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Perturbative and non-perturbative renormalization of quantum field

theories and gravity

by Dalius Stulga

This thesis is about the exploration of perturbative and non-perturbative renormaliza-

tion methods in quantum field theory and gravity. After we introduce and review these

main concepts we investigate o↵-shell perturbative renormalisation of quantum grav-

ity. We show that at each new loop order, the divergences that do not vanish on-shell

are constructed from only the total metric, whilst those that vanish on-shell are renor-

malised by canonical transformations involving the quantum fields. Purely background

metric divergences do not separately appear, and the background metric does not get

renormalised. We verify these assertions by computing leading o↵-shell divergences to

two loops, exploiting o↵-shell BRST invariance and the renormalisation group equations.

Although some divergences can be absorbed by field redefinitions, we explain why this

does not lead to finite beta-functions for the corresponding field. Afterwards we explore

non-perturbative methods applied to d-dimensional scalar field theory in the Local Po-

tential Approximation. Sturm-Liouville methods allow the eigenoperator equation to be

cast as a Schrödinger-type equation. Combining solutions in the large field limit with the

Wentzel–Kramers–Brillouin approximation, we solve analytically for the scaling dimen-

sion of high dimension potential-type operators around a non-trivial fixed point. These

results are universal, independent of the choice of cuto↵ function. Finally, we review the

functional f(R) approximations in the asymptotic safety approach to quantum gravity.

It mostly focuses on the application of methods used to study scalar fields. In partic-

ular, one can use these methods to establish that there are at most a discrete number

of fixed points, that these support a finite number of relevant operators, and that the

scaling dimension of high dimension operators is universal up to parametric dependence

inherited from the single-metric approximation. Formulations using adaptive cuto↵s,

are also reviewed, and the main di↵erences are highlighted.
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Chapter 1

Introduction

In the pursuit of understanding the fundamental description of our universe, the realms

of Quantum Field Theory (QFT) and General Relativity (GR) stand as pillars of inquiry.

The former discipline describes the Standard Model (SM) of particle interactions; the

latter, how large collections of matter move and curve space and time. The goal to

connect these two and find a grand unified theory gave birth to many developments

in physics and mathematics [5–12]. However, after decades of research the connection

between them remains unknown.

The twentieth century marked a revolutionary period for physics, catalyzed by an influx

of experimental data that defied existing theories. However, our inability to access energy

scales necessary for observing any e↵ects of Quantum Gravity (QG) poses a significant

challenge [13–15]. While unresolved, the current struggles in quantum gravity remain

predominantly theoretical [16–20], which highlights the need for empirical data.

Renormalization emerged as a pivotal method in saving quantum field theory in early

development. The task to circumvent infinities inherent in perturbative expansions

began in the 1940s when Tomonaga, Schwinger and Feynman introduced the technique

[21–23]. Initially, it stood as a mere mathematical tool until Kenneth Wilson’s seminal

work in the early 1970s [24–27]. He elevated it to a sophisticated conceptual framework

which provided a deeper comprehension of critical phenomena and phase transitions.

His approach laid the foundations for the Functional Renormalization Group (FRG)

approach, which is a more manageable model used for practical application for field

theories beyond perturbation theory [28–30].

In this thesis, we revisit the issue of the non-renormalizability of quantum gravity. This

obstacle arises when attempting to naively quantize the perturbative Einstein-Hilbert

action. It is notoriously challenging to work with, given the proliferation of interaction

terms and the gauge nature of the theory. Consequently, perturbative gravity has re-

ceived relatively little exploration [1]. In our studies, we aim to address some of these
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challenges in the hope that our e↵orts may shed light on the high-energy behavior of

quantum gravity.

On the opposite end of the renormalization spectrum, we have non-perturbative meth-

ods. The notion that the quantum field theory of gravity might be saved from non-

physical ultraviolet divergences was initially proposed by Weinberg [31]. This concept

relies on the existence of an interacting fixed point of the couplings, describing gravity’s

behavior at high energies. This yields a renormalizable theory, albeit non-perturbatively.

This conjecture is known as Asymptotic Safety (AS) [31–34]. The FRG method is the

primary tool for investigations in this field [28–30,35–38].

In this chapter we will see the use of Quantum Chromodynamics (QCD) and scalar field

theory to explain some concepts. This way we can draw comparisons between other

theories and gravity. Also some aspects of QFT are more natural to explain in other

field theories and one can take advantage of that. The following section provides a brief

review of important aspects of QFT and how the problem of divergences arises. Later,

the procedure and intuition behind perturbative and non-perturbative renormalizability

will be given. Finally, classical and quantum gravity will be discussed. In writing this

chapter I have mainly used general lecture notes, reviews and books on quantum field

theory, gravity and renormalization [30,34,39–46].

1.1 Quantum field theory

Modern field theories are typically formulated using a Lagrangian framework. It is

noteworthy how straightforward it is to construct a Lagrangian for a quantum field

theory: one merely needs to specify the field content and the symmetries these fields obey.

The fields must transform under specific representations of the symmetry group such

that the Lagrangian remains invariant1. This allows for the construction and analysis

of a multitude of di↵erent Lagrangians within a consistent theoretical framework.

The choice of symmetries is dictated by empirical observations. For example, in a vac-

uum, the outcomes of experiments generally remain unchanged under rotations, trans-

lations in space and time, and boosts (changes in velocity). Therefore, the Lagrangian

must be invariant under these symmetry transformations, which collectively form the

Poincaré group. The representations of the Poincaré group are characterized by a con-

tinuous parameter (mass) and a discrete parameter (spin), or by energy and helicity

in the case of massless particles. These representations correspond to what we refer to

as particles in the context of quantum field theory. Hence, particles exist because our

universe is invariant under the Poincaré group!

1The use of the word representation is often misused in physics. A representation is a homomor-
phism between an abstract group element and a linear operator (a matrix). So the fields are modules
that representations act on. I.e. they transform under representations but are not representations of a
group themselves.
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Matter is composed of fermions which are spin-1/2 particles. A non-interacting La-

grangian for a fermionic field is

L =  ̄(i@µ�
µ
�m) , (1.1.1)

where m represents the mass of the field. Varying this action with respect to the field

one would obtain the Dirac equation. Historically, it was first developed by demanding

that the Hamiltonian be linear in momentum (rather than working with Klein-Gordon

version of quadratic Hamiltonian) [47] in 1928. It was consistent with both quantum

mechanics and special relativity and gave prediction of the existence of antimatter.

This groundbreaking prediction was experimentally confirmed with the discovery of the

positron in 1932 [48].

1.1.1 Gauge symmetry

Symmetries have a multitude of profound and far-reaching consequences. The Dirac

Lagrangian (1.1.1) is invariant under an additional phase symmetry, given by the trans-

formation

 �! ei! . (1.1.2)

If ! is independent of the spacetime coordinates we call this a global U(1) symmetry.

According to Noether’s theorem [49] it must have a conserved charge. Canonical quan-

tization of the field leads to particle number conservation2. One can extend this concept

by making the parameter ! depend on spacetime coordinates ! = !(x). In this case the

Lagrangian would no longer be invariant under this local (gauge) symmetry. However,

one can force it to be invariant by redefining the derivative

@µ �! Dµ = @µ + iqAµ . (1.1.3)

This resembles the covariant derivative from general relativity. The U(1) symmetry is

restored if Aµ transforms in the following way

Aµ �! Aµ �
i

q
@µ!(x) . (1.1.4)

This looks like the gauge transformation of a four-vector Aµ = (�, ~A) which is used to

calculate the electric and magnetic fields

~E = �
@ ~A

@t
�r� , (1.1.5)

~B = r⇥ ~A . (1.1.6)

2More precisely its the number of particles minus the number of antiparticles, hence the name of the
latter.
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These equations are invariant under the gauge transformation (1.1.4). The phase rota-

tion symmetry was saved and in return we got an electromagnetic field that couples to

the fermions. However now we should modify (or must modify, if one obeys Gell-Mans

totalitarian principle3) our Lagrangian to include the terms consisting of this new vector

field which preserves spacetime and gauge symmetries. The result is the Lagrangian of

quantum electrodynamics4

L = �
1

4
Fµ⌫F

µ⌫ +  ̄(iDµ�
µ
�m) , (1.1.7)

Where Fµ⌫ = @µA⌫ � @⌫Aµ is the field strength tensor.

We can continue expanding on these concepts by making the symmetry group larger.

One can take ! to be a part of a Lie algebra that generates some symmetry represented

by a Lie group. One issue we face in this case is that transformations may be non-

commutative i.e. U1U2 6= U2U1. We can decompose such symmetry transformation U

as

U = ei!aT
a
, (1.1.8)

where T a belong to the Lie algebra of the corresponding symmetry group. Choosing

representation of this symmetry group implies the number of fermion fields (since the

transformation is a matrix, so it should act on a vector). Having defined the symmetry

(1.1.8), we first modify the derivative as before by introducing a gauge field

Dµ = @µ + igAµ . (1.1.9)

The gauge field can be decomposed in terms of the generators that belong to the same

Lie algebra Aµ = Aa
µT

a. In order for the Lagrangian to be invariant the transformation

of the gauge field must be

Aµ �! UAµU
�1 +

i

g
U@µU

�1 . (1.1.10)

We also need to modify the field strength tensor due to the fact that transformations

do not commute

Fµ⌫ = @µA⌫ � @⌫Aµ � ig[Aµ, A⌫ ] . (1.1.11)

The resultant invariant Lagrangian one can write down for a non-Abelian (non-commutative)

gauge theory is given by

L = �
1

4
F a

µ⌫F
aµ⌫ +  ̄(iDµ�

µ
�m) . (1.1.12)

For the group SU(3) this Lagrangian describes QCD, the gauge theory of the strong

force. And this is also part of SU(2)⇥U(1) theory of electroweak interactions and thus,

3“Everything not forbidden is compulsory.”
4We only add terms up to energy dimension 4 for the theory to be perturbatively renormalizable.
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the Standard Model (requiring also the Higgs mechanism).

1.1.2 Redundant description

For intuition let us return to the Lagrangian of QED (1.1.7) where the gauge field

represents the vector potential. It looks like it has four degrees of freedom, since µ =

0, ..., 3 but a photon has only two physical degrees of freedom. This discrepancy can be

resolved by a careful observation of the vacuum equation of motion for the vector field

�S

�A⌫

= @µF
µ⌫ = @µ (@

µA⌫
� @⌫Aµ) = 0 . (1.1.13)

Not all of these equations are second order in time. For example the ⌫ = 0 component

gives the equation @tr · ~A � r
2A0 = 0, which can be interpreted as a constraint on

initial conditions. This reduces the number of degrees of freedom by one. The gauge

transformation (1.1.4) gets rid of another degree of freedom, leaving only two. The

description of two physical degrees of freedom, using four component vector generally

leads to a Hilbert space with negative norms. One way to fix this issue is to modify the

Lagrangian by adding a gauge fixing term such that the gauge condition arises directly

from the equations of motion. Then one needs a constraint on physical Hilbert states

known as the Gupta-Bleuler condition [50]. The problem is more obvious if we consider

the path integral formulation. The central identity in QFT for some field � is

Z
D�e�

1
2�·Q·�+iSint[�]+J ·� = e+iSint(

�
�J )e

1
2J ·Q

�1·J , (1.1.14)

where J are the sources for the fields and the dot represents an integration over space-

time variables (DeWitt notation). In QED the quadratic term for the gauge field is

Aµ(@
2gµ⌫ � @µ@⌫)A⌫ . (1.1.15)

The middle part is the operator Q in (1.1.14). In this case the operator Q has zero

eigenvalues5, thus Q has no inverse. So the path integral for a gauge field

Z =

Z
DAµe

i
R
Aµ(@2

g
µ⌫�@

µ
@
⌫)A⌫ , (1.1.16)

is ill defined as we are integrating over more degrees of freedom than we have. In a way,

gauge symmetry is simply a redundancy in our description because we are describing

two degrees of freedom using a four dimensional vector. A method for general gauge

theories has been developed by Fadeev and Popov [51] to factorise out the gauge group

which we are over-counting during the integration. This results in an infinite factor,

however this factor will cancel out when we calculate correlators. The strategy is to

5Vectors of the form @µ! have zero eigenvalue.
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factorize out the redundant integral over the group

Z =

Z
DAeiS[Aµ] =

⇣Z
Dg

⌘Z
DAeiS

0[Aµ] , (1.1.17)

in such a way that S0 is independent of g. We start with a rather straightforward step

- rewriting a number one in a complicated way

1 = �(A)

Z
Dg�(f(A)� c) . (1.1.18)

The �(A) is called the Fadeev-Popov determinant, and the f(A) = c defines a repre-

sentative from each gauge orbit (i.e. picks one field Aµ to represent all Aµ’s related

by a gauge transformation. For example the covariant gauge choice @µAµ = c). Insert

(1.1.18) into (1.1.16) and switch the order of integration

Z =

Z
Dg

Z
DAµe

iS[Aµ]�(A)�(f(A)� c) . (1.1.19)

Now insert another number one of the form

1 = Const

Z
Dc

�
e

�i�
2

R
d
4
xc(x)2

�
, (1.1.20)

which simplifies (1.1.19) to

Z =

Z
Dg

Z
DAµe

iS[Aµ]� i�
2

R
d
4
xf(A)2�(A) . (1.1.21)

The only thing left is to rewrite the determinant in a way that involves functional

integration over Grassmann numbers (Ghost fields)

�(A) =

Z
D⌘D⌘̄e�i⌘·M ·⌘̄ . (1.1.22)

Notice that M depends on the specific gauge choice that we make and generally the

calculation results as well. However it can be shown that results are gauge independent

once the equations of motion are satisfied. In QED (1.1.22) reduces to identity, however

in a non-Abelian field theory we have

⌘ ·M · ⌘̄ =

Z
d4x@µ⌘̄(x)

a
�
@µ�ab + gfabcAc

µ(x)
�
⌘b(x) = Sghost . (1.1.23)

The full partition function then has to include the contribution of the ghost fields and

the gauge fixing term as well

Z =

Z
DAD⌘D⌘̄eiS[A]+iSgf+iSghost . (1.1.24)
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Explicitly, the gauge fixed Lagrangian with the fermion field included is

L = 1
2A

aµ
�
@2gµ⌫ � (1� �)@µ@⌫

�
Aa⌫

� gfabc@µAa⌫Aa
µA

a
⌫ � (1.1.25)

1
4g

2fabcfadeAb
µA

c
⌫A

dµAe⌫ +  ̄(i/@ �m) +

g ̄ /A + @µ⌘̄a@µ⌘a + gfabc@µ⌘̄aAµb⌘c .

The ’slashed’ notation indicates the contraction with the � matrices /A = Aµ�µ. The

number � is a free parameter which we will set to one in most cases (Feynman gauge).

The gauge fixing term that we add to the Lagrangian breaks the original gauge symmetry.

However, we are left with a di↵erent symmetry that mixes ghost fields with real fields,

known as the BRST6 symmetry [52, 53]. We will return to this point in the context of

gravity in the next section.

1.2 Perturbative methods

When path integrals involve interactions, exact calculations become infeasible. To make

progress, we employ perturbation theory, which involves expanding the partition func-

tion in powers of the coupling constants. Each term in this expansion can be repre-

sented by Feynman diagrams, which are then related to scattering amplitudes through

the Lehmann–Symanzik–Zimmermann (LSZ) reduction formula [54].

1.2.1 Propagators

Propagators represent a propagation of a single particle in the absence of interactions

and can be found by inverting the operator of the bilinear term in the Lagragian. This is

because in the free theory, to calculate the two-point correlator (which is the definition

of the propagator) we need to take the double functional derivative with respect to the

source for the corresponding field

h0| T̂ �̂(x1)�̂(x2) |0i = (�i)2
1

Zfree[0]

�

�J(x1)

�

�J(x2)
Zfree[J ]

�����
J=0

. (1.2.1)

Using the identity (1.1.14) the propagator for the fermion field is simply

�i(i/@ �m)P ij(x) = �(4)(x)�ij . (1.2.2)

By rewriting the delta-function on the right hand side as
R
d4k(2⇡)�4e�ikx we get

P ij(x) =

Z
d4k

(2⇡)4
ie�ikx

/k �m+ i✏
�ij . (1.2.3)

6Carlo Becchi, Alain Rouet, Raymond Stora and Igor Tyutin.
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Usually the propagators are presented in momentum space, so Fourier transforming the

above results in

P ij(p) =

Z
d4k

(2⇡)4

Z
d4x

ie�ikx

/k �m+ i✏
eipx�ij =

Z
d4k

i�(p� k)
/k �m+ i✏

�ij =
i

/p�m+ i✏
�ij

(1.2.4)

The +i✏ came from a Feynman prescription trick to shift the poles in the complex plane

and specify the integration contour. This method ensures the correct causal behavior of

propagators.

Similarly we can get the propagator for the gauge and ghost fields we invert @2gµ⌫ and

@2. In momentum space these propagators are

Dab

µ⌫(k) =
�i

k2 + i✏
gµ⌫�

ab , Iab(p) =
i

p2 + i✏
�ab . (1.2.5)

In the context of Feynman diagrams the propagators are represented by straight lines

which carry indices and momenta labels:

i

�
j
↵

p
b a

p

a
µ

b
⌫

p

Figure 1.2.1: Feynman diagrams for fermion, ghost and gluon propagators.

1.2.2 Interactions

Vertex interactions stem from higher order terms in the Lagrangian (1.1.25) which rep-

resent di↵erent ways the particles interact. For example a term g ̄ /A represents an

interaction between fermions and the gauge field particles (as a Feynman diagram this

would correspond to two fermion lines joining a gauge field line). To extract the contri-

bution of this interaction we need to calculate functional derivative with respect to the

sources of these fields

h0| T̂ ˆ̄ (x) /̂A(y) ̂(z) |0i =
1

Z[0]

i�

�Jf (x)

�i�

�J̄f (z)

�i�

�Jg(y)
Z[Jf , J̄f , Jg] . (1.2.6)

We can then find the relevant term corresponding to the vertex interaction and amputate

the external propagators. The result of (1.2.6) is igT a

ij
�µ and the corresponding Feynman

diagram is
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a
µ

i

j

Figure 1.2.2: Fermion-gluon interaction three point vertex.

1.2.3 Infinities

In section 1.2.1 we calculated the propagators by finding a two point correlator in the

absence of interacting terms in the Lagrangian (g = 0). The pole in the correlator

gives us the physical mass that we would measure in experiments. But with interactions

the two point function is much more complicated. We need to take into account all

other Feynman diagrams from higher order perturbative expansion. For simplicity let

us consider the Abelian case. The lowest order leading contribution to the fermion

propagator is

p k p

p� k

= P (/p)(�i⌃( /p))P (/p) .

Naturally adding this diagram to the free propagator will shift the pole of the propagator,

giving us a di↵erent mass of the particle. The explicit contribution is

�i⌃(/p) = (�ig)2
Z

d4k

(2⇡)4
�⌫

i(/k +m)

k2 �m2 + i✏
�µ

�i

(p� k)2 + i✏
gµ⌫ . (1.2.7)

Here we run into a problem, because for large k the integrand is / k�4 (since the odd part

of the integrand vanishes), so the integral is divergent. A method that systematically

removes the infinities that arise in these is called renormalization and is the main topic of

this thesis. In perturbative renormalization one redefines the parameters of the theory,

such as masses and coupling constants by introducing counterterms into the Lagrangian

to cancel these divergences. This results in finite, physically meaningful quantities. This

procedure ensures that the predictions of the theory remain consistent with experimental

observations, maintaining the integrity of the theoretical framework.

To make any progress we first need to render the integral (1.2.7) finite. This requires a

regulator. This is done either by introducing an upper integration limit (UV-cuto↵)

or by something rather strange - evaluating the integral in 4� ✏ dimensions. The latter

method is used more often and is referred to as dimensional regularization and has
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the advantage of preserving all the symmetries of the theory. In doing this we will get

all the divergences appearing as 1/✏ poles. The only thing we need to worry about in

this case is the dimensions of the fields and couplings. To keep the coupling constant g

dimensionless we need to redefine g ! µ✏/2g. This quantity µ is interpreted as an energy

scale at which the value of g is fixed. To evaluate these integrals in this regularization

scheme we first rewrite the integral using Feynman parametrization:

1

AB
=

Z 1

0

du

(uA+ (1� u)B)2
. (1.2.8)

Then (1.2.7) can be written as

�i⌃(/p) = (�igµ✏/2)2
Z

ddk

(2⇡)d

Z 1

0
du

��⌫i2(/k +m)�µgµ⌫
(u(p� k)2 + (k2 �m2)(1� u) + i✏)2

. (1.2.9)

Notice that one can rearrange the denominator such that it takes the form (k2 � C2)2

by shifting the integration variable to k0 = k � pu to get

�i⌃(/p) = (�igµ✏/2)2
Z

ddk0

(2⇡)d

Z 1

0
du

��⌫i2( /k0 + u/p+m)�µgµ⌫
(k02 � C + i✏)2

(1.2.10)

With C = (1�u)(m2p2u). In 4�✏ dimensions the �-matrices contract as �µ�µ = (4�✏)I

so the result is

�i⌃(/p) = g2µ✏/2
Z

ddk0

(2⇡)d

Z 1

0
du

2( /k0 + u/p)� 4m

(k02 � C + i✏)2
(1.2.11)

The term in the numerator linear in /k0 will vanish since it is an odd function integrated

over the full range. Then we can rotate the integration contour by defining k0 = ik0
E

(Wick rotation). This results in an integral in Euclidean space which we can evaluate

using the gamma functions

�ig2µ✏/2
Z

ddk0

(2⇡)d

Z 1

0
du

2( /k0 + u/p)� 4m

(k02 + C + i✏)2
= �ig2µ✏/2

Z 1

0
du

2�(✏/2)(u/p� 2m)

(4⇡)2�✏/2C✏
(1.2.12)

The divergent part of this integral will determine the counterterms that we add to the

Lagrangian and in this case it is

⌃(/p) =
↵(/p� 4m)

2⇡✏
+ finite (1.2.13)

where ↵ = g2/4⇡.

One also has to include corrections from higher order perturbative expasion. The propa-

gator has an infinite number of divergent contributions coming from the sum of diagrams

with increasing number of loops:
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+ +...

