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Abstract 
Motivation: Protein language models (PLMs), which borrowed ideas for modelling and inference from natural language processing, have dem
onstrated the ability to extract meaningful representations in an unsupervised way. This led to significant performance improvement in several 
downstream tasks. Clustering amino acids based on their physical–chemical properties to achieve reduced alphabets has been of interest in 
past research, but their application to PLMs or folding models is unexplored.
Results: Here, we investigate the efficacy of PLMs trained on reduced amino acid alphabets in capturing evolutionary information, and we ex
plore how the loss of protein sequence information impacts learned representations and downstream task performance. Our empirical work 
shows that PLMs trained on the full alphabet and a large number of sequences capture fine details that are lost in alphabet reduction methods. 
We further show the ability of a structure prediction model(ESMFold) to fold CASP14 protein sequences translated using a reduced alphabet. 
For 10 proteins out of the 50 targets, reduced alphabets improve structural predictions with LDDT-Ca differences of up to 19%.
Availability and implementation: Trained models and code are available at github.com/Ieremie/reduced-alph-PLM.

1 Introduction
Protein sequence databases and their tools are the main drive to 
molecular biology research and analysis, but the rapid growth 
of protein sequence data allowed the introduction of deep learn
ing models borrowed from natural language processing to bio
informatics tasks. Most notably, the scaling of unsupervised 
training on large language models allows the prediction of pro
tein structures from single protein sequences (Lin et al. 2022). 
Language models set proxy tasks where the masked token 
(Devlin et al. 2019) is corrupted and then reconstructed in order 
to extract deep contextualized representations of the input and 
improve performance on downstream tasks. Reduced amino 
acid alphabets have been developed in the past, but their appli
cation to protein language models (PLMs) is unexplored. This 
raises the question of whether a more simplified encoding of 
protein sequences allows PLMs to learn the same patterns.

Amino acid alphabet reduction methods are of particular in
terest due to their ability to simplify the protein sequence space 
while still capturing structural information about proteins. 
Early mutation experiments (Heinz et al. 1992) on the T4 lyso
zyme protein showed a high degree of redundancy present at 
the sequence level. Similarly, the SH3 domain (small b protein) 
could be reconstructed by using only a five-letter alphabet: Ile, 
Lys(K), Glu(E), Ala, Gly (Riddle et al. 1997).

The simplest amino acid alphabet reduction is the HP 
model (hydrophobic, polar) which only encapsulates the con
cept of hydrophobic interactions. A less radical reduction 
was proposed by Wang (Wang and Wang 1999) by 

minimizing the mismatch within the MJ contact potentials 
matrix. The resulting reduced alphabet of five letters [similar 
to (Riddle et al. 1997)] used to encode protein sequences 
showed good performance for successful folding. What fol
lowed is several numbers of proposed alphabet reduction 
schemes that are applied to sequence alignment and protein 
folding, but with the majority not being applied to specific 
research work (Liang et al. 2022).

We focus here instead on a small subset of alphabets with 
various sizes that are popular in the literature. Apart from the 
WWMJ5 alphabet (Wang and Wang 1999), we use 
the GBMR4 and GBMR7 alphabets, designed by maximizing 
the mutual information between the reduced sequence and 
structural information (Solis and Rackovsky 2000). SDM12 
and HSDM17 were developed from structurally determined 
substitution matrices and the MMSEQS12 alphabet was de
veloped for fast clustering of protein sequences (Steinegger 
and S€oding 2018). We introduce two extra alphabets based 
on hydrophobicity and learned clusters from a trained PLM 
using the full alphabet. Alphabets and their clusters based on 
1-letter residue names are displayed in Table 1.

Here, we pre-train PLMs from scratch with different 
encodings imposed by the amino acid alphabets, and we in
vestigate the performance on a set of downstream tasks: en
zyme classification, homology detection, and three protein 
engineering datasets. Subsequently, we analyze ESMfold, a 
recent single-sequence protein folding model, in its capacity 
to predict the structures of protein sequences from the 
CASP14 target set (Kryshtafovych et al. 2021). The employed 
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proteins undergo a process of translation through reduced al
phabet reduction schemes before being presented as input to 
the folding model.

