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Abstract 

Stability issues and oscillations associated with inverter-based resources (IBRs) are of increasing concern in inverter-dominated 

power systems. This study explores the stability boundary of grid-following (GFL) and grid-forming (GFM) inverters and 

performs a sensitivity analysis for the most relevant control and grid parameters. A stability boundary tracking (SBT) algorithm 

is proposed, which can identify the stability boundary relating up to three parameters of interest for both GFL and GFM inverters. 

This boundary is then illustrated as two-dimensional stability curve or three-dimensional stability surface to facilitate 

understanding the impact of certain parameters on the stability margin. A comprehensive sensitivity analysis of different 

controller parameters as well as power factor and line R/X ratio draws parallels on their impact to GFL and GFM stability.

1. Introduction 

With the increasing penetration of renewable energy resources, 

power grids with long-distance transmission lines suffer from 

weak grid issues, such as voltage fluctuations and instability. 

Grid impedance typically indicates the strength of the grid and 

is conventionally categorized by the short-circuit ratio (SCR) 

[1]. IEEE Standard 1204-1997 defines the grid strength as: 

very weak (SCR≤2), weak (2<SCR<3), and strong (SCR>3) 

[2]. The issue of grid-connected inverters operating in grid-

following (GFL) or grid-forming (GFM) mode exhibiting 

different stability behaviour under different grid strengths has 

been raised. It is emphasized that GFL tends to be unstable in 

weak grids, while GFM may lose synchronization in very stiff 

grids [3]. Relevant oscillatory phenomena reported in both low 

and high frequencies [4] usually result from the multi-layer 

inverter control and its interaction with the grid and other 

components. A comprehensive comparative study of the 

stability attributes of GFL and GFM is therefore essential. 

Current research has explored the stability of GFL and GFM 

inverters connected to the grid with different SCRs and 

validated by time domain simulations or experiments. For 

example, it is suggested in [3] that GFL fails to maintain 

stability when SCR is less than 1.58, and GFM struggles for 

SCR higher than 11.67. Also, the cases in [1] illustrate that the 

stability margins for GFL and GFM are less than 2 and greater 

than 8, respectively. Such empirical observations, however, 

are case-specific and cannot be generalized easily.  

A sounder alternative is to formally identify the stability 

boundary relating to certain parameters of interest, i.e., the 

values of these parameters that set the system marginally 

stable. The stability boundary demarcates the stable from the 

unstable region in the N-dimensional space, where N is the 

number of parameters of interest. Some studies in the literature 

study such boundaries, such as the relationship between droop 

coefficient and line impedance in [5]; this relation shows that 

the larger the droop coefficient in GFM, the worse the stability 

and therefore higher impedance values are required to ensure 

stability. In [6], the study investigates the effects of phase-

locked loop (PLL) in GFL systems and suggests that at lower 

SCRs, boosting PLL gains can enhance system stability. The 

study in [7] further derives a symbolic stability boundary 

equation for GFL, which reveals that control loop bandwidth 

interactions lead to instability in weak grids. However, such 

specific observations cannot lead to universal conclusions; 

what is missing is a structured way to identify the stability 

boundary, and a comprehensive sensitivity analysis for all 

parameters for both GFL and GFM inverters. 

In addition, most studies assume that transmission lines are 

purely inductive. However, authors in [8] use a reduced-order 

state-space model to derive stability boundaries for different 

R/X values and demonstrate that there is some stability impact 

from the resistive part of transmission lines. Different power 

factors are also employed in the stability analysis in [1]. 

Therefore, it is also of significance to study the stability impact 

of the aforementioned grid settings and power factor. 

To address this research gap, a methodical exploration of the 

stability boundary in GFL and GFM inverters is proposed in 

this paper. The main contributions of this study are: 

• A new generic method to identify the stability boundary 

of up to three parameters; 

• A comprehensive sensitivity analysis for all critical 

control parameters (droop coefficient, voltage controller 

gains, etc.) and relevant grid parameters (R/X ratio, 

leading/lagging power factor) on their stability effect; 

• Drawing parallels on the stability impact of various 

parameters between GFL and GFM inverters. 