So the propagator in an interacting theory is

Pint(/p) = P ( /p) + P ( /p)(�i⌃(/p))P ( /p) + P ( /p)(�i⌃(/p))P ( /p)(�i⌃(/p))P ( /p) + ... . (1.2.14)

This series expansion simplifies to

Pint(/p) =
i

/p�m+ ⌃(/p)
. (1.2.15)

So now it is clear that the pole of the propagator is atmphysical = m�⌃(/p). As mentioned

before the main idea of renormalization is to redefine our fields and parameters such

that we absorb the infinities in the definitions of the ”bare” parameters. Hence, what

we called m in the interacting Lagrangian is not really a mass.

First, let us redefine the fermion field:

 (x) =
p

Z r(x) . (1.2.16)

where Z is called a wavefunction renormalization and it will be divergent in order to

cancel the divergent part in the correlator. Then we define the coupling m to be

m = Zmmr . (1.2.17)

At tree level Z = Zm = 1 so these factors have the form Z = 1 + �, Zm = 1 + �m.

where �’s are called the counter-terms and these will be the numbers that cancel out

the divergences coming from loop diagrams. Due to the wavefunction renormalization

factor, the propagator changes as

Pr(/p) = h0| r(x) ̄r(y) |0i =
1

Z
Pint(/p) . (1.2.18)

Now we can express (1.2.15) in terms of the renormalized parameters

Pr(/p) =
1

Z

i

/p� Zmmr + ⌃(/p)
=

i

/p�mr + �/p� (� + �m)mr + ⌃(/p) + ...
. (1.2.19)

Looking at (1.2.13) we see that in order to cancel the divergent parts of ⌃(/p) we need

to choose the counter-terms to be

� = �
↵

2⇡✏
, �2 = �

3↵

2⇡✏
. (1.2.20)
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With this choice of the counterterms the one loop results are finite. The renormalized

fermion sector of the Lagrangian with the counter-terms added is given by

L = i ̄/@ �m ̄ + ... = iZ ̄r /@ r � ZZmmr ̄r r + ... , (1.2.21)

To summarize, we added divergent terms to the Lagrangian in order to cancel out the

divergences coming from loop diagrams. These terms have their own Feynman rules that

one would have to take into account while calculating correlators. Intuitively what we

are doing is just expressing our answers in physically measurable quantities, but in doing

so the arbitrary theoretical constants become divergent. Working in d = 4�✏ dimension

we introduced an arbitrary constant µ which can be interpreted as an energy scale. In

the next section we will see that it has an important consequence on the couplings.

1.2.4 Running of the couplings

In the study of quantum field theory, understanding how physical quantities evolve

with changes in energy scale is crucial. This concept is encapsulated in the running

of coupling constants. To explore this, consider an Abelian gauge theory. Instead of

regularizing the integral by “shrinking” spacetime as before, we introduce a cuto↵ on

the momentum modes. This approach is intuitive, as it can be visualized as a “lattice

spacing”—akin to the spacing between atoms or spins in condensed matter physics. This

cuto↵ implies that it is nonsensical to consider momentum modes much smaller than this

spacing. To illustrate this, we can calculate the scattering amplitude of two fermions

and a photon, observing how the coupling constant evolves with the energy scale µ,

revealing the underlying dynamics of the theory. At tree level the scattering amplitude

is proportional to �ie�µ
↵�

. At one loop it receives corrections from the following diagram:

µ

k1

k2 � q

k2 + k1 � q

k2

k1 + k2

q

Figure 1.2.3: One loop correction to the three point fermion-photon interaction ver-
tex.
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This diagram is divergent as we can see by simple power counting. There are two

fermion propagators and one photon propagator, so there are four powers of momenta

in the denominator hence the contribution would be proportional to
R
⇤ d4qq�4. This is

logarithmically divergent. If we add a cut-o↵ ⇤ which is an upper limit to the integration

of momentum modes the scattering amplitude is proportional to

M = �ie+ iCe3 ln
⇣⇤2

µ2

⌘
+O(e5) , (1.2.22)

where the first term comes from the tree level diagram and the second from the loop

diagram above. C is just some constant and µ depends on the incoming momenta. The

e3 comes from the fact that we have three interaction vertices. We want the result to be

independent of ⇤, because we chose it arbitrarily. One can perform an experiment and

measure what the amplitude is. Then the scattering amplitude that we calculated in

(1.2.22) must be set to the physical electric charge that we measured in the experiment

at some momentum setting µ0

�iep = �ie+ iCe3 ln
⇣⇤2

µ2
0

⌘
+O(e5) . (1.2.23)

This is how the theoretical value of the coupling constant e is related to the physical

electric charge. Working to this order we can express e in terms of ep

�ie = �iep � iCe3p ln
⇣⇤2

µ2
0

⌘
+O(e5p) . (1.2.24)

Now we can plug this back to (1.2.22)

M = �iep � iCe3p ln
⇣⇤2

µ2
0

⌘
+ iCe3p ln

⇣⇤2

µ2

⌘
= �iep + iCe3p ln

⇣µ2
0

µ2

⌘
+O(e5p) . (1.2.25)

We expressed the amplitude in terms of the physically measured quantity and the final

result is independent of the cut-o↵ ⇤. In the literature ep is often called the renormalized

quantity eR. We can now write the Lagrangian in terms of these physical (or renormal-

ized) quantities by adding counter terms the same way we did in the last section.

Equation (1.2.25) tells us how how M depends on µ. But it looks like the amplitude

also depends on µ0. This cannot be true because one would get di↵erent answers using

a di↵erent setting µ0
0

M = �iep + iCe3p ln
⇣µ02

0

µ2

⌘
+O(e5p) . (1.2.26)

This is not the case, since we measured ep at some energy scale µ0 so it actually depends

on that energy scale ep(µ0) in such a way that M is independent of it. For µ0 ⇠ µ0
0

subtracting (1.2.26) from (1.2.25) we get:

ep(µ
0
0) = ep(µ0) + Cep(µ0)

3 ln
⇣µ02

0

µ2
0

⌘
+O(e5p) . (1.2.27)
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Expanding around µ0 and removing the subscript, we can write this equation as

µ
d

dµ
ep(µ) = 2Cep(µ)

3 +O(e5p) . (1.2.28)

We could have also obtained the same result just by taking the derivative of M with

respect to µ0 and demanding that d

dµ0
M = 0. For a general coupling constant � we

define the �-function to be

µ
d�

dµ
⌘ �(�) . (1.2.29)

Which describes how the physical coupling constant changes with respect to the energy

scale µ.

The sign of C in (1.2.28) has an important consequence. If it is positive, the coupling

increases rapidly with energy scale and hits a pole at some finite energy called the

Landau pole. This is the case for QED since the constant C = 1/12⇡2. One can solve

the di↵erential equation and find that the pole lies at very large energies (⇠ 2.4⇥10280me

[55]). This is signaling that QED cannot be a fundamental theory. However, we expect

new physics to come into play at higher energies, long before we reach those energy

levels.

If the �-function is negative then for large energies �(µ) approaches zero and perturba-

tion theory becomes more reliable. Theories with these types of �-functions are called

asymptotically free. In this case the Landau pole still persist, but is located at very

low energies. This is the case for QCD and such theories exhibit confinement.

The last case is when the �-function starts positive, but then reverses and goes to

the negative side. At some finite value �⇤ the �-function becomes zero �(�⇤) = 0

and the coupling reaches what is known as an interacting fixed point. Theories like

these are called asymptotically safe. The couplings in this case do not vanish, only

their derivative with respect to µ does. Finding these type of fixed points is challenging

because we have to include all possible couplings in our calculations. Hence, one is forced

to perform approximations in the form of truncating the space of possible interactions.

We will explore the possibilities of asymptotically safe gravity in chapter 4.

1.3 Non-perturbative methods

Perturbative renormalization was a big advancement in the field of high energy physics.

However, at a first glance it seems more like a mathematical trick to hide the infini-

ties, rather than a rigorous mathematical tool to model physical phenomena. However,

the work done by Kenneth Wilson and Leo Kadano↵ [24, 27, 56–58] provided a new

perspective on renormalization. Studying phase transitions and critical phenomena in

condensed matter physics it was recognised how the flow of the couplings are related
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to the scaling properties of the theory [57–59]. This paints an intuitive picture behind

what is going on. In this section we will describe the idea of describing how e↵ective

action changes with varying energy scales.

Let us revisit the concept of an interacting scalar field theory, which serves as a stepping

stone for delving into quantum gravity. By thoroughly understanding the principles and

techniques used in scalar field interactions, we can build a solid foundation that will be

important for tackling the intricacies of gravitational interactions at the quantum level.

Consider the most general partition function for a scalar field theory regulated by a

cuto↵. This includes all the possible operators constructed by fields and their derivatives

that satisfy the locality and symmetries of the theory

Z⇤ =

Z

⇤
D�eiS[�] . (1.3.1)

The subscript ⇤ indicates that our integration is limited to Fourier momentum modes

k < ⇤. In other words, we are focusing on the physics relevant to energy scales up to

⇤. The value of ⇤ is rather ambiguous so what we set out to accomplish is to compare

theories at two di↵erent scales ⇤ and ⇤0, where the second cuto↵ is at a lower energy

⇤0 = ⇤⇠, 0 < ⇠ < 1 . (1.3.2)

We then decompose the field into two distinct components based on their Fourier mo-

mentum modes. The first component consists of fields with momentum modes k < ⇤0

and the other with momentum modes ⇤0 < k < ⇤

�� =

8
<

:
��(k), if k < ⇤0.

0, otherwise.
(1.3.3)

�+ =

8
<

:
�+(k), if ⇤0 < k < ⇤.

0, otherwise.
(1.3.4)

Of course we have that � = �� + �+. We can express the partition function by incor-

porating this decomposition of the fields and separate the part that consists of higher

energy modes �+

Z⇤ =

Z

⇤
D��D�+e

iS[��+�+] =

Z

⇤0
D��e

iS[��]
Z

⇤
D�+e

iS̃[�+,��] . (1.3.5)

We can then perform the integration over the second component, �+, while treating the

lower energy part of the field, ��, as constant. This integration results in a modified

action that now only depends on ��. The outcome can be interpreted as an e↵ective

shift to the original action, encapsulating the influence of the higher energy modes within
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the lower energy e↵ective theory

Z⇤0 =

Z

⇤0
D��e

iS[��]+i�S[��] , (1.3.6)

where we defined

ei�S[��] =

Z
D�+e

iS̃[��,�+] . (1.3.7)

Our initial assumption was that all the allowed operators were included in the original

action S[�]. The shift �S[��] must satisfy the same conditions as the original action

(i.e. symmetries, locality etc.). Therefore, all the operators that appear by integrating

out �+ are already present in S[��]. Hence, these contributions e↵ectively just shifts

the original couplings by some amount. This generates the flow of the couplings that

can be related to the �-functions we saw in perturbation theory.

There is one more step we need to do if we want to compare (1.3.1) with (1.3.6), which

is to rescale the variables such that we have the same integration limit, defining k = ⇠k0

and x = x0/⇠. To illustrate the point we can choose a few terms in the derivative

expansion of scalar field theory [60]

L =
1

2
(@�)2 +

X

n

�2n�
2n + ... , (1.3.8)

where the ellipses stand for interactions involving higher order derivatives. After rescal-

ing these terms transform as

Z
ddx

"
1

2
(@��)

2 +
X

n

�2n�
2n
� + ...

#
=

Z
ddx0⇠�d

"
1

2
⇠2(@0��)

2 +
X

n

�2n�
2n
� + ...

#
.

We can then normalize the coe�cient in front of the kinetic term to be 1
2 by defining

�0 = ⇠1�d/2��. This results in a rescaled action

Z
ddx0

"
1

2
(@0�0)2 +

X

n

�2n⇠
�d+2n(d/2�1)�02n + ...

#
. (1.3.9)

The coupling constants change in the following way

�02n = ⇠�d+2n(d/2�1)�2n . (1.3.10)

The change depends on the power of ⇠ which is just the mass dimension of the coupling.

If the power of ⇠ is negative then we call the coupling relevant, since at low energy the

coupling gets stronger. If the power is positive then it is called irrelevant, since at low

energies these couplings become weaker.

The are also dynamical contributions coming from �S. These are extra terms that also

depend on other couplings and gives rise to what is called the anomalous dimension.
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The flow of the coupling for a small change in energy can be written as

⇤
d�n
d⇤

=
hn
2
(d� 2)� d

i
�n +G(�n) . (1.3.11)

The first term, a linear term, arises due to the mass dimension of the coupling constant

and is straightforward to calculate. This term reflects the inherent scaling properties

of the coupling under dimensional analysis. The second term, known as the dynamical

term, originates from quantum e↵ects and incorporates the intricate contributions of

quantum fluctuations. This dynamical term is of primary interest in the study of the

FRG, as it encapsulates the essential non-trivial behavior of the theory. Analyzing

this term provides insights into how the coupling constants evolve with energy scales,

revealing the underlying structure and dynamics of the quantum field theory. The trivial

contribution is usually not included in the definition of the �-function and it vanishes if

the coupling is dimensionless (marginal).

1.3.1 Functional renormalization group equation

Analyzing the structure of fixed points and the flow of the couplings is one way of

studying quantum field theories. Knowledge of all the fixed points essentially defines

a QFT since we know how it behaves at all energy scales. In the FRG approach we

substitute the need to do the integrals with solving particular di↵erential equations

called functional renormalization group equations (FRGE). This method has the

advantage of the ability of performing approximations, which is usually very hard to do

in perturbation theory. These approximations give insight into high energy behaviour

of the theory.

In the previous section we discussed integrating out modes a little bit at a time starting

with the high energy modes. The FRGE is a more manageable way of performing

precisely these type of calculations. Let us look again at a scalar theory in Euclidean

spacetime. First add a regulator �S⇤ to the partition function

Z⇤[J ] =

Z

⇤0

D�e�S[�]��S⇤[�]+J ·� , (1.3.12)

where the regulator acts as a cuto↵ for low energy modes, so that we only integrate the

high energy modes. ⇤ is referred to as the IR cuto↵ scale. This is analogous to the ⇤0

energy scale in the previous section. The UV cuto↵ is denoted by ⇤0 here. The regulator

behaves as a momentum dependant mass term as it is usually taken to be of the form

�S⇤[�] =
1

2

Z
ddp

(2⇡)4
�(p)R⇤(p

2)�(�p) , (1.3.13)
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where R⇤ is a cut-o↵ profile and must satisfy these conditions

lim
p2!0

R⇤(p
2) > 0, lim

p2!1
R⇤(p

2) = 0, lim
⇤!0

R⇤(p
2) = 0 . (1.3.14)

The first and the second property ensures that we only integrate out the UV modes and

ignore the IR modes. And the last is to make sure we are left with the full partition

function if the cut-o↵ is set to zero. Although following the last section we should

technically choose a regulator that diverges for all p2 < ⇤2 to completely suppress the

IR modes, but this usually results in spurious singularities in the flow equations, so the

regulators are chosen to be finite. For example the optimized cuto↵ [61]:

R⇤(p
2) = (⇤2

� p2)⇥(⇤2
� p2) , (1.3.15)

or an exponential cuto↵ [29]:

R⇤(p
2) =

p2

⇤2

⇣
ep

2
/⇤2

� 1
⌘�1

. (1.3.16)

With the regulator inserted, we take the derivative with respect to the cut-o↵ scale ⇤

@tZ⇤ = �

Z
D�@t�S⇤[�]e

�S[�]��S⇤[�]+J ·� = �
1

2

Z
ddp

(2⇡)d
�2Z⇤[J ]

�J(p)�J(�p)
@tR⇤ .(1.3.17)

Where @t = ⇤@⇤. In the last equality we used the fact that � = �

�J
. We can use the

generating functional W⇤[J ] defined by

e�W⇤[J ] = Z⇤[J ] , (1.3.18)

to rewrite (1.3.17). In perturbation theory this functional generates the connected Feyn-

man diagrams. Multiplying by Z
�1
⇤ [J ] we can write (1.3.17) as

@tW⇤[J ] = �
1

2

Z
ddp

(2⇡)d


�2W⇤[J ]

�J(p)�J(�p)
+
�W⇤[J ]

�J(p)

�W⇤[J ]

�J(�p)

�
@tR⇤(p

2) . (1.3.19)

Where we used the fact that @tW⇤ = Z
�1
⇤ @tZ⇤ and

�2W⇤[J ]

�J(p)�J(�p)
= Z

�1
⇤ [J ]

�2Z⇤[J ]

�J(p)�J(�p)
� Z

�2
⇤ [J ]

�Z⇤[J ]

�J(p)

�Z⇤[J ]

�J(�p)
. (1.3.20)

We usually then define the e↵ective action �['] which generates the one particle

irreducible diagrams. The standard definition is just the Legendre transform of W [J ],

but here we modify it with the regulator

�⇤['] =

Z
ddxJ(x)'(x)�W⇤[J ]��S⇤[J ] . (1.3.21)

With '(x) = h�(x)i = �W⇤/�J . Clearly we retrieve the standard e↵ective action at
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⇤ = 0. �⇤ as we defined it here is usually referred to as e↵ective average action. The

connection between the e↵ective action and the generator of connected diagrams is

�2W [J ]

�J(p)�J(�p)
=

✓
�2�[']

�'(p)�'(�p)

◆�1

. (1.3.22)

we can rewrite it using our modified definitions

�2W⇤[J ]

�J(p)�J(�p)
=

✓
�2(�⇤ +�S⇤)

�'(p)�'(�p)

◆�1

⌘
1

�(2)⇤ +R⇤

(p,�p) . (1.3.23)

Then taking the scale derivative of (1.3.21) and using (1.3.19) the flow equation can be

written as

@t�⇤['] = �@tW⇤[J ]� @t�S⇤[J ]

=
1

2

Z
ddp

(2⇡)d


1

�(2)⇤ +R⇤

(p,�p) +
�W⇤[J ]

�J(p)

�W⇤[J ]

�J(�p)

�
@tR⇤ � @t�S⇤

=
1

2
STr


1

�(2)⇤ +R⇤

@tR⇤

�
. (1.3.24)

The trace here also includes integration. Equation (1.3.24) is the functional renormal-

ization group equation [29,30] that describes the flow of e↵ective couplings.

In practical applications, some form of approximation becomes necessary. One fre-

quently employed approximation is the Local Potential Approximation (LPA) [62–71],

which simplifies the flow equations by disregarding the momentum dependence of the

e↵ective action, except for a local potential term, V⇤. For a scalar field ' in d Euclidean

dimensions, the e↵ective action then takes the form:

�⇤ =

Z
ddx

1

2
(@µ')

2 + V⇤(') , (1.3.25)

The double functional derivative of (1.3.25) in momentum space is

�(2)⇤ = p2 + V 00
⇤ (') . (1.3.26)

Using the optimized cut-o↵

R⇤ = (⇤2
� p2)✓(⇤2

� p2) , (1.3.27)

we find the derivative

@tR⇤ = 2⇤2✓(⇤2
� p2) . (1.3.28)
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Putting it all together we get the following di↵erential equation

@tV⇤(') =
1

2

Z
d4p

(2⇡)4
@tR⇤

p2 + V 00
⇤ +R⇤

=
1

2

Z
d4p

(2⇡)4
2⇤2✓(⇤2

� p2)

p2 + V 00
⇤ + (⇤2 � p2)✓(⇤2 � p2)

=
1

2

1

(4⇡)2
⇤6

⇤2 + V 00
⇤

, (1.3.29)

where we used the trick to integrate in the radial direction

Z
d4p

(2⇡)4
f(q2) =

2

(4⇡)2

Z 1

0
dpp3f(p2) . (1.3.30)

We can now expand our potential as a polynomial in '2

V⇤(') =
1

2
m2'2 +

1

4!
�'4 + ... . (1.3.31)

The flow equation can then be written as

1

2
(@tm

2)'2 +
1

24
(@t�)'

4 + ... =
1

2

1

(4⇡)2
⇤6

⇤2 +m2 + 1/2�'2 + ...
. (1.3.32)

Taking the derivative of this equation w.r.t. '2 and the setting ' = 0 we get a flow

equation for m2

@tm
2 = �

�

4

1

(4⇡)2
⇤2

(1 +m2/⇤2)2
. (1.3.33)

Doing the same thing again we can also find the flow equation for �

@t� =
3�2

(4⇡)2
1

(1 +m2/⇤2)3
. (1.3.34)

The result we get from dimensional regularization for � is �(�) = 3�2

(4⇡)2 [30]. This agrees

with what we have in (1.3.34) if m2 << ⇤2. At ⇤ = 0 we should at tree level set

m(0) = 0 to get the universal result for the running in mass independent regularization.

Then the results agree. This is a part of what is called a threshold phenomena where

we should remove the particles from the �-functions if the mass of the particle is well

below the energy scale of the calculation [72].

The solution for �(⇤) has the same problem as in QED, where the coupling hits a Landau

pole at a finite energy scale. For that reason an interacting scalar field theory in four

dimensions is problematic. One can be sceptical about the results since the cuto↵ we

chose is arbitrary and we would get di↵erent results using di↵erent cuto↵s. It turns out

the one loop �-functions are actually independent of this choice. What we are really

interested in is the fixed point solutions of the flow equations. The structure of these
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points (or their existence) is independent of the choice of our cuto↵. This is known as

universality.

1.3.2 Theory space

Theory space is a fundamental concept frequently employed in studies involving the

FRGE. It represents the set of all possible actions that are consistent with the sym-

metries of the fields. Each point within this space corresponds to a distinct possible

theory, characterized by specific values of its coupling constants. Due to the vastness

and complexity of theory space, it is generally impractical to consider it in its entirety.

Consequently, researchers often resort to truncations as a primary form of approxima-

tion. Truncations involve limiting the scope of theory space to a manageable subset

of possible theories by focusing on a finite number of operators or interactions. This

approach enables a more tractable analysis while still capturing the essential features

and dynamics of the theories under investigation.

FRGE describes the flow of these points in theory space with respect to RG scale. A

QFT is said to be complete if it has a well defined flow trajectory for all values of the

RG scale, which usually begins and ends at fixed points. Consider a general action of

all possible couplings:

S⇤[�] =
1X

i

gi(⇤)Oi[�] . (1.3.35)

Fixed points g⇤
i
are the points where the running of the couplings stop �(g⇤

i
) = 0. A

UV critical surface is defined by all the points that flow towards a fixed point in the

UV. For a theory to be predictive the number of couplings that flow towards a fixed

point (in the relevant direction) must be finite. This is because each coupling would

then correspond to a free parameter, which needs to be fixed experimentally. A theory

with infinitely many parameters loses predictivity. The UV critical surface is determined

by solving an eigenvalue equation that is constructed by linearising about a fixed point

solution V ⇤[�] =
P

n

i
g⇤
i
Oi[�]

V⇤[�] = V ⇤[�] + " v[�] ✏�✓t , (1.3.36)

" being infinitesimal. Here ✓ is the RG eigenvalue. It is the scaling dimension of the

corresponding coupling and is positive (negative) for relevant (irrelevant) operators. The

scaling dimension of the operator v[�] itself is d � ✓. These concepts will be discussed

in much more detail in chapter 3.

