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LOOP SPACES OF POLYHEDRAL PRODUCTS ASSOCIATED WITH THE

POLYHEDRAL JOIN PRODUCT

BRIONY ELDRIDGE

Abstract. We give a homotopy equivalence for the loop space of the moment-angle complex

associated with a simplicial complex formed by the polyhedral join operation, and give necessary

conditions for this loop space to be a finite type product of spheres and loops on spheres.

1. Introduction

Polyhedral products are topological spaces formed by attaching products of spaces together according

to an underlying simplicial complex. The study of polyhedral products is of interest across many

different disciplines of mathematics, including toric topology, combinatorics, geometric group theory,

and complex geometry [BBC20]. Specifically, let K be a simplicial complex on m vertices. For

1 ď i ď m, let pXi, Aiq be a pair of pointed CW -complexes, where Ai is a pointed CW subcomplex

of Xi. Let pX,Aq “ tpXi, Aiqumi“1 be the sequence of CW -pairs. We can identify each simplex

σ P K with the sequence pi1, ¨ ¨ ¨ , ikq where i1, ¨ ¨ ¨ , ik are the vertices of σ and i1 ă ¨ ¨ ¨ ă ik. Define

pX,Aqσ as

pX,Aqσ “
mź

i“1

Yi, Yi “

$
’&
’%
Xi i P σ

Ai otherwise.

The polyhedral product associated to K is defined as

pX,AqK “
ď

σPK

pX,Aqσ Ď
mź

i“1

Xi.

An important special case is themoment-angle complex, denoted ZK , which is the polyhedral product

where each pair is pD2, S1q. There are two problems that provide motivation for this work: how the

homotopy type of the polyhedral product changes under simplicial operations, and determining the

homotopy type of loop spaces of polyhedral products.

It is well known that the polyhedral product on the join of two simplicial complexes is the Cartesian

product of polyhedral products on each complex, and in [The22] a homotopy equivalence for the

loop space of the polyhedral product on the connected sum of simplicial complexes was given. In

this paper, we consider how the homotopy theory of the moment-angle complex changes under the

polyhedral join product operation, which is defined similarly to the polyhedral product operation,

but with pairs of spaces pXi, Aiq and the Cartesian product being replaced with pairs of simplicial
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complexes pKi, Liq and the join operation. To be exact, let M be a simplicial complex on rms. For

1 ď i ď m, and let pK,Lq “ tpKi, Liqumi“1 be a sequence of pairs of simplicial complexes, where Li is

a subcomplex on Ki, considered to be on the vertex set of Ki. We can identify each simplex σ P M

with the sequence pi1, ..., ikq where i1, ..., ik are the vertices of σ and i1 ă ¨ ¨ ¨ ă ik. Define pK,Lq˚σ

as the following subcomplex of K1 ˚ ¨ ¨ ¨ ˚ Km:

pK,Lq˚σ “
m
˚

i“1
Yi, Yi “

$
’&
’%
Ki i P σ

Li otherwise.

The polyhedral join product is defined as

pK,Lq˚M “
ď

σPM

pK,Lq˚σ.

The polyhedral join product produces a new simplicial complex, but retains combinatorial qualities

of the ingredient complexes. Just as the polyhedral product unifies various constructions of spaces

across different fields, the polyhedral join product construction unifies various constructions of sim-

plicial complexes. In [Ewa86], the concept of the simplicial wedge construction for toric varieties

was introduced, and this construction was first considered in regards to the polyhedral product in

[BBCG15]. This was then generalised in [Ayz13] to the composition complex (at the time, this was

named the substitution complex, but has since changed). The composition complex has applications

in topological data analysis [Kar20]. This construction is similar, but different to the substitution

complex in [AP19], where it was shown that specific substitution complexes are the smallest simpli-

cial complexes that realise iterated higher Whitehead products. Substitution complexes have also

been considered in geometric group theory [DO12]. Recently, a specific example of the substitution

complex was used to prove a stability theorem for bigraded persistent double homology [BLP`24].

Both the substitution complex and the construction complex are specific examples of polyhedral

join products, which was first defined in [Ayz13]. Polyhedral products and polyhedral join products

have a nice relation, as characterised in [Vid18] (Theorem 2.9). Recently, Steenrod operations with

relation to polyhedral join products has been explored [AGI`24].

In this paper, we obtain a homotopy equivalence for ΩpX,AqpK,Lq˚M

. To do this, we utilise facts

about the underlying simplicial complex M . Recall that the link of a vertex is the subcomplex

lkM pvq “ tτ P M |tvu X τ “ H, tvu Y τ P Ku and the restriction of a vertex is the subcomplex

Mzv “ tτ P M |tvu X τ “ Hu.

Theorem 1.1. Let pK,Lq˚M be a polyhedral join product. There is a homotopy equivalence

ΩpX,AqpK,Lq˚M

»
mź

i“1

ΩpX,AqKi ˆ
mź

i“k

ΩpGi ˚ Hiq
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where Gi is the homotopy fibre of the map pX,AqpK,Lq
˚lkMztm,¨¨¨ ,i`1upiq

Ñ pX,AqpK,Lq˚Mztm,¨¨¨ ,iu

, Hi

is the homotopy fibre of the map pX,AqLi Ñ pX,AqKi and k P rms is such that Mztm, ¨ ¨ ¨ , ku is a

simplex.

Such a homotopy equivalence allows us to explore the homotopy type of ΩpX,AqpK,Lq˚M

, which is

the second problem motivating this work.

Let P be the full subcategory of topological spaces that are homotopy equivalent to a finite type

product of spheres and loops on spheres. We can then consider when ΩpX,AqK belongs to P . This

is part of a wider body of work investigating Anick’s conjecture. Anick’s conjecture states that if a

space X is a finite, connected CW -complex, then localised at almost all primes p, ΩX decomposes as

a finite type product of spheres, loops on spheres, and indecomposable space related to Moore spaces.

Currently, there are two known types of simplicial complexes that give rise to polyhedral products

such that ΩpCA,AqK P P ; that is to say, they verify Anick’s conjecture without the need to localise.

One type is simplicial complexes such that the associated polyhedral product pCA,AqK belongs to

the collection of topological spaces which are homotopy equivalent to a finite type wedge of spheres,

denoted W . Much progress has been made in determining which families of simplicial complexes

give rise to such polyhedral products. For example, when K is shifted [GT13], flag with chordal

1-skeleton [GPTW16], and most generally, a totally fillable complex [IK13], then pCA,AqK P W .

If pCA,AqK P W , then the Hilton-Milnor theorem implies that ΩpCA,AqK P P . Many polyhedral

products are not wedges of spheres, but their loop space belongs to P , and recently much progress

in this area has been made. [Sta24a] showed that when K is the k-skeleton of a flag complex,

ΩpCA,AqK P P and in[Vyl24] an explicit loop space decomposition was given. Furthermore, in

[Sta24b], it was shown that ΩpCA,AqK P P if and only if each full subcomplex KI with a complete

1-skeleton is such that ΩpCA,AqKI P P . However, the polyhedral join product produces large

simplicial complexes, and it is hard to classify all subcomplexes with a complete 1-skeleton, and so

a different approach is required. For the polyhedral join product, we prove the following.

Theorem 1.2. Let M be a simplicial complex on rms vertices. Let pK,Lq˚M be a polyhedral join

product and let Ki be a simplicial complex on the vertex set rkis for i P rms. Let pCA,Aq be a

sequence of pairs pCAj , Ajq where 1 ď j ď k1 ` ¨ ¨ ¨ ` km. Suppose ΣAj P W for all j. Let Hi be the

homotopy fibre of the map pCA,AqLi Ñ pCA,AqKi for i P rms. If ΩpCA,AqKi P P and ΣHi P W

for each i P rms, then ΩpCA,AqpK,Lq˚M

P P.

Theorem 1.2 gives the conditions under which polyhedral products associated with polyhedral join

products verify Anick’s conjecture; conditions that depend on the pairs pK,Lq and the polyhedral

product pCA,AqM . We use Theorem 1.2 in section 7 to generate new families of simplicial complexes
3



such that ΩZpK,Lq˚M P P , but the simplicial complex pK,Lq˚M is not the k-skeleton of a flag

complex, or such that ZpK,Lq˚M P W . To do this, we analyze the substitution complex.