2 System and methods
2.1 Datasets
Uniref90: The pretraining dataset is composed of 76 215 872 
protein sequences retrieved from Uniref (Suzek et al. 2007), 
with a sequence identity of <90%. The retrieval date is July 
2018. For the non-standard amino acids selenocysteine (U) 
and pyrrolysine (O), we encode them as cysteine (C) and ly
sine (K). The remaining B, Z, X are all labelled as unknown 
(X). The final alphabet is of size 21, with 20 standard amino 
acids and 1 extra for the unknown type.

Enzyme classification: The enzyme dataset used for evalua
tion consists of 29 215 protein chains for training, 2562 pro
tein chains for validation, and 5651 protein chains for 
testing, proposed by Hermosilla Casaj�us et al. (2021) and 
Dana et al. (2019). These proteins can be classified into 384 
enzyme classes. The evaluation metric used is accuracy, and 
the reported results are based on the test set. To ensure data 
integrity and prevent data leakage, the dataset is further fil
tered (see Supplementary Material).

Remote homology detection: The remote homology dataset 
assesses the PLM’s ability to detect structural similarities across 
distantly related proteins. The evaluation metric is accuracy, 
and the task involves predicting the correct fold at three levels: 
fold, superfamily, and family. The dataset consists of 16 712 
proteins belonging to 1195 folds (Rao et al. 2019).

Protein engineering datasets: The PLM’s performance is also 
evaluated on three protein engineering datasets (Dallago et al. 
2021). These datasets focus on assessing the model’s ability to 
capture the effects of mutations and predict fitness and thermo
stability. GB1 Landscape: This dataset involves predicting the 
binding fitness changes due to mutations in the GB1 protein do
main (Wu et al. 2016). AAV Mutational Screening Landscape: 
The dataset measures the ability to predict fitness changes in the 
context of adeno-associated viruses (AAVs) (Bryant et al. 2021). 
Meltome Atlas: The dataset focuses on predicting thermostability 
of proteins (Jarzab et al. 2020). We assessed performance using 
various approaches: training on single mutants and testing on the 
rest (‘1-versus-many’), training on single and double mutants and 
testing on the rest (‘2-versus-many’), and training on mutants 
with up to three/seven changes and testing on the rest (‘3/7-ver
sus-many’). Additionally, we trained on sequences with low 

fitness values (lower than wild type) and tested on sequences 
with high fitness values (‘low-versus-high’). For the meltome 
dataset, results are presented on a mixed split, where test sequen
ces have only 20% sequence identity to the training set.

CASP14: For analyzing the effect of alphabet reduction on 
structure prediction, we use the 51 test targets proposed in 
CASP14 (Kryshtafovych et al. 2021). We remove the target 
T1044 due to its long sequence, which cannot be modelled 
on a consumer GPU.

2.2 Protein language models
We employ a three-layer BiLSTM similar to previous work 
(Bepler and Berger 2018, Alley et al. 2019) trained on masked 
token prediction. We use a smaller architecture compared to re
cent transformer models (14M versus 650M parameters of 
ESM) (Rives et al. 2021) to allow the pre-training of multiple 
models. However, the smaller model is powerful enough to cap
ture evolutionary information useful for various prediction 
tasks (Alley et al. 2019). Each amino acid is first passed through 
a learned embedding layer to allow projecting them into 2D for 
visualization. Each model is trained using Distributed Parallel 
(Paszke et al. 2019) on multiple GPUs with a total batch size of 
1024 sequences. We use a learning rate of 2e–4 with a linear 
weight decay up to a tenth of the initial value and the Adam op
timizer with the default Pytorch parameters. The model is 
trained to recover masked residues using the cross-entropy loss. 
We apply a residue masking strategy with a 10% probability. 
Rather than utilizing a designated mask token, we substitute the 
masked residues with tokens from other residues. These replace
ment tokens are selected based on a background distribution 
calculated using Uniref90. Each model took around 6 days to 
train for 240k steps, which is the equivalent of 3.3 passes 
through Uniref90.

We use the ESMfold model (version 0, 3B parameters) (Lin 
et al. 2022) to fold protein sequences. This is a version trained 
on data with a cut-off date before the CASP14 competition.

2.3 Protein sequence translation
For the PLMs, converting protein sequences into a reduced 
alphabet involves assigning a single token to all residues 
within a specific cluster. For instance, in the MMSEQS12 al
phabet, the residues Ala, Ser, and Thr are all represented by 
the same token (see Fig. 1). The model still processes the 
same 21D vector for each residue in the sequence, but some 
dimensions do not code for anything.