To summarize, we have explored the perturative and non-perturbative renormalization

methods in quantum field theory. We derived the FRGE and demonstrated its appli-

cation by calculating the beta functions for a scalar field theory, highlighting its utility

in understanding the behavior of coupling constants across di↵erent energy scales. This
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comprehensive examination has provided us with valuable insights which we will build

on in other chapters. We are now shifting our attention to gravity, where we will apply

these techniques to explore the renormalization properties and underlying structure of

gravitational interactions.

1.4 Gravity

Einstein’s theory of general relativity is a profound framework that describes the interac-

tion between spacetime and matter. Brilliant lecture notes and textbooks of the theory

are available in the existing literature [43,44,73–75]; therefore, a detailed review of gen-

eral relativity will not be provided here. It is worth mentioning the two foundational

principles underlying the theory: Einstein’s equivalence principle and the principle of

coordinate independence. The former states that in small regions of spacetime, the laws

of physics reduce to those of special relativity. Intuitively it means that we are not able

to distinguish between gravity and acceleration. The second principle asserts that the

laws of physics are invariant under transformations of the coordinate system, i.e. they

do not depend on the specific choice of coordinates. The fundamental object in general

relativity is the metric tensor gµ⌫ which is defined by the equation of the invariant square

of an infinitesimal line element

ds2 = gµ⌫dx
µdx⌫ . (1.4.1)

Under coordinate transformation xµ ! xµ
0
the line element remains invariant since

dxµ
0
=
@xµ

0

@xµ
dxµ, gµ0⌫0 =

@xµ

@xµ0
@x⌫

@x⌫0
gµ⌫ (1.4.2)

The metric tensor is a crucial tool that encapsulates how distances and intervals are

measured, how spacetime is curved, and how objects move under the influence of gravity.

It is the mathematical structure that translates the intuitive concepts of geometry and

motion into the precise language of di↵erential geometry and tensor calculus.

With these principles in mind, Einstein derived his renowned field equations:

Rµ⌫ �
1

2
gµ⌫R+ ⇤gµ⌫ =

2

4
Tµ⌫ , (1.4.3)

where  =
p
32⇡G, G being the Newton’s constant. Tµ⌫ is the energy momentum tensor.

R is the Ricci scalar defied by R = gµ⌫Rµ⌫ and Rµ⌫ is the Ricci tensor, the contraction

of the Riemann tensor Rµ⌫ = R↵
µ↵⌫ . Riemann tensor is expressed in terms of the

Christo↵el symbols

R↵
⌫�µ = @��

↵

µ⌫ � @µ�
↵

�⌫ + �
↵

��
��µ⌫ � �

↵

µ�
��⌫� , (1.4.4)
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with

�↵µ⌫ =
1

2
g�↵ (@µg�⌫ + @⌫g�µ � @�gµ⌫) . (1.4.5)

These equations are invariant under coordinate transformations (di↵eomorphism in-

variance) and for this reason gravity is classified as a gauge theory. A modern way to

derive the Einsteins field equations is from an action principle. The simplest possible

action is the Einstein-Hilbert action:

SEH =
�2

2

Z
ddx

p
�gR , (1.4.6)

where g is the determinant of the metric. The field equations can be derived by first

finding the variations of individual parts :

�
p
�g =

1

2

p
�ggµ⌫�gµ⌫ , (1.4.7)

�Rµ⌫ = r↵

�
��↵µ⌫

�
�rµ (��

↵

↵⌫) , (1.4.8)

��↵µ⌫ = �
1

2

⇣
rµ(g⌫��g

↵�) +r⌫(gµ��g
↵�)�r�(g

↵��gµ⌫)
⌘
. (1.4.9)

Hence, the variation of this action is

�SEH =
�2

2

Z
ddx

p
�g

✓
Rµ⌫�g

µ⌫
�

1

2
gµ⌫R�g

µ⌫ +rµv
µ

◆
, (1.4.10)

where vµ = r⌫(��gµ⌫ + gµ⌫g↵��g↵�) is the boundary term and can be ignored. Hence,

we retrieve the matter free field equations with vanishing cosmological constant

Rµ⌫ �
1

2
gµ⌫R = 0 . (1.4.11)

This is the action we will be concerned with for the rest of the chapter.

1.4.1 Weak fields

If the gravitational field is weak it can be decomposed into a flat metric (Minkowski)

plus a perturbation

gµ⌫ = ⌘µ⌫ + hµ⌫ , (1.4.12)

where hµ⌫ is the dynamical field and |hµ⌫ | << 1. To first order the inverse metric is

gµ⌫ = ⌘µ⌫ � hµ⌫ . (1.4.13)

We use the Minkowski metric ⌘µ⌫ to raise and lower indices. Using these definitions, the

equations of motion for the fluctuation field can be found from (1.4.11)

@�@⌫h
�
µ + @�@µh

�
⌫ � @µ@⌫h�⇤hµ⌫ = 0 . (1.4.14)
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The kinetic term of the Lagrangian is given by

Lfree =
1

2
(@�hµ⌫)

2
�

1

2
(@�h)

2
� (@µhµ⌫)

2 + @↵h@�h↵� (1.4.15)

One of the reasons why perturbative gravity is so hard to work with at the quantum level

is that due to the decomposition (1.4.12) the action cointains infinitely many interaction

terms of the form n(@h)2hn. The lowest order interaction is a three point vertex,

explicitly given by [76]

1


Lint =

1

2
h@�h�↵@

↵h�
1

4
h(@↵h)

2
� h↵�@

�h�
↵@�h+

1

2
h↵�@

↵h@�h

� h��@
�h↵

�@↵h+
1

4
h(@�h↵�)

2
�

1

2
h��@

�h↵�@
�h↵� � h�µ@�h↵

�@�h↵µ

+ 2hµ↵@
�h↵�@µh�� + h�µ@

�h↵
�@↵h�

µ
�

1

2
h@�h↵�@

↵h�
�

� h↵�@
�h↵�@�hµ� + h↵�@

�h↵�@�h . (1.4.16)

To obtain this result, we utilized the FORM symbolic manipulation software. An exam-

ple code is explicitly given in appendix A.1. The linearised action and field equations

are invariant under the linearised version of di↵eomorphisms xµ ! xµ + ⇠µ(x) for small

vector fields ⇠µ. The fluctuations transform via

hµ⌫ ! hµ⌫ + 2@(µ⇠⌫) , (1.4.17)

which is just the Lie derivative of ⌘µ⌫ along the vector field hµ⌫ +L⇠⌘µ⌫ . We will return

to this important point later on when considering BRST symmetry of perturbative

quantum gravity.

We can convince ourselves that hµ⌫ is indeed a dynamical field by finding it is solutions

to the equations of motion (1.4.14). To make the calculations easier we can define a

traced reversed perturbation h̄µ⌫ by

h̄µ⌫ = hµ⌫ �
1

2
⌘µ⌫h . (1.4.18)

The linearised vacuum equations of motion then simplifies to

⇤h̄µ⌫ = 0 . (1.4.19)

A particular solution to these equations is of course plane waves

h̄µ⌫ = Cµ⌫e
ik↵x

↵
. (1.4.20)
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Here k↵ is the wave vector and Cµ⌫ is a symmetric tensor. Plugging this solution into

(1.4.19) we find that

k2 = 0 . (1.4.21)

I.e. the wave vector is null meaning that the waves travel at the speed of light. The

coe�cients determined by the symmetric tensor Cµ⌫ has ten free parameters. However,

many of these can be eliminated because we have arbitrary freedom in defining the

evolution due to gauge symmetry of the theory, namely the di↵eomorphisms. Four of

these gauge freedoms are generated by the vector ⇠µ. This brings down the number of

free parameters to six. Then, as we already saw before, some of the equations of motion

are first order and are really just constraints on the initial data. In GR we can see that

from the Bianchi identity:

rµG
µ⌫ = 0 , (1.4.22)

where Gµ⌫ = Rµ⌫ �
1
2gµ⌫R. is the Einstein tensor. Expanding this identity we see that

the time derivative of G0⌫ is related to spatial derivatives of Gi⌫ :

@0G
0⌫ + @iG

i⌫ + �µµ↵G
↵⌫ + �⌫µ↵G

µ↵ = 0 . (1.4.23)

The Einstein tensor has two derivatives of the metric, however no other term in the

identity has three time derivatives. Hence, for this identity to be satisfied we see that

G0⌫ must have a single time derivative of the dynamical field, which means these are

initial value constraints. That eliminates four more degrees of freedom, leaving us with

two dynamical degrees of freedom. We can eliminate the free parameters form Cµ⌫ by

fixing our coordinate system. A popular choice is the harmonic gauge

⇤xµ = 0 =) @µh̄
µ
⌫ = 0 . (1.4.24)

Then the coe�cients must satisfy

kµC
µ⌫ = 0 . (1.4.25)

This reduces the number of free parameters by four. It also means that the waves

are orthogonal to the propogation direction, much like EM waves. There is still some

residual gauge symmetry left because the transformations of the form

xµ ! xµ + ⇠µ (1.4.26)

will satisfy the harmonic gauge if ⇤⇠µ = 0. This freedom allows us to make the following

choice [43]:

Cµ

µ = 0 and C0⌫ = 0 . (1.4.27)
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More explicitly we can consider a wave travelling in the x3 direction where k = (!, 0, 0,!).

Then the coe�cients of our plane wave solution in the harmonic gauge takes the following

form

Cµ⌫ =

0

BBBB@

0 0 0 0

0 C11 C12 0

0 C12 �C11 0

0 0 0 0

1

CCCCA
(1.4.28)

The coe�ceints C11 and C12 are commonly re↵ered as the plus (+) and cross (⇥) polar-

izations of the gravitational wave, due to the way they squeeze and stretch spacetime.

This solution describes ripples in spacetime caused by the acceleration of massive ob-

jects, such as merging black holes or neutron stars. It wasn’t until September 14, 2015,

that the first direct detection of gravitational waves was made by the Laser Interferom-

eter Gravitational-Wave Observatory (LIGO). This groundbreaking observation, which

confirmed the merger of two black holes approximately 1.3 billion light-years away, was

announced on February 11, 2016 [77]. This observation confirmed that spacetime is

indeed a dynamical field. Thus, one can try and find a quantized version of this field,

which comes with many challenges.

1.4.2 Quantization

The obvious starting point when quantizing gravity in the partition function formulation

is using the Einstein-Hilbert action

Z =

Z
D[gµ⌫ ] exp {iSEH [gµ⌫ ]} . (1.4.29)

For weak fields we can use the perturbative expansion of the action and integrate over

all possible configurations of the fluctuations around a flat metric

Z '

Z
D[hµ⌫ ] exp iSEH [hµ⌫ ] . (1.4.30)

This already raises a few concerns. We are integrating over all possible energies, meaning

that perturbation theory has to break down at some point. But this is the case for all

QFT’s, not just gravity. The di↵erence here is the interaction terms and their dimen-

sions. The interaction terms in perturbative expansion of Einstein-Hilbert action are of

the form nhn(@h)2. The derivative and the field both have energy dimensions of one

and the coupling has energy dimension of minus one. Negative dimension couplings are

known to give rise to perturbatively non-renormalizable terms because it is an irrelevant

coupling which does not have a UV-stable trajectory. To see where the problem arises

explicitly we can calculate the one loop contribution to the two point function arising

from the three-point interaction vertices from (1.4.16)
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hµ⌫(p) h↵�(�p)

Figure 1.4.1: One loop correction to the graviton propagator.

Each vertex carries two derivatives and a single coupling constant . We also have

to integrate four powers of momenta inside the loop. From simple power counting

arguments one can expect the e↵ective action to take following form

�1 = SEH + C
1

✏
2p4h2 + ... , (1.4.31)

where C is just a constant. We present the FORM code for exact calculation of this result

in appendix A.2. To renormalize this divergence, one cannot redefine the coupings of the

original action SEH because the divergence is of a di↵erent form. One has to introduce

new interaction couplings that have four powers of the derivative. This continues to

higher loops. At loop order `, the divergences are / p2`, so one has to introduce new

couplings at every order. This makes gravity perturbatively non-renormalizable just

from dimensional analysis. In the next chapter we will examine the structure of these

divergences in great detail.

1.5 Thesis outline

This thesis explores the applications of perturbative and non-perturbative renormaliza-

tion group in quantum field theory and gravity. The structure of the thesis is designed

to be self contained and it will build on the theory presented in the introduction chapter.

The second chapter delves into the specifics of perturbative quantum gravity in four

dimensions, focusing on the quantization of the Einstein-Hilbert action in Euclidean

signature. It explores the issue of non-renormalizability in this quantum field theory,

examining how the structure of divergent counterterm at each loop in order. The role of

the field redefinition, BRST symmetry and RG equations is discussed in detail, providing

insights into the challenges in achieving a consistent theory.

The focus then shifts to discussions of scalar field theory and non-perturbative renormal-

ization in chapter 3. Investigation of flow equations in the Local Potential Approximation

(LPA) was carried out. In the asymptotic regime, we use analytical methods such as

Sturm-Liouville and WKB analysis to understand the behavior of irrelevant operators.

The chapter also examines the O(N) scalar field theory, drawing comparisons between

scalar field theories and gravity. This discussion highlights the broader implications of

renormalization techniques and their potential applications in quantum gravity.
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Next in chapter 4, the functional f(R) approximation in quantum gravity is addressed

using similar techniques as in chapter 3. This section covers the derivation of flow

equations, the implementation of cuto↵ functions, and the evaluation of traces in dif-

ferent geometries. Both asymptotic and numerical analyses of fixed point solutions and

eigenoperators are provided, o↵ering a comprehensive view of the f(R) approximation’s

relevance to quantum gravity. The findings are summarized and discussed in the context

of their implications for the field.

The final chapter consolidates the key findings of the thesis, discussing their implications

for quantum gravity. It reflects on the challenges encountered during the research and

suggests directions for future work.

Appendix A includes FORM code related to the perturbative expansion of the Einstein-

Hilbert action, specifically for calculating the graviton three-point interaction vertex and

the divergent part of the one-loop two-point vertex of the graviton.
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Chapter 2

Divergences in perturbative quan-

tum gravity

This chapter is about four dimensional perturbative quantum gravity, constructed by

quantizing the Einstein-Hilbert action in Euclidean signature.

As we already discussed in the introduction, this quantum field theory is not perturba-

tively renormalisable [78–81]. At each new loop order `, counterterms have to be added

to the bare action to cancel UV divergences, and associated with these counterterms are

new operators and renormalised couplings that did not exist in the bare action at lower

loop order. Nevertheless perturbative quantum gravity can be consistently treated as an

e↵ective theory in this way [82], see also [83,84], in much the same way as the (similarly

non-renormalisable) chiral perturbation theory of low energy pions [85–90].

Our initial motivation was to explore the possibility that RG in this context might

provide a route to learning something useful about the non-perturbative behaviour of

quantum gravity. In particular, even in a perturbatively non-renormalisable theory, the

RG relates the leading UV divergence at each new loop order ` to one-loop (` = 1)

divergences [90]. More physically, it allows us to compute in this way the leading log

power (lnµ)`, of the standard arbitrary RG energy scale µ, at each loop order `. (These

are called chiral logs in pionic perturbation theory [85–90].) If it were possible to use the

RG relations to compute these leading terms to arbitrarily high loop order, and resum

them, we would get a powerful insight into the UV behaviour of quantum gravity at the

non-perturbative level.

In perturbative quantum gravity the leading divergences actually vanish on-shell. They

are therefore field reparametrisations, and have no e↵ect on the S-matrix. However if we

keep in mind that the UV behaviour of the full two-point correlator is characterised by its

o↵-shell dependence, we see that these leading divergences and associated powers of lnµ,

could nevertheless be important. For example, after resumming them, one might find
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that the non-perturbative UV behaviour of the two-point correlator, and potentially thus

that of quantum gravity more generally, is very di↵erent from what one would näıvely

conclude order by order in perturbation theory [91].

In a non-renormalisable gauge theory, divergences that vanish on the equations of motion

(of the quantum fields), are related to modifications of the BRST algebra [82] (see

also [92–96]).1 At each loop order the corresponding counterterms modify the BRST

algebra in a way that remains consistent with the Zinn-Justin identities [97, 98]. They

do this by generating canonical reparametrisations of the antifields (sources for BRST

transformations) [99–102] and quantum fields.

On the other hand as we already mentioned, in a generic non-renormalisable theory

the RG tells us that the leading divergences can be expressed recursively in terms of

divergences in one-loop diagrams, namely one-loop counterterm diagrams, being those

that contain at least one counterterm vertex [90]. As we demonstrate in sec. 2.1.5, these

recurrence relations are actually crucial for consistency of the above canonical trans-

formations. Unfortunately for a non-renormalisable theory, the one-loop counterterm

diagrams are themselves new and non-trivial at each new loop order, and thus provide

a practical obstruction to deriving the leading divergence at arbitrary order.

Viewed in this light the proposal of ref. [103], would appear to potentially provide a

breakthrough. The key idea is to exploit the pole equations that follow from assuming

finite generalised �-functions for the field reparametrisations. As we will see in sec.

2.3, they imply that the leading divergences at higher loops (` > 1) should actually

be computable by recursive di↵erentiation, in particular without computing any more

Feynman diagrams. Unfortunately, the proposal is not correct as will become clear in

this chapter. We spell this out in detail in sec. 2.3.

One problem with exploring these ideas is that there are e↵ectively no explicit higher-

loop o↵-shell leading divergences in the literature that one can test against. Some purely

background field o↵-shell two-loop 1/"2 divergences appear in the famous paper ref. [80],

but unfortunately they contain an error, as pointed out in ref. [103].

All of the above considerations motivated us to compute explicitly (in Feynman – De

Donder gauge and dimensional regularisation) the leading o↵-shell divergences for the

two-point vertex up to two loops, and in particular to draw out their intimate relation to

the one-loop counterterm diagrams [90] and to canonical transformations in the BRST

algebra [82]. Since this necessitates computing, as an intermediate step, the o↵-shell

divergences in one-loop diagrams with three external legs, two of which are quantum,

we widened our investigation so as to provide explicit results for all o↵-shell one-loop

divergences with up to three fields.

1Actually this was established only for vanishing background field. We treat the non-vanishing case
in sec. 2.1.9.
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In fact even for just the graviton one-loop two-point divergence, the complete results do

not appear in the literature. Famously, the pure background part appears in ref. [78].

The pure quantum part appears in ref. [104], cf. also app. 2.5, and ref. [105]. But

to our knowledge the divergence in the mixed quantum background vertex has not

appeared before in the literature. These three divergences can be expressed in terms of

appropriately defined linearised curvatures. (For the quantum field, this is an accident

of Feynman – De Donder gauge, cf. sec. 2.2.1.2.) However the three expressions are all

di↵erent (thus not as assumed in ref. [106]). Although they are all di↵erent, they are not

independent. Their relation is precisely such that all three are removed by a canonical

transformation of the quantum fields (and antifields).

This may come as a surprise since a priori one might expect that a separate reparametri-

sation of the background metric should also be performed (in fact this is what is assumed

and employed in ref. [103]). However in sec. 2.1.9 we show in general that this does not

happen. New divergences at each loop order which involve background and quantum

fluctuations and do not vanish on the equations of motion, are purely a function of the

total metric (that combines background and fluctuation), whilst all other divergences

are renormalised by a canonical transformation of the quantum fields and antifields.

We show explicitly that this scenario continues to hold at the three-point level, where

now thousands of vertices are divergent. We verify that the divergence in the Gauss-

Bonnet topological term [80, 107] is indeed a function only of the total metric, whilst

all other divergences are removed by a canonical transformation on the antifields and

quantum fields.

Then in sec. 2.2.3 we use the one-loop counterterm diagrams to derive the leading

divergence at two loops in the pure background, pure quantum, and mixed, two-point

vertices. At this stage the dependence on the quantum field can no longer be written

in terms of linearised curvatures, reflecting the fact that BRST transformations are now

modified to the extent that they do not reduce to di↵eomorphisms. Nevertheless, taking

proper account of non-linearities in the Zinn-Justin equations, we verify again that all

these divergences can be removed by a canonical transformation on the antifields and

quantum fields.

The structure of this chapter is as follows. In sec. 2.1 we define the BRST transfor-

mations for the quantum fluctuation field and ghosts in the presence of a background

metric. We develop the formalism that is needed to cope with the fact that BRST invari-

ance is significantly altered in the process of renormalisation. Consistency is maintained

by preserving the Zinn-Justin equation [97, 98] a.k.a. CME (Classical Master Equa-

tion) [99–101]. We work with so-called o↵-shell BRST and display results in so-called

minimal basis, since it provides the most elegant and powerful realisation, but in sec.

2.1.3 we explain why the calculations themselves are essentially the usual ones. Both the

bare action and the Legendre e↵ective action satisfy the Zinn-Justin equation [97, 98]
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as we review in secs. 2.1.1 and 2.1.4 respectively, but beyond one loop this leads to a

tension and this tension is resolved by the RG relations for counterterm diagrams, as

we explain in secs. 2.1.5 and 2.1.6.

New divergences are invariant under the total classical BRST charge s0 which incor-

porates not only the BRST transformations but also the action of the Koszul-Tate

operator. Taking into account the presence of the background metric, their properties

are developed in sec. 2.1.7. Since s0 is nilpotent, solutions are classified according to

its cohomology. As we recall in sec. 2.1.8, those solutions that are s0-exact are first

order canonical transformations of the CME. At two loops we need also the canonical

transformations to second order and their relation to the perturbatively expanded CME.

This is derived in sec. 2.1.8. Then in sec. 2.1.9 we derive the general solution for s0-

closed divergences. We show that cohomologically non-trivial solutions can be taken to

be functions of only the total metric, with the rest being s0-exact, in particular there

are no separate purely background metric divergences.

As already mentioned, in sec. 2.2 we compute for the first time many o↵-shell countert-

erms that appear up to two loops, and use them to verify all these properties. In this

way also we provide a concrete example of how the BRST transformations get apprecia-

bly modified by loop corrections. In sec. 2.3 we investigate the proposal for generalised

beta-functions for field reparametrisations. We start by assuming as in the original pro-

posal that it is the background metric that should be reparametrised and then, given

the results, put forward a more natural scenario where the beta functions are built on

the canonical transformations. Unfortunately neither of these ideas lead to finite beta

functions, and we explain why they cannot. Finally in sec. 2.4 we draw our conclusions.