The structure of this paper is as follows. In Section 2 we cover some preliminary results, and in

Section 3 we prove many conbinatorial results concerning the polyhedral join product. In Section 4

we prove a homotopy equivalence concerning polyhedral products, and in Section 5 we apply this to

the polyhedral join product. In Section 6 we consider when the polyhedral join product preserves

the property of ΩpCA,AqpK,Lq˚M

P P . Finally, in Section 7, we define new families of simplicial

complexes for which ΩpCA,AqpK,Lq˚M

P P . The author would like to thank Stephen Theriault for

many valuable and constructive discussions during the preparation of this work. The author would

also like to thank Lewis Stanton for reading a draft of this work and providing insightful comments.

2. Preliminary results

2.1. Properties of W and P. Let W denote the collection of topological spaces that are homotopy

equivalent to a finite type wedge of simply connected spheres, and let P be the collection of H-spaces

which are homotopy equivalent to a finite type product of spheres and loops on simply connected

spheres. Relations between spaces in P and W proved in this section will be used throughout

the paper. We begin by stating several results, the first of which follows from the Hilton-Milnor

Theorem.

Lemma 2.1. If X P W, then ΩX P P . �

The following two lemmas are well known results. For proofs, see [The24] and [Ame24] respectively.

Lemma 2.2. If X P P then ΣX P W . �

Lemma 2.3. Suppose X P W, and let A be a space which retracts off X. Then A P W . �

Lemma 2.4. [Sta24a] Let X P P, and let A be a space which retracts off X. Then A P P . �

Lemma 2.5. Let X be a pointed CW -complex, and suppose ΩΣX P P. Then ΣX P W.

Proof. It is well known that if Y is a co-H space, then Y retracts off ΣΩY . First note that as

ΩΣX P P , we obtain ΣΩΣX P W by Lemma 2.2. Although X may not be a co-H space, ΣX is,

and so ΣX retracts off ΣΩΣX . As ΣX retracts off a space in W , by Lemma 2.3 ΣX P W . �

4



2.2. Polyhedral products. In this subsection, we cover some essential results concerning polyhe-

dral products and loop space decompositions of polyhedral products. We begin by stating some

fundamental properties of polyhedral products relating to the underlying simplicial complex. Recall

that the join of two simplicial complexes K1 and K2 is the simplicial complex

K1 ˚ K2 “ tσ Y τ |σ P K1 and τ P K2u.

The following lemma follows from this definition and the definition of the polyhedral product.

Lemma 2.6. [BP15, Proposition 4.2.5] Let K “ K1 ˚ K2, where K1 is on the vertex set t1, ¨ ¨ ¨ , lu

and K2 is on the vertex set tl ` 1, ¨ ¨ ¨ ,mu. Then

pX,AqK “ pX,AqK1 ˆ pX,AqK2 . �

Let L be a simplicial complex on the vertex set rls, where l ď m. Let L be the simplicial complex

on the vertex set rms by considering the elements of rms that are not vertices of L as ghost vertices.

Proposition 2.7. [GT13] Let K be a simplicial complex on the vertex set rms, and suppose K “

K1 YLK2, that is, K is a pushout of K1 and K2 over L. Then, by regarding L, K1, K2 as simplicial

complexes on the vertex set rms, there is a pushout of polyhedral products

pX,AqL pX,AqK1

pX,AqK2 pX,AqK .

�

Let K be a simplicial complex on the vertex set rms. For a vertex v P K, the star, restriction and

link of v are the subcomplexes

stKpvq “ tτ P K|tvu Y τ P Ku,

Kzv “ tτ P K|tvu X τ “ Hu,

lkKpvq “ tτ P K|tvu X τ “ H, tvu Y τ P Ku “ stKpvq X Kzv.

From the above definitions, for each vertex i P rms there is a pushout of simplicial complexes

(1)

lkKpiq stKpiq

Kztiu K.

As stKpiq “ lkKpiq ˚ i, by Lemma 2.6, we can rewrite pX,AqstKpiq as pX,AqlkKpiq ˆ Xi. Applying

Proposition 2.7 we obtain the following result.
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Corollary 2.8. For each vertex i P rms there is a pushout

pX,AqlkKpiq ˆ Ai pX,AqlkKpiq ˆ Xi

pX,AqKzi ˆ Ai pX,AqK

where lkKpiq is regarded as a simplicial complex on the vertex set of Kzi. �

We now give some results concerning a specific type of subcomplex. The subcomplex L is a full

subcomplex of K if every face in K on the vertex set rls is also a face of L. We denote a full

subcomplex on a set I Ď rms as KI .

Lemma 2.9. [DS07] Let K be a simplicial complex on the vertex set rms and let L be a full subcom-

plex of K on the vertex set rls. Then the induced map of polyhedral products pX,AqL Ñ pX,AqK

has a left inverse

r : pX,AqK Ñ pX,AqL. �

Lemma 2.10. If ΩpX,AqK P P, then for any full subcomplex KI of K, we have ΩpX,AqKI P P.

Proof. By Lemma 2.9 ΩpX,AqKI is a retract of ΩpX,AqK , and so by Lemma 2.4 we have ΩpX,AqKI P

P . �

Lemma 2.11. Let L be a full subcomplex of K, and let ΩpX,AqK P P. If F is the homotopy fibre

of the map pX,AqL Ñ pX,AqK , then ΣF P W.

Proof. As L is a full subcomplex of K, the map pX,AqL Ñ pX,AqK has a left homotopy inverse by

Lemma 2.9, and so the connecting map δ : ΩpX,AqK Ñ F has a right homotopy inverse. Therefore

the homotopy fibration sequence ΩpX,AqL Ñ ΩpX,AqK
δ

ÝÑ F splits to give a homotopy equivalence

ΩpX,AqK » ΩpX,AqL ˆ F . As ΩpX,AqK P P , F must therefore be in P by Lemma 2.4. By

Lemma 2.2, ΣF must therefore be in W . �

Lemma 2.12. [The17] Let Gi be the homotopy fibre of the map pX,Aqlkkztm,¨¨¨ ,i`1upiq Ñ pX,AqKztm,¨¨¨ ,iu,

and let Yi be the homotopy fibre of the map Ai Ñ Xi. Then there is a homotopy equivalence

ΩpX,AqK »
mź

i“1

ΩXi ˆ
mź

i“1

ΩpΣGi ^ Yiq. �

We can apply this Lemma to determine when ΣkGi P W .

Lemma 2.13. Let K be a simplicial complex on the vertex set rms. Let ΩpCA,AqK P P, and let Gi

denote the homotopy fibre of the map pCA,AqlkKpiq Ñ pCA,AqKzi. Suppose Ai is pk ´ 1q-connected.

If ΣAi P W, then ΣkGm P W.
6



Proof. By Lemma 2.12 we have that

ΩpCA,AqK » ΩpCA,AqKzi ˆ ΩΣpGi ^ Aiq.

As ΩpCA,AqK P P , by Lemma 2.4 we have ΩpΣGi ^ Aiq P P . By Lemma 2.5, ΣGi ^ Ai P W . As

ΣAi P W by hypothesis, ΣAi is homotopy equivalent to
Ž

jPα Sj for some indexing set α. Therefore

ΣGi ^ Ai »
ł

jPα

Gi ^ Sj »
ł

jPα

ΣjGi.

As each ΣjGi is retracting off ΣGi ^ Ai, we have ΣjGi P W by Lemma 2.3. Furthermore, as Ai is

pk ´ 1q-connected, ΣAi is k-connected. Therefore the smallest j P α is k, and so ΣkGi P W . �

Lemma 2.14. Let K be a simplicial complex on the vertex set rms. If pCA,Aq is a sequence of

pairs of spaces where each Ai is at least pk ´ 1q-connected for some k, then pCA,AqK is at least

p2k ´ 2q-connected.

Proof. After suspending, by [BBCG10] there is a homotopy equivalence

ΣpCA,AqK » Σ
ł

IRK

|KI | ˚ pAI

where |KI | is the geometric realisation of the full subcomplex on the vertex set I, and pAI is the

iterated smash product Ai1 ^ ¨ ¨ ¨AiI . By assumption connpAiq ě k ´ 1 for all i P rms, and so the

connectivity of pAI is at least k|I|´1. Therefore the connectivity of |KI |˚ pAI » Σ|KI |^ pAI is at least

connp|KI |q ` k|I| ` 1. This is minimised when |I| “ 2, in which case |KI | » S0. Therefore the lower

bound for the connectivity of |KI | ˚ pAI is 2k ´ 1, and so ΣpCA,AqK is at least p2k ´ 1q-connected.