For protein folding, we need to select a residue letter from 
each cluster as ESMfold needs a protein sequence as input. A 
representative residue is randomly chosen from the cluster to 
stand in for all other residues and kept fixed along the input se
quence. We explore all possible ways of encoding sequences this 
way along with the option to randomly select a residue at each 
location in the Supplementary Material. We compute the iden
tity and similarity values between the translated sequences and 
the original full alphabet sequences for the CASP14 dataset us
ing Blosum62 (see Supplementary Material).

3 Results and discussion
3.1 Performance of PLMs on downstream tasks
PLMs are faced with a difficult task: reconstructing missing 
parts of the sequence space without any knowledge of struc
tural or functional constraints imposed during evolution or 
physico-chemical characteristics of each amino acid. 

Table 1. Amino acid alphabets and their clusters.a

Alphabet Clustering

UNIPROT20 A R N D C Q E G H I L K M F P S T 
W Y V

UNIPROT18 A R N D C Q EP G HL I K M F S T W 
Y V

HSDM17 A D KE R N T S Q Y F LIV M C W H G P
MMSEQS12 AST LM IV KR EQ ND FY C G H P W
WASS14 WM  DI  P  C AV K T RE  G L  Y SH 

F NQ
SDM12 A  D  KER  N  TSQ  YF  LIVM  C  W  H  

G P
GBMR7 DN  AEFIKLMQRVWY  CH  T  S  G  P
WWMJ5 CMFILVWY  ATH  GP  DE  SNQRK
GBMR4 ADKERNTSQ  YFLIVMCWH  G  P

a Alphabet names are based on their literature abbreviations followed by 
a number denoting the number of clusters.
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However, perplexity seems to be a good proxy measure of 
‘understanding’ proteins and their structures, with models 
that perform better on the language task showing an in
creased ability to predict protein structures (Lin et al. 2022).

We estimate the perplexity of the language model using a 
random held-out validation dataset (1% of Uniref90). The 
perplexity for a protein sequence x is defined as the exponen
tial of the negative log-likelihood and can be described as: 

PerplexityðxÞ ¼ exp f−log pðxi2Mjxj62MÞg (1) 

The set M is a random variable and represents the set of 
masked tokens.

3.1.1 PLMs learn a systematic clustering of the amino acids
To get a better insight into how the PLM starts differentiating 
between the 20 amino acids, we project the embedding layer 
into 2D using PCA at various points during training. In  
Fig. 2, we plot the perplexity of the model along with the pro
jection of the amino acids during training (full animation: 
github.com/Ieremie/reduced-alph-PLM). In the first 10k 
training updates (a), a major improvement in perplexity is 
given by singling out amino acids Cys, Gln(Q), and Arg(R). 
Cystine has a unique solvent accessibility behaviour, as it is 
often found buried within the protein core and can form di
sulfide bonds. Gln and Arg are also singled out from any 
grouping, but their polar character or volume (Taylor 1986) 
is not unique and does not explain the separation. The second 
clustering stage (b) seems to be driven by hydrophobicity, 
with Phe(F), Trp(W), Ile, Met forming the hydrophobic clus
ter, Ser, Pro, Glu(E) forming the polar group and Ala, Gly 
and Thr forming the moderately hydrophobic cluster. The 
third stage (c), modifies the positions of amino acids within 
clusters, making the Pro-Glu and Leu-His amino acid pairs. 
After 200k steps, the improvement in the perplexity of the 
model is relatively low, with only slight changes in how 
amino acids are projected in 2D. We hypothesize that the 
model’s perplexity is mostly influenced by the ability to dis
tinguish amino acids and to create embeddings that are pow
erful enough to create separation regardless of the 
sequence context.

Based on the clusters found by the language models, we 
create a new alphabet named UNIPROT18 that encodes the 
Pro-Glu and Leu-His amino acid pairs the same way. We rea
son that this simplification based on the model suggestions of 
similarity should be able to learn the same evolutionary infor
mation and perform the same on downstream tasks.

As most of the amino acids that are frequently clustered to
gether are highly similar in terms of hydrophobicity (Liang 

et al. 2022), we develop a clustering method based on the 
solvent-accessible surface area, namely WASS14 (see 
Supplementary Material).

3.1.2 PLMs trained on reduced AA alphabets capture 
meaningful representations
Encoding protein sequences based on predefined clusters 
compresses the input space such that sequences that only dif
fer in terms of in-cluster assignments will be regarded as the 
same. This essentially reduces the sequence fidelity, which 
might allow the model to focus on learning more general rep
resentations that go beyond single-point mutations.