2.1 BRST in perturbative quantum gravity and its renor-

malisation

In this section we first set up the BRST framework that we will use, and then develop

its properties. Along the way we make a number of new observations. In particular we

will see in sec. 2.1.5 that RG invariance is actually essential to ensure that the BRST

symmetry can be renormalised successfully, whilst in sec. 2.1.9 we prove the absence of

a separate background field divergence in new divergences at each loop order.

2.1.1 The CME for the bare action

In a perturbative setting we work with a quantum, a.k.a. fluctuation, field hµ⌫ . This

field is defined by our choice of expansion of the (total) metric gµ⌫ around a background
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metric ḡµ⌫ . In this work we simply set

gµ⌫ = ḡµ⌫ + hµ⌫ . (2.1.1)

We are interested in o↵-shell divergences, and their value depends on the choice of

expansion. Using the above allows us to compare with previous results in the literature

[78, 80,104,105].

We will work with so-called o↵-shell BRST [52, 53, 108, 109]. In this way we can fully

exploit BRST invariance at every step, and keep track of how it changes under quantum

corrections. Although we only actually need the Zinn-Justin equation [97, 98] for this,

it is convenient to phrase the calculation in terms of the Batalin-Vilkovisky formalism

[99–101], employing known identities for the antibracket [99–102]:

(X,Y ) =
@rX

@�A
@lY

@�⇤
A

�
@rX

@�⇤
A

@lY

@�A
, (2.1.2)

where X and Y are two functionals, �A are the quantum fields (including ghosts cµ)

and �⇤
A
are the antifields (opposite statistics sources for the BRST transformations Q�A

of the corresponding fields), and we are here employing compact DeWitt notation (so

Einstein summation over the capital indices indicates both summation over Lorentz

indices and integration over spacetime). As we will see, the resulting framework allows

calculations that are no more onerous than standard ones employing only on-shell BRST

invariance [105,110,111]. Furthermore, we can then display the results more compactly

by using the so-called minimal basis [99, 105,110,111].

We choose the bare action S[�,�⇤] to include these sources. It will be made up of the

classical action S0 plus a series of local counterterms S` chosen to cancel the divergences

that appear at each loop order `, whilst introducing the new renormalized couplings (cf.

sec. 2.1.6 [90]) which, because they run with µ, must also be introduced at that order:

S = S0 + ~S1 + ~
2S2 + · · · . (2.1.3)

By including the sources �⇤ we will additionally incorporate the counterterms necessary

to render finite the BRST transformations [97, 98].

Di↵eomorphisms are most fundamentally expressed through the Lie derivative, which

is independent of background since no connection or raising/lowering of indices are

necessary. In Batalin-Vilkovisky formalism, gauge transformations are described by an

operator Q, called BRST charge, which act on the fields. For a general field the BRST

charge is defined by

Q�A = (S0,�
A) . (2.1.4)

In gravity there is no preferred choice of field variables, but if we take the ghost cµ to

be a contravariant vector field, then the BRST transformation of the metric can simply
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be given by the Lie derivative along this vector field:

Qgµ⌫ = Lcgµ⌫ = 2@(µc
↵g⌫)↵ + c↵@↵gµ⌫ . (2.1.5)

The BRST transformation of the ghost then works out to be half the Lie derivative along

itself:

Qcµ =


2
Lcc

µ =


2
(@⌫c

µc⌫ + c↵@↵c
mu)

= c⌫@⌫c
µ , (2.1.6)

where we use anticommutivity of the ghost cµ to get the final result. The reason for this

choice is that Q is then nilpotent:

Q2gµ⌫ = 0, Q2c⌫ = 0 , (2.1.7)

as you can check explicitly. For example,

Q2c⌫ = Q (c⌫@µc
⌫)

= 2c↵@↵c
µ@µc

⌫
� 2cµ@µ (c

↵@↵c
⌫)

= 2 (c↵@↵c
µ@µc

⌫
� cµ@µc

↵@↵c
⌫
� cµc↵@µ@↵c

⌫)

= 0 .

(2.1.8)

This nilpotence is crucial in the study of renormalisability and its importance was recog-

nised in the earliest proofs of this in gauge theory [53]. Notice that the BRST trans-

formations involve products of fields at the same point. In QFT, these are not well

defined. The above transformations are only the classical ones. Order by order in the

loop expansion not only is the action modified by quantum corrections, but also the

BRST transformations themselves. Objects that contain products of fields are called

composite operators and the standard way to understand how they must be modified

under renormalisation is to add them to the action with their own sources. Then for

gravity, we get the so-called classical minimal action:

S0 = �

Z

x

⇢
2

2
p
gR+ (Qhµ⌫)h

⇤µ⌫ + (Qcµ) c⇤µ

�
. (2.1.9)

Where we uses the compact notation
R
x
=
R
ddx. The first term is the Einstein-Hilbert

action in Euclidean signature. Here we take the cosmological constant to vanish. At the

perturbative level, divergences do not force its introduction, so working in this simplified

setting is consistent. The integral is over

d = 4� 2" (2.1.10)
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dimensional spacetime (we will be using dimensional regularisation), where the factor of

two is introduced for convenience.

The nilpotence property Q2 = 0, and di↵eomorphism invariance of the Einstein-Hilbert

action, implies

0 = QS0 = Q�A
@lS0

@�A
= �

@rS0

@�⇤
A

@lS0

@�A
=

1

2
(S0, S0) , (2.1.11)

and thus that the classical bare action S = S0 satisfies the so-called CME (Classical

Master Equation) [99–101], a.k.a. Zinn-Justin equation [97,98]. Once we consider quan-

tum corrections, it is not the BRST transformations (2.1.5,2.1.6) that we can preserve

but only the CME, i.e. we will ensure that to any loop order ` the bare action satisfies:

(S, S) = 0 . (2.1.12)

2.1.2 Canonical transformation to gauge fixed basis

To get the gauge fixed version, we need to work in the so-called extended basis, which

introduces a new field and antifield over and above what we already have (the so-called

minimal basis) [99–101]:

S(ext) = S +

Z

x

⇢
1

2↵

p
ḡḡµ⌫b

µb⌫ + ibµc̄⇤µ

�
, (2.1.13)

where ↵ is the gauge parameter, bµ is a bosonic auxiliary field, and c̄⇤µ sources the BRST

transformation for the antighost. From (2.1.4) we have Qc̄µ = �ibµ and Qbµ = 0.

Trivially, the CME and Q2 = 0 continue to hold. The next step is to introduce a

suitable gauge fixing fermion  [�]. In the Batalin-Vilkovisky treatment this is used to

eliminate the antifields [99–102]. We keep them however, because of their crucial rôle

in renormalisation, and in particular in the Zinn-Justin identities, and instead get the

same e↵ect by performing an exact canonical transformation [102]

�̌A =
@l
@�̌⇤

A

K[�, �̌⇤] ,

�⇤A =
@r
@�A

K[�, �̌⇤] , (2.1.14)

from the above gauge invariant (g.i.) basis {�,�⇤}, to a gauge fixed (g.f.) basis {�̌, �̌⇤},

setting [105,110,111]

K = �̌⇤A�
A
� [�] . (2.1.15)

The advantage of employing a canonical transformation is that by definition it leaves

the antibracket invariant and thus in the new basis the CME continues to hold. We

choose

 =

Z

x

p
ḡFµc̄

µ , (2.1.16)
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and choose DeDonder gauge by setting Fµ to

Fµ = r̄⌫h
⌫
µ � r̄µ' , (2.1.17)

' =
1

2
hµµ =

1

2
ḡµ⌫hµ⌫ . (2.1.18)

This breaks the di↵eomorphism invariance as realised through the total metric gµ⌫ (as

required) but leaves it realised as “background di↵eomorphism” invariance, using the

background metric ḡµ⌫ . From here on we raise and lower indices using the background

metric, unless explicitly mentioned otherwise, and employ the background covariant

derivative r̄µ (using the background metric Levi-Civita connection). As is well known,

we can put a connection in for free in Lie derivatives, so to make background di↵eomor-

phism invariance manifest in (2.1.5,2.1.6) we can write the classical BRST transforma-

tions (in minimal basis) instead as

Qhµ⌫ = 2r̄(µc
↵g⌫)↵ + c↵r̄↵gµ⌫ = 2r̄(µc⌫) + 2r̄(µc

↵h⌫)↵ + c↵r̄↵hµ⌫ ,

Qcµ = c⌫r̄⌫c
µ . (2.1.19)

Applying the canonical transformation we see that only the following antifields change:

h⇤µ⌫
��
g.f.

= h⇤µ⌫
��
g.i.

�
p
ḡ

✓
r̄

(µc̄⌫) �
1

2
r̄↵c̄

↵ḡµ⌫
◆

, (2.1.20)

c̄⇤µ
��
g.f.

= c̄⇤µ
��
g.i.

+
p
ḡFµ , (2.1.21)

thus mapping the extended action (2.1.13) at the classical level to

S(ext)
0

��
g.f.

= S0 +

Z

x

⇢
1

2↵

p
ḡḡµ⌫b

µb⌫ � i
p
ḡFµb

µ + ibµc̄⇤µ

�
(2.1.22)

+

Z

x

p
ḡ

✓
r̄

(µc̄⌫) �
1

2
r̄↵c̄

↵ḡµ⌫
◆
Qhµ⌫ .

The first term is (2.1.9), the classical action in minimal basis, and the last term is the

usual ghost action (in DeDonder gauge). The middle term is purely quadratic in bµ. We

could thus integrate it out. Dropping the c̄⇤µ, the integrand is:

p
ḡ

2↵
(bµ � iFµ)

2 +
↵

2

p
ḡFµFµ . (2.1.23)

The bµ integral over the first term vanishes in dimensional regularization, whilst the

second term is the standard gauge fixing term. In fact this is now the textbook on-shell

BRST treatment. The action S0 is still BRST invariant if we now set Qc̄µ = ↵Fµ. But

this is not quite as powerful because Q2c̄µ = ↵QFµ, only vanishes on shell (QFµ = 0 is

the c̄ equation of motion). For this reason we keep bµ and stick with this o↵-shell BRST

treatment.
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Since we will be working with a perturbative expansion over quantum fields and anti-

fields, we may as well treat the background metric perturbatively also. Following (2.1.1),

we write:

ḡµ⌫ = �µ⌫ + h̄µ⌫ , =) gµ⌫ = �µ⌫ + hµ⌫ + h̄µ⌫ . (2.1.24)

At this stage we can invert the terms bilinear in the quantum fields to get the prop-

agators. For general ↵ gauge see e.g. ref. [110]. We will use Feynman gauge, ↵ = 2,

which gives the simplest propagators. Once again, the coe�cients of o↵-shell divergences

depend on these choices. By using Feynman DeDonder gauge we make the same choices

as in older works [78, 80,104,105] and can thus compare our results. Writing

�A(x) =

Z
ddp

(2⇡)d
e�ip·x �A(p) , (2.1.25)

we have:

hhµ⌫(p)h↵�(�p)i =
�µ(↵��)⌫

p2
�

1

d� 2

�µ⌫�↵�
p2

, (2.1.26)

hbµ(p)h↵�(�p)i = �hh↵�(p) bµ(�p)i = 2 �µ(↵p�)/p
2 , (2.1.27)

hbµ(p) b⌫(�p)i = 0 , (2.1.28)

hcµ(p) c̄⌫(�p)i = �hc̄µ(p) c⌫(�p)i = �µ⌫/p
2 . (2.1.29)

2.1.3 Minimal basis and comparisons to on-shell BRST

We will be computing quantum corrections to the one-particle irreducible, a.k.a. Leg-

endre, e↵ective action �. Since we have an auxiliary field bµ and the extra propagator

hbµh↵�i, at first sight this formalism complicates the computation and cannot be directly

compared to earlier results using on-shell BRST [78, 80, 104]. However this is not the

case.

Figure 2.1.1: Examples that illustrate that one-particle irreducible Feynman diagrams
involving b interactions with an unspecified number of external background metric h̄
legs (fan of wavy lines), arise by starting with an internal h (solid line) propagating into
b (dashed line) and eventually back to h. These implement in diagrammatic language

the e↵ect (2.1.23) of integrating out the b field.

First note that the h propagator (2.1.26) is the same as in the usual treatment. (This

is actually guaranteed in any gauge, but we omit the proof.) Setting h̄µ⌫ = 0 for the

moment, we note that the interaction terms (i.e. with three or more fields) in (2.1.22)
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do not contain bµ or c̄⇤µ. Feynman diagram contributions to � therefore have the same

property and coincide with those computed in the usual (on-shell BRST) treatment.

Switching back on the background metric, we do now have interactions involving the

background metric and either b2, or b and h. However it is not possible then to draw one-

particle irreducible diagrams with external b-field legs. The interactions only contribute

in diagrams by having h propagate to b and back again, see fig. 2.1.1, and the net e↵ect

of including all these corrections is to incorporate in diagrammatic language the result

of integrating out b. Thus these Feynman diagrams simply reproduce the corrections

we get from the second term in (2.1.23), i.e. the standard gauge fixing term. So we see

that we can continue to ignore bµ and c̄⇤µ provided we include the interactions from the

standard gauge fixing term. Furthermore, we get in this way the same results as the

standard treatment.

Next note that the corrections only depend on c̄µ through the combination on the right-

hand side of (2.1.20). This means that we can shift back to g.i. basis after computing

loop contributions to �, the only dependence on b and c̄⇤ then being as in the extended

action (2.1.13). Furthermore we can then display results in minimal basis by removing

the b and c̄⇤ terms.

This all means that we can construct � order by order in the minimal basis, never needing

b or c̄⇤. To do so we shift h⇤µ⌫
��
g.i.

to h⇤µ⌫
��
g.f.

in interactions and use the hh↵�hµ⌫i and

hcµc̄⌫i propagators and include the interaction vertices from the standard gauge fixing

term (2.1.23) as appropriate, and afterwards shift back to g.i. basis [105,111]. Of course

this does not mean that o↵-shell quantum corrections are independent of our choice of

gauge. However the results are sometimes much simpler when cast back in (minimal)

g.i. basis in this way, which is why we use it here.

2.1.4 The CME for the Legendre e↵ective action

Since the BRST transformations (2.1.19), or (2.1.5,2.1.6), involve products of fields at

the same spacetime point, they are not preserved under renormalisation. Order by

order in the loop expansion not only must the action be modified, but also the BRST

transformations themselves, and since the theory is non-renormalisable, the changes

involve in fact an infinite series in powers of the fields and antifields. The Zinn-Justin

equation [97–100] can keep track of all this. We start with the fact that the partition

function

Z ⌘ Z[J,�⇤] =

Z
D� e�S[�,�⇤]+�

A
JA , (2.1.30)

satisfies the identity
@rZ

@�⇤
A

JA = 0 . (2.1.31)
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To prove this at the classical level it is su�cient to use the fact that QS0 = 0, assuming

invariance of the measure:

0 =

Z
D�Q

⇣
e�S0+�

A
JA

⌘
=

Z
D� e�S0+�

A
JA

�
Q�A

�
JA = �

@rZ

@�⇤
A

JA . (2.1.32)

But at the quantum level we need to derive it via preservation of the CME, (2.1.12):

0 =

Z
D�

@l
@�A

@r
@�⇤

A

e�S[�,�⇤]+�
A
JA

= �

Z
D�

⇢
JA

@rS

@�⇤
A

+
1

2
(S, S) +

@l
@�A

@r
@�⇤

A

S

�
e�S[�,�⇤]+�

A
JA . (2.1.33)

Here the first equality follows because it is an integral of a total derivative. After

rearranging the result using the statistics of the (anti)fields, we get the three terms

inside the braces. The first term gives the required identity, the second term vanishes

by the CME, whilst the third term is the Batalin-Vilkovisky measure term [99–101].

In general we need to take this into account (giving the Quantum Master Equation)

[99–101,105,110,111] however, since S is local, this term always contains �(x)|x=0 or its

space-time derivatives. These vanish in dimensional regularisation. Therefore we can

discard the measure term.

Introducing the generator W [J,�⇤] of connected diagrams, through Z = eW , we define

the Legendre e↵ective action in the usual way:

�[�,�⇤] = �W + �AJA , �A =
@rW

@JA
, JA =

@l�

@�A
, (2.1.34)

where �A is the so-called classical field, and we have renamed �⇤
A

⌘ �⇤
A

just because

it looks better. Then by standard manipulations (2.1.31) turns into the Zinn-Justin

equation:

(�,�) = 0 , (2.1.35)

i.e. again the CME (2.1.12), now applied to �[�,�⇤], the antibracket taking the same

form as (2.1.2) but with {�,�⇤} replaced with {�,�⇤
}.

The Legendre e↵ective action

� = �0 + ~�1 + ~
2�2 + · · · , (2.1.36)

is built up recursively, where �` is the `-loop contribution, starting with �0 = S0, the

classical bare action. The logic now is to introduce at each new loop order `, a local

counterterm action S` to the bare action in order to cancel the divergences �`|1 that

arise in �`, leaving behind an arbitrary finite part which is parametrised by the new

renormalized couplings that appear at this order. Provided we introduce S` in such

a way as to preserve (S, S) = 0 we also have that (�,�) = 0 is satisfied. However,

although both the bare action S and the Legendre e↵ective action � satisfy the CME,
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the CME plays a di↵erent rôle in each case so that it is in fact not trivial that the two

are consistent beyond one loop. As we will see what makes them nevertheless consistent

is the RG.

2.1.5 How the RG is needed for consistent solutions to both versions

of the CME

Expanding the CME (2.1.35) for �, we see that the one-loop contribution satisfies

(�0,�1) = 0. It is useful to define the total classical BRST charge s0 acting on any

functional X as

s0X = (S0, X) , (2.1.37)

which thus acts also on antifields (see sec. 2.1.7), then the one-loop BRST identity is

simply s0�1 = 0. Since dimensional regularisation is a gauge invariant regulator, the

infinite part, which at one loop is proportional to a single pole, / 1/", also satisfies this

identity, i.e.

s0 �1/1[�,�
⇤] = 0 . (2.1.38)

(We label terms proportional to divergences 1/"k, by appending /k to the subscript.)

It is simplest for our purposes to now consider the identity satisfied by the two-loop

contribution, �2, before any renormalisation. From the CME (2.1.35) we see that it

satisfies

s0�2 = �
1

2
(�1,�1) . (2.1.39)

In particular this implies for the double-pole divergence:

s0 �2/2 = �
1

2

�
�1/1,�1/1

�
. (2.1.40)

Given that the right hand side does not vanish, this is a non-trivial relation between the

1/"2 divergences at two loops and the 1/" divergences at one loop.

Now we consider the process of renormalisation. At one loop, if we add a counterterm

action S1, then in order to preserve the CME (2.1.12) for S, we find in the same way

that S1 must be chosen so that it is also annihilated by the total classical BRST charge:

s0S1 = 0 . (2.1.41)

Since the one-loop divergence is local we can then render the one-loop result finite by

setting

S1 = ��1/1[�,�
⇤] + Sc1 [�,�

⇤] , (2.1.42)

where the finite remainder Sc1 contains the new renormalised couplings cj1(µ) that appear

at one loop, cf. sec. 2.1.6, in particular they are needed for the curvature-squared terms

but also for antifield vertices, see secs. 2.2.1, 2.2.2. Clearly we must also have s0Sc1 = 0.



2.1. BRST in perturbative quantum gravity and its renormalisation 41

Expanding the CME (2.1.12) to O(~2), we find of course an algebraically identical for-

mula to (2.1.39), (2.1.40):

s0S2 = �
1

2
(S1, S1) . (2.1.43)

This must be satisfied by the counterterm action S2. It relates the 1/"2 divergence in

this two-loop counterterm to the 1/" divergence in the one-loop counterterms. Then by

(2.1.42), we see that the 1/"2 divergence on the right hand side is precisely the same as

in the � identity (2.1.40). But this is in apparent contradiction with the fact that S2

must cancel the divergence in �2. In particular the latter implies that s0(S2 +�2) must

be finite.

The resolution is that, once we add the one-loop counterterm from S1 to the bare action,

atO(~2) we also have one-loop counterterm diagrams from one-loop diagrams �1[S1] with

one S1 vertex inserted (as illustrated in fig. 2.2.3 of sec. 2.2.3). The two-loop divergence

in (2.1.40) comes from diagrams containing only tree level vertices. It must be that the

1/"2 contribution from the one-loop counterterm diagrams, is in fact precisely right to

flip the sign so that in full the double-pole part satisfies

s0 (�2/2 + �1/2[S1]) = +
1

2

�
�1/1,�1/1

�
. (2.1.44)

As we will see in the next subsection, RG invariance tells us that we have the relation

�1/2[S1] = �2�2/2 , (2.1.45)

and thus for the full double-pole contribution, �2/2 + �1/2[S1] = ��2/2, we indeed have

the required change of sign (even before the application of s0). We see therefore that

the RG relations are responsible for restoring consistency between the two versions of

the CME.

Although the relations above constrain the form of the double-pole divergences, we

still have to compute some Feynman integrals to determine them. Nevertheless we can

simplify the process by exchanging the genuinely two-loop diagrams for one-loop coun-

terterm diagrams. The corresponding double-pole counterterm action will automatically

satisfy the constraint (2.1.43). This latter constraint does not uniquely determine S2

since it is invariant under adding a piece, S0
2, provided it is annihilated by the total

classical BRST charge: s0S0
2 = 0. Since this constraint is linear homogeneous, S0

2 has

finite remainders parametrised by new two-loop couplings cj2(µ).

We finish this section with some comments about the two-loop single-pole divergences.

Firstly note that, before adding the one-loop counterterm diagrams, the two-loop single-

pole divergences are actually non-local. Indeed, this must be the case since the right

hand side of (2.1.39) has such non-local divergences in the antibracket contribution

(finite,�1/1), where we have written �1 = �1/1 + finite, and recognised that the finite

part is non-local. On adding the counterterm diagrams, the same RG invariance identity
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that resolves the above putative puzzle, is also responsible for eliminating the non-local

divergences (see the argument of Chase [106], which we review in the next subsection).

In a similar vein, the two-loop counterterm action S2 has single-pole divergences that

depend on the one-loop couplings cj1, as it must in order to renormalise the �1/1[S1]

contribution. The fact that S2 must have dependence on cj1 can also be seen through

(2.1.42) and the two-loop CME relation, (2.1.43). These two constraints must again be

related through similar RG identities.

