration parameters.

Andrade and Teixeira [186] adopted a Bayesian approach to esti
mate track geometry deterioration and deal with the uncertainty in its 
modelling parameters. As in their previous study [185], they assumed 
that the evolution of SD of the longitudinal defects (per 200 m section) 
followed a linear relationship with accumulated tonnage. Their 
approach allowed the assessment of the evolution of uncertainty linked 
with deterioration parameters throughout the railway track life cycle. 
They fitted prior probability distributions to track geometry deteriora
tion; with the lognormal distribution found to be the most suited to the 
model deterioration parameters. Subsequently, they segmented the 
track into four section groups based on their infrastructure features, and 
elicited posteriors of the parameters for different stages to evaluate 
uncertainty reductions each time new inspection data became available 
(at design, after the first inspection, between the first inspection and the 
first tamping intervention, and between the second inspection and the 
remaining maintenance cycles). An important benefit of this approach is 
the consideration of uncertainty in the modelling parameters in simu
lating the deterioration process.

Andrade and Teixeira [187] proposed a statistical approach for 
modelling geometry deterioration based on Hierarchical Bayesian 
models. For railway track deterioration, conditional autoregressive 
(CAR) terms were introduced to account for spatial dependencies be
tween model parameters (successive track segments in railway lines). 
They assumed a Gaussian prior for the SD of the longitudinal level, with 
its mean for different segments of track being dependent on their initial 

track quality and deterioration rate before/after renewal, as well as the 
disturbance effect after each tamping intervention. They expressed the 
disturbance effect parameter through a Gaussian distribution, and each 
variance component in each hierarchical structure, by assigning inverse 
gamma distributions to each component. Finally, inference was con
ducted based on Markov Chain Monte Carlo (MCMC) simulation. The 
advantages of the proposed model lie primarily in its ability to (1) 
reduce the uncertainty in the geometry deterioration parameters over 
the length of the track by postulating a spatial dependency between 
successive sections, and (2) include tamping/renewal effects in the 
values of the deterioration parameters.

In summary, random coefficient models have the advantage of being 
able to capture the variability in deterioration parameters over the track 
length. Through the incorporation of more influencing factors, distri
butions with better goodness-of-fit and lower variance will be obtained 
in modelling [23]. However, it is also important to maintain a parsi
monious structure to avoid excessive computational complexity. Finally, 
path analysis can aid in the identification and shortlisting of candidate 
factors for designing these models [23].

Markov Chain Models. Markov models represent an important class of 
statistical methods for modelling track geometry deterioration. The 
primary task in developing such models is to compute the transition 
probability from the sampling data by means of specific calibration 
techniques (two categories: state or time-based). These are used to 
calibrate the data and derive the transition probability matrix. In a 
Markov model, the probability of an event depends on the state reached 
in the previous event, making such models ‘memoryless’ 
[22,38,188,189]. So far, the Markov approach has been successfully 
implemented for small-scale track models.

Shafahi and Hakhamaneshi [189] proposed a cumulative damage 
model, based on a Markov process, which was used to model track ge
ometry deterioration. The model has been constructed to reflect the 
track condition as a TQI with a range of 100, based on alignment, gauge, 
unevenness, and twist data, which was subsequently mapped into five- 
states.

Lyngby et al. [33] proposed a fifty-state Markov model to replicate 
the changes in twist over time in the range of 1 to 50 mm. They assigned 
alternative deterioration rates to the model depending on the type of the 
track section (straight, curved, or transition).

A later study [190] adopted a Markov stochastic process approach to 
examine the performance of a section unit in terms of its deterioration. 
The model was developed to represent track condition as a TQI, which 
was subsequently mapped into four ranks of the irregularity state to 
evaluate its condition. The authors formulated a hazard model using the 
heterogeneity of the section units and subsequently constructed a tran
sition probability matrix. They took the interval of inspection between 
two successive interventions as Markov model time steps. Using his
torical data on the section units, including data on heterogeneous fac
tors, they constructed a maximum log-likelihood function to derive the 
necessary transition probabilities. They concluded that the presence of 
these heterogeneous factors plays an essential role in the deterioration 
rates; with sections of the same mileage displaying different deteriora
tion rates due to the variability of these factors.