To evaluate if this is the case, we fine-tune the pre-trained 
language models on a set of downstream tasks. To go from a 
sequence of embeddings to a number of classes or a regres
sion output, we pass the sequence of embeddings through an 
attention-pooling layer followed by an MLP with a single 
hidden layer. For the Fold task, we provide standard devia
tions over six runs with slightly different learning rates as the 
model tends to perform better on a specific split (e.g. super
family) depending on the learning rate. Similarly, for the en
zyme task, we report results from four runs.

In Table 2, it can be observed that the language model 
trained on the full alphabet performs better than any other 
encoding on both tasks. The model performance is similar to 
ESM-1B (Rives et al. 2021), with differences appearing only 
on the Superfamily and Family classification, where the scale 
of the model allows it to generalize better. However, the 
HSDM17 alphabet allows the trained PLM to capture 
enough information to perform similarly with the full alpha
bet across tasks. This suggests that PLM can still capture evo
lutionary information even if certain mutation pairs are never 
seen during pre-training. Similarly, the MMSEQS12 and 
SDM12 alphabets exhibit only a small loss of performance. 
UNIPROT18, a reduced alphabet generated by analyzing the 
clusters found by a PLM, exhibits lower performance across 
tasks compared to the full alphabet. This suggests that even if 
certain residues appear similar when analyzing their embed
dings, removing even two mutation pairs from the pretrain
ing dataset hinders the ability of language models to capture 
evolutionary information.

Surprisingly, the WASS14 alphabet based on hydrophobic
ity performs poorly across tasks. This might suggest that 
alphabets based purely on solvent accessibility throw away 
too much information. This is also suggested by the 
MMSEQS12 alphabet which has the same size, but a much 
smaller information loss.

The comparison on downstream tasks suggests that al
though PLM trained on reduced alphabets can retain some 
level of information, they are limited in capturing the full se
quence diversity found within the Uniref database. Even on 
tasks involving low sequence identity such as the Fold classifi
cation, where reduced alphabets were expected to perform 
better by avoiding explicit mutations, they fall short com
pared to the full alphabet.

3.1.3 Small alphabets distort evolutionary information
An immediate trend appearing in Table 2 is the performance 
degradation as alphabets get smaller. PLM trained with 
alphabets GBMR4, GBMR7, and WWMJ5 do not seem to 
offer useful embeddings for the two downstream tasks. This 
is similar to previous work (Murphy et al. 2000), where 
alphabets that have a size of <10 clusters degrade the 

Figure 1. A protein coding representation using the MMSEQS12 
alphabet. Trained PLMs consume the sequence as a token representation 
(cluster colour). ESMFold gets as input a protein sequence where a 
representative amino acid is chosen from each cluster at random and 
kept constant along the sequence. For example, amino acids Leu(L) and 
Met(M) are all changed to Leu as they belong to the same cluster.
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sequence information in such a way that it does not allow the 
discovery of structural homologs.

As PLM are trained to understand sequence context, pro
teins encoded with highly reduced alphabets do not provide 
enough diversity to allow the learning of complex relations. 
For example, long-range dependencies due to residue co- 
evolution could be completely lost. This can also be observed 
during pretraining, where there is only a small improvement 

in terms of perplexity when it comes to training on alphabets 
with a few clusters.

3.1.4 Reduced amino acid alphabets cannot capture the 
effects of mutations
A major downside of using reduced alphabets is their inabil
ity to distinguish mutations that appear within clusters. For 
example, if Leu and His are encoded using the same token, 
any two sequences that differ in terms of Leu-His mutations 
will be regarded as identical (see Fig. 3). This is less likely to 
become a problem for fold recognition or enzyme classifica
tion, however for protein engineering where a single muta
tion can affect stability, this becomes a significant limitation. 
To exemplify this case, a set of amino acid substitutions is 
created using the AAV dataset from FLIP (Dallago et al. 
2021). An error is an alphabet encoding that fails to distin
guish a mutation from the wild type. Figure 4 shows that as 
alphabets get smaller, the error rate in distinguishing muta
tions from the wild type increases. The WASS14 alphabet, 
based on clustering together residues that have similar hydro
phobicity profiles, has a low error rate compared to other 
alphabets of similar size. This might be due to a lower muta
tion rate between residues with no differences in their hydro
phobic character.