Finally note that there are two-loop single-pole divergences that are not fixed by the RG

or by the CME. These will include the famous Goro↵ and Sagnotti term (2.3.11), but also

further terms that vanish on the equations of motion. Renormalising them requires new

counterterms whose finite remainder introduces further two-loop renormalised couplings

cj2(µ). As before, from (2.1.43) we see that this new part S0
2 must be chosen so that it

is annihilated by the total classical BRST charge: s0S0
2 = 0. Thus despite the fact that

BRST invariance is significantly altered by the quantum corrections, a central rôle is

played, order by order in the loop expansion, by the total classical BRST charge s0. We

will develop the properties of s0 in sec. 2.1.7.

2.1.6 Relating counterterms via the RG

Adapting ref. [90] to quantum gravity, we prove the RG relation (2.1.45), which was used

in the previous subsection to demonstrate consistency at two loops of the two rôles for the

CME. This key equation relates the double-pole �1/2[S1] from the one-loop counterterm

diagrams, to the double-pole �2/2 generated by two-loop diagrams using only tree-level

vertices. In this subsection, we also review the alternative proof in ref. [106] for this

relation. Rearranging (2.1.45) we see that it implies that the 1/"2 part of the two-loop

counterterm is �1/2 times the 1/"2 pole in the one-loop counterterm diagrams:

S2/2 = �
�
�2/2 + �1/2[S1]

�
= �

1

2
�1/2[S1] . (2.1.46)

It is this form that falls out most naturally from the RG analysis, and it is also this

form that we use in sec. 2.2.3 to compute the 1/"2 divergence in the two-loop graviton

self-energy.

To adapt [90], it proves convenient to absorb Newton’s constant into the operators so

that the O(~0) (i.e. classical) bare action has pure fluctuation field vertices (n � 2):

O0 i ⇠ n�2hnp2 . (2.1.47)

The numerical subscript on O refers to ~ order [90], and here we are just counting the

number of instances of the fluctuation field hµ⌫ ,  and momentum p, where the latter

stands for any momentum (or spacetime derivative) in the vertex, in order to track their

dimensions and motivate the formulae below. Working with pure hµ⌫ vertices will be
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su�cient to derive (2.1.46) in this case. Then we will justify why it is clear that (2.1.46)

continues to hold when the background, ghosts and antifields are included.

In d = 4 � 2" dimensions, the mass dimensions are [h] = �[] = 1 � ". A priori both

 and the fluctuation field should be taken to be bare, in the expectation that they

will have a divergent expansion in renormalised quantities, but the divergences that are

generated involve ever greater powers of momentum, so the vertices in (2.1.47) are never

reproduced and thus neither  nor h require renormalisation. The classical bare action

is therefore being written as

S0 = �0 =

Z

x

ci0O0 i . (2.1.48)

The ci0 are the classical couplings with  factored out. They are fixed up to choice

of expansion of the metric, choice of gauge fixing, and the value of the cosmological

constant if there is one. As mentioned below (2.1.9), we set the cosmological constant

to zero.

The divergent one-loop quantum corrections then take the form (H is the vacuum ex-

pectation value of h):

�1/1 ⇠
1

"
nHnp4�2" , (2.1.49)

i.e. in terms of counting overall powers there is an extra factor of 2p2�2". To renormalise

we thus have to add to the bare action the local action (2.1.42):

S1 = µ�2"
Z

x

⇢
ci1O1 i +

1

"
ai1/1O1 i

�
, (2.1.50)

where the second set are the counterterms ��1/1, and the first set is the expansion of

Sc1 and contains the new O(~1) renormalised couplings. The new operators take the

form

O1 i ⇠ nhnp4 , (2.1.51)

i.e. with an extra 2p2 compared to O(~0) vertices. At this stage the arbitrary RG

scale µ is needed so that µ�2" in (2.1.50) can restore dimensions. Since the bare action

(2.1.3) is independent of µ, the renormalised couplings ci1 run with µ. By di↵erentiating

(2.1.50) we see that they satisfy:

�i1 = ċi1 � 2" ci1 = 2 ai1/1 , (2.1.52)

where ċ := µ@µc. The one-loop counterterm diagrams formed by using one ai1/1 vertex

(corresponding to one copy of S1 being inserted) give in particular double pole diver-

gences

�1/2[S1] ⇠
1

"2
a1/1 µ

�2"n+2Hnp6�2" , (2.1.53)
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that must satisfy relation (2.1.45): �1/2[S1] = �2�2/2. As noted by Chase [106], the

easiest way to see why this is so, is to recognise that the latter take the form

�2/2 ⇠ n+2Hnp6�4"


1

"2
+O

✓
1

"

◆�
, (2.1.54)

but divergences must be local and thus the (ln p)/" terms must cancel between (2.1.53)

and (2.1.54).

We get the same conclusion another way by following Buchler and Colangelo [90] whilst

also deriving some more useful identities. At O(~2) the divergences generate the opera-

tors

O2 i ⇠ n+2hnp6 , (2.1.55)

so we have to add to the bare action

S2 = µ�4"
Z

x

⇢
ci2O2 i +

1

"2
ai2/2O2 i +

1

"

⇣
ai2/1 + ai1/1 jc

j

1

⌘
O2 i

�
, (2.1.56)

where we now have counterterms with both single and double "-poles, and ci2 are the

new O(~2) renormalised couplings. The ai2/2 counterterms cancel the full set of 1/"2

divergences at O(~2), i.e. from the sum of two-loop diagrams and the one-loop countert-

erm diagrams. The single poles ai2/1/" arise from two-loop diagrams using only vertices

(2.1.47), whilst the ai1/1 jc
j

1/" are generated by one-loop diagrams containing one c1

vertex. Now µ-independence of the bare action implies

�i2 = ċi2 � 4"ci2 =
4

"
ai2/2 + 4

⇣
ai2/1 + ai1/1 jc

j

1

⌘
�

1

"
ai1/1 j ċ

j

1 ,

=
4

"
ai2/2 �

2

"
ai1/1 ja

j

1/1 + 4ai2/1 + 2ai1/1 jc
j

1 , (2.1.57)

where in the second line we substituted the one-loop � function (2.1.52). Since this

equation is expressed in terms of renormalised quantities, it must be finite, and therefore

the single poles must cancel. Thus we see that

ai2/2 =
1

2
ai1/1 ja

j

1/1 . (2.1.58)

This is the same conclusion as before, but we are now proving it in the form given in

(2.1.46). The left hand side is the coe�cient of the O2 i in S2/2 while on the right hand

side we have replaced the cj1 coupling in (2.1.56) by the counterterm coe�cient aj1/1.

The right hand side is thus the coe�cient of O2 i in �
1
2�1/2[S1].

Finally let us show that (2.1.46) will continue to hold when the background, ghosts and

antifields are included. Firstly, vertices can now include ghost antighost pairs, but at this

schematic level it is not necessary to track these separately from h: what really matters

in this analysis are the powers of p" and µ", and they are unchanged if c and c̄ are

included. Secondly, it is clear that any instance of h (or H) can trivially be exchanged
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for the background h̄ in the above schematic formulae, though of course operators O1 j

with less than two quantum fields in gauge fixed basis, cannot contribute to the relation

(2.1.46) (their coe�cients ai1/1 j vanish). Finally from the minimal classical action (2.1.9),

we see that whenever an antifield is involved in an action vertex there is one less power

of p (compensated dimensionally by the fact that they have [�⇤] = 2� ", cf. table 2.1).

This observation is useful for finding the general form of the corrections, but again for

this analysis what actually matters is the tracking of non-integer powers.

2.1.7 Properties of the total classical BRST charge

We now develop the properties of the total classical BRST charge s0. Using the identity

[99–102]:

(X, (Y, Z)) = ((X,Y ), Z) + (�1)(X+1)(Y+1)(Y, (X,Z)) , (2.1.59)

where (�1)X = ±1 if X bosonic (fermionic), we have

s20X[�,�⇤] = (S0, (S0, X)) = 1
2((S0, S0), X) = 0 , (2.1.60)

where the last equality follows by the CME. Therefore s0 is nilpotent just like the BRST

charge Q. From (2.1.4), we see that on �A it reduces to the BRST charge Q. However

from (2.1.37), s0 also acts on antifields:

s0�
⇤
A =

�
S0,�

⇤
A

�
=
@rS0

@�A
. (2.1.61)

This is called the Koszul-Tate di↵erential [105, 110, 112–115]. In minimal basis we get

explicitly:

s0h
⇤µ⌫ = �2

p
gGµ⌫/+ 2h⇤↵(µr̄↵c

⌫) + r̄↵

�
c↵h⇤µ⌫

�
, (2.1.62)

s0c
⇤
µ = r̄µc

⌫c⇤⌫ + r̄⌫

�
c⌫c⇤µ

�
� 2r̄⌫h

⇤⌫
µ � 2r̄↵

�
hµ⌫h

⇤↵⌫�+ r̄µh↵�h
⇤↵� . (2.1.63)

Here Gµ⌫ = �Rµ⌫+
1
2gµ⌫R is the Einstein tensor. (Note that it inherits an overall minus

sign from the Euclidean action compared to the usual definition.) Its indices are raised

in (2.1.62) using Gµ⌫ = gµ↵g⌫�G↵� . As we noted earlier we are raising and lowering

indices with the background metric unless explicitly stated otherwise. This case is the

one exception.

It is useful to assign antighost/antifield number to each field and operator [110, 115,

116], see table 2.1. The reason this is useful is precisely because it is not preserved by

interactions, which then split into pieces according to their antighost level. For example

one sees from (2.1.9), that the three parts of the minimal classical action split into levels

0, 1, and 2, respectively. The Koszul-Tate di↵erential also splits, in this case into two

pieces, one that preserves antighost number and one that lowers it by one. We call these
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✏ gh # ag # pure gh # dimension

hµ⌫ 0 0 0 0 (d� 2)/2
cµ 1 1 0 1 (d� 2)/2

c̄µ 1 -1 1 0 (d� 2)/2
bµ 0 0 1 1 d/2

h⇤µ⌫ 1 -1 1 0 d/2
c⇤µ 0 -2 2 0 d/2

c̄⇤µ 0 0 0 0 d/2

Q 1 1 0 1 1
Q� 1 1 -1 0 1

Table 2.1: The various Abelian charges (a.k.a. gradings) carried by the fields and
operators. ✏ is the Grassmann grading, being 1(0) if the object is fermionic (bosonic).
gh # is the ghost number, ag # the antighost/antifield number, pure gh # = gh # +
ag #, and dimension is the engineering dimension. The first two rows are the minimal
set of fields, the next two make it up to the non-minimal set, then the ensuing two rows
are the minimal set of antifields, and c̄⇤µ is needed for the non-minimal set. Finally, the
charges are determined in order to ensure that Q and Q� can also be assigned definite

charges.

pieces respectively, Q and Q�, and thus write:

s0�
⇤
A =

�
Q+Q���⇤A . (2.1.64)

From (2.1.62) and (2.1.63) we see that

Qh⇤µ⌫ = 2h⇤↵(µr̄↵c
⌫) + r̄↵

�
c↵h⇤µ⌫

�
, (2.1.65)

Q�h⇤µ⌫ = �2
p
gGµ⌫/ , (2.1.66)

Qc⇤µ = r̄µc
⌫c⇤⌫ + r̄⌫

�
c⌫c⇤µ

�
, (2.1.67)

Q�c⇤µ = �2r̄⌫h
⇤⌫

µ � 2r̄↵

�
hµ⌫h

⇤↵⌫�+ r̄µh↵�h
⇤↵� . (2.1.68)

Since Q here acts on antifields there is no reason to confuse it with the previously

defined BRST charge (2.1.4), (2.1.19). Its extension to antifields is natural since Qh⇤µ⌫

and Qc⇤µ are in fact the correct Lie derivative expressions for these tensor densities. The

advantage of the antighost grading becomes clear when we consider the nilpotency of

s0:

0 = s20 = Q2 + {Q,Q�
}+ (Q�)2 . (2.1.69)

These terms must vanish separately since they lower the antighost number by 0, 1 and

2 respectively. Therefore we know that our definitions of Q and Q� are such that they

are nilpotent and they anticommute.
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2.1.8 Canonical transformations up to second order

We saw in sec. 2.1.5 that a central rôle is played by counterterms that are s0-closed,

for example at one loop we have exactly this relation (2.1.41): s0S1 = 0. We saw in

the previous subsection that s0 is nilpotent, so one solution to this is that S1 is exact:

S1 = s0K1, where K1 is a local functional of ghost number �1. In the next subsection we

derive the general solution for such s0-closed counterterms, but for that we will need the

relation between s0-exact solutions and canonical transformations. Taking the general

canonical transformation (2.1.14), and setting

K = �̌⇤A�
A +K1[�, �̌

⇤] , (2.1.70)

and then treating K1 to first order, one gets the following field and source reparametri-

sations

��A =
@lK1

@�⇤
A

, ��⇤A = �
@lK1

@�A
. (2.1.71)

That these correspond to s0-exact solutions, can then be seen by writing out the change

in the classical action:

�S0 =
@rS0

@�A
��A +

@rS0

@�⇤
A

��⇤A =
@rS0

@�A
@lK1

@�⇤
A

�
@rS0

@�⇤
A

@lK1

@�A
= s0K1 . (2.1.72)

This interpretation extends to higher orders [82], see also [92–96]. For sec. 2.3 we will

want their explicit form to second order. Given that S1 = s0K1, one solution to the

CME to second order (2.1.43), i.e. s0S2 = �
1
2(S1, S1), is:

S2 =
1

2
(S1,K1) + s0K2 (2.1.73)

where K2 is a second-order local functional of ghost number -1. This follows from the

antibracket identity (2.1.59) because

s0(S1,K1) = (s0S1,K1)� (S1, s0K1) = �(S1, S1) . (2.1.74)

In fact the relation (2.1.73) is just the result of taking the K1 canonical transformation

to second order and adding the new part K2 which appears linearly at this order. To

see this we set

K = �̌⇤A�
A +K1[�, �̌

⇤] +K2[�, �̌
⇤] , (2.1.75)



48 Chapter 2. Divergences in perturbative quantum gravity

and solve the exact canonical transformation (2.1.14) perturbatively for ��(⇤) = �̌(⇤) �

�(⇤), starting with the first order expression (2.1.71). We get

��A =
@lK1

@�⇤
A

+
1

2

@l
@�⇤

A

@rK1

@�B
@lK1

@�⇤
B

�
1

2

@l
@�⇤

A

@rK1

@�⇤
B

@lK1

@�B
+
@lK2

@�⇤
A

,

��⇤A = �
@lK1

@�A
+

1

2

@l
@�A

@rK1

@�⇤
B

@lK1

@�B
�

1

2

@l
@�A

@rK1

@�B
@lK1

@�⇤
B

�
@lK2

@�A
. (2.1.76)

Taylor expanding the classical action to second order gives

�S0 =
@rS0

@�A
��A +

1

2

@r
@�B

✓
@rS0

@�A
��A

◆
��B +

1

2

@r
@�⇤

B

✓
@rS0

@�A
��A

◆
��⇤B

+
@rS0

@�⇤
A

��⇤A +
1

2

@r
@�B

✓
@rS0

@�⇤
A

��⇤A

◆
��B +

1

2

@r
@�⇤

B

✓
@rS0

@�⇤
A

��⇤A

◆
��⇤B

�
1

2

@rS0

@�A

✓
@r
@�B

��A
◆
��B �

1

2

@rS0

@�A

✓
@r
@�⇤

B

��A
◆
��⇤B

�
1

2

@rS0

@�⇤
A

✓
@r
@�B

��⇤A

◆
��B �

1

2

@rS0

@�⇤
A

✓
@r
@�⇤

B

��⇤A

◆
��⇤B . (2.1.77)

Substituting (2.1.76), its non-linear terms cancel the final two lines, whilst the first two

lines organise into antibrackets, and thus we find that

�S0 = (S0,K1 +K2) +
1

2
((S0,K1),K1) = s0K1 +

1

2
(S1,K1) + s0K2 , (2.1.78)

showing that the non-linear term in (2.1.73), is indeed the result (2.1.76) of carrying the

canonical transformation to second order.

2.1.9 General form of s0-closed divergences

On the other hand, at each new loop order the s0-closed counterterms are associated to

the ‘new’ part �1 of the divergences. Their form can be classified by the cohomology of

s0 in the space of local functionals. As we have seen, one possibility is that it is a local

s0-exact solution: �1 = s0K1[�,�⇤], where K1 is a functional with ghost number

�1. However another possibility is that the divergence is a local functional �1[gµ⌫ ] of

only the total metric,2 gµ⌫ = ḡµ⌫ + Hµ⌫ , and is di↵eomorphism invariant. Ref. [117],

see also [82], proves from the cohomological properties of s0 that if the background

metric is flat, viz. ḡµ⌫ = �µ⌫ , then in fact the general local s0-closed solution is a linear

combination of these two possibilities:

s0�1[�,�⇤] = 0 =) �1[�,�⇤] = �1[gµ⌫ ] + s0K1[�,�⇤] . (2.1.79)

However in a non-flat background, as a statement on s0-cohomology, this result is no

longer true, since clearly one can now add to this a local functional �1[ḡµ⌫ ] of only the

2 We write the vacuum expectation value of the quantum fields in capitals, thus in minimal basis
�A = Hµ⌫ , C

⇠.
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background field (such a functional being trivially annihilated by s0). Nevertheless it is

true as a statement about s0-closed divergences, as we show below.

Before doing so, we note that it is useful to grade the solution (2.1.79) by antighost

number. The first part, �[g], has of course zero antighost number, but since K has ghost

number �1, we see from table 2.1 that it splits up as K = K1 + K2 + · · · , where the

superscript denotes antighost number. Thanks to the perturbative non-renormalisability

of quantum gravity, already at one loop one finds that all these infinitely many Kn

functionals are non-vanishing. In minimal basis, K1 is characterised by having one copy

of H⇤, K2 by containing one copy of C⇤ or two copies of H⇤ whilst also being linear in

the ghost Cµ, and so on, with the higher level Kn containing ever greater numbers of

antifields and compensating powers of ghosts.

Now we show that (2.1.79) is indeed the general form of an s0-closed divergence, even in

a non-trivial background. Although this is e↵ectively a small extension of the proof in

flat background, it has not, to our knowledge, been noticed before. Following [118], first

we observe that, up to a choice of gauge, the Legendre e↵ective action can equivalently

be computed by shifting

hµ⌫ 7! hµ⌫ � h̄µ⌫ (2.1.80)

which, by (2.1.24), amounts to expanding around flat space. Indeed this shift makes

no di↵erence to the minimal classical action (2.1.9), since it depends only on the total

metric gµ⌫ . Di↵erences arise only because separate hµ⌫ and ḡµ⌫ dependence enters via

the canonical transformation induced by the gauge fixing fermion (2.1.16), which from

(2.1.14,2.1.15) takes the form

Q�A
@ 

@�A
= Q [�] , (2.1.81)

and enters via the quadratic bµ term from the extension (2.1.13), which can however

also be written in Q-exact form

1

2↵

p
ḡḡµ⌫b

µb⌫ =
i

2↵
Q
�p

ḡḡµ⌫ c̄
µb⌫

�
= Q b[�] . (2.1.82)

Thus the entire ḡ (equivalently h̄) dependence can be seen as being just part of the

parametrisation of our choice of gauge, i.e. of  tot[�] =  [�] + b[�].

Now in the shifted basis (2.1.80) we are expanding around flat space. If we also use

an h̄-independent gauge, then we can be sure that (2.1.79) holds. We cannot use this

result directly to rule out a separate �1[ḡµ⌫ ] piece, because we have changed the gauge.

However we can proceed by comparing physical quantities since they are independent

of the choice of gauge. We do this by setting �⇤
A
= 0 and setting Hµ⌫ on shell.3 Note

3Note that from the Legendre transform (2.1.34), this last step forces the Schwinger current Jµ⌫ to
vanish, thus removing at the classical level the distinction between background and fluctuation except
in the gauge fixing terms.
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that since we are dealing with new divergences appearing at some given loop order, it is

the classical equations of motion for gµ⌫ that one needs. Then �1[gµ⌫ ] is independent

of the background, whilst s0K1 vanishes. The latter follows because

s0K1 =
@rS0

@�A

@lK1
@�⇤

A

�
@rS0

@�⇤
A

@lK1
@�A

. (2.1.83)

Given that �⇤
A

= 0, on the right hand side the first term vanishes (in minimal basis)

by the equations of motion of Hµ⌫ , and the second term because K1 has non-vanishing

antighost number. Now comparing the results in flat background and non-flat back-

ground, we see that they must have the same total metric part �1[gµ⌫ ], whilst for a

non-flat background the purely background part must vanish: �1[ḡµ⌫ ] = 0.

We finish with some important remarks. Firstly, to avoid over-counting, the counterterm

S`[g] for the pure metric part of the s0-closed solution (2.1.79) should be restricted to

terms that do not vanish on the classical equations of motion (or more generally to a

specific choice, as in (2.2.15), the Gauss-Bonnet term). To see this we note that if S`[g]

does vanish on the classical equations of motion, it can be written as

S`[gµ⌫ ] = �
2



Z

x

p
g Gµ⌫Tµ⌫ [gµ⌫ ] = Q�

Z

x

h⇤µ⌫Tµ⌫ = s0

Z

x

h⇤µ⌫Tµ⌫ (2.1.84)

for some tensor Tµ⌫ [gµ⌫ ]. In the last step we used the fact that both h⇤µ⌫ and Tµ⌫

transform properly as tensor densities under Q. Thus any part of S`[g] that vanishes on

the classical equations of motion can be written instead as part of the s0-exact piece,

s0K`, i.e. to a canonical transformation taken to first order.

Secondly, notice that it is important for the above arguments that we are setting Hµ⌫

on shell, but not the background metric ḡµ⌫ . This is what allows us to deduce that

there cannot be any purely background part. On the other hand in the background field

method one sets all the classical fields to zero and keeps only the background metric.

Although this technique is not the primary focus here (apart from in sec. 2.3) the proof

here tells us something important about it. Since on shell, the background field e↵ective

action gives the same results [118], we know that divergences that do not vanish on the

background equations of motion descend from functionals of the total metric gµ⌫ , whilst

those divergences that vanish on the background equations of motion belong to canonical

transformations and are thus removed by reparametrising hµ⌫ not the background field.