After desuspending, we obtain pCA,AqK is at least p2k ´ 2q-connected. �

Corollary 2.15. Let L be a simplicial complex on the vertex set rms with ghost vertices. If pCA,Aq

is a sequence of pairs of spaces where each Ai is at least pk´1q-connected for some k, then pCA,AqL

is at least pk ´ 1q-connected.

Proof. Note that there is an equality

pCA,AqL “ pCA,AqL ˆ
ź

iRL

Ai

that follows from the definition of the polyhedral product. The lower bound for connectivity imme-

diately follows. �

Lemma 2.16. Let K be a simplicial complex with no ghost vertices, and let L be a subcomplex of

K. Let H be the homotopy fibre of the map pCA,AqL Ñ pCA,AqK . Suppose that each Ai is at least

pk ´ 1q-connected. Then H is at least pk ´ 1q-connected.
7



Proof. The fibration sequence H Ñ pCA,AqL Ñ pCA,AqK induces a long exact sequence of homo-

topy groups. By Lemma 2.14 and Corollary 2.15 we obtain πnppCA,AqKq “ 0 for n ď 2k ´ 2 and

πnppCA,AqLq “ 0 for n ă k ´ 1, we have that πnpHq “ 0 for n ă k ´ 1. When n “ k ´ 1, consider

the following section of the long exact sequence

πkppCA,AqKq Ñ πk´1pHq Ñ πk´1ppCA,AqLq Ñ πk´1ppCA,AqKq.

As pCA,AqK is at least p2k ´ 2q-connected by Lemma 2.14, this splits to give the isomorphism

πk´1pHq – πk´1ppCA,AqLq.

Therefore πk´1pHq is precisley as connected as πk´1ppCA,AqLq. By Corollary 2.15, pCA,AqL is at

least pk ´ 1q-connected, and therefore H is at least pk ´ 1q-connected. �

2.3. Cube Lemma. We conclude this section by stating the Cube Lemma, which will be used in

later constructions.

Lemma 2.17. [Mat76] Suppose there is a diagram of spaces and maps

E F

G H

A B

C D

where the bottom face is a homotopy pushout and the four sides are obtained by pulling back with

H Ñ D. Then the top face is a homotopy pushout. �

A common construction of such a cube is to start with a homotopy pushout, and map all four corners

of this pushout into a space Z, and take the top face to be a diagram of the homotopy fibres of

these maps. This is equivalent to the statement that all four sides are homotopy pullbacks, and so

the diagram of homotopy fibres is a homotopy pushout.

3. Polyhedral join products

In this section, we introduce the polyhedral join product, and prove many fundamental combinatorial

results. Recall that the polyhedral join product, as defined by [AP19] is

pK,Lq˚M “
ď

σPM

pK,Lq˚σ

8



where each pK,Lq˚σ is defined as

pK,Lq˚σ “
m
˚

i“1
Yi, Yi “

$
’&
’%
Ki i P σ

Li otherwise.

We now consider some examples of polyhedral join products on pairs of simplicial complexes.

Example 3.1. LetK be a simplicial complex on the vertex set rms, and letK1, ¨ ¨ ¨ ,Km be simplicial

complexes on the vertex sets rk1s, ¨ ¨ ¨ , rkms respectively.

(1) The substitution complex KpK1, ¨ ¨ ¨ ,Kmq as introduced in [AP19] is the polyhedral join

product on the pairs pKi,Hq.

(2) The composition complex KxK1, ¨ ¨ ¨ ,Kmy as introduced in [Ayz13] is the polyhedral join

product on the pairs tp∆mi´1,Kiqumi“1.

We now prove some combinatorial properties of the polyhedral join product.

Lemma 3.2. Let M be a simplicial complex on the vertex set rms, and let N be a subcomplex on

the vertex set rls where l ď m. Then pK,Lq˚N is a subcomplex of pK,Lq˚M . Furthermore, if N is

a full subcomplex of M , pK,Lq˚N is a full subcomplex of pK,Lq˚M .

Proof. Let τi denote a simplex in Ki and let ωi denote a simplex in Li. Every simplex σ P N

will generate simplices of the form pYiPστiq Y pYiRσωiq. As N is a subcomplex of M , σ P M ,

and so pYiPστiq Y pYiRσωiq P pK,Lq˚M for all σ P N . Therefore pK,Lq˚N is a subcomplex of

pK,Lq˚M . Now let N be a full subcomplex of M . Assume pK,Lq˚N is not a full subcomplex of

M , that is, there exists a simplex σ1 on the vertex set of pK,Lq˚N such that σ1 P pK,Lq˚M , but

σ1 R pK,Lq˚N . By definition, σ1 “ pYiPστiqYpYiRσωiq for some σ P M . As N is a full subcomplex of

M , σ P N . By the definition of the polyhedral join product, pYiPστiq Y pYiRσωiq will form a simplex

in pK,Lq˚N , contradicting the claim that σ1 R pK,Lq˚N . Therefore pK,Lq˚N is a full subcomplex

of pK,Lq˚M . �

Lemma 3.3. Let
N MB

MA M

be a pushout of simplicial complexes. Then

pK,Lq˚N pK,Lq˚MB

pK,Lq˚MA pK,Lq˚M

9



is a pushout of simplicial complexes, where M is on the vertex set rms , and N , MA and MB refer

to N ,MA,MB regarded as simplicial complexes on the vertex set of M .

Proof. As M is finite, the faces in M can be sorted into three categories: (X) the faces in N , (Y)

the faces in MA that are not in N , and (Z) the faces in MB that are not in N . Therefore we have

that

N “
ď

σPX

σ,

MA “
` ď

σPX

σ
˘

Y
` ď

σ1PY

σ1
˘
,

MB “
` ď

σPX

σ
˘

Y
` ď

σ2PZ

σ2
˘
,

M “
` ď

σPX

σ
˘

Y
` ď

σ1PY

σ1
˘

Y
` ď

σ2PZ

σ2
˘
.

By the definition of the polyhedral join product, we have that pK,Lq˚M “
Ť

σPM pK,Lq˚σ. Therefore

pK,Lq˚N “
ď

σPX

pK,Lq˚σ ,

pK,Lq˚MA “
` ď

σPX

pK,Lq˚σ
˘

Y
` ď

σ1PY

pK,Lq˚σ1 ˘
,

pK,Lq˚MB “
` ď

σPX

pK,Lq˚σ
˘

Y
` ď

σ2PZ

pK,Lq˚σ2 ˘
,

pK,Lq˚M “
` ď

σPX

pK,Lq˚σ
˘

Y
` ď

σ1PY

pK,Lq˚σ1 ˘
Y

` ď

σ2PZ

pK,Lq˚σ2 ˘
.

As pK,Lq˚MA Y pK,Lq˚MB “ pK,Lq˚M and pK,Lq˚MA X pK,Lq˚MB “ pK,Lq˚N , the result holds.

�

Lemma 3.4. There is an equality of simplicial complexes

pK,Lq˚pM˚Nq “ pK,Lq˚M ˚ pK,Lq˚N .

Proof. Simplices in M ˚ N will be of the form σ Y τ , where σ P M , τ P N . Consider pK,Lq˚σYτ .

By definition, this is ˚m
i“1Yi where Yi “ Ki if i P σ Y τ and Li otherwise. As σ and τ are on disjoint

vertex sets, ˚m
i“1Yi can be written as p˚l

j“1Yiq ˚ p˚m
k“l`1Ykq where Yj “ Kj if j P σ and Lj otherwise,

and Yk “ Kk if k P τ , and Lk otherwise. Therefore, pK,Lq˚σYτ “ pK,Lq˚σ ˚ pK,Lq˚τ . Now

pK,Lq˚pM˚Nq “
ď

σPM,τPN

pK,Lq˚σYτ “
ď

σPM,τPN

pK,Lq˚σ ˚ pK,Lq˚τ “

` ď

σPM

pK,Lq˚σ
˘

˚
` ď

τPN

pK,Lq˚τ
˘

“ pK,Lq˚M ˚ pK,Lq˚N .

�

10



Lemma 3.5. Let N be a simplicial complex on the vertex set rm ´ 1s, and let N be the simplicial

complex N considered as a simplicial complex on rms. Then pK,Lq˚N “ pK,Lq˚N ˚ Lm.

Proof. Let σ denote a simplex in N , and let σ denote the same simplex viewed as a simplex in N .