To evaluate to what degree PLM trained on reduced 
alphabets can still perform on protein engineering tasks, we 

Figure 2. PCA projection of the amino acid embedding layer during training, along with the training and validation perplexity of the PLM trained on the full 
alphabet. Based on the embedding projections, we depict three clustering stages. During the first clustering stage (a), a clear improvement in perplexity 
is related to the separation of amino acids Cys, Arg(R), and Gln(Q). During stage (b), the language model clusters amino acids based on hydrophobicity 
(hydrophobic/polar), while in stage (c) amino acids are further grouped within their clusters. Amino acid pairs Pro-Glu and Leu-His are clustered together, 
which suggests strong similarities found by the language model.

Table 2. PLMs performance (accuracy) on the Fold and Enzyme tasks.a

Alphabet FOLD REACT %

Fold % Super. % Fam. %

ESM-1b 26.8 60.1 97.8 83.1
UNIPROT20 26.3 6 0.96 43.3 6 0.41 90.7 6 0.44 81.8 6 0.39
UNIPROT18 24.2 6 0.46 38.5 6 0.93 86.5 6 1.59 77.9 6 0.80
HSDM17 25.4 6 1.00 42.1 6 0.59 87.9 6 1.25 80.6 6 0.85
MMSEQS12 23.5 6 0.91 39.4 6 1.03 87.3 6 0.93 80.7 6 0.69
WASS14 20.5 6 0.55 28.9 6 0.57 78.0 6 0.94 75.4 6 0.55
SDM12 23.8 6 0.97 39.1 6 0.84 85.5 6 1.32 80.5 6 0.92
GBMR7 15.5 6 0.90 21.9 6 0.70 67.7 6 3.63 70.8 6 1.12
WWMJ5 17.5 6 1.00 25.4 6 0.44 72.4 6 1.47 73.8 6 1.05
GBMR4 12.3 6 0.89 11.46 0.46 47.9 6 2.43 68.3 6 3.28

a The bold values represent the top two best-performing models 
excluding ESM-1b. Uncertainties for the folding task/enzyme task are 
standard deviations over 6/4 runs with different learning rates. The 
performance of ESM-1b is sourced from Zhang et al. (2022).

4                                                                                                                                                                                                                                   Ieremie et al. 
D

ow
nloaded from

 https://academ
ic.oup.com

/bioinform
atics/article/40/2/btae061/7600424 by U

niversity of Southam
pton user on 28 N

ovem
ber 2024



fine-tune the models on the GB1, AAV, and Meltome data
sets. We find that the validation splits provided in the FLIP 
benchmark (Dallago et al. 2021) used for early stopping are 
the reason behind some poor runs. Therefore, we report the 
best performance metrics including the results from three ex
tra seeds that use a random validation size of 30%. Table 3 
highlights that the full alphabet performs comparably with 
the much larger CARP model (Yang et al. 2022) on most of 
the splits, which allows a fair comparison between PLMs 
trained on reduced alphabets. Surprisingly, alphabets with 
>10 clusters perform better than the full alphabet on certain 
splits. Namely, WASS14 on the ’2/7-versus-many AAV’ 
splits, and MMSEQS12 on the ’7-versus-many AAV’ split. 
This suggests that while the full alphabet has the ability to 
distinguish between all mutation pairs that appear in the 
dataset, in certain cases ignoring those mutations and focus
ing on out-of-clusters mutations improves performance.

3.2 ESMfold with compressed protein sequences
In the previous section, we highlighted the downsides of 
training a PLM on a training set where certain mutation pairs 
are never modelled for. Here, we explore the ability of a large 
language model to predict the structures of a set of proteins, 
given that their sequences have been simplified using different 
alphabet reduction schemes. We use ESMfold (version 0, 3B 
parameters, Lin et al. 2022) instead of Alphafold (Jumper 
et al. 2021b) as it is a single sequence folding model that does 
not rely on the creation of MSAs. This would ensure that a 
good prediction is solely based on the input sequence and not 
the ability of multiple sequence alignment tools to find simi
lar sequences. The underlying idea is that a model faced with 
a sequence of lower complexity can act as a sequence tem
plate for a multitude of protein sequences that code for the 
same protein fold (Li et al. 1996). A folding model faced with 
such a sequence can design the structure without the 

constraints of specific evolutionary information tied to a par
ticular protein of interest. To test this aspect, we fold the pro
tein sequences used as targets in the CASP14 competition. 
We translate each protein sequence using the alphabets men
tioned above and use them as inputs to ESMfold.