2.2 Explicit expressions for counterterms

We now verify these results in explicit loop computations, up to two loops, in particular

we draw out the intimate relationship between the leading o↵-shell divergences for the

two-point vertex up to two loops and the one-loop counterterm diagrams [90] and in
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turn to canonical transformations in the BRST algebra [82]. Since this necessitates

computing, as an intermediate step, the o↵-shell divergences in one-loop diagrams with

three external legs, two of which are fluctuation fields, we widened our investigation so

as to compute explicitly all o↵-shell one-loop divergences with up to three (anti)fields.

Below we express these divergences in terms of the minimal-basis counterterms in S`

(` = 1, 2) that one needs to add to the bare action. In minimal subtraction, which we

follow, the counterterms are just minus the divergences. However, since the bare action

is a µ-independent local functional, the RG and CME relationships are most naturally

expressed in terms of the counterterms, as we have seen in secs. 2.1.5 and 2.1.6.

In fact it was in the process of computing these that we noticed that purely background

metric pieces were not generated, which motivated the general proof in sec. 2.1.9. It

was also whilst analysing these that we noticed that the RG relations for counterterms

are actually crucial for consistency of the BRST algebra as realised on the Legendre

e↵ective action versus as realised on the counterterms. This is explained in sec. 2.1.5.

Finally these results allowed explicit verification that the generalised � function proposal

of ref. [103] cannot be correct, which led to us formulating the detailed analysis provided

in sec. 2.3. We similarly hope that these examples will prove useful in future studies of

perturbative quantum gravity.

Just like for K in sec. 2.1.9, it is useful to split the Legendre e↵ective action and bare

action according to antighost number. All antighost levels Sn depend on the graviton

fields hµ⌫ and h̄µ⌫ , but their dependence on (anti)ghosts is restricted by the quantum

numbers, cf. table 2.1. Thus S0 depends only on the graviton fields, whilst �0[Hµ⌫ , H̄µ⌫ ]

is the physical part that ultimately provides the S-matrix, S1 is linear in h⇤µ⌫ and cµ

(in gauge fixed basis (2.1.20), S1 renormalises the ghost action), S2 is made of vertices

containing two cµ and either one c⇤µ or two h⇤↵� , and so on.

2.2.1 One-loop two-point counterterms

2.2.1.1 Level zero, i.e. graviton, counterterms

Recall from sec. 2.1.1 that we are using Feynman DeDonder gauge. As explained in

the next subsection, in this case it turns out that the result for the one-loop two-point

graviton counterterm can be expressed entirely in terms of curvatures linearised around

the flat metric. In particular let us introduce for the quantum fluctuation the linearised

‘quantum curvature’

Rµ↵⌫� = R(1)
µ↵⌫�

+O(2) , (2.2.1)

where we are expanding gµ⌫ = �µ⌫ + hµ⌫ , and thus

R(1)
µ↵⌫�

= �2@[µ| @[⌫h�] |↵] , R(1)
µ⌫ = �@2µ⌫'+ @(µ@

↵h⌫)↵ �
1
2 ⇤hµ⌫ , R(1) = @2

↵�
h↵� � 2⇤'

(2.2.2)



52 Chapter 2. Divergences in perturbative quantum gravity

(defining 1
2(tµ⌫ ± t⌫µ) for symmetrisation t(µ⌫), respectively antisymmetrisation t[µ⌫]).

Here we are using ' = 1
2�

µ⌫hµ⌫4 and indices are raised and lowered with the flat met-

ric �µ⌫ . Following the definition below (2.1.63), the linearised Einstein tensor is then

G(1)
µ⌫ = �R(1)

µ⌫ + 1
2�µ⌫R

(1). Similarly we introduce the corresponding linearised back-

ground curvatures R̄(1)
µ↵⌫�

etc. and linearised background Einstein tensor Ḡ(1)
µ⌫ , by replac-

ing hµ⌫ with h̄µ⌫ .

hµ⌫(p) h↵�(�p)
+

h̄µ⌫(p) h̄↵�(�p)
+

h̄µ⌫(p) h↵�(�p)

Figure 2.2.1: Two-point graviton diagrams at one loop. The wavy line represents
the background field and the external plain line represents the quantum graviton field.

The internal lines represent both a graviton loop and a ghost loop.

Computing the diagrams in fig. 2.2.1 we find

S0
1/1 =

2µ�2"

(4⇡)2"

Z

x

n61

60
(R(1)

µ⌫ )
2
�

19

120
(R(1))2 +

7

20
(R̄(1)

µ⌫ )
2 +

1

120
(R̄(1))2

+
41

30
R(1)

µ⌫ R̄
(1)µ⌫

�
3

20
R(1)R̄(1)

o
. (2.2.3)

The first diagram gives the first two terms, i.e. the pure quantum terms. The result

agrees with ref. [105]. It was calculated in a general two parameter gauge in ref. [104].

After correcting some typos and specialising to Feynman DeDonder gauge, it also agrees.

The next two terms, the purely background terms, agree with the famous result in [78]

and (up to a factor of 1/2) with [79]. For more details on these comparisons, see app.

2.5. To our knowledge the last two terms, i.e. the mixed terms, have not appeared in

the literature before.

By (2.1.41), the terms (2.2.3) must be part of an s0-closed counterterm action S1/1.

Furthermore according to the proof given in sec. 2.1.9, since the quantum curvature

pieces vanish on the equations of motion and since there cannot be a separate purely

background part, we must be able to express the entire result as s0-exact, and thus in

fact the terms must collect into

S0
1/1 = Q�K1

1/1 . (2.2.4)

Given that (2.2.3) is made solely of linearised curvatures, at the two-point level the only

possible terms in K1
1/1 that can contribute, are:

K1
1/1 3

2µ�2"

(4⇡)2"

Z

x

n
�h⇤µ⌫R(1)

µ⌫ + �'⇤R(1) + �̄h⇤µ⌫R̄(1)
µ⌫ + �̄'⇤R̄(1)

o
, (2.2.5)

4This definition is the previous one (2.1.18) after linearisation.
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where �, �, �̄ and �̄ are parameters to be determined, and we have introduced

'⇤ = 1
2 ḡµ⌫h

⇤µ⌫ (2.2.6)

by analogy with (2.1.18) (although here ḡµ⌫ can be replaced by �µ⌫). It is apparent that

we have six numbers in (2.2.3) to reproduce with only four parameters, and therefore

this relation is a non-trivial check on the formalism. From (2.1.66), the action of Q�

reduces in this case to

Q�h⇤µ⌫ = �2
⇣
G(1)µ⌫ + Ḡ(1)µ⌫

⌘
, (2.2.7)

and thus from (2.2.4) and (2.2.5),

S0
1/1 =

2µ�2"

(4⇡)2"

Z

x

n
2�(R(1)

µ⌫ )
2
� [� + �](R(1))2 + 2�̄(R̄(1)

µ⌫ )
2
� [�̄ + �̄](R̄(1))2

+ 2[� + �̄]R(1)
µ⌫ R̄

(1)µ⌫
� [� + �̄ + � + �̄]R(1)R̄(1)

o
. (2.2.8)

We see that the mixed Ricci-squared terms must have a coe�cient which is simply the

sum of the coe�cients of the pure quantum and pure background Ricci-squared terms,

and likewise for the scalar-curvature-squared terms. The reader can verify from (2.2.3)

that these two constraints are indeed satisfied. Therefore there are four independent

constraints and we can find a consistent (and unique) solution. It is:

� =
61

120
, � = �

7

20
, �̄ =

7

40
, �̄ = �

11

60
. (2.2.9)

2.2.1.2 Level one (a.k.a. ghost) counterterms

The level one two-point counterterm is computed by using the classical three-point

vertices involving h⇤µ⌫ , and transferring to gauge fixed basis using (2.1.20). We display

the result in minimal basis where it takes its simplest form, since it then contains only

the divergent corrections to Qhµ⌫ (at the linearised level, compare (2.2.10) to (2.1.9) and

(2.1.19)), but in gauge fixed basis the generated c̄↵ terms are the counterterms necessary

to renormalise the ghost action, (2.1.22). We find that

S1
1/1 =

2µ�2"

(4⇡)2"

Z

x

⇢
1

2
h⇤µ⌫@3µ⌫↵c

↵
�

3

4
h⇤µ⌫⇤@µc⌫

�
, (2.2.10)

in agreement with ref. [105], cf. app. 2.5. Again these must belong to s0K1/1 for a

suitable choice of K1/1, which means that we must add to what we have in (2.2.5). A

solution is to add

K1
1/1 3 �

1

2

2µ�2"

(4⇡)2"

Z

x

h⇤µ⌫@2µ⌫' , K2
1/1 3 �

3

8

2µ�2"

(4⇡)2"

Z

x

c⇤µ⇤cµ . (2.2.11)
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At the two-point level, it is straightforward to see that the level-two part gives the second

term in (2.2.10) via Q�K2
1/1, whilst the level-one part gives the first term via QK1

1/1,

(2.2.5) making no contribution because it is annihilated by Q. On the other hand, (2.2.5)

is still correct for reproducing S0
1/1 because the level-one part above is annihilated by

Q�, as follows by the Bianchi identity for the Einstein tensor or by recognising that the

above level-one part is proportional to Q�(@↵c⇤↵'). Indeed at this stage one has to face

the issue that the solution for K is unique only in the cohomology. One can always add

an s0-exact piece to K, in particular one can add s0(@↵c⇤↵'). The above solution is one

choice, in fact the same as that made in ref. [105].

Now let us comment on the results of the previous subsection. The fact that they can

be written covariantly, in terms of curvatures of the background metric, is of course no

accident: this is guaranteed by background di↵eomorphism invariance. The fact that one

can also do so in terms of gµ⌫ = �µ⌫+hµ⌫ , is however an accident of Feynman DeDonder

gauge. At the level of the action it is a consequence of the fact that Q�S1
1/1 = 0 in this

gauge, and thus the graviton counterterm action must be annihilated by Q:

0 = s0S1/1 = QS0
1/1 +Q�S1

1/1 = QS0
1/1 . (2.2.12)

Up to cohomology and normalisation, there is a unique term '⇤⇤' 2 K1/1 that could

arise in the one-loop calculation which would break this ‘quantum di↵eomorphism’ in-

variance. Equivalently in S0
1 we would find a term proportional to

Q�
Z

x

'⇤⇤' = �

Z

x

(R(1) + R̄(1))⇤' . (2.2.13)

Indeed from [104], cf. app. 2.5, we know this term is present in a more general gauge.

Furthermore we will see in sec. 2.2.3 that at two loops an analogous term is generated

even in Feynman DeDonder gauge, while at one loop but beyond the two-point level

many terms ensure that QS0
1/1 6= 0.

This completes the calculation at the two-point level because it is not possible to generate

two-point higher level counterterms Sn>1
`

(since n is also the pure ghost number).

2.2.2 One-loop three-point counterterms

This involves computing one-loop diagrams with the topologies given in fig. 2.2.2. Al-

ready at this stage there are thousands of divergent vertices, and computer algebra

becomes essential. We proceed by comparing the results with the general structure

(2.1.79), i.e. we should find that the counterterm action takes the form:

S1/1[�,�
⇤] = S0

1/1[gµ⌫ ] + s0K1/1[�,�
⇤] . (2.2.14)
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Figure 2.2.2: Three-point Feynman diagrams at one loop.

As explained in ref. [80], dimensional regularisation allows for the computation of the

Gauss-Bonnet topological term:

S0
1/1[gµ⌫ ] =

⌧µ�2"

(4⇡)2"

Z

x

p
g
�
Rµ⌫⇢�Rµ⌫⇢� +R2

� 4Rµ⌫Rµ⌫

�
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⌧µ�2"

(8⇡)2"

Z

x

p
g ✏↵���✏µ⌫⇢�R

µ⌫

↵�
R⇢�

��
, (2.2.15)

which is the unique possibility for S0
1/1[gµ⌫ ] up to choice of coe�cient ⌧ and terms that

vanish on shell (cf. the discussion at the end of sec. 2.1.9).

Up to the three-point level, K1/1 has no more than antighost number two. The two

antighost levels have the following general parametrisation:
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(4⇡)2"

Z

x
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i
, (2.2.16)
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Here we have used the symmetries and statistics of the (anti)fields. In particular, the

result must be background di↵eomorphism invariant (which implies the factor of 1/
p
ḡ in

the terms with two antifields, because we defined them to transform as tensor densities

of weight �1). Furthermore, we know that the terms with one antifield have two space-

time derivatives whilst those with two antifields have one spacetime derivative. The

power of  and µ then follow from [K] = �1.
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The parametrisation must be consistent with the results at the two-point level, hence the

appearance of parameters �̄, �̄, � and � from (2.2.5). We similarly introduce parameters

c1 and c2 where, from (2.2.11), we know that

c1 = �
1

2
, and c2 = �

3

8
. (2.2.18)

Background di↵eomorphism invariance tells us that the linearised curvatures accompa-

nying �̄ and �̄ simply become full curvatures (by (2.2.1) they absorb one power of )

but, as discussed in sec. 2.2.1.2, the appearance of the linearised quantum curvatures

in (2.2.5) is accidental, so it is more appropriate for the � and � pieces to appear with

their separate parts covariantised, following (2.2.2). Even though all these parameters

are known, and that includes ⌧ [80, 107], we leave them general when we match to the

three-point one-loop results, as extra checks on the formalism.

The remaining eleven ↵i, twenty-seven bi, and twenty-one di, are genuinely free param-

eters to be determined. The schematic representation for the di terms means that one

sums over the vertices with coe�cients di, these vertices being the twenty-one linearly

independent combinations of two spacetime derivatives and one c⇤↵, c
� , and h��. We

ensure independence under integration by parts by taking as representatives those ver-

tices where c⇤↵ is undi↵erentiated. Since the di terms are already three-point vertices,

as are the bi terms, background covariantisation is ignored there. For the same reason,

we actually do not need di↵eomorphism invariant expressions for the ↵8, · · · ,↵11 terms,

whilst in the other ↵i terms we actually only need the linearised background curvature.

The sum over bi vertices is defined in the same way as for the di vertices, except that all

terms involving @↵h⇤↵� are discarded, and likewise any two vertices should be considered

equal if they only di↵er by such terms on using integration by parts. (This can be

implemented straightforwardly by deriving the vertices in momentum space.) The reason

for this restriction is because at the three-point level, vertices containing @↵h⇤↵� are

already accounted for in the di sum. As in the discussion in sec. 2.2.1.2, this is a

consequence of the fact that we can add an s0-exact part to K1/1 without altering S1/1,

cf. (2.2.14). At the three-point level we can add (Q + Q�)(c⇤h2@), but Q� generates

the @↵h⇤↵� terms while Q maps onto combinations in the di sum that contain @(↵c�).

Finally, for the same reason we do not want a free parameter for the combination

�

p
ḡ
s0 ('

⇤h⇤µ⌫hµ⌫) = R̄h⇤µ⌫hµ⌫ + 2'⇤R̄↵�h↵� � 2R̄'⇤'� 2

p
ḡ
'⇤h⇤µ⌫r̄µc⌫ . (2.2.19)

The last three terms on the right hand side appear in our parametrisation, but this is

why the first term is missing from it.

Although the resulting parametrisation is long, it is a dramatic reduction compared

to the thousands of vertices from the Feynman diagram calculation, and therefore in
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fact the parameters are vastly overdetermined. That we nevertheless find a consistent

solution for all vertices is thus a highly non-trivial verification of the formalism.

Matching to just the (antighost level zero) pure background h̄3 vertices, we reproduce

well-known results: we confirm that the pure background curvature-squared terms at

the two-point level, cf. (2.2.3), are covariantised to full background curvatures, as is

in fact clear here from our K1
1/1 (2.2.16), and confirm that the remaining part is the

Gauss-Bonnet term given in (2.2.15). In this way we rea�rm the �̄ and �̄ values from

(2.2.9) and also find

⌧ =
53

90
, (2.2.20)

in agreement with previous calculations [80, 107].

One can determine all the coe�cients inK1
1/1 by matching to antighost level zero vertices,

up to several vertices parametrised by c1. In fact just using the h2h̄ and h3 vertices is

su�cient to determine all that can be found at this level, but we matched also to h̄2h

vertices to verify the result and further confirm consistency. TheK2
1/1 parameters cannot

of course be determined by matching to antighost level zero vertices, because the lowest

antighost level it generates is level one, via Q�K2
1/1, while c1 and some vertices in the

bi sum also remain undetermined because in K1
1/1 at the three-point level they can be

collected into 1
2c1Q

�(c⇤⌫r̄⌫').

Now all the parameters in K2
1/1, and c1, can be (over)determined by matching to the

full set of level-one three-point Feynman diagrams with topology of fig. 2.2.2, i.e. such

that one external leg is a ghost cµ, one external leg is h⇤↵� and the remaining leg is h

or h̄. In this way we recover the previously stated values for c1, c2, �̄, �̄, � and �, and

determine that

↵1 =�
1

8
, ↵2 = �

1

24
, ↵3 =

161

120
, ↵4 =

1

120
, ↵5 = �

3

4
, ↵6 = �

7

15
,

↵7 =
19

60
, ↵8 = �

1

6
, ↵9 = �

1

12
, ↵10 = �

4

15
, ↵11 = �

1

6
, (2.2.21)
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and also the bi and di parameters as given below:

27X

i=1

bi
�
h⇤h2@2

�
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27
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160
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Since the above provides us with the full expression for K1/1 up to the three-point

level, we get as a bonus the full expression up to three-point level for the antighost

level-two counterterm, without having to compute it from Feynman diagrams, since it is

given by S2
1/1 = QK2

1/1. This completes the explicit calculation of all o↵-shell one-loop

divergences with up to three (anti)fields.

2.2.3 Two-loop double-pole two-point graviton counterterms

Now as advertised we use the one-loop counterterm diagrams, illustrated in fig. 2.2.3,

to compute the two-loop 1/"2 counterterm via the RG relation (2.1.46). We limit our-

selves to the two-point diagrams at antighost level zero, i.e. with either a quantum or

background graviton external leg. This is already enough for a non-trivial explicit test

of the second order canonical expansion relation (2.1.73).
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Figure 2.2.3: RG relates the 1/"2 pole in the two-loop two-point counterterm ver-
tices to one-loop counterterm vertices, represented by the crossed circles, via one-loop

counterterm diagrams with the above topologies.

For the first diagram in fig. 2.2.3, we need the one-loop two-point counterterm vertices

with purely quantum legs. They are given by (2.2.10) and the first two terms in (2.2.3)

for ghosts and graviton respectively. (In the former case we need to shift to gauge

fixed basis using relation (2.1.20) at the linearised level.) For the second diagram we

need the one-loop three-point counterterm vertices with two quantum legs and either an

external h↵� or h̄↵� . These can be ported directly from intermediate results created as

a side-product of the computation reported in the previous subsection. Alternatively,

they can be generated by evaluating s0K1/1 using the explicit expressions given there.

(As expected the topological counterterm (2.2.15) can be disregarded since it makes no

contribution to the Feynman integrals.)

The result we find is that for two-point vertices:

S0
2/2 = �

1

2

4µ4"

(4⇡)4"2

Z

x

(
11

36
R̄(1)⇤R̄(1) +

5

72
R̄(1)µ⌫⇤R̄(1)

µ⌫ �
469

3600
R(1)⇤R(1)

+
79

200
R(1)µ⌫⇤R(1)

µ⌫ +
781

3600
R̄(1)⇤R(1) +

53

150
R̄(1)µ⌫⇤R(1)

µ⌫ �
31

720

⇣
R̄(1) +R(1)

⌘
⇤2'

)
,

(2.2.24)

where the overall factor of �1
2 is the conversion (2.1.46) from the double-pole in fig. 2.2.3

to the two-loop counterterm S2/2. As we will see this result passes a highly non-trivial

consistency check in that it satisfies the second order canonical transformation relation

(2.1.73). As far as we know the above result has not appeared in the literature before,

except for the one term: R̄µ⌫⇤̄R̄µ⌫ [79]. However this was quoted there as part of some

partial results that unfortunately contain an error [103]. Nevertheless comparing the

coe�cients for this one term, we find that they agree up to a factor of half, see app. 2.5.

Recall that the one-loop level-zero two-point result (2.2.3) can be written entirely in

terms of linearised curvatures (2.2.2) and is thus invariant under (linearised) di↵eo-

morphisms, in particular also for the fluctuation field hµ⌫ . This latter invariance is a

consequence of invariance under the linearised BRST charge Qhµ⌫ = @(µc⌫). Recall also

from sec. 2.2.1.2 that this property is actually an accident of Feynman DeDonder gauge.

The presence of the ⇤2' term above shows that at two loops, one’s luck runs out and this
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property is violated. As is evident from the form of this last term, it just corresponds to

inserting another ⇤ into the unique one-loop Q-invariance-breaking possibility (2.2.13).

In the remainder of this subsection we will show that the double-pole (2.2.24) corresponds

to a canonical transformation taken to second order, i.e. can be expressed as in (2.1.73):

S2 =
1

2
(S1,K1) + s0K2 . (2.2.25)

Actually recall that this expression follows from the non-linear CME relation s0S2 =

�
1
2(S1, S1), viz. (2.1.43), on assuming that S1 is given only by the exact piece s0K1,

whereas the one-loop solution (2.2.14) also contains the Gauss-Bonnet term (2.2.15).

However since the latter is topological it makes no contribution to the antibracket and

thus (2.2.25) is indeed the correct solution.

From sec. 2.2.2, it is clear that (S1, S1) cannot vanish at the three-point level, and

thus the non-linear CME relation itself is highly non-trivial. However for the two-point

vertices (S1, S1) in fact does vanish. This is straightforward to see by inspection since

for the two-point vertices we only have the pure curvature antighost level zero part,

S0
1/1, as given in (2.2.3), and the antighost level one part, S1

1/1, as given in (2.2.10).

But substituting these into (S1/1, S1/1) the net e↵ect is to replace hµ⌫ in a ‘quantum

curvature’ by either @3µ⌫↵c
↵ or ⇤@µc⌫ (up to some coe�cient of proportionality), causing

the result to vanish since both of these are pure gauge.

Thus the non-linear CME relation (2.1.43) only implies that the two-point vertex in S2

is s0-closed. The problem is that the two-point level is to a certain extent degenerate.

A related point is that if we take the action only to have an antighost level zero piece,

and take this to be any product of linearised curvatures, that is any one of the terms

in S0
1/1 of (2.2.3), then this action is s0-closed at the two-point level since the linearised

quantum curvatures are invariant under linearised di↵eomorphisms. Nevertheless as we

will see, this test is still non-trivial because although at the level of two-point vertices
1
2(S1,K1) in the general solution (2.2.25) is s0-closed, it is not s0-exact.