Prescott and Andrews [191] described an eighty-state Markov model 
of a one-eighth mile section that was used to investigate the effects of 
different asset management strategies. The model maps the changes in 
track condition with time, as indicated by a measurement of the vertical 
alignment for a given strategy, which is defined through the specifica
tion of a set of model parameters. It incorporates parameters such as the 
deterioration of vertical alignment, restoration action by tamping, and 
track inspection by a track measurement train, as well as the dependence 
of the track deterioration rate on the maintenance history. The proposed 
approach was evaluated numerically through a fourth-order Runge- 
Kutta algorithm. It was subsequently used to study the effects of 
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modifying different parameters, these are: (1) mean time to perform 
routine maintenance, (2) inspection interval time, (3) renewal period, 
and (4) threshold that triggers maintenance intervention. The authors 
demonstrated the applicability of the model for investigating the 
tradeoffs for different asset management strategies in terms of cost and 
risk associated with different renewal, maintenance, and inspection 
strategies, as well as accidents and delays, and the follow-on financial 
penalties imposed. As highlighted by the authors, other aspects of track 
deterioration could be accounted for in the model (such extensions 
might include lateral misalignment or rail wear along with related in
terventions such as rail grinding). Nevertheless, such an expansion 
might lead to a prohibitively large model.

However, this class of models has certain limitations that restrict 
their applicability for representing track deterioration and maintenance 
[23,33,38,166,188,190]:

• The evolution of track geometry is a continuous process, while the 
Markov chain is a discrete model (time/state). Thus, the geometry 
measures should be first discretised, which could lead to inaccuracies 
of estimating track geometry deterioration;

• The transition between asset states must occur at a constant rate and 
the sojourn times are therefore governed by an exponential 
distribution;

• The ‘memoryless’ nature of the process is highly restrictive on how 
the way in which the degraded state of geometry was reached can 
account for the maintenance history;

• The model size grows exponentially relative to the number of addi
tional components. This makes it impossible to model multiple one- 
eighth mile sections, and construct a model at a line level;

• Due to the section-inhomogeneity of track deterioration, individual 
transition matrices must be derived for different maintenance units, 
which include different segments with similar characteristics. 
Nevertheless, identifying track maintenance units with similar 
transition matrices can be challenging;

• The method for calculating the transition probabilities for such 
models is data-intensive.

Petri Nets. A Petri Net (PN) is a graphical tool that comprises three basic 
elements: nodes, arcs, and transitions. It combines mathematical back
ground and graphics to represent complex dynamic systems behaviour. 
Two types of nodes are represented in a PN: places (circles) and tran
sitions (rectangular boxes), linked to each other by directed edges 
(commonly referred to as arcs or arrows). Places reflect either an activity 
being modelled or a specific state of the system, while transitions 
incorporate the system’s dynamic behaviour by enabling it to move 
between states. In the context of track maintenance, places could indi
cate: (1) the present state of an asset, (2) whether it is operating, and (3) 
whether any maintenance intervention is currently in process [192]. 
Tokens mark a system’s present state at any time by residing in different 
places, with transitions governing their movement between these places. 
For example, transitions may reflect the time delay between successive 
inspections within a cycle, and places indicate the inspection states 
[192].

The MCS (Monte Carlo Simulation) method can be used to solve the 
PN model of a given system, by randomly sampling times for events from 
the appropriate statistical distribution, with the simulation commencing 
(starting to move tokens around) once its lifetime is selected.