To evaluate the prediction accuracy, we calculate the 
LDDT-Ca scores (Local Distance Difference Test) relative to 
the CASP14 targets (Mariani et al. 2013). This metric is 
computed solely on the backbone of the structure, similar to 
previous work (Jumper et al. 2021b), and it represents a 
superposition-free score. It is important to note that 
ESMfold takes the entire domain sequence context as input, 
while the target we use for scoring is a segment within 
the predicted structures. To account for this, we crop the pre
dicted structures according to the domain range specified 
in CASP14.

Figure 5 presents box plots illustrating the LDDT-Ca val
ues of the predicted structures across various alphabet reduc
tion methods. When the original sequence is employed as 
input (UNIPROT20), the majority of the predicted structures 
emerge as favourable decoys, showcasing high LDDT-Ca 

scores. The HSDM17 alphabet outperforms UNIPROT18, 
despite its smaller size, and delivers results similar to those 
achieved with the complete alphabet. SDM12 maintains a ro
bust LDDT-Ca mean even after omitting 8 residue letters 
from the input sequence. This suggests that ESMfold retains 
its ability to comprehend these protein sequences, capturing 
residue interactions through generalization to homologous 
sequences encountered during training. On the other hand, 
small alphabets (< 10 clusters) yield low LDDT-Ca scores 
(< 50) for all targets. This signifies that in the majority of 
cases, small alphabets tend to distort the underlying meaning 
of the protein sequence, which cannot be reliably understood 
by the folding model.

In Fig. 6, a direct comparison of the LDDT-Ca scores for 
each target is presented across various alphabet encodings. 
Notably, larger alphabets, such as HSDM17, exhibit perfor
mance similar to UNIPROT20 across the entire LDDT-Ca 

range. Conversely, smaller alphabets yield diminished perfor
mance for targets that demonstrate high-accuracy predictions 
when utilizing the original sequence. However, these smaller 
alphabets align with the scores of the full alphabet for targets 
that are difficult to predict (LDDT-Ca < 40).

Of particular interest are the instances where using a re
duced alphabet leads to improved LDDT-Ca scores. These 
improvements are relatively modest for targets that are pre
dicted with high accuracy using the full alphabet. It is the pre
dictions with low accuracy that exhibit the most substantial 
improvement. A comprehensive view of the overall improve
ment for these targets can be found in Fig. 7. In Fig. 8, the 
structures and the ESMfold predictions for targets T1039, 
T1035, and T1039 are superimposed. We selected them for 
visualization due to their high improvements in structure pre
diction. Predictions made using the modified sequences are 
labelled as less confident (low pLDDT-Ca), but end up being 
more structurally similar to the target structure. The target 
T1035, translated using the GBMR4 alphabet is only 31% 
similar to the original sequence. However, this highly modi
fied sequence is folded into a protein structure that improves 
LDDT-Ca scores of up to 7.5%.

Targets T1039 and T1033 display the highest gain in per
formance when ESMfold gets as input a sequence translated 
using a reduced alphabet. It is intriguing, however, that by 

Figure 3. An illustration of how the MMSEQS12 alphabet captures the 
effect of mutations. Mutations appearing between residues of the same 
cluster are encoded the same way and cannot be captured (missed). 
Residues mutating to any cluster member share equivalent 
representations.

Figure 4. The error rate of the amino acid alphabets as the percentage of 
mutation pairs from the AAV dataset that cannot be distinguished. 
Alphabets with a few clusters are unable to capture the effect of 
mutations. Notice the low number of errors made by the WASS14 
alphabet compared to alphabets of similar size due to its design based on 
hydrophobicity.
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directly hindering the information contained within the pro
tein sequence, a more accurate prediction can be generated. 
These targets belong to the FM-free modelling category, 
meaning that at the time of the competition, no structural tem
plates were available. Having a closer look at AlphaFold’s 

approach to these targets (Jumper et al. 2021a), it becomes ev
ident that these domain-level targets possessed shallow MSAs. 
AlphaFold employed instead a ‘crop-then-fold’ method to im
prove predictions. This entails the creation of larger MSAs by 
using the full protein sequence (T1044), and then cropping 
the MSAs for the domains of interest. This method was shown 
to improve the predictions of the domains T1039 and T1033.