Consider pK,Lq˚σ. By definition, this is
m
˚

i“1
Yi “ p ˚

iPσ
Kiq ˚ p ˚

iRσ
Liq. As m is a ghost vertex, m R σ

for all σ P N , and so

pK,Lq˚σ “ p ˚
iPσ

Kiq ˚ p ˚
iRσ,i‰m

Liq ˚ Lm “ pK,Lq˚σ ˚ Lm

where σ is now considered a simplex of N . Taking the union over all faces σ P N gives the required

result. �

Corollary 3.6. There is a pushout

pK,Lq˚lkM piq ˚ Li pK,Lq˚lkM piq ˚ Ki

pK,Lq˚Mzi ˚ Li pK,Lq˚M .

where lkM piq is regarded as a simplicial complex on the vertex set of Mzi.

Proof. This follows directly from Lemma 3.5, Lemma 3.3 and the pushout 1. �

We can construct the polyhedral join product sequentially as follows. Define Mpiq as the polyhedral

join product pP i, Qiq˚M where the sequence pP i, Qiq is defined as

pP i
j , Q

i
jq “

$
’&
’%

pKj , Ljq j ď i

ptju,Hq j ą i.

The vertex set of Mpiq shall be regarded as

ttj11 , ¨ ¨ ¨ , j1k1
u, tj21 , ¨ ¨ ¨ , j2k2

u, ¨ ¨ ¨ , tji1, ¨ ¨ ¨ , jiki
u, i ` 1, ¨ ¨ ¨ ,mu “ trk1s, ¨ ¨ ¨ , rkis, i ` 1, ¨ ¨ ¨ ,mu

This allows us to keep track of the original vertex set of M and the new vertices added by the

polyhedral join operation.

Note that Mpmq “ pK,Lq˚M , Mp0q “ M , and each Mpiq is a subcomplex of Mpi ` 1q.

Lemma 3.7. Let pK,Lq be a sequence of pairs of simplicial complexes, and let pP ,Qq be a sequence

of simplicial complexes such that

pPj , Qjq “

$
’&
’%

pKj , Ljq j ‰ i

ptiu,Hq j “ i.

11



Then there is a identity of simplical complexes

pK,Lq˚Mzi “ ppP ,Qq˚M qzi.

Furthermore, there is a identity of simplical complexes

pK,Lq˚lkM piq “ lkpP ,Qq˚M piq

where lkM piq is considered on the vertex set of Mzi and lkpP,Qq˚M piq is considered on the vertex set

of ppP ,Qq˚M qzi.

Proof. Let τj denote a simplex in Kj and let ωj denote a simplex in Lj . The simplices of pK,Lq˚Mzi

are all of the form pYjPστjqYpYjRσ,j‰iωjq for σ P Mzi. As every simplex ofMzi is a simplex ofM , all

such simplices will be contained in ppP ,Qq˚M q. As i R σ, these simplices will be unchanged under the

deletion of i from ppP ,Qq˚M q. Therefore pK,Lq˚Mzi Ď ppP ,Qq˚M qzi. The simplices of ppP ,Qq˚M qzi

will be of two forms: those induced by γ P M , such that i R γ, and those induced by κ P M such that

i P κ. The simplices of ppP ,Qq˚M qzi induced by γ are clearly in pK,Lq˚Mzi. If κ P M contains i, then

κ generates simplices of the form ppYjPκτjqY pYjRκωjqqzi “ ppYjPκ,j‰iτjqY pYjRκ,j‰iωjqY tiuqztiu “

pYj Pκ,j‰iτjq Y pYjRκωjq. As κ P M and i P κ, we have κzi P Mzi. Therefore, pK,Lq˚Mzi contains

all simplices of the form pYjPκ,j‰iτjq Y pYjRκωjq. As all simplices of ppP ,Qq˚M qzi are contained in

pK,Lq˚Mzi, we obtain ppP ,Qq˚M qzi Ď pK,Lq˚Mzi. We therefore have pK,Lq˚Mzi “ ppP ,Qq˚M qzi.

Now let us consider the second statement. Simplices of pK,Lq˚lkM piq are of the form pYjPστjq Y

pYjRσωjq where ω Y i P M . By Lemma 3.2, pK,Lq˚lkM piq is a subcomplex of pK,Lq˚Mzi, and so

by the above equality, pK,Lq˚lkM piq is a subcomplex of pP ,Qq˚M zi, and so pYjPστjq Y pYjRσωjq is

contained in pP ,Qq˚M zi. As σ P lkM piq, σ Y i P M , and therefore pYjPστjq Y pYjRσ,j‰iωjq Y i is a

simplex of pP ,Qq˚M . By the definition of the link of a vertex, the simplex pYjPστjq Y pYjRσ,j‰iωjq

is contained in lkpP,Qq˚M qpiq. Therefore pK,Lq˚lkM piq Ď lkpP,Qq˚M qpiq. Now consider a simplex in

lkpP,Qq˚M piq. Such simplices have the form pYjPγτjqYpYjRγ,j‰iωjq where pYjPγτjqYpYjRγ,j‰iωjqYi P

pP ,Qq˚M . As pYjPγτjq Y pYjRγ,j‰iωjq Y tiu is a simplex of pP ,Qq˚M , this implies that γ Y tiu is

a simplex of M . Therefore for all γ such that pYjPγτjq Y pYjRγ,j‰iωjq P lkpP,Qq˚M piq, the simplex

γ P lkM piq. Therefore pYjPγτjq Y pYjRγ,j‰mωjq P pK,Lq˚lkM pjq, and so lkpP,Qq˚M piq Ď pK,Lq˚lkM piq.

We therefore have the equality pK,Lq˚lkM piq “ lkpP ,Qq˚M piq. �

Lemma 3.8. Let pK,Lq be a sequence of pairs of simplicial complexes, and let pP ,Qq be a sequence

of simplicial complexes such that

pPj , Qjq “

$
’&
’%

pKj , Ljq j ‰ i

ptiu,Hq j “ i.

12



Let pP ,Qq˚M be the simplicial complex defined by the pushout

lkpP,Qq˚M piq ˚ Li lkpP,Qq˚M piq ˚ Ki

pP ,Qq˚M zi ˚ Li pP ,Qq˚M .

Then there is an identity of simplicial complexes

pK,Lq˚M “ pP ,Qq˚M

Proof. By Lemma 3.7 we can rewrite pP ,Qq˚M zi and lkpP,Qq˚M piq. Thefore the pushout defining

pP ,Qq˚M can be written as

pK,Lq˚lkM piq ˚ Li pK,Lq˚lkM piq ˚ Ki

pK,Lq˚Mzi ˚ Li pP ,Qq˚M .

By Lemma 3.6, pP ,Qq˚M “ pK,Lq˚M . �

Recall that Mpiq is defined as polyhedral join product pP i, Qiq˚M where the sequence pP i, Qiq is

defined as

pP i
j , Q

i
jq “

$
’&
’%

pKj , Ljq j ď i

ptju,Hq j ą i.

By Lemma 3.8, with pK,Lq “ ppP i`1, Qi`1q and pP ,Qq “ pP i, Qiq, we obtain Mpi ` 1q from Mpiq

via the pushout

lkMpiqpi ` 1q ˚ Li`1 lkMpiqpi ` 1q ˚ Ki`1

Mpiqzti ` 1u ˚ Li`1 Mpi ` 1q.

We therefore obtain the following result.

Lemma 3.9. The polyhedral join product can be constructed sequentially. That is, given a simplicial

complex M on the vertex set rms, we can obtain pK,Lq˚M via the following sequence

M Ă Mp1q Ă M2 Ă ¨ ¨ ¨ Ă Mpmq “ pK,Lq˚M

where at each point, Mpi ` 1q is obtained from Mpiq via the pushout

lkMpiqpi ` 1q ˚ Li`1 lkMpiqpi ` 1q ˚ Ki`1

Mpiqzti ` 1u ˚ Li`1 Mpi ` 1q.

�
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Specialising to the substitution complex, we give specific results concerning full subcomplexes.

Lemma 3.10. Let K be a simplicial complex on rms vertices, and let L be a full subcomplex of K

on rls vertices where l ď m. Then LpK1, ¨ ¨ ¨ ,Klq is a full subcomplex of KpK1, ¨ ¨ ¨ ,Kmq.

Proof. This follows from Lemma 3.2. �

Corollary 3.11. Let KpK1, ¨ ¨ ¨ ,Knq be a substitution complex. Then each Ki is a full subcomplex

on its original vertex set.