Andrews [38] modelled the deterioration, maintenance, and in
spection of single one-eighth mile sections. The transition times of assets 
degrading to different states were modelled for homogeneous segments 
by adopting a two-parameter Weibull distribution, for a different track 
(region, rail, and sleeper type, speed classes, cumulative tonnage per 
annum) and life phase/state features (number and sequence of in
terventions implemented). This family of distributions is regularly 
adopted in such models (failure/ deterioration) owing to their flexibility 

in representing many different distribution shapes [193]. Moreover, 
they can provide failure analysis and prediction with a reasonable level 
of accuracy [194], while also dealing with small data samples [184]. 
This is particularly the case for the modelling of mechanical components 
such as rails, whose defects have been shown to evolve following a 
Weibull law [195]. Andrews [38] adopted these distributions to model 
the transition times, with the action thresholds for interventions and 
intervals for inspection being set as the decision variables. This meth
odology allowed the distribution of times to deterioration events (states 
defined by the SD of a number of maintenance characteristics) for a 
given type of track and maintenance history to be attained by moni
toring the condition of respective one-eighth mile sections.

Andrews et al. [188] extended the previous work by applying a PN 
architecture to predict track deterioration behaviour considering the 
effect of different asset management strategies, through the variation of 
different parameters (i.e., intervention threshold, inspection, renewal, 
routine repair time). Their analysis revealed that the intervention in
tervals influence the deterioration rate, which changes accordingly from 
phase-to-phase. Considering the renewal times, Andrews et al [188]
found that their extension had no meaningful impact on the time that the 
track resides in a state of good condition. They demonstrated that by 
including the costs of performing different maintenance actions, as well 
as the penalty costs (associated with potential line closures or speed 
restrictions), the LCC of each maintenance strategy could be estimated. 
While the proposed model can successfully forecast track segment con
dition over long timescales, it is unable to make predictions at a track 
line level. Thus, a potential refinement of the model by considering a 
series of one-eighth mile segments will be beneficial in allowing the 
integration of the conflicting requirements of tamping machines, as well 
as the ability to perform opportunistic maintenance.

Prescott and Andrews [196] developed a model based on a PN 
methodology permitting the analysis of a region of the railway network. 
The authors defined a ‘region’ as meaning a part of a network containing 
a number of one-eighth mile segments. A later study by Prescott and 
Andrews [197] constructed a PN model in a modular fashion that 
allowed a number of regions comprising a railway network to be 
assessed in terms of track deterioration, inspection, and maintenance. 
They considered the important issue of performing concurrent in
terventions of tamping and stoneblowing, by recognising the practical 
limitation of performing these activities (that is, a limited number of 
available machines to be allocated to different segments of track). Again, 
Prescott and Andrews [197] adopted a two-parameter Weibull distri
bution as the deterioration time distribution, considering four action 
limits: (i) opportunistic maintenance permitted, (ii) maintenance 
needed, (iii) speed reduction needed, and (iv) line closure needed 
thresholds. They established four corresponding states of deterioration, 
with the transitions between them occurring by sampling from the 
specified distributions. The primary innovation of this study was the 
integration of a maintenance DSS module into the PN architecture. The 
disadvantage of the model by Prescott and Andrews [196] was thereby 
eliminated, enabling consideration of opportunistic maintenance and 
leading to the extension of a single section towards a network-wide 
model. The decision for grouping the maintenance actions was based 
on: (i) states of track deterioration, (ii) machine availability, and (iii) 
section locations. Overall, the consideration of criteria such as the total 
maintenance costs and line availability for grouping major works ac
cording to opportunistic decision-making principles will enhance the 
model flexibility.