Specialising (2.2.25) to antighost level zero and divergences we have

S0
2/2 =

1

2
(S0

1/1,K
1
1/1) +Q�K1

2/2 . (2.2.26)

Substituting
R
x
h⇤µ⌫@2µ⌫' for K1

1/1 into the antibracket, we see that it vanishes for the

same reasons as above. Therefore the (2.2.11) part of K1/1 makes no contribution. Since

the remaining part of K1/1, viz. (2.2.5), is made of linearised curvatures, we see that the
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antibracket contributes terms with linearised curvatures only. Explicitly, we find

1

2
(S0
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1
1/1) =
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Z

x
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2
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�
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�(�+3�̄)R(1)

µ⌫⇤R̄(1)µ⌫ +
1

4
(9��̄+3�2+3�̄�+3��̄+2��+3��̄+ �2)R(1)⇤R̄(1)

o
,

(2.2.27)

where recall that the parameters were determined as in (2.2.9). Now this cannot come

from an s0-exact expression because if it did, we could write it as Q�K1 for some K1.

We can check if this is so by using the same rule discussed in sec. 2.2.1.1, i.e. from

(2.2.7) we know that this would imply that the coe�cient of the mixed terms above

must be equal to the sum of the coe�cients of the equivalent pure quantum and pure

background pieces. It is easy to see that this does not work. Similarly one can verify

that the curvature terms in (2.2.24) do not sum to something that is Q�-exact.

But according to (2.2.26), on subtracting (2.2.27) from (2.2.24) we should be left with

a Q�-exact piece. We have already seen that this is true of the non-covariant term, the

last term, in (2.2.24). The remaining parts are pure curvature terms and must thus have

the parametrisation (2.2.5) except with an extra ⇤ inserted (and di↵erent coe�cients),

up to some Q�-exact remainder, Q�R 2 K1
2/2 (which does not contribute to (2.2.26)

because Q� is nilpotent). Matching to the above results, we find that this is indeed the

case and thus we derive K1
2/2 at the two-point level in the form

K1
2/2 =

4µ4"

(4⇡)2"2

Z

x

n 877

28800
h⇤µ⌫⇤R(1)

µ⌫ +
71

1800
'⇤⇤R(1)

+
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28800
h⇤µ⌫⇤R̄(1)

µ⌫ +
2719

14400
'⇤⇤R̄(1)

�
31

1440
'⇤⇤2'

o
+Q�R . (2.2.28)

Like in (2.2.5), the remainder term Q�R has @↵h⇤↵� as a factor. It could also be derived

by matching to the two-loop double-pole level-one counterterm diagrams, and they can

be computed using the results we have already obtained. However the above form for

K2/2 is su�cient for our purposes.

2.3 Generalised beta functions and why they are not finite

In this final section we comment on some ideas for generalised �-functions, where the

field is taken to play the rôle of a collection of couplings. The key idea is to exploit

relations that follow from assuming that these �-functions are finite. Unfortunately this

assumption is incorrect. We explain why natural generalisations that respect the BRST

symmetry also fail to work.
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Inspired by ref. [119] and its many follow-ups e.g. [120,121], which themselves are inspired

by refs. [122–124], the main proposal of ref. [103] consists of two key steps. The first

key step is to allow for a non-linear renormalisation of the metric, replacing gµ⌫ in the

Einstein-Hilbert term of the classical action (2.1.9) with a bare metric g0µ⌫ which is then

expanded as

g0µ⌫(x) = gµ⌫(x) +
X

k=1

1

"k
gkµ⌫(x) . (2.3.1)

The gkµ⌫ are assumed to be local di↵eomorphism covariant combinations constructed

from covariant derivatives and curvatures using the renormalised metric gµ⌫ . With this

assumption, the proposal only applies to non-linear renormalisation of the background

metric.

In ref. [103] the µ dependence in (2.3.1) is simplified to an overall multiplicative µ�2" on

the right hand side, by taking the mass dimensions to be [g0µ⌫ ] = �2", while [gµ⌫ ] = 0

and [] = �1 (also in d dimensions). However the same physics can be arrived at by

including µ in the more conventional way, as we do here. Thus our metrics are taken to

be dimensionless, while [] = �1 + ". Then by dimensions, the gkµ⌫ are forced to have

explicit dependence on µ, cf. sec. 2.1.6 and sec. 2.2. In fact the `-loop contribution is

constructed from 2` covariant derivatives, rendered dimensionless by the factor (µ�")2`.

A renormalisation of form (2.3.1) can provide all the covariant counterterms in the bare

action that vanish on the equations of motion. For example the purely background

metric counterterms (in Feynman – De Donder gauge) are [78], cf. (2.2.3) and below

(2.2.18),

S1 =
µ�2"

(4⇡)2"

Z

x

p
ḡ

✓
1

120
R̄2 +

7

20
R̄2

µ⌫

◆
. (2.3.2)

These counterterms can be generated by defining

ḡ0µ⌫ = ḡµ⌫ +
2µ�2"

(4⇡)2"
ḡ1µ⌫ , where ḡ1µ⌫ =

7

40
R̄µ⌫ +

11

120
ḡµ⌫R̄ (2.3.3)

(where, from here on, we make explicit the µ�"/(4⇡) dependence in ḡkµ⌫).

Now by insisting that the bare metric is independent of µ, and di↵erentiating both sides

with respect to µ, one obtains a kind of generalised “beta function”, �↵� = µ@µ g↵�

for the renormalised metric (non-linear wavefunction renormalisation might be a better

term). For the above example, from (2.3.3), we have for the background metric to one

loop,

�̄µ⌫ = 2
2µ�2"

(4⇡)2
ḡ1µ⌫ . (2.3.4)

The second key step is actually implicit in ref. [103]. It is the assumption that such

generalised beta functions are finite in the limit " ! 0. We have just seen that this is

trivially true at one loop, but at higher loops this is a powerful assumption. Just as

with the usual beta functions in a renormalisable theory, the one-loop result would then
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be enough to determine the leading pole 1/"` at each loop order ` without computing

any more Feynman diagrams. To see this in our example, assume we already know the

leading two-loop purely background counterterm and have chosen ḡ2µ⌫ to generate it via

ḡ0µ⌫ = ḡµ⌫ +
2µ�2"

(4⇡)2"
ḡ1µ⌫ +

4µ�4"

(4⇡)4"2
ḡ2µ⌫ , (2.3.5)

where the prefactor follows because ḡ2µ⌫ will be formed from four background covariant

derivatives. Then cancellation of the 1/" single-pole in �̄µ⌫ tells us that

ḡ2
↵�

=
4⇡2µ2"

2
µ@µḡ

1
↵�

[ḡ] , (2.3.6)

Applying the Leibniz rule and using (2.3.4), we see that ḡ2
↵�

should in fact be computable

simply by applying a first order shift of the background metric on the one-loop result:

ḡ2
↵�

= �ḡ1
↵�

[ḡ] , where �ḡµ⌫ =
1

2
ḡ1µ⌫ . (2.3.7)

Unfortunately this does not work as can be verified explicitly at the two-point level

by using the pure background terms from (2.2.24) (for higher order see the discussion

below that equation). The reason is that the second key step, the assumption that these

generalised beta functions are finite, is incorrect. In the original incarnation as applied to

the target metric of the two-dimensional sigma model [122–124], it was correct, because

the target metric actually represents an infinite set of couplings. But applied to the

fields themselves, as in the proposal of ref. [103], it is not correct.

The obstruction to finiteness of �̄µ⌫ shows up most clearly in the gauge fixing. The

result (2.3.2) is derived using De Donder gauge (3.1.14). Clearly the transformation

(2.3.5) alters the gauge (3.1.14) (by a divergent amount). That is a problem because the

Legendre e↵ective action is not the same in di↵erent gauges except on shell. But ḡ2µ⌫ in

(2.3.5) has been chosen to cancel a part that only exists o↵ shell.

In fact let us now recall that counterterms are required that depend on all combinations

of the fields, in particular the quantum fields, as we have seen. In the background

field method it is possible to work exclusively with diagrams that have only external

background field legs (as in e.g. [80]). However even if we do not explicitly track the

value of counterterms that cancel divergences in vertices involving quantum fields, they

must be there in practice because they cancel sub-divergences in higher loops, and

higher loop divergences are local as required only if all these sub-divergences have been

cancelled [106,125,126], as we recalled in sec. 2.1.6.

Then as we saw in sec. 2.1.9, the ‘new’ divergences at each loop order are s0-closed.

Those that vanish on the equations of motion, are s0-exact and correspond to infinites-

simal canonical transformations (2.1.71) between the antifields and quantum fields. As
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we proved there, and also verified in sec. 2.2, there is no separate purely background

renormalisation. What happens instead is that purely background counterterms also

get absorbed by these canonical transformations. This extends to the non-linear terms

that appear beyond one loop order. For example we saw that the leading (i.e. double-

pole) counterterm at two loops, (2.2.26), also involves carrying the one-loop canonical

transformation to second order, as we saw in sec. 2.1.8.

Now it is clear that if the proposal of [103] is going to work, it should apply not to

the background metric, but to the antifields and quantum fields. Indeed the second-

order canonical transformation ��(⇤) given in eqn. (2.1.76), is the correct non-linear

transformation between bare (anti)fields

�(⇤)0 = �(⇤) + ��(⇤) (2.3.8)

and renormalised (anti)fields �(⇤), such that it will generate through Taylor expansion

(2.1.78) of the classical action, all the required counterterms that vanish on shell, up to

two loops.5

Independence of �(⇤)0 on µ, then implies the generalised beta functions

�A[�,�⇤] = µ@µ�
A and �⇤A[�,�

⇤] = µ@µ�
⇤
A . (2.3.9)

Following the previous argument, if we assume that these beta functions are finite, we

can derive K2 from K1 without computing Feynman diagrams. Once again we can check

this idea explicitly using the results for K1 from sec. 2.2.1. It turns out that it implies

that at the two-point level K2 must vanish. But from (2.2.28) this is incorrect. In fact,

irrespective of the details, this proposal cannot work because the K1 terms just furnish

linearised curvatures for K2, whereas K2 has the explicitly non-covariant piece – the

last term under the integral in (2.2.28). Again, the mistake in this reasoning is the

assumption that the generalised beta functions are finite.

To see why they cannot be finite, note that the partition function (2.1.30) now takes the

form

Z[J,�⇤] =

Z
D� e�S[�0,�

⇤
0]+�

A
JA , (2.3.10)

Here the bare antifields are responsible for generating all the counterterms that vanish

on shell, via canonical transformations (2.1.76), whilst S itself contains the counterterms

for cohomologically non-trivial pieces which depend only on the total metric, such as

the topological term (2.2.15) at one loop, and the Goro↵-Sagnotti term [79]

S2 3
209

5760

2µ�2"

(4⇡)4"

Z

x

p
g R ��

↵�
R ✏⇣

��
R ↵�

✏⇣
(2.3.11)

5The Jacobian for this local transformation vanishes in dimensional regularisation, recall below
(2.1.33).
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at two loops. All Green’s functions are then finite (in particular this is so for the Legen-

dre e↵ective action, which is a functional of the classical fields �A and the renormalised

antifields �⇤
A

= �⇤
A
). However for the operators that vanish on shell, we are now at-

tributing µ dependence to the renormalised (anti)fields �(⇤) rather than renormalised

couplings ci
`
as before. Unfortunately µ-independence of the bare action S[�0,�⇤0] then

implies that �A cannot be finite since:

µ@µZ[J,�⇤] =

Z
D� �A[�,�⇤]JA e�S[�0,�

⇤
0]+�

A
JA . (2.3.12)

Indeed the left hand side is finite by construction, but the right hand side involves

the insertion of �A which is local and non-linear in renormalised quantum fields. The

insertion of such terms generates new divergences, and the only way they can be cancelled

is if in fact �A already contains precisely the right divergences to cancel them.

2.4 Discussion and Conclusions

O↵-shell counterterms in quantum gravity, defined perturbatively as an e↵ective theory

about a background metric ḡµ⌫ , are invariant under background di↵eomorphisms, BRST,

and the RG. In this work we have drawn out some of the consequences of the way these

symmetries are interwoven with each other.

In particular we have shown in sec. 2.1.9 that at each new loop order the new divergences,

those that are annihilated by the total classical BRST charge s0, can be characterised

as being either di↵eomorphism invariant functionals of the total metric gµ⌫ which do

not vanish on the classical equations of motion (i.e. do not vanish when Gµ⌫ = 0) or as

s0-exact functionals which are thus first order canonical transformations of the antifields

and quantum fields (cf. sec. 2.1.8). In particular we show that there are no separate

purely background field divergences. Then it follows that those background field terms

that do not vanish on the equations of motion Ḡµ⌫ = 0, are part of the di↵eomorphism

invariant functionals of the total metric, whilst those that do vanish on the equations of

motion are renormalised by reparametrising the quantum fluctuation hµ⌫ as part of the

canonical transformations. The background metric itself is never renormalised.

By adding the antifield sources for BRST transformations, we keep track of the defor-

mations of the BRST algebra induced by renormalisation. These appear as part of the

s0-exact counterterms. Whilst the Zinn-Justin/CME equation is preserved at each loop

order ` for both the bare action and the Legendre e↵ective action, the BRST transfor-

mations are altered in a non-linear way beyond one loop. As we demonstrated in sec.

2.1.5 this brings the Legendre e↵ective action and bare action realisations of the CME

equation into tension with each other. This tension is resolved by the RG identities for

a perturbatively non-renormalisable theory, which relate lower loop `0 < ` counterterm

diagrams to higher order poles at `-loop order [90].
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In this work we only demonstrated how this works at two loops. A fully general un-

derstanding of how the RG ensures consistency for BRST seems possible, following the

general understanding of the RG identities [90] and e.g. the proof of renormalisability

put forward in ref. [82] for e↵ective theories with gauge invariance (the latter does not

address the above tension but proceeds assuming both realisations of the CME remain

consistent with each other).

Let us emphasise that the way the RG and BRST relations work together is quite

remarkable. On the one hand the RG relates the two-loop double-pole vertices to the one-

loop single pole vertices through a linear map which however involves computing further

one-loop Feynman diagrams (the counterterm diagrams). On the other hand BRST,

through the second-order CME relation (2.1.43), directly relates the two-loop double-

pole vertices to the square of the one-loop single-pole vertices, i.e. without involving

further loop calculations. In a sense then the BRST relations achieve what generalised

beta function proposals, cf. sec. 2.3, fail to do.

However the BRST relations do not determine the higher pole vertices completely but

only up to an s0-closed piece, for example this is evident in the two-loop relation (2.1.43):

s0S2/2 = �
1
2(S1/1, S1/1). They are thus less powerful than the RG identities. In fact

in sec. 2.2.3, we saw in Feynman – De Donder gauge that the non-linear term on the

right hand side starts only at the three point level. As we explained, at the two-point

level the equations degenerate, although they still allow a unique determination of the

second order canonical transformations and thus also the new s0-exact piece.

Let us note that the way the RG works to ensure consistency of BRST invariance, is not

unique to non-renormalisable gauge theories. However in renormalisable theories, the

divergent vertices are those in the original action. The RG identities for counterterm

diagrams then play a less dramatic rôle in that they just ensure that these divergences

appear with the correct sign so that they can be renormalised multiplicatively.

For quantum gravity, we verified the assertions above in sec. 2.2 by computing coun-

terterms at one-loop up to the three-point level and up to two-loops for the graviton

two-point vertex. Exploiting the BRST properties we gave a general parametrisation

of the one-loop three-point counterterms and determined the parameters by matching

to the graviton and ghost one-loop integrals. The antighost level two counterterms

(which renormalise the BRST transformation of the ghosts) then follow without further

Feynman diagram computations.

These results could be readily extended, for example the ghost two-loop double-pole

two-point counterterms can be computed using the vertices presented here and this

would allow the form of the two-point K2/2 to be fully determined, cf. eqn. (2.2.28).

An interesting but more challenging project would be to work out the form of the one-

loop counterterms to the next order in h̄µ⌫ since this would allow one to determine the

two-loop double-pole three-point background field vertices which would then allow a



2.4. Discussion and Conclusions 67

complete comparison with the o↵-shell results reported in ref. [80]. The parametrisation

we give for K1/1 in (2.2.16) and (2.2.17) looks su�cient to compute the corresponding

one-loop counterterm diagrams, if the di and bi terms are covariantised, however this

introduces a number of new terms with undetermined coe�cients, in particular we would

need to determine the h⇤h2R̄(1) terms. The simplest way to do that would appear to be

by matching to one-loop h⇤chh̄ divergences.

In our discussion of generalised beta functions in sec. 2.3, we explained why they cannot

be finite and verified this using our explicit results from sec. 2.2. In particular for gen-

eralised beta functions based on the canonical transformations we obtained the formula

(2.3.12) which shows why they cannot be finite. Nevertheless, this formula implies some

interesting relations between the divergent higher order coe�cients and the divergences

generated by expectation values of the lower coe�cients. It would be interesting to

verify these and explore further their consequences.

Finally let us return to our original motivation and note that the counterterms we have

derived give directly the leading log behaviour at large euclidean momentum. Indeed,

the one-loop divergence (2.1.49) and counterterm (2.1.50) taken together determine the

ln(p2/µ2) part. One can check explicitly that the two-loop double pole (2.1.54) from

diagrams using only tree level vertices, together with divergences (2.1.53) in one-loop

counterterm diagrams and the double-pole counterterm from (2.1.56), conspire to cancel

all but a remaining [ln(p2/µ2)]2 term. Thus from the explicit results (2.2.3) and (2.2.24)

we see that the leading log contribution of for example the two-point hµ⌫ vertex is given

to two loops, in Feynman – De Donder gauge, as:

hµ⌫�
µ⌫↵�(p)h↵� = p2

✓
'2

�
1

2
h2µ⌫

◆
+

2

(4⇡)2
ln

✓
p2

µ2

◆✓
61

60
(R(1)

µ⌫ )
2
�

19

120
(R(1))2

◆

�
4p2

(4⇡)4


ln

✓
p2

µ2

◆�2✓
469

7200
(R(1))2 �

79

400
(R(1)

µ⌫ )
2 +

31

1440
p2R(1)'

◆
, (2.4.1)

where hµ⌫ and ' = 1
2h

µ
µ here just provide the polarisations, and the linearised curva-

tures (2.2.2) should be similarly understood and cast in momentum space, thus R(1)
µ↵⌫�

=

2p[µ| p[⌫h�] |↵] etc.

Of course as physical amplitudes these corrections vanish on shell, while for the moment

it remains just a dream that a way can be found to resum these leading contributions to

all orders, where one might get powerful insights into the non-perturbative UV behaviour

of quantum gravity. Nevertheless we hope that the detailed understanding we have

gained of some of the consequences of combining background di↵eomorphism invariance,

RG invariance, and BRST invariance, bring that dream a step closer to reality.
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2.5 Comparisons with the literature

Here we outline the di↵erences in convention and notation that need to be taken into

account in order to compare with other results in the literature.

The two-point purely quantum one-loop counterterm given in (2.2.3), corresponding

to the first diagram in fig. 2.2.1, was computed in a general two parameter gauge

(↵̃@µhµ⌫ + �̃@⌫h
⇢
⇢)2 in ref. [104]. (We put a tilde over his parameters so as not to

confuse with the ones in this work.) After taking into account the Minkowski signature

and that factors of 1/(2⇡)4 are accounted for di↵erently, it should coincide with the first

two terms in (2.2.3) on specialising ↵̃ = 1 and �̃ = �
1
2 to get Feynman DeDonder gauge.

The full result in the general two parameter gauge is given below

S(Q)
1 = h↵�

�
T1p↵p�p�p� + T2�↵����(p

2)2 + T3�↵����(p
2)2

+ T4���p↵p�p
2 + T5���p↵p�p

2
�
h�� , (2.5.1)
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T4 = �2T3 ,
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T5 =
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,

where

I =
2

60(4⇡)2(d/2� 2)
. (2.5.2)

In ref. [104] there weere a few typos. +45
8 �̃

4/↵̃2, and in T4 the term �135(�̃2/↵̃) should

read �135(�̃2/↵̃2). Once these are fixed, we find complete agreement.

The result for the purely quantum pieces in (2.2.3) also agrees with the result quoted in

ref. [105] on recognising that there the divergence can be recovered by setting ln(1/µR) =

1/2". This mapping is also the one to use to compare the level one divergence with

(2.2.10).

The purely background terms in (2.2.3) agree with ref. [78] on recognising that their

" = 8⇡2(d� 4), their definition of Ricci curvature is minus ours, cf. below (2.1.10), and

that their action is defined to be the opposite sign from the usually defined Euclidean

action, cf. (2.1.9). Their normalisation of the scalar curvature term is also non-standard

but this is repaired by mapping gµ⌫ 7!
p
2gµ⌫ and has no e↵ect on the one-loop result,

since it is a curvature-squared action.

In the famous paper [80], this result is reproduced but the value quoted is half that of

(2.2.3). To see this one should note that it is Minkowski signature and their " = 4�d i.e.

is twice ours. (There is also an accidental extra factor of 1/" in their quoted equation.)

They also quote a value for some two-loop double-pole divergences. The one point of

comparison is the result (2.2.24) for the R̄µ⌫⇤R̄µ⌫ counterterm. Using these translations

we see that their result is again half of what we find.





71

Chapter 3

Irrelevant operators in scalar field

theory

Before moving to gravity in the next chapter we first look at the power of FRGE in a

simpler setting: d-dimensional scalar field theory in the Local Potential Approximation

(LPA). We already introduced the main concepts in 1.3.1 and we will build on those

in this chapter. We will use Sturm-Liouville methods which allow the eigenoperator

equation to be cast as a Schrödinger-type equation. Combining solutions in the large field

limit with the Wentzel–Kramers–Brillouin (WKB) approximation, we solve analytically

for the scaling dimension of high dimension potential-type operators around a non-

trivial fixed point. We will later perform the same methods to study gravity in the f(R)

approximation [3, 4], draw comparisons and discuss universality.

The functional renormalization group is one of the most widely used approaches to

study quantum field theories in non-perturbative regimes, as evidenced by an extensive

literature (see, for instance, the reviews [72,127–131]). Various realizations of the FRG

exist [28–30,35–37,132–137], but the most prevalent version [29,30,37,134–137] focuses

on the flow of an appropriately defined Legendre e↵ective action �⇤ (the e↵ective average

action), with respect to an infrared cut-o↵ scale ⇤ (1.3.24). In this chapter we will use

the LPA for the e↵ective average action which we reviewed in 1.3.1. The action takes

the following form

�⇤ =

Z
ddx

✓
1

2
(@µ')

2 + V⇤(')

◆
. (3.0.1)

While an exact analytical solution to this truncated FRG formulation is still not possible

in general, the LPA enables numerical treatments that provide valuable insights into

the system’s behaviour. It allows for numerical estimates of various physical quantities,

including critical exponents and the scaling equation of state [60,66,72,127–131,138,139].