Proof. As each vertex is a full subcomplex, by Lemma 3.10 tiupK1, ¨ ¨ ¨ ,Kmq “ Ki is a full subcom-

plex of KpK1, ¨ ¨ ¨ ,Kmq. �

Lemma 3.12. Let KpK1, ¨ ¨ ¨ ,Knq be a substitution complex. Then KpK1, ¨ ¨ ¨ ,Knq contains a full

subcomplex K 1, such that there is a simplicial equivalence K 1 “ K.

Proof. Let vi denote a vertex belonging to Ki. Consider the full subcomplex on the vertex set

tv1, ¨ ¨ ¨ , vnu P KpK1, ¨ ¨ ¨ ,Knq. We will show that this is isomorphic to a copy of K. Let σ “

pj1, ¨ ¨ ¨ , jkq be a simplex of K. By definition of the substitution operation, σj1 Y ¨ ¨ ¨ Y σjk P

KpK1, ¨ ¨ ¨ ,Knq for all σji P Kji . Letting each σji “ vji P Kji , we have that pvj1 , ¨ ¨ ¨ , vjkq P

KpK1, ¨ ¨ ¨ ,Knq. Therefore, for every simplex σ P K, we have a copy σ1 “ pvj1 , ¨ ¨ ¨ , vjkq P

KpK1, ¨ ¨ ¨ ,Knq, and so a copy of K is contained in KpK1, ¨ ¨ ¨ ,Knq. Denote this copy K 1. We

now show K 1 is a full subcomplex of KpK1, ¨ ¨ ¨ ,Knq. Assume that K 1 is not a full subcomplex,

so there is a face τ 1 on some subset of the vertex set tv1, ¨ ¨ ¨ , vnu that is is not a face of K 1 but is

a face of KpK1, ¨ ¨ ¨ ,Knq. Let τ 1 “ pvj1 , ¨ ¨ ¨ , vjk q P KpK1, ¨ ¨ ¨ ,Knq. By definition of substitution,

τ “ pj1, ¨ ¨ ¨ , jkq is a simplex in K. But then as there is a copy of every simplex in K replicated on

the vertex set tv1, ¨ ¨ ¨ , vnu, we have that τ 1 must be a face on the vertex set tv1, ¨ ¨ ¨ , vnu, and so K 1

is a full subcomplex of KpK1, ¨ ¨ ¨ ,Knq. �

In general, the polyhedral join product does not contain a copy of the original simplex M as a full

subcomplex. This property is unique to the substitution complex.

4. A generalised homotopy equivalence for loop spaces of certain polyhedral

products

In this section, we generalise results from [The24]. Let M be a simplicial complex on rms, and let

N be a subcomplex of M . Let K be a simplicial complex on rks, and let L be a subcomplex of K.
14



Consider N and L to be on the vertex sets of M and K respectively. Define Q to be the pushout

(2)

N ˚ L N ˚ K

M ˚ L Q.

The simplicial complex Q is considered to be on the vertex set rm ` ks. Applying Lemma 2.6 and

Lemma 2.7 gives the following result

Lemma 4.1. There exists a pushout

pX,AqN ˆ pX,AqL pX,AqN ˆ pX,AqK

pX,AqM ˆ pX,AqL pX,AqQ.

�

There are inclusion maps from M ˚L and N ˚ K into M ˚ K, and the inclusions M ˚K coincide on

N ˚ L. Therefore there is a pushout map Q Ñ M ˚ K. This induces the following pushout map on

topological spaces:

(3)

pX,AqN ˆ pX,AqL pX,AqN ˆ pX,AqK

pX,AqM ˆ pX,AqL pX,AqQ

pX,AqM ˆ pX,AqK .

Θ

The maps N ˚ K Ñ M ˚ K and M ˚ L Ñ M ˚ K are both the join of an inclusion and the identity,

and so on the level of polyhedral products, they induce the maps

pX,AqN ˆ pX,AqK
gˆ1

ÝÝÑ pX,AqM ˆ pX,AqK

and

pX,AqM ˆ pX,AqL
1ˆh
ÝÝÝÑ pX,AqM ˆ pX,AqL.

If all four corners of the pushout (3) are included into pX,AqM ˆ pX,AqK , we obtain homotopy

fibrations

F Ñ pX,AqQ
Θ

ÝÑ pX,AqM ˆ pX,AqK

G Ñ pX,AqN ˆ pX,AqK
gˆ1

ÝÝÑ pX,AqM ˆ pX,AqK

H Ñ pX,AqM ˆ pX,AqL
1ˆh

ÝÝÝÑ pX,AqM ˆ pX,AqK

G ˆ H Ñ pX,AqN ˆ pX,AqL
hˆi

ÝÝÑ pX,AqM ˆ pX,AqK

15



where F is the homotopy fibre of Θ, G is the homotopy fibre of the map g, and H is the homotopy

fibre of h. As the homotopy fibres are the result of mapping each corner of the pushout into a

common base, we obtain the homotopy commutative cube

(4)

G ˆ H G

H F

pX,AqN ˆ pX,AqL pX,AqN ˆ pX,AqK

pX,AqM ˆ pX,AqL pX,AqQ

in which all four sides are homotopy pullbacks. Since the bottom face is a homotopy pushout, by

Lemma 2.17, the top face is a homotopy pushout.

Lemma 4.2. The maps G ˆ H Ñ G and G ˆ H Ñ H in (2) can be chosen to be projections,

implying that there is a homotopy equivalence F » G ˚ H.

Proof. Consider the following diagram

G ˆ H pX,AqN ˆ pX,AqL pX,AqM ˆ pX,AqK

˚ ˆ H pX,AqM ˆ pX,AqL pX,AqM ˆ pX,AqK .

gˆh

˚ˆ1

1ˆh

gˆ1

As the fibrations are taken over the common base pX,AqM ˆpX,AqK , the left square is the homotopy

pullback appearing in the rear face of the cube. This diagram is the product of the fibration diagram

for the factors on the left and the fibration diagram for the factors on the right. Observe ˚ ˆ1 is the

projection of the righthand factor. Thus the map G ˆ H Ñ G is homotopic to the projection. The

argument for the map GˆH Ñ G being a projection is similar. It is well known that the homotopy

pushout of projections is a join, and so the homotopy pushout in the top face of the cube implies

that F » G ˚ H . �

Theorem 4.3. Let Q be the pushout 2. There is a homotopy fibration

G ˚ H Ñ pX,AqQ Ñ pX,AqM ˆ pX,AqK

where G is the homotopy fibre of pX,AqN Ñ pX,AqM and H is the homotopy fibre of pX,AqL Ñ

pX,AqK . This fibration splits after looping, giving a homotopy equivalence

ΩpX,AqQ » ΩpX,AqM ˆ ΩpX,AqK ˆ ΩpG ˚ Hq.

Proof. If F is the homotopy fibre of the map Θ : pX,AqQ Ñ pX,AqM ˆpX,AqK , then by Lemma 4.2,

F » G ˚ H . This establishes the asserted homotopy fibration. For the splitting, consider the
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composite pX,AqM ˆ pX,AqL Ñ pX,AqQ Ñ pX,AqM ˆ pX,AqK which is 1 ˆ h. Restricting to

pX,AqM gives inclusion into the left factor. Similarly, restricting the composite pX,AqNˆpX,AqK Ñ

pX,AqQ Ñ pX,AqM ˆ pX,AqK to pX,AqK gives inclusion into the right factor. Taking the wedge

sum of these therefore gives the composite

pX,AqM _ pX,AqK Ñ pX,AqQ Ñ pX,AqM ˆ pX,AqK

which is the inclusion of the wedge into the product. The inclusion of the wedge into the product

has a right homotopy inverse after looping, so the map ΩpX,AqQ Ñ ΩpX,AqM ˆ ΩpX,AqK has a

right homotopy inverse, implying that the fibration splits after looping. �

5. Loop spaces of polyhedral products associated with polyhedral join products

In this section, we apply Theorem 4.3 to the polyhedral join product. By Corollary 3.6 there exists

a pushout

pK,Lq˚lkM pmq ˚ Lm pK,Lq˚lkM pmq ˚ Km

pK,Lq˚Mzm ˚ Lm pK,Lq˚M .