To determine whether the enhanced accuracy stems from 
ESMfold’s capability to tap into a more extensive MSA dur
ing inference, we visualize the MSAs obtained from the origi
nal and modified sequences of target T1039. We use the 
MSA generation method from ColabFold (Mirdita et al. 
2022). In Fig. 9, it becomes apparent that the MSA of the 
modified sequence is much shallower. The prediction made 
using the HSDM17 alphabet has regions with higher LDDT- 
Ca values, but these are not due to a deeper region of the 
multiple sequence alignment. Conversely, the scale of the lan
guage model is the main driver of accurate predictions by im
proving sequence perplexity (Lin et al. 2022). This entails 
that an input sequence with a reduced perplexity could enable 
the generalization of the model to a wider number of sequen
ces that fit the sequence template. To test this aspect, we com
pute the pseudo-perplexity for each target. This computation 
involves employing L-forward passes with mask token pre
diction, to calculate the likelihood of each residue at every 

Table 3. Performance (Pearson correlation) on the FLIP tasks.a

Alphabet AAV GB1 Meltome

1-versus-many 2-versus-many 7-versus-many low-versus-high 2-versus-many 3-versus-many Low-versus-high Mixed-split

CARP-640M 0.73 6 0.05 0.81 6 0.03 0.77 6 0.03 0.19 6 0.008 0.73 6 0.03 0.87 6 0.004 0.43 6 0.04 0.53
UNIPROT20 0.41 6 0.08 0.48 6 0.00 0.55 6 0.06 0.20 6 0.04 0.64 6 0.03 0.82 6 0 0.39 6 0.09 0.28
UNIPROT18 0.40 6 0.03 0.43 6 0.05 0.56 6 0.08 0.20 6 0.08 0.64 6 0.02 0.81 6 0 0.27 6 0.12 0.27
HSDM17 0.30 6 0.07 0.44 6 0.01 0.60 6 0.04 0.20 6 0.04 0.61 6 0.02 0.79 6 0 0.26 6 0.04 0.27
MMSEQS12 0.32 6 0.06 0.45 6 0.05 0.62 6 0.00 0.09 6 0.03 0.53 6 0.01 0.73 6 0 0.20 6 0 0.22
WASS14 0.35 6 0.05 0.51 6 0.01 0.62 6 0.02 0.07 6 0.07 0.46 6 0.07 0.73 6 0.01 0.13 6 0.06 0.24
SDM12 0.40 6 0.03 0.36 6 0.04 0.59 6 0.01 0.08 6 0.03 0.61 6 0.04 0.76 6 0 0.33 6 0.02 0.24
GBMR7 0.34 6 0.01 0.26 6 0.06 0.47 6 0.06 0 6 0.02 0.41 6 0.02 0.49 6 0 0 6 0.01 0.20
WWMJ5 0.31 6 0.04 0.43 6 0.02 0.56 6 0 0.01 6 0.01 0.44 6 0.03 0.60 6 0.01 0.10 6 0.01 0.25
GBMR4 0.25 6 0.01 0.38 6 0.03 0.46 6 0.01 0 6 0.02 0.41 6 0.02 0.52 6 0 0.05 6 0 0.21

a Uncertainties are standard deviations over three seeds. For the Meltome dataset, we train a single model to reduce the computational cost. We include 
the performance of CARP-640M for reference (Yang et al. 2022) and mark as bold the best model excluding CARP-640M.

Figure 5. The LDDT-Ca values for the CASP14 targets, predictions made 
by ESMfold using different sequences. Each grey point represents a 
protein in the target set. Alphabets with <10 clusters generate predicted 
structures with low LDDT-Ca scores. The alphabet SDM12 allows the 
prediction of high-quality protein models by only using 12 residues to 
encode the sequence.

Figure 6. A direct comparison shows the LDDT-Ca score differences 
obtained from the original sequence and its translated version. Each data 
point corresponds to a target within the CASP14 dataset. Notably, both 
HSDM17 and SDM12 demonstrate LDDT-Ca values comparable to the full 
alphabet across the dataset. Note the presence of proteins for which 
predicted structures improve with the use of alphabet reduction methods. 
Large improvements are observed in proteins for which the original 
sequence prediction is far from the target structure (LDDT-Ca < 50).