Rama and Andrews [198] developed a framework involving an 
infrastructure performance model embedded in a LCC model to carry out 
a whole-life costing analysis. They structured their model through a PN 
(including three core sub-nets: for deterioration, inspection, and main
tenance), based on their previous work [199]. For the proposed 
infrastructure-state model, they adopted a hierarchical modular archi
tecture, allowing a multi-asset configuration of the infrastructure (with 
varying degrees of complexity/detail) within a hierarchical topology of 
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the network (a six-level architecture) to be portrayed. This enabled the 
model to be used in performance prediction at both asset (single main
tainable item) and system-wide (whole network) levels. This approach 
permitted the interdependencies among different intervention activities 
(i.e., opportunistic, concurrent maintenance, etc.) to be accounted for, 
and their subsequent effect on costs and performance to be evaluated.

Zhang et al. [192] proposed a PN-based rail maintenance model 
underpinned by a MCS, comprising several individual sub-nets for rep
resenting deterioration and defect/failure, inspection, maintenance, 
lubrication, and rail grinding. The resulting PN architecture feeds into a 
wider LCC framework, allowing the systematic investigation of different 
performance parameters including the number of interventions, main
tenance costs, and deterioration profile of rails over their lifecycle. 
Zhang et al. [192] demonstrated the ability of the model to simulate the 
deterioration profile of rails and evaluate their LCC over 35 years 
through a case study.

Hybrid Models

Hybrid models have been developed to combine the best elements of 
mechanistic and empirical approaches. Fundamentally, this class of 
model is based on an understanding of the behaviour of system com
ponents, coupled with measurements, direct observations, and extensive 
data records [166]. Prior to constructing these models, track segmen
tation centred on building segments with homogeneous properties (e.g., 
influencing factors, maintenance history, etc.) is necessary [200]. 
Existing engineering knowledge of different covariates affecting the 
deterioration profile is used to explain empirical track measurement 
data. Often, statistical regression is employed over average values of 
different parameters to construct appropriate predictive relationships, 
for each of the partitioned section groups. For example, Sadeghi and 
Askarinejad [143] proposed a hybrid model combining statistical and 
mechanistic approaches based on regression analysis that incorporated 
geometry and structural condition track data recorded over two years. 
By adopting a deterioration coefficient, they evaluated the effect of 
structural condition, initial geometry, average running speed, and total 
equivalent million gross tons (EMGT). Based on the method of least 
square errors, the authors suggested that an exponential form was the 
most suitable approximation between the adopted coefficient and the 
examined set of influencing parameters [143]. Among them, the initial 
TQI had the greatest influence on the track deterioration rate, followed 
by the total passing tonnage along the track [143].

Rhayma et al. [201] suggested an adaptable stochastic approach to 
various mechanistic models to represent track deterioration behaviour 
and deal with the inherent variability of the mechanical and geometrical 
parameters of the railway track. They adopted a reliability-centred 
approach grounded on a non-intrusive stochastic finite element 
method (SFE), and aimed to assess the influence of different mainte
nance actions on the rail track probabilistically. Considering this, they 
used distributions instead of fixed values for the influencing factors to 
model the innate uncertainty of such factors.

Soleimanmeigouni et al. [202] proposed a hybrid-like approach so as 
to account for the spatial variations in track deterioration parameters 
and their potential dependencies in consecutive track segments. They 
developed a two-level piecewise linear model with the deterioration 
characteristics being modelled by a piecewise linear model with known 
break points at the tamping interventions and a multivariate linear 
regression model to link different variables on the maintenance in
terventions and the subsequent track section conditions with the post- 
intervention responses (e.g. increased deterioration rate after a tamp
ing cycle, etc.). Finally, they used a series of ARMA models to capture 
the spatial correlations between different modelling parameters. They 
then performed an illustrative case study using data from the Main 
Western Line in Sweden to demonstrate the applicability of their model. 
Their proposed model demonstrated important benefits of accounting 
for both spatial and temporal variations and dependencies between 

adjacent sections, which makes it more realistic when compared with 
other models in the literature.