This is a special case of the pushout in 2, where N “ pK,Lq˚lkM pmq, L “ Lm, M “ pK,Lq˚Mzm

and K “ Km. Applying Theorem 4.3, we obtain a homotopy equivalence

ΩpX,AqpK,Lq˚M

» ΩpX,AqpK,Lq˚Mzm

ˆ ΩpX,AqKm ˆ ΩpGm ˚ Hmq,

where Gm is the homotopy fibre of the map pX,AqpK,Lq˚lkM pmq

Ñ pX,AqpK,Lq˚Mzm

and Hm is the

homotopy fibre of the map pX,AqLm Ñ pX,AqKm . By iterating this homotopy equivalence with

respect to the vertices of M , we prove Theorem 1.1.

Proof of Theorem 1.1. By Theorem 4.3, there is a homotopy equivalence

ΩpX,AqpK,Lq˚M

» ΩpX,AqpK,Lq˚Mzm

ˆ ΩpX,AqKm ˆ ΩpGm ˚ Hmq.

Now consider pK,Lq˚Mzm. IfMzm is a simplex, then by Example 3.1, pK,Lq˚Mzm “ K1˚¨ ¨ ¨˚Km´1,

and so pX,AqpK,Lq˚Mzm

» pX,AqK1 ˆ ¨ ¨ ¨ ˆ pX,AqKm , and the result follows. If not, the simplicial

complex pK,Lq˚Mzm is a polyhedral join product, and therefore can be constructed as in 2, with

N “ pK,Lq˚lk˚Mzm , L “ Lm´1, M “ pK,Lq˚Mztm,m´1u and K “ Km´1. We can apply Theorem

4.3 to pX,AqpK,Lq˚Mzm

to obtain a homotopy equivalence

ΩpX,AqpK,Lq˚Mzm

» ΩpX,AqpK,Lq˚Mztm,m´1u

ˆ ΩpX,AqKm´1 ˆ ΩpGm´1 ˚ Hm´1q.
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Substituting this into our previous expression gives a homotopy equivalence

ΩpX,AqpK,Lq˚M

» ΩpX,AqpK,Lq˚Mztm,m´1u

ˆ
mź

i“m´1

ΩpX,AqKi ˆ
mź

j“m`1

ΩpGj ˚ Hjq.

We continue this process on pX,AqpK,Lq˚Mztm,m´1u

until we reach the vertex k such thatMztm, ¨ ¨ ¨ , ku

is a simplex. �

6. Simplicial operations preserving the property of being in P

Recall that P is the full subcategory of topological spaces that are homotopy equivalent to a product

of spheres and loops on spheres. Restricting to the case where pX,Aq “ pCA,Aq, let M be a simpli-

cial complex such that ΩpCA,AqM P P . The polyhedral join product pK,Lq˚M can be considered

as an operation on simplicial complexes, and as such, it is natural to ask when such an operation

preserves the property of having a loop space on an associated polyhedral product in P . In this

section we give some general conditions that ensure ΩpCA,AqpK,Lq˚M

P P . We then determine

that for the substitution complex and the composition complex, we can guarantee some of these

conditions will always be met.

Theorem 6.1. Let M be a simplicial complex on the vertex set rms, and let Ki be a simplicial

complex on the vertex set rkis. Let pCA,Aq be a sequence of pairs pCAj , Ajq where j P rm´ 1` kis.

Suppose ΣAj P W for all j P rm ´ 1 ` kis. Suppose ΩpCA,AqM P P, and let Q be the simplicial

complex defined by the following pushout

lkM piq ˚ Li lkM piq ˚ Ki

Mzi ˚ Li Q.

Let Hi be the homotopy fibre of the map pCA,AqLi Ñ pCA,AqKi . If ΩpCA,AqKi P P and ΣHi P W

then ΩpCA,AqQ P P.

Proof. Applying Lemma 2.12 to pCA,AqM gives ΩpCA,AqM » ΩpCA,AqMzi ˆ ΩpΣGi ^ Aiq. As

ΩpCA,AqM P P , and both ΩpCA,AqMzi and ΩpΣGi ^ Aiq retract off ΩpCA,AqM by Lemma 2.4

both ΩpCA,AqMzi and ΩpΣGi ^ Aiq are in P . By Lemma 2.5, ΣpGi ^ Aiq P W . Now consider

pCA,AqQ. Applying Theorem 4.3 gives

ΩpCA,AqQ » ΩpCA,AqMzi ˆ ΩpCA,AqKi ˆ ΩpΣGi ^ Hiq.

As ΣHi P W , and ΣHi is at least as connected as ΣAi by Lemma 2.16, ΣGi ^ Hi P W . Therefore

ΩΣpGi ^ Hiq P P by Lemma 2.1. Hence each element on the right hand side of the homotopy

equivalence is in P , and therefore ΩpCA,AqQ P P . �
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Recall that by Lemma 3.9, the polyhedral join product can be constructed sequentially via an

iterated pushout construction. More specifically, there is a sequence of simplicial complexes

M Ă Mp1q Ă Mp2q Ă ¨ ¨ ¨ Ă Mpmq “ pK,Lq˚M

where at each point, Mpi ` 1q is obtained from Mpiq via the pushout

lkMpiqpi ` 1q ˚ Li`1 lkMpiqpi ` 1q ˚ Ki`1

Mpiqzti ` 1u ˚ Li`1 Mpi ` 1q.

This, combined with Theorem 6.1, allows us to prove Theorem 1.2.

Proof of Theorem 1.2. We proceed by induction on Mpiq. The base case is Mp1q. The simplicial

complex Mp1q is defined as the pushout

lkM p1q ˚ L1 lkM p1q ˚ K1

Mz1 ˚ L1 Mp1q.

By assumption ΩpCA,AqK1 P P , and ΣH1 P W and so by Theorem 6.1, we obtain ΩpCA,AqMp1q P P .

Now suppose that for all j ă i, ΩpCA,AqMpiq P P . ConsiderMpiq. This simplicial complex is defined

by the pushout

lkMpi´1qpiq ˚ Li lkMpi´1qpiq ˚ Ki

Mpi ´ 1qzi ˚ Li Mpi ` 1q.

By induction, ΩpCA,AqMpi´1q P P , and by assumption, ΩpCA,AqKi P P and ΣHi P W . Therefore

we can apply Theorem 6.1, with M “ Mpi ´ 1q and i “ m to obtain ΩpCA,AqMpiq P P . Therefore

ΩpCA,AqMpiq P P for all i P rms by induction. When i “ m by definition Mpmq “ pK,Lq˚M , and

so the result holds. �

Theorem 1.2 tells us that given M such that ΩpCA,AqM P P , we can construct a new simplicial

complex pK,Lq˚M such that ΩpCA,AqpK,Lq˚M

P P , subject to conditions on Ki and the homotopy

fibre Hi. Guaranteeing ΣHi P W is not so simple. We can give conditions on the map pCA,AqLi Ñ

pCA,AqKi to ensure ΣHi P W .

Lemma 6.2. Let M be a simplicial complex on rms vertices. Let pK,Lq˚M be a polyhedral join

product and let Ki be a simplicial complex on the vertex set rkis for i P rms. Let pCA,Aq be a

sequence of pairs pCAj , Ajq where 1 ď j ď k1 ` ¨ ¨ ¨ ` km. Suppose the pairs pK,Lq are such that the

map pCA,AqLi Ñ pCA,AqKi is null homotopic. If ΣpCA,AqLi P W and ΩpCA,AqKi P P for all i,

then ΩpCA,AqpK,Lq˚M

P P.
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Proof. As the map pCA,AqLi Ñ pCA,AqKi is null homotopic, its homotopy fibre, denoted Hi, will

be homotopy equivalent to pCA,AqLi ˆ ΩpCA,AqKi . Therefore

ΣHi » ΣpCA,AqLi _ ΣΩpCA,AqKi _ ΣppCA,AqLi ^ ΩpCA,AqKiq.

As ΣpCA,AqLi P W by assumption, and ΣΩpCA,AqKi P W by Lemma 2.11, all elements on the right

hand side are in W . Therefore we have ΣHi P W . By Theorem 1.2, then ΩpCA,AqpK,Lq˚M

P P . �

The conditions laid out in Lemma 6.2 are generally easy to fulfill. For example, the pairs p∆ni´1
k ,∆ni´1

k´1 q

satisfy such a condition, as pCA,Aq∆
n´1

k P W for 0 ď k ď n´1 ([IK13]), and the map pCA,Aq∆
n´1

k Ñ

pCA,Aq∆
n´1

k`1 is null homotopic ([Por66]). Recall that by [BBCG10] there is a homotopy equivalence

ΣpCA,AqK » Σ
` ł

IRK

|KI | ˚ pAI
˘
.