Moreover, the LPA serves as the initial step in a systematic derivative expansion [60,

66, 72, 138, 139], which facilitates a more comprehensive exploration of the system’s

properties [72, 127–131,139].
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Nevertheless it is important to acknowledge the limitations of the LPA and more gener-

ally the derivative expansion. Since such truncations do not correspond to a controlled

expansion in some small parameter, the errors incurred can be expected to be of the

same order in general as the quantities being computed1. Furthermore, quantities that

should be universal, and thus independent of the specific form of the cuto↵, are not (for

example for the critical exponent ⌫ at the Wilson-Fisher fixed point in d = 3 dimen-

sions, the LPA yields ⌫ = 0.689 with a sharp cuto↵ [66] whilst for a power-law cuto↵

one obtains ⌫ = 0.660 [138]).

It has long been understood that an exception to this is the general form of a non-

trivial fixed potential V (') in the large field regime [60, 66, 72, 138], which follows from

asymptotic analysis:

V (') = A|'|d/d' + · · · as '! ±1 , (3.0.2)

where the ellipses stand for subleading terms (see later). The leading term coincides

with the scaling equation of state precisely at the fixed point. It is a simple consequence

of dimensional analysis on using the scaling dimension d' = 1
2(d� 2 + ⌘) for the field '

at the fixed point, ⌘ being its anomalous dimension. However asymptotic analysis does

not fix the amplitude A or the anomalous dimension ⌘, which have to be found by other

means, for example by numerical solution of truncated fixed point equations.

In this chapter, we will show that within LPA, asymptotic analysis combined with

Sturm-Liouville (SL) and Wentzel–Kramers–Brillouin (WKB) analysis,2 also allows one

to determine asymptotically the scaling dimension dn of the highly irrelevant (dn � 1)

eigenoperators On = On(') of potential-type (those containing no spacetime deriva-

tives). Ordering them by increasing scaling dimension, we will show that dn = n(d�d')

to leading order in n. In the case of O(N) invariant scalar field theory with fixed N � 0

the dimension dn is doubled to dn = 2n(d� d'). The scaling dimension is thus indepen-

dent of N . It agrees with the result for the single scalar field since these eigenoperators

are functions of '2 = 'a'a, and thus pick out only the even eigenoperators (those sym-

metric under ' $ �') in the N = 1 case. We also show that the scaling dimension is

dn = 2n(d� d') whenever N = �2k, where k is a non-negative integer.

Once again these results are independent of the choice of cuto↵ and thus universal.

Indeed in this paper, we will keep the cuto↵ function completely general throughout,

subject only to some weak technical constraints that we derive later. Note that, like

the fixed point equation of state (3.0.2), the dn take the same form, independent of the

choice of fixed point, provided only that d' > 0 and that the fixed point potential is

non-vanishing. We also show that the next to leading correction to dn behaves as a

1See however refs. [140–143]
2See e.g. ref. [144] for textbook discussion of SL methods and ref. [145] for WKB methods.
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power of n. The power is universal although the coe�cient of the subleading correction

is not.

We will see this approach employed to determine the scaling dimension of highly irrele-

vant eigenoperators in an f(R) approximation to the asymptotic safety scenario [32–34]

in quantum gravity. The f(R) approximation serves as a close analogue to the LPA

in this context [146–148]. However, while the resulting scaling dimensions dn exhibit

a simple nearly-universal form for large values of n, they nevertheless retained strong

dependence on the choice of cuto↵. This issue can be traced back [3] to the so-called

single-metric (or background field) approximation [32], where the identification of the

quantum metric with the background metric is made in order to close the equations.

This work demonstrating that, indeed, without such an approximation, the results be-

come truly universal. Additionally, it showcases the power of these methods in a simpler

context.

The chapter is organised as follows. We first analyse the functional renormalization

group equations for a single scalar field in the LPA. From the eigenoperator equation

we write the resulting SL equation in Schrödinger form and thus, by taking the large

field limit, deduce the asymptotic form of the renormalization group eigenvalues in the

WKB limit. Sec. 3.2 extends the analysis to O(N) scalar field theory using the same

approach. Finally in sec. 3.3 we conclude and discuss the results, placing them in a

wider context.

3.1 Flow equations in LPA

In Wilsonian RG, one integrates out modes, starting with the high momentum modes

first, by a coarse-graining procedure. Traditionally, after integrating out the modes, one

has to rescale the action back to the original UV cut-o↵ of the theory to see how the

couplings change as discussed in 1.3. By working with dimensionless quantities this is

taken care of automatically. The dimensionless potential in this case is

Ṽ ('̃) = ⇤�dV (⇤d''̃) . (3.1.1)

In the following we will consider dimensionless quantities and drop the ‘tilde’. Further-

more, to cancel out powers of the cut-o↵ ⇤ we can define

✓⇤(q) =
q2

C⇤(q)
⌘ ��1

⇤ (q) . (3.1.2)
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where the infrared cuto↵ function C⇤(q) = C(q2/⇤2) is non-negative, monotonically

increasing, and satisfies C(0) = 0 and C(1) = 1. The flow equation is then given by

@

@⇤
�⇤ = �

1

2
Tr


1

�⇤

@�⇤

@⇤

⇣
1 +�⇤�

(2)
⇤

⌘�1
�
. (3.1.3)

The LPA amounts to setting the field ' in the Hessian �(2)⇤ to a spacetime constant, thus

dropping from a derivative expansion all terms that do not take the form of a correction

to the potential. The flow equation for V⇤(') then takes the form:

✓
@t + d''

@

@'
� d

◆
V⇤(') = �

1

2

Z
ddq

(2⇡)d
�̇

�

1

1 +�V 00
⇤ (')

, (3.1.4)

where @t = �⇤@⇤, t being the renormalization group ‘time’. Here the momentum,

potential and field are scaled by the appropriate power of ⇤ to make them dimensionless.

Then � = C(q2)/q2 no longer depends on ⇤. The same is true of @t�⇤, which after

scaling we write as �̇, where

�̇ = 2C 0(q2) . (3.1.5)

Since C(q2) is monotonically increasing, we have that �̇ > 0.

The scaling dimension of the field is d' = 1
2(d�2+⌘), where ⌘ is the anomalous dimen-

sion. Since ⌘ arises from the renormalization group running of the field, and is typically

inferred from corrections to the kinetic term, one would naturally conclude that it van-

ishes in LPA [35, 62–69, 127]. Nevertheless, as noticed in refs. [70, 71], this assumption

is not necessary. The flow equation (3.1.4) is still a mathematically consistent equation

with ⌘ 6= 0. However, since we cannot determine ⌘ directly from (3.1.4), its value needs

to be input from elsewhere (either from experiment or other theoretical studies). We

will follow this strategy, in the expectation that it improves the accuracy of our final

estimates for dn.

Let us recall that the flow equation (3.1.4) is an implementation of the Wilsonian RG [35,

72]. Lowering the cuto↵ ⇤ implements the Kadano↵ blocking [56], whilst rescaling the

cuto↵ back to the original size is equivalently implemented by ‘measuring’ all quantities

in units of ⇤ i.e. by making them dimensionless using the appropriate power of ⇤ [72]

as we have done above. Then at a critical point corresponding to a continuous phase

transition, the solutions V⇤(') remain finite but the distinguishing feature is that they

become independent of ⇤ (see e.g. [72]).

Thus at such a FP (fixed point) V⇤(') = V ('), and ⌘, have no renormalization group

time dependence. The eigenoperator equation follows from linearising about a FP:

V⇤(') = V (') + " v(') ✏�✓t , (3.1.6)
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" being infinitesimal. We write the eigenoperator equation in the same form as refs.

[3, 4, 148]:

�a2(')v
00(') + a1(')v

0(') + a0(')v(') = (d� ✓)v(') , (3.1.7)

where the '-dependent coe�cients multiplying the eigenoperators are given by:

a0(') = 0 , (3.1.8)

a1(') = d'' , (3.1.9)

a2(') =
1

2

Z
ddq

(2⇡)d
�̇

(1 +�V 00)2
> 0 , (3.1.10)

and we have noted that a2 is positive.

3.1.1 Asymptotic solutions

For large ', the RHS of (3.1.4) can be neglected. Thus at a fixed point, the equation

reduces to a first order ODE (ordinary di↵erential equation) which is easily solved. It

gives the first term (3.0.2) in an asymptotic series solution [138]:

V (') = A|'|m +O
�
|'|2�m

�
as '! ±1 , (3.1.11)

where for convenience we introduce

m = d/d' , (3.1.12)

and A is a real constant (that is determined by solving for the full FP solution). The

subleading terms arise from iterating the leading order contribution to next order.

Of course there is always the trivial V (') ⌘ 0 fixed point solution, corresponding to the

Gaussian fixed point. We will not be interested in that (the scaling dimensions in that

case are exactly known and reviewed in the discussion in sec. 3.3). Instead we focus on

non-trivial FP solutions for which A 6= 0. In principle, A could be di↵erent in the two

limits ' ! ±1, although in practice the fixed point potentials (3.1.11) are symmetric.

Anyway, we will see that A drops out of the analysis in a few further steps.

It is helpful for the following to note that m > 3, since this inequality ensures that

the m-dependent asymptotic solutions we are about to derive, are valid. To see that

m > 3, first note that if ⌘ is neglected (typically ⌘ ⌧ 1, see e.g. [98]), m is a decreasing

function of d for all d > 2. In practice, non-trivial FP solutions only exist for 2  d < 4

(see e.g. [66]). In the limit d ! 4�, ⌘ ! 0 (by the ✏ expansion [98]) and thus m ! 4.

Therefore, if we can neglect ⌘, we see that m is bounded below by m � 4. In practice

one finds that the values of ⌘ increase as d is lowered, but even in d = 2 dimensions

they are not large enough to destroy this bound. In d = 2 dimensions, the asymptotic

solution (3.1.11) corresponds to that of a unitary minimal model [149, 150]. The one
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with the largest anomalous dimension is that of the Ising model universality class which

has ⌘ = 1/4, thus in d = 2 dimensions we have in fact m � 8 for all the unitary minimal

models. In this way, we see that we are safe to bound m > 3 in practice.

Note that the solution (3.1.11) has a single free parameter even though the FP equation

is a (non-linear) second order ODE. The second parameter, if it exists, can be deduced by

linearising around (3.1.11), writing V (') 7! V (')+�V ('), and solving the flow equation

(3.1.4) at the FP this time for �V . Since �V satisfies a linear second order ODE and

one solution is already known, namely �V = @AV ('), it is easy to find the solution

that corresponds at the linearised level to the missing parameter [66,138]. However, one

then discovers that these ‘missing’ linearised solutions are rapidly growing exponentials.

Such a linearised perturbation is not valid asymptotically since for diverging ' it is

much larger than the solution (3.1.11) we perturbed around. Hence, the FP asymptotic

solutions only have the one free parameter, A.

Substituting (3.1.11) into (3.1.10), we see that asymptotically a2(') scales as follows:

a2(') = F |'|2(2�m) +O
⇣
|'|3(2�m)

⌘
as '! ±1 , (3.1.13)

where F is positive and cuto↵ dependent:

F =
1

2 (m(m� 1)A)2

Z
ddq

(2⇡)d
�̇

�2
= �

1

(m(m� 1)A)2

Z
ddq

(2⇡)d
q4

@

@q2
C�1(q2) . (3.1.14)

We will assume that the integral converges. This imposes some weak constraints on the

cuto↵ profile. From (3.1.14), we see that we require C(q2) to vanish slower than qd+2 as

q ! 0, and C ! 1 faster than 1/qd+2 as q ! 1. This is true for example for the popular

form of additive (i.e. mass-type) cuto↵ [29] (which is the one used in the analogous f(R)

analysis in the next chapter and in refs. [3, 4]):

r(q2) =
q2

exp(aq2b)� 1
, a > 0, b � 1 , (3.1.15)

provided also we set b < 1
2(d+ 2), the relation to C(q2) being q2C�1(q2) = q2 + r(q2).

Given that a2(') vanishes asymptotically, it is tempting to neglect the a2 term in (3.1.7).

We will shortly justify this. By neglecting the a2 term, the ODE becomes linear first

order giving a unique solution up to normalization. Thus we deduce that the eigenop-

erators asymptotically scale as a power of the field:

v(') / |'|
d�✓
d' + · · · , (3.1.16)

where the ellipses stands for subleading corrections.

The neglect of the a2 is justified as follows. The missing solution is one that grows

exponentially (again, so that a2(')v00(') cannot be neglected). Since the ODE is linear,
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these are allowed solutions to (3.1.7), but they are ruled out because, on treating such

perturbations at the non-perturbative level, it can be shown that they do not evolve

multiplicatively in the RG no matter how close one starts to the FP [3,4,72,139,151,152]

i.e. the RG time dependence never takes the form in eqn. (3.1.6). (Such perturbations

do not then have a well-defined scaling dimension, and in fact it can be shown that as

soon as ⇤ is lowered, they can be expanded as a convergent sum over the power-law

solutions (3.1.16). For more details, see refs. [3, 4, 72, 139,151,152].)

Now, the asymptotic solution (3.1.16) imposes two boundary conditions (one for each

limit ' ! ±1) on the second order ODE (3.1.7), but since the ODE is linear this

overconstrains the equation3 which thus leads to quantisation of the RG eigenvalue ✓.

We index the solutions as vn('), ordering them so that ✓n decreases as n increases. We

can now perform a SL transformation and deduce the asymptotic dependence of the

eigenvalues ✓n on n, as n ! 1.

3.1.2 Sturm-Liouville analysis

Sturm-Liouville (SL) type equations take the form

Lv(') = �w(')v('), (3.1.17)

where L is the self adjoint operator

L = �
d

d'

⇣
p(')

d

d'
·

⌘
+ q('), (3.1.18)

with p(') and q(') being real functions and w(') also being positive. For the second

order formulation, the eigenvalue equation can be put in this form. The properties

of these equations will then allow us to draw conclusions about the spectrum of the

eigenvalues. We can rewrite the eigenvalue equation (3.1.7) in a SL form by multiplying

it with the SL weight function

w(') =
1

a2(')
exp

⇢
�

Z
'

0
d'0a1('

0)

a2('0)
d'0

�
, (3.1.19)

which is always positive due to the positivity of a2. Then the eigenvalue equation

becomes

�
�
a2(')w(')v

0(')
�0
= (d� ✓)w(')v(') . (3.1.20)

The SL operator on the left is self adjoint when acting on the space spanned by the

eigenoperators, i.e. it satisfies

Z 1

�1
d' v1(')Lv2(') =

Z 1

�1
d' v2(')Lv1(') , (3.1.21)

3We can see this for example by imposing a normalization condition on v.
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when the vi are linear combinations of the eigenoperators. This is so because the bound-

ary terms at infinity, generated by integration by parts, vanish in this case. This follows

because, from (3.1.16), the vi diverge at worst as a power of ', whilst w(') ! 0 expo-

nentially fast as '! ±1.

Thus from SL analysis [144], we know that the eigenvalues ✓n are real, discrete, with

a most positive (relevant) eigenvalue and an infinite tower of ever more negative (more

irrelevant) eigenvalues, ✓n ! �1 as n ! 1 [139]. Let us define a ‘coordinate’ x:

x =

Z
'

0

1p
a2('0)

d'0 (3.1.22)

(always taking the positive root in fractional powers). Defining the wave-function as

 (x) = a1/42 (')w1/2(')v(') , (3.1.23)

enables us to recast (3.1.20) as:

�
d2 (x)

dx2
+ U(x) (x) = (d� ✓) (x) . (3.1.24)

This is a one-dimensional time-independent Schrödinger equation for a particle of mass

m = 1/2, with energy E = d� ✓ i.e. just the eigenoperator scaling dimension, and with

potential [3, 4, 148]:

U(x) =
a21
4a2

�
a01
2

+ a02

✓
a1
2a2

+
3a02
16a2

◆
�

a002
4

, (3.1.25)

where the terms on the right hand side are functions of '.

From the limiting behaviour of a2('), (3.1.13), we see that asymptotically the coordinate

x scales as

x =

Z
'

0

✓
|'0

|
m�2

p
F

+O(1)

◆
d'0 = ±

|'|m�1

(m� 1)
p
F

+O(|'|) as '! ±1 , (3.1.26)

so in particular when ' ! ±1 we have x ! ±1. On the right hand side of (3.1.25),

the first term dominates at leading order (LO) and next-to-leading order (NLO). Since

asymptotically,
a21(')

4a2(')
=

d2'
4F

|'|2m�2 +O(|'|m) , (3.1.27)

we thus find that

U(x) =
1

4
(d� d')

2x2 +O(|x|1+
1

m�1 ) as x ! ±1 . (3.1.28)
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To LO, this is the potential of a simple harmonic oscillator of the form 1
2m!

2x2, where

! = d� d' =
1

2
(d+ 2� ⌘) . (3.1.29)

3.1.3 WKB analysis

We can now use WKB analysis to compute the asymptotic form of the energy levels,

a.k.a. operator scaling dimensions, En, at large n. This follows from solving the equality

Z
xn

�xn

dx
p
En � U(x) =

✓
n+

1

2

◆
⇡ , (3.1.30)

for the total phase of the wave oscillations described by  (x), in the limit of large

En [145]. Here xn are the classical turning points, i.e. such that En = U(±xn). Now,

the above integral is dominated by the regions close to the turning points, where we

can substitute the asymptotic form (3.1.28). Including the subleading correction pro-

portional to some constant � (that depends on the cuto↵ profile) the integral is

!

2

Z
xn

�xn

dx

q
x2n + �x

1+ 1
m�1

n � x2 � �|x|1+
1

m�1

=
!

2
x2n

Z 1

�1
dy

q
1� y2 + �x

1
m�1�1
n (1� |y|1+

1
m�1 ) . (3.1.31)

Since the xn are also large we can now evaluate the right hand side and thus from

(3.1.30) we get the asymptotic relation between xn and n:

!⇡

4
x2n +O

✓
x
1+ 1

m�1
n

◆
= n⇡ . (3.1.32)

Hence, using (3.1.28), (3.1.29) and (3.1.32), the scaling dimension of the eigenoperators

takes the form

dn = En = d�✓n = U(xn) = n!+O
⇣
n

m
2(m�1)

⌘
= n(d�d')+O

⇣
n

m
2(m�1)

⌘
as n ! 1 .

(3.1.33)

The subleading correction to the critical exponents contain information about the cut-

o↵ via the constant � introduced in (3.1.31). However, at leading order the result is

independent of the cuto↵, and is hence universal.

3.2 O(N) scalar field theory

Now let us apply the same treatment to N scalar fields 'a (a = 1, . . . , N) with an O(N)

invariant potential V⇤('2) = V⇤(⇢), in the LPA. We use the shorthand ⇢ = 'a'a = '2.
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The flow equation (3.1.4) becomes [60,153]:

✓
@t � d+ 2d'⇢

@

@⇢

◆
V⇤(⇢) = �

1

2

Z
ddq

(2⇡)d
�̇

�

�
M�1

�aa
, (3.2.1)

where the matrix M is given by:

Mab = �ab +�
@2V⇤(⇢)

@'a@'b
= �ab + 2�

h
�abV 0

⇤(⇢) + 2'a'bV 00
⇤ (⇢)

i
. (3.2.2)

Inverting and tracing, yields:

�
M�1

�aa
=

N � 1

1 + 2�V 0
⇤(⇢)

+
1

1 + 2�V 0
⇤(⇢) + 4�⇢V 00

⇤ (⇢)
. (3.2.3)

In the limit of large ⇢, the right hand side of the flow equation (3.2.1) can be neglected

at leading order. This implies that a FP solution V⇤(⇢) = V (⇢) takes the following

asymptotic form:

V (⇢) = A⇢
m
2 +O

⇣
⇢1�

m
2

⌘
as ⇢! 1 , (3.2.4)

where as before the subleading term has been calculated by iterating the leading contri-

bution to next order.

The RG eigenvalue equation follows by linearising (3.2.1) around the fixed point solution,

V⇤(⇢) = V (⇢) + " v(⇢) ✏�✓t , (3.2.5)

giving an equation for v(⇢) with the same structure as (3.1.7), i.e.

�a2(⇢)v
00 + a1(⇢)v

0 + a0(⇢)v = (d� ✓)v , (3.2.6)

the same value for a0(⇢) = 0, but di↵erent expressions for a1(⇢),

a1(⇢) = 2d'⇢�

Z
ddq

(2⇡)d
�̇


1

(1 + 2�V 0 + 4�⇢V 00)2
+

N � 1

(1 + 2�V 0)2

�
, (3.2.7)

and a2(⇢), which however is again always positive:

a2(⇢) =

Z
ddq

(2⇡)d
2�̇⇢

(1 + 2�V 0 + 4�⇢V 00)2
. (3.2.8)

Using the asymptotic fixed point solution (3.2.4) (and assuming A 6= 0) we get that

asymptotically a2 scales as follows:

a2(⇢) = 4F⇢3�m +O
⇣
⇢4�

3m
2

⌘
as ⇢! 1 , (3.2.9)
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where F was already defined in (3.1.14). By similar arguments to before, we see that

m > 3 in practice, so this implies a2(⇢) ! 0. We also find that a1 scales as follows:

a1(⇢) = 2 d'⇢+O
�
⇢2�m

�
as ⇢! 1 . (3.2.10)

If we substitute ⇢ = '2 into the above asymptotic expansions, they di↵er from the large

' behaviour (3.1.9) of a1(') and (3.1.13) of a2('). However they reproduce the previous

results once we transform the ODE (3.2.6) by changing variables ⇢ = '2. Thus by the

same arguments as before, cf. (3.1.16), we also know that for ⇢! 1, we must have

v(⇢) / ⇢
d�✓
2d' + · · · . (3.2.11)

However, this now imposes only one boundary condition on the linear ODE (3.2.6) since

⇢ is restricted to be non-negative. On the other hand we see from (3.2.8) that a2(0) = 0,

so the ODE has a so-called fixed singularity at ⇢ = 0. In order to ensure that v(⇢)

remains non-singular at this point, an additional boundary condition is then required:

a1(0)v
0(0) = (d� ✓)v(0) . (3.2.12)

Now we again have two boundary conditions, overconstraining