Simulations on the 3-bus testbench are used to validate the 

findings of this study. 
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2. Methodology  

2.1 System configuration and inverter controls 

The modified 3-bus power system [9,10] used in this study to 

investigate the dynamic behaviour of the inverter is shown in 

Fig. 1; the generator of bus 2 has been replaced by an inverter-

based resource (IBR) for the purpose of this experiment. The 

inverter is connected to the grid via an L filter (𝐿𝑓 ) and 

operates in either GFL or GFM control mode. 

Fig. 2(a) depicts a typical GFL controller with droop-based 

frequency response [11]. The outer loop involves a phase-

locked loop (PLL) for grid synchronization and frequency-

droop control P(f) module for primary frequency response, 

while the inner loops translate the power setpoints to current 

commands that eventually drive the inverter output. The 

standard droop-based GFM controller is shown in Fig. 2(b) 

[12]. Here, the GFM scheme employs the droop function f(P) 

for both synchronization and frequency response, which forms 

its reference frequency and voltage actively, implemented at 

the connection point via a voltage and current controller.  

The aforementioned droop control modules contain a low-pass 

filter (LPF) with a cut-off frequency 𝑓𝑐 and a droop gain 𝑚𝑃 

(in per unit) defined as: 

𝜔 − 𝜔0 = −𝑚𝑃(𝑃 − 𝑃0), (1) 

where 𝜔0  and 𝑃0  denote the system nominal frequency and 

inverter power rating, and the LPF is used for power/frequency 

measurement [11]. Please note that for GFM the generated 

angular frequency will be 𝜔 = 𝜔0 +𝑚𝑃(𝑃0 − 𝑃) , whereas 

the reference power in GFL will be 𝑃 = 𝑃0 + (𝜔0 −𝜔)/𝑚𝑃.  

2.2 Stability boundary mapping 

To investigate the system dynamic behaviour, the full-order 

state-space model of the entire 3-bus system is built and 

assessed stability-wise via small-signal analysis. The 

differential and algebraic equations (DAEs) of the inverter and 

synchronous generator can be found in [3] and [13]. The 

linearization is performed in MATLAB script with the 

linearize function. The eigenvalues of this system can 
 

therefore be calculated, and if all the eigenvalues are situated 

in the left half-plane of the complex plane, the system is 

inferred to be stable at this equilibrium point. However, to 

identify the stability boundary, this process needs to be 

repeated several times for various parameters and operating 

points in a structured manner. Such a methodical approach is 

currently missing from the literature.  

This paper introduces such a method, denoted as Stability 

Boundary Tracking (SBT) algorithm and shown in the 

flowchart of Fig. 3, which is able to calculate the multi-

dimensional stability boundary of the system. The SBT 

algorithm is essentially a “grid search” of all parameters of 

interest, i.e. sampling the stability status for all possible 

combinations to form the stability boundary. 

The flowchart starts by defining the range of variables of 

interest, i.e.  the line impedance L and up to two controller 

parameters 𝛼 and 𝛽, while the minimum value of each variable 

is set as the initial point 𝐿0 and 𝛼0, 𝛽0. At this initial point, the  

Fig. 1. The modified 3-bus testbench power system. 

 
Fig. 2. System diagrams for (a) GFL and (b) GFM inverters. 

 

Fig. 3. Flowchart of the proposed SBT algorithm. 
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system is initialised, linearized and the stability is inferred 

from its eigenvalues; then, this process is repeated for different 

line impedance values within the range ( 𝐿𝑚𝑖𝑛 , 𝐿𝑚𝑎𝑥 ) to 

observe when stability changes from stable to unstable or vice 

versa; when this happens, the relevant SCR is calculated and 

is treated as the critical boundary value 𝑆𝐶𝑅𝑖 . This loop is 

referred to as “L scan” in the flowchart. The SCR is calculated 

via the Thévenin equivalent model (Fig. 4) [14]: 