Therefore, if for all I R K, |KI | P W and ΣAi P W for all i P rms, then ΣpCA,AqK P W .

More generally, we can show that the substitution complex satisfies this condition. We first require

the following proposition.

Proposition 6.3. [GT13] Let K be a simplicial complex on the vertex set rms, and assume K has

no ghost vertices. Then the inclusion
śm

i“1 Ai Ñ pCA,AqK is null homotopic, and the homotopy

fibre of this map is
` śm

i“1 Ai

˘
ˆ ΩpCA,AqK .

Lemma 6.4. Let the sequence of pairs pCA,Aq be as in Theorem 1.2. Let KpK1, ¨ ¨ ¨ ,Kmq be a sub-

stitution complex. If ΩpCA,AqK ,ΩpCA,AqK1 , ¨ ¨ ¨ ΩpCA,AqKm P P, then ΩpCA,AqKpK1,¨¨¨ ,Kmq P

P.

Proof. Recall that the substitution complex is a special case of the polyhedral join product on the

simplicial pairs pKi,Hq. Therefore Hi is the homotopy fibre of the map
ś

jPKi
Aj Ñ pCA,AqKi .

By Lemma 6.3, this map is null homotopic. As by assumption, ΣAj P W for all j, the conditions of

Lemma 6.2 are satisfied, and ΩpCA,AqKpK1,¨¨¨ ,Kmq P P . �

Lemma 6.5. Let the sequence of pairs pCA,Aq be as in Theorem 1.2. Let KxK1, ¨ ¨ ¨ ,Kmy be a com-

position complex. If ΩpCA,AqK P P and ΣpCA,AqKi P W for all i P rms, then ΩpCA,AqKxK1,¨¨¨ ,Kmy P

P.

Proof. Recall that the composition complex is a special case of the polyhedral join product on

the simplicial pairs p∆rki´1s,Kiq. Therefore Hi is the homotopy fibre of the map pCA,AqKi Ñ
ś

jPKi
CAj . As

ś
jPKi

CAj is contractible, this map is null homotopic, so Hi » pCA,AqKi . By

assumption ΣpCA,AqKi P W , and so by Lemma 6.2, ΩpCA,AqKpK1,¨¨¨ ,Kmq P P . �
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There are other pairs of simplicial complexes pK,Lq for which we can determine if ΣHi P W .

Proposition 6.6. Suppose pK,Lq are pairs such that for each i P rms, the simplicial complex

Li is a full subcomplex of Ki. Let pCΩX,ΩXq be a sequence of pairs where ΩXi P P for all

i P rms. Suppose ΩpCΩX,ΩXqM P P, and suppose pCΩX,ΩXqKi P P for all i P rms. Then

ΩpCΩX,ΩXqpK,Lq˚M

P P.

Proof. To apply Theorem 1.2 we need to show ΣHi, the homotopy fibre of the map pCΩX,ΩXqLi Ñ

pCΩX,ΩXqKi is an element ofW . First consider ΩpX, ˚qM . By [GT07] there is a homotopy fibration

pCΩX,ΩXqM Ñ pX, ˚qM Ñ
mź

i“1

ΩXi

that splits after looping

ΩpX, ˚qM »
mź

i“1

ΩXi ˆ ΩpCΩX,ΩXqM .

As every element on the right hand side of this homotopy equivalence is in P , we obtain ΩpX, ˚qM P

P . Via an identical argument, ΩpX, ˚qKi P P for all i P rms. Let Fi denote the homotopy fibre of

pX, ˚qLi Ñ pX, ˚qKi . As Li is a full subcomplex of Ki, by Lemma 2.9 this map has a left homotopy

inverse, and so the connecting map δ : ΩpX, ˚qKi Ñ Fi has a right homotopy inverse. We therefore

have a homotopy equivalence ΩpX, ˚qKi » ΩpX, ˚qLi ˆ Fi. If ΩpX, ˚qKi P P , by Lemma 2.4 Fi is

also in P . By Lemma 2.2, ΣFi must therefore be in W . Now we can determine the homotopy type

of ΣHi. Consider the following homotopy fibration diagram

Hi pCΩX,ΩXqLi pCΩX,ΩXqKi

Fi pX, ˚qLi pX, ˚qKi

˚
śmi

j“1 Xj

śmi

j“1 Xj

»

“

where the homotopy fibrations in the middle and right column are exactly as defined in [GT07].

From this diagram, there is a homotopy equivalence Fi » Hi, and as ΣFi P W we obtain ΣHi P W .

As all the conditions of Theorem 1.2 have been met, it follows that pCΩX,ΩXqpK,Lq˚M

P P . �

7. The substitution complex and new examples

In this section we show that the substitution operation can be used to generate new examples

of simplicial complexes such that ΩpCA,AqK P P . Recall that there are two known families of

simplicial complexes where ΩpCA,AqK P P : those K such that pCA,AqK P W , and those K that

are k-skeletons of a flag complex. We wish to construct new examples of simplicial complexes where

ΩpCA,AqK P P but pCA,AqK R W and K is not the k-skeleton of a flag complex. To do this, we
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focus on the substitution complex, as we can =determine some full subcomplexes in this case. We

first give sufficient conditions to ensure that pCA,AqKpK1,¨¨¨ ,Kmq is not in W .

Lemma 7.1. Let KpK1, ¨ ¨ ¨ ,Kmq be a substitution complex where at least one Ki is such that

pCA,AqKi R W . Then pCA,AqKpK1,¨¨¨ ,Kmq R W.

Proof. Assume that pCA,AqKpK1,¨¨¨ ,Kmq P W . By Corollary 3.11, Ki is a full subcomplex of

KpK1, ¨ ¨ ¨ ,Kmq. Therefore by Lemma 2.9 ,pCA,AqKi retracts off pCA,AqKpK1,¨¨¨ ,Kmq. By Lemma 2.3

this implies that pCA,AqKi has the homotopy type of a wedge of spheres, giving a contradiction.

Therefore, pCA,AqKpK1,¨¨¨ ,Kmq cannot have the homotopy type of a wedge of spheres. �

Lemma 7.2. Let KpK1, ¨ ¨ ¨ ,Kmq be a substitution complex and let K be such that pCA,AqK R W.

Then pCA,AqKpK1,¨¨¨ ,Kmq R W

Proof. Assume that pCA,AqKpK1,¨¨¨ ,Kmq P W . By Corollary 3.11, there is a copy of K contained in

KpK1, ¨ ¨ ¨ ,Kmq which is a full subcomplex. Therefore by Lemma 2.9, we have pCA,AqK retracting

off pCA,AqKpK1,¨¨¨ ,Kmq.By Lemma 2.3 this implies that pCA,AqK has the homotopy type of a wedge

of spheres, giving a contradiction. Therefore pCA,AqKpK1,¨¨¨ ,Kmq is not homotopy equivalent to a

wedge of spheres, as pCA,AqK R W . �

We now wish to show that we can build substitution complexes that are not the k-skeletons of flag

complexes. We first deal with the case where K is not flag. Recall that a simplicial complex K is

flag if every set of vertices of K that are pairwise connected by edges form a face of K, and the

k-skeleton of a simplicial complex K is the collection of simplices of dimension k or less. A minimal

missing face of K is a subset ω Ď rms such that ω R K but every proper subset of ω is a simplex in

K. We denote the set of missing faces of K as MF pKq, and the set of minimal missing faces of K

as MMF pKq. If K is a flag complex, its minimal missing faces are on no more than two vertices.