More recently, Soleimanmeigouni et al. [203] proposed an inte
grated approach for investigating the effect of various inspection in
tervals on railway track geometry using the SD of the longitudinal level 
as the main indicator for assessing the need for maintenance actions. 
Similarly to their previous study, they adopted a random coefficient 
piecewise exponential approach to model the deterioration and resto
ration processes of railway track geometry. They also integrated the 
effect of isolated defects using an ordinal logistic regression to estimate 
their probability of occurrence. Their finalised model has the capability 
to estimate the percentage of time spent in different track geometry 
states, as well as the number of different maintenance interventions in a 
given time span. Therefore, this approach could be of use to IMs as it 
could help them on optimising their inspection intervals based on 
different direct and indirect cost parameters, which could be estimated 
using this model (e.g. corrective/preventive tamping interventions, risk 
of derailment, capacity losses from speed restrictions, etc.).

Conclusions

This paper has critically reviewed the merits and limitations of 
existing railway track deterioration modelling approaches and provided 
a systematic taxonomy of these models. From this, a hierarchical clas
sification was proposed based on the model level of detail and 
functionality.

Although considerable progress has been made in extending the ca
pabilities of track-related deterioration prediction models, there are still 
several challenges needing further consideration. These issues have both 
practical and theoretical dimensions and have not been yet adequately 
resolved:

• consideration of spatial and temporal variations and dependencies;
• joint consideration of competing failure modes (random shocks, 

deterioration-related failures);
• identification and consideration of different covariates present along 

the length of a track.

To address the distributed nature of the system, natural segmenta
tion should be adopted based on each section’s operational, environ
mental, and structural features. The use of aggregated TQI’s should be 
carefully considered in the modelling process as they may mask localised 
deterioration of assets which are often prone to higher deterioration 
rates, such as for example, transition zones between an embankment and 
a bridge, level crossings, etc.

Considering spatial variations and dependencies where different 
track sections may exhibit different deterioration profiles, path analysis 
has been proposed in the literature as a means of identifying the 
different covariates that influence track deterioration behaviour. 
Random coefficient models can also be structured to address the track 
section-variability with random effects reflecting its characteristics.

Concerning temporal variations and dependencies of the deteriora
tion profile, the literature makes extensive use of stochastic processes (e. 
g., Wiener, Gamma process, etc.) to model the deterioration of the 
infrastructure over time due to their ability to capture such 
uncertainties.

It is important to note that although these empirical data-driven 
methodologies have some clear advantages over the mechanistic ap
proaches when it comes to their macroscopic predictive capabilities (see 
Fig. 1), their accuracy is heavily reliant on the quantity and quality of 
the input data sets, which makes them prone to errors and invalid 
results.

Physics-based (mechanistic) models have a strong theoretical basis 
and can be used to test assumptions regarding micro- and/or macro- 
mechanisms governing track deterioration components (see Fig. 1). 
Discrete element and continuum mechanics models are perhaps the most 
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suitable for analysing ballast mechanical behaviour and deterioration 
mechanisms at the grain and macro-scale, respectively. However, owing 
to their high computational demand, they can only be applied for 
studying relatively short track sections and/or for a small number of 
cycles.

Semi-analytical models are also promising as they can be integrated 
into dynamic VTI models to consider track and traffic characteristics and 
potentially simulate the accumulation of settlement over millions of 
cycles. However, owing to their structure (based on deterministic 
input–output relationships), they do not easily account for uncertainty 
in their calculations. It is important for future research to prioritize 
examining any potential interactions between the different methodolo
gies presented in this review. For example, semi-analytical models could 
be complemented by machine-learning, which will help accounting for a 
larger set of unknown input parameters, and allow for a better repre
sentation of the ballasts’ (including substructure) propensity to settle. 
This will enable the formulation of hybrid computational models with 
the capability to adequately simulate track deterioration (both micro- 
and macroscopically) and subsequently, enable railway researchers and 
practitioners to investigate the impact of improvements to the under
lying system to improve track quality and drive down costs.
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