Figure 7. Ten targets from CASP14 for which the alphabet reduction 
methods improve the overall LDDT-Ca scores by a margin of at least 1%. 
The target T1039, which belongs to the FM (free modelling) category, is 
better predicted by ESMfold when using the HSDM17 alphabet, with an 
increase of LDDT-Ca of 14%. Similarly, for the T1033 target, the 
difference in LDDT-Ca score to the original sequence is 19%. For the 
target T1035, small alphabets show improvements in LDDT-Ca over 5%.
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position. This is a more robust measure of a sequence per
plexity compared to Equation 1 as it is deterministic. 

PPPLðxÞ ¼ exp −
1
L

log pðxijx:iÞ

� �

(2) 

In Fig. 10, it can be observed that improving the pseudo- 
perplexity by means of alphabet reduction methods, does not 
entail more accurate predictions. For instance, despite small 
alphabets improving pseudo-perplexity, no corresponding en
hancement in structural accuracy is observed. Targets that 
are better predicted using reduced alphabets only showcase a 
small improvement in pseudo-perplexity.

While both MSA depth and pseudo-perplexity values ap
pear promising in providing explanations for the enhance
ments in LDDT-Ca scores, there is no straightforward 
explanation for the performance boost of ESMFold when uti
lizing reduced alphabets. Most of the targets from CASP14 
show a performance degradation in terms of structure predic
tion accuracy when using reduced alphabets. This suggests 
that the model is simply able to generalize better for a subset 
of sequences when faced with a slightly modified input se
quence. It could be the case that both the MSA and pseudo- 
perplexity are important factors, but the way this influences 
the modelling phase is not directly observable.

4 Conclusion
Multiple reduced amino acid alphabets have been proposed in 
the past but with the exception of those used in protein similar
ity comparison algorithms (Buchfink et al. 2015, Steinegger 
and S€oding 2017), reduced alphabets are not applied to specific 
research work (Liang et al. 2022). Here, we explore the possi
bility of applying these reduced amino acid alphabets to PLMs.

Our findings suggest that PLM can still learn meaningful 
embeddings using reduced amino acid alphabets. However, 
they fail to consistently perform better on downstream tasks 
compared to the full alphabet. The beauty of training PLMs 
is that advantages in reduced alphabet representations previ
ously sought by previous authors to eliminate complexity di
minish in the field of unsupervised learning. The ability of 
PLM to learn a systematic understanding of amino acid 

Figure 8. Structural predictions for the T1039, T1035, and T1033 targets 
using different alphabets to encode the input sequence. The structure in 
light grey represents the ground truth, while the superimposed one is the 
ESMfold prediction, coloured by the predicted LDDT (confidence). 
HSDM17, GBMR4, and MMSEQS12 alphabets aid the prediction of more 
accurate decoys.

Figure 9. The first two plots show the multiple sequence alignments for 
the target T1039: the first one uses the original sequence as a query 
while the second one uses the modified one from the HSDM17 alphabet. 
Note the smaller MSA size when using the modified sequence. On the 
bottom, LDDT-Ca values for the predicted structures are plotted along the 
chain. The predicted structure using the HSDM17 alphabet has regions 
with higher LDDT-Ca values, but these are not due to the MSA depth.

Figure 10. LDDT-Ca values for CAPS14 targets using different sequence 
encodings as input to ESMFold. The colour of each point represents the 
improvement in the pseudo-perplexity (reducing) compared to the full 
alphabet sequence. Small alphabets improve the pseudo-perplexity, but 
this is not directly related to improvements in LDDT-Ca. Targets that 
display higher LDDT-Ca scores do not improve the pseudo-perplexity by a 
large margin.
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properties with a large amount of data suggests that a prede
fined clustering scheme hinders the understanding of protein 
evolution. Although attractive as a means of making PLM 
more efficient in terms of dataset training size, reduced alpha
bets are unlikely to improve how language models learn the 
’language of life’ (Nambiar et al. 2020)

However, reduced amino acid alphabets prove to be helpful 
in protein structure prediction. Namely, ESMfold performs 
better on 10 out of 50 CAPS14 targets when faced with a 
modified sequence as input. We believe this is due to reduced 
alphabets enabling the language model to artificially relate the 
input sequence to a larger number of possible structural 
matches seen during training. Considering the improvements 
brought to structural prediction, further use of alphabet re
duction schemes could be used to model sequences with shal
low MSAs when using single sequence folding models.
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Supplementary data are available at Bioinformatics online.
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