Lemma 7.3. [AP19] The minimal missing faces of KpK1, ¨ ¨ ¨ ,Kmq are precisely the following

MMF pK1q \ ¨ ¨ ¨ \ MMF pKmq \
ğ

∆pi1,¨¨¨ ,ikqPMMF pKq

MMFi1,¨¨¨ ,ikpKpK1, ¨ ¨ ¨ ,Kmqq

where

MMFi1,¨¨¨ ,ikpKpK1, ¨ ¨ ¨ ,Kmqq “ t∆pj1, ¨ ¨ ¨ , jkq | jl P Kil , l “ 1, ¨ ¨ ¨ , ku. �

Lemma 7.4. Let K be a simplicial complex on the vertex set rms that is not flag. Then the complex

KpK1, ¨ ¨ ¨ ,Kmq is not flag.
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Proof. Relabeling vertices as required, let t1, ¨ ¨ ¨ , ku, k ě 2 be a set of pairwise connected ver-

tices that do not form a face of of K. Let vi denote a vertex in Ki, and consider the vertex set

tv1, ¨ ¨ ¨ , vku P KpK1, ¨ ¨ ¨ ,Kmq. This does not form a simplex in KpK1, ¨ ¨ ¨ ,Kmq as t1, ¨ ¨ ¨ , ku is

not a face of K. However, as each pair ti, ju Ď t1, ¨ ¨ ¨ , ku is connected by an edge in K, the pairs

tvi, vju Ď tv1, ¨ ¨ ¨ , vku are connected by an edge in KpK1, ¨ ¨ ¨ ,Kmq, and so the set tv1, ¨ ¨ ¨ , vku

is pairwise connected. Therefore, we have found a collection of pairwise connected vertices in

KpK1, ¨ ¨ ¨ ,Kmq that does not form a face, and so KpK1, ¨ ¨ ¨ ,Kmq cannot be flag. �

Lemma 7.5. Let K be a simplicial complex that is not flag. For at least one vertex v in a minimal

missing face of K, suppose that Kv, that is, the simplicial complex substituted into K at vertex v,

contains a 1-simplex. Then KpK1, ¨ ¨ ¨ ,Kmq is not the k-skeleton of any flag complex.

Proof. As K is not flag, it will have a minimal missing face on at least 3 vertices. Reordering

vertices if necessary, let t1, ¨ ¨ ¨ , ju be a minimal missing face of K, and suppose that Kj has at

least one 1 simplex. By Lemma 7.3, tv1, ¨ ¨ ¨ , vju is a minimal missing face in KpK1, ¨ ¨ ¨ ,Kmq,

and as the boundary of p1, ¨ ¨ ¨ , jq is contained in K, the boundary of pv1, ¨ ¨ ¨ , vjq is contained in

KpK1, ¨ ¨ ¨ ,Kmq. As tv1, ¨ ¨ ¨ , vju is a minimal missing face of KpK1, ¨ ¨ ¨ ,Kmq, if KpK1, ¨ ¨ ¨ ,Kmq

was the k-skeleton of a flag complex, it could only be the j ´1-skeleton of a flag complex. Therefore

it could not contain any simplices of dimension greater than j´1. Let v1j and v2j denote two vertices

of Kj that are joined by a edge. The link of j in K will contain the simplex p1, ¨ ¨ ¨ , j ´ 2q, and

so by definition of the substitution operation, we have pv1, ¨ ¨ ¨ , vj´2, v
1
j , v

2
j q P KpK1, ¨ ¨ ¨ ,Kmq, a

contradiction. Therefore KpK1, ¨ ¨ ¨ ,Kmq cannot be the k-skeleton of any flag complex. �

We now consider the case when K is flag.

Lemma 7.6. Let K be a flag complex on rms vertices. If at least one Ki substituted into K is not

flag, then KpK1, ¨ ¨ ¨ ,Kmq is not flag.

Proof. By Lemma 7.3, all missing faces of each Ki are missing faces of KpK1, ¨ ¨ ¨ ,Kmq. Therefore

KpK1, ¨ ¨ ¨ ,Kmq will contain all the missing faces of Ki, and so cannot be flag. �

Lemma 7.7. If K is the k-skeleton of a flag complex, and K ‰ ∆k, it must have a minimal missing

face of dimension k ` 1.

Proof. As K is the k-skeleton of a flag complex, it must have at least one face of dimension k, and

no higher faces. Let Kf denote the minimal flag complex on the same 1-skeleton as K, so K is the

k-skeleton of Kf . Up to a reordering of vertices, let p1, ¨ ¨ ¨ , k`2q be a pk`1q-simplex of Kf . In K,

the set t1, ¨ ¨ ¨ , k`2u does not form a simplex, as the dimension is greater than k, but the boundary
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is contained in K, because each k simplex in the boundary is in the k-skeleton of Kf , which is K.

Therefore t1, ¨ ¨ ¨ , k ` 2u is a minimal missing face of K. �

Lemma 7.8. Let K be a flag complex. If a) at least one Ki is not the k-skeleton of a flag complex or

b) Ki is the k-skeleton of a flag complex and the link of i in K is non-empty, then KpK1, ¨ ¨ ¨ ,Kmq

is not the k-skeleton of a flag complex.

Proof. If at least one Ki is not the k-skeleton of a flag complex, then by combining Lemma 7.3 and

the argument from Lemma 7.6, KpK1, ¨ ¨ ¨ ,Kmq cannot be the k-skeleton of some flag complex. So

now consider case b). As Ki is the k-skeleton of a flag complex, it will have a minimal missing

face on at least k ` 2 vertices, by Lemma 7.7. Reordering vertices if necessary, let t1, ¨ ¨ ¨ , k ` 2u

be a minimal missing face of Ki. Therefore, if KpK1, ¨ ¨ ¨ ,Kmq is the skeleton of a flag complex,

it must be a k-skeleton. By assumption, the link of i is non empty, and so there exists a σ such

that σ Y tiu P K. By definition of substitution, for all τ P Ki σ Y τ P KpK1, ¨ ¨ ¨ ,Kmq. More

specifically, as the boundary of p1, ¨ ¨ ¨ , k ` 2q is contained in Ki, p1, ¨ ¨ ¨ , k ` 1q Y σ is a simplex in

KpK1, ¨ ¨ ¨ ,Kmq. But then we have a face of KpK1, ¨ ¨ ¨ ,Kmq of a dimension that is strictly larger

than k, and so KpK1, ¨ ¨ ¨ ,Kmq is not the k-skeleton of a flag complex. �

We end this section by building some substitution complexes such that ΩpCA,AqKpK1,¨¨¨ ,Kmq P P ,

but pCA,AqKpK1,¨¨¨ ,Kmq R W and KpK1, ¨ ¨ ¨ ,Kmq is not the k-skeleton of a flag complex. We do

this by substituting into the boundary of a m-simplex.

Lemma 7.9. There are simplicial equivalences pB∆l´1ztluqpK1, ¨ ¨ ¨ ,Kl´1, lq and ∆l´2pK1, ¨ ¨ ¨ ,Kl´1q

and lkB∆l´1pK1,¨¨¨ ,Kl´1,lqplq and B∆l´2pK1, ¨ ¨ ¨ ,Kl´1q.

Proof. These follows from Lemma 3.7, where pK,Lq “ pK,Hq. �

We now have all the ingredients in place to produce new examples of spaces in P .

Theorem 7.10. Let B∆pK1, ¨ ¨ ¨ ,Knq be a substitution complex such that for each Ki, we have

ΩpCA,AqKi P P. Furthermore, suppose least one Ki is such that pCA,AqKi R W. Then we have

pCA,AqB∆pK1,¨¨¨ ,Knq R W, B∆pK1, ¨ ¨ ¨ ,Knq is not the k-skeleton of a flag complex for any k, and

ΩpCA,AqB∆pK1,¨¨¨ ,Knq P P.

Proof. As for all i P rms, we have ΩpCA,AqKi P P , we obtain ΩpCA,AqB∆pK1,¨¨¨ ,Knq P P by

Corollary 6.4. As there exists an i such that pCA,AqKi R W , by Lemma 7.1, we obtain that

pCA,AqB∆pK1,¨¨¨ ,Knq R W . As pCA,AqKi R W , we have that Ki must have at least one edge, as

otherwise Ki would be the disjoint union of points, and [GT07] established that if Ki is of this
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form, then pCA,AqKi P W . As B∆n´1 is not flag, Theorem 7.4 implies B∆pK1, ¨ ¨ ¨ ,Knq is not the

k-skeleton of a flag complex. �

To conclude this section we give a concrete examples of a new complexes such that, the moment-angle

complex ZKpK1,¨¨¨Kmq P P .

Example 7.11. Let K “ B∆n´1, and let each Ki be the boundary of an ni-gon, denoted Pni
,

where ni ě 4. Observe that ZP4
» S3 ˆ S3, and that for m ą 4 ,by [McG79] we have ZPn

–

#n´1
k“3pSk ˆ Sn`2´kq#pk´2qpn´1

k´1q. Therefore, for ni ě 4 we have that ZPni
R W . As ΩZPn

»

ΩS3 ˆ ΩSn´1 ˆ ΩSpPmq [BT14], where SpPnq is a wedge of simply connected spheres, we have

ΩZPn
P P . By Theorem 7.10, ZB∆m´1pPn1

,¨¨¨ ,Pnmq P P .
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