𝑆𝐶𝑅𝑖 =
𝑃𝑆𝐶
𝑃𝑁

=
|𝐸𝑡ℎ|

2

|𝑍𝑡ℎ,𝑖|𝑃𝑁
 

(2) 

where 𝐸𝑡ℎ  and 𝑍𝑡ℎ,𝑖  are the equivalent Thevenin voltage 

source and series impedance. 𝑃𝑆𝐶  is the short-circuit power at 

the point of common coupling (PCC) and 𝑃𝑁 is the nominal 

power of inverter. If the objective is to find this critical value 

(e.g. minimum SCR for a GFL connection), then the 1-D 

stability boundary has been identified and the process is 

complete. 

In case a 2-D stability boundary is required to identify the 

relation between a control parameter α and SCR, then “L scan” 

needs to be repeated for different 𝛼𝑗  values from 𝛼𝑚𝑖𝑛  to 

𝛼𝑚𝑎𝑥. The pairs (𝑆𝐶𝑅𝑖, 𝛼𝑗) are then collated together to form 

the stability curve 𝑙𝑘 , a process shown as “L-a scan” in the 

flowchart. If a 3-D stability boundary is required instead, then 

many such stability curves are produced for different 𝛽 values 

within (𝛽𝑚𝑖𝑛 , 𝛽𝑚𝑎𝑥 ) to form the stability surface 𝑆  (L-a-β 

scan). It is worth noting that the same flowchart can be used 

for 1-D, 2-D and 3-D stability boundaries by setting 𝛼𝑚𝑖𝑛 = 

𝛼𝑚𝑎𝑥  and/or 𝛽𝑚𝑖𝑛 = 𝛽𝑚𝑎𝑥  accordingly to bypass the 

respective parameter scans. 

3. Results 

This section applies the SBT algorithm on the modified 3-bus 

system to visualize the various parameters impact on the 

stability of GFL and GFM inverters. First, the 1-D critical SCR 

is examined for one indicative case, followed by 2-D stability 

curves and 3-D stability surfaces relating different control 

parameters to SCR. The grid strength is modified by varying 

the impedance of line 23 and the control parameters considered 

are: the droop setting, the LPF cut-off frequency, the PLL 

gains (for GFL) and the voltage controller gains (for GFM). 

Finally, a sensitivity analysis is performed for different line 

R/X ratios and different power factors. The parameters of 

system components are given in Table I. 

3.1 Critical SCR 

The first case explores the stability of the system with varying 

line impedance 𝐿23 from 0.43 pu to 0.49 pu for GFL (from 

0.01 pu to 0.13 pu for GFM), which corresponds to SCR 

decreasing. Fig. 5 illustrates the trajectories of dominant 

eigenvalues as SCR is reduced (the remaining eigenvalues are 

not affecting the stability and are omitted for simplicity). As 

expected, the eigenvalue pair of GFL moves towards the right 

half-plane, i.e. stability worsens as SCR decreases, whereas 

GFM stability improves. It is worth noting that the SCR value 

where the eigenvalues intersect the imaginary axis is identified 

as the critical stability boundary point. Table II lists these 

boundary points along with the main participating factors. The 

critical eigenvalues lie in the sub-synchronous range and 

depend mainly on the synchronization loops. 

 
Fig. 4. Thévenin equivalent network. 

Parameters Symbol Values 

System frequency  𝑓0 60 Hz 

Base power 𝑆𝐵 100 MVA 

Transmission line 13 impedance 𝑍13 0.001 + 𝑗0.01 

Transmission line 13 impedance 𝑍23 0.001 + 𝑗0.01 

Reference inverter active power 𝑃0 1 pu 

Reference inverter reactive power 𝑄0 0 pu 

Reference inverter voltage  𝑣0 1.01 pu 

Droop coefficient  𝑚𝑝 
1% in GFL 

5% in GFM 

Low-pass filter cut-off frequency 𝑓𝑐  20 Hz 

PLL proportional gain 𝑘𝑝 1 

PLL integral gain 𝑘𝑖 3800 

Voltage control proportional gain 𝑘𝑝𝑣 5 

Voltage control integral gain 𝑘𝑖𝑣 250 

Current control proportional gain 𝑘𝑝𝑖 1.25 

Current control integral gain 𝑘𝑖𝑖 10 

Table I. Parameters of the system. 
 

Fig. 5. Traces of critical eigenvalues for varying SCR. 

 

(a)                                             (b) 

Fig. 6. 𝑚𝑃 vs. SCR stability boundary curves for (a) GFL and (b) 

GFM inverters. Blue and red dots indicate stable and unstable 

points respectively. 

Table II. Critical eigenvalues and participation factors. 
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3.2 Stability Boundary curve and surface  

Fig. 6 shows the results of the SBT algorithm for the mp-SCR 

stability curve, i.e. a 2-D stability boundary, for GFL and GFM 

systems. Every square marker in the plots corresponds to a 

certain combination of mp and SCR, which makes the system 

either stable (blue colour) or unstable (red colour). The 

stability boundary can therefore be defined as the borderline 

between the stable and unstable regions, highlighted with the 

green curve in Fig. 6, and is the direct output of the SBT 

algorithm. In subsequent plots of 2-D stability boundary plots, 

only the stability curve itself is shown (i.e. the green curve) 

without the square markers for clarity. 

Fig. 6(a) reaffirms literature observations that GFL performs 

better in stronger grids with smaller line impedance values, 

while GFM in Fig. 6(b) features a reversed trend. In addition, 

the shape of boundary lines implies that increasing 𝑚𝑃 

improves GFL stability, whereas it worsens GFM stability 

(stable and unstable regions reverse in the two plots – please 

see the definition of droop coefficient in Section 2.1). These 

findings are in line with literature observations [15].  

The analysis was then extended to three dimensions, in which 

a third parameter was added to produce the 𝑚𝑃 -SCR- 𝑓𝑐 

boundary. As an example, in Fig. 7, the blue and red arrows 

represent the stable and the unstable systems, respectively, 

forming a surface between them. The colour shading of the 

surface in Fig. 7(a) demonstrates that increasing 𝑚𝑃 is not the 

sole method for improving GFL stability; it is also necessary 

to adjust 𝑓𝑐  to an adequate level. Fig. 7(b) indicates that 

decreasing 𝑚𝑃  and increasing 𝑓𝑐  both lead to a larger stable 

region, i.e., the GFM stability margin increases. 

3.3 Case studies: Sensitivity analysis of controller parameters 

To explore the effect of the droop function, Section 3.2 first 

examines the relationship between the droop coefficient (𝑚𝑃) 

         
(a)                                                                                                   (b) 

Fig. 7. 𝑚𝑃 vs. SCR vs. 𝑓𝑐  stability boundary surfaces for (a) GFL and (b) GFM. Blue and red arrows indicate stable and unstable spaces 

respectively. 

 

(a) 

 

(b) 

Fig. 8. Stability boundary curves of LPF cut-off frequency (𝑓𝑐) and PLL controller parameters (𝑘𝑝𝑣 , 𝑘𝑖𝑣) for (a) GFL and (b) GFM. 
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and the grid strength which shows opposite trend on GFL and 

GFM stability. The stability characteristics of other controller 

parameters, including LPF cut-off frequency in droop control 

and the controller gains in both PLL and voltage control, are 

presented in Fig. 8. A first observation on grid strength impact 

reveals that GFL performs well with larger SCRs as it can 

easily track the grid voltage for power synchronisation, 

whereas GFM performs better at smaller SCRs when it can 

actively adjust the inverter frequency.  

Further examination of Fig. 8 shows that the variation of the 

controller parameters greatly affects the stability region. In the 

GFL example, reducing 𝑓𝑐 of LPF from 40 Hz to 1 Hz requires 

a stronger grid strength (above SCR=7) to maintain stability. 

When the cut-off frequency is decreased further, the system 

becomes unstable across all grid conditions. Similarly, 

reducing 𝑓𝑐  in GFM expands the unstable region. This 

comparison reveals that increasing the 𝑓𝑐 within a reasonable 

range enhances stability for both GFL and GFM. This is 

expected, as lower 𝑓𝑐  entails longer time lag between 

measurement and actuation that is often detrimental in closed-

loop control systems [16].  

As seen in Fig. 8(a), when PLL parameters are taken into 

account, the GFL system stability worsens as 𝑘𝑝  decreases 

below 2.6; also, a higher value of 𝑘𝑖  is required as the grid 

becomes weaker. Fig. 8(b) shows that increasing 𝑘𝑝𝑣 from 3 to 

5 can expand the feasible SCR stable range of GFM from 4.5 

to 8.6, whereas an increase in 𝑘𝑖𝑣 reduces the stability region 

and even result in GFM getting unstable below SCR=3.6 . 

These points suggest that both GFL and GFM systems require 

a critical balance between proportional and integral gains 

(increasing 𝑘𝑝 or decreasing 𝑘𝑖) of the PLL/voltage controller. 

Again, these findings are in line with literature observations, 

but this is the first study to put these into a comparative 

framework for GFL and GFM. 

3.4 Case studies: Sensitivity analysis of grid conditions 

To explore the importance of other grid conditions, sensitivity 

analyses of the line R/X ratio and power factor were performed. 

The system was first tested at various line R/X ratios ranging 

from 0% to 30%, which represent the proportion of the 

resistive to inductive components of the transmission line. 

Next, the system's performance was assessed under different 

leading and lagging power factors (PF) for both GFL and GFM. 

These two cases aim at observing how the boundary curve 

varies with changes and evaluate their importance. 

 

3.4.1 R/X ratio: The 𝑚𝑃 vs. SCR stability curve is reproduced 

for different R/X ratios, as shown in Fig. 9. When the R/X ratio 

increases, the stable region expands in both cases. This implies 

that the presence of resistive part in transmission lines has a 

positive impact on system stability. Notably, there is 

insignificant impact for R/X up to 10%, which indicates that a 

purely inductive grid impedance is a valid assumption at low 

R/X grids such typical high voltage transmission systems. 

 

3.4.2 Power factor: Fig. 10 shows the variation of the 𝑚𝑃 vs. 

SCR stability boundary for different PF setpoints, assuming 

100% apparent power injection in every case. From light to 

dark colours, the PF setting changes from lagging to leading. 

In both cases, the leading PF indicates a larger unstable region 

and tends to worsen the system stability. Furthermore, result 

in GFL indicates that PF has a greater impact under weaker  
 

                      
(a)                                                                                                        (b) 

Fig. 9. Stability boundary results of 𝑚𝑃 vs. SCR in (a) GFL and (b) GFM for different R/X ratios. 

                                                  

(a)                                                                                                        (b) 

Fig. 10.  Stability boundary results of 𝑚𝑃 vs. SCR in (a) GFL and (b) GFM for different power factors set points. 
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grid conditions, whereas GFM presents a different story, i.e. 

the effect of PF becomes more significant in stronger grids.   

4. Conclusion 

This paper aims to methodically analyse the stability boundary 

of GFL and GFM inverters based on a modified 3-bus 

testbench. The results of small-signal analysis are used to 

determine the system stability, thereby allowing the stability 

boundaries to be mapped in a “grid-search” manner. The 

proposed SBT algorithm facilitates identification and 

visualisation of the stability boundaries to assist theoretical 

understanding and system parameter selection. 

The dynamic performance of GFL and GFM is comparatively 

assessed at different grid strengths, in conjunction to varying 

controller parameter. The main observations are summarized 

in Table III for ease of reference, indicating that some 

parameters yield similar impact and others opposite effect in 

GFL and GFM stability. In addition, further analysis on grid 

parameters shows that the resistive part of the transmission line 

has a positive effect on the system stability, but it is negligible 

for R/X ratios below 10%. Also, a lagging PF is beneficial for 

both GFL and GFM. Further work will extend this analysis to 

other inverter control variants and additional control functions, 

such as the Q-V control loop, and validate them in time-

domain simulations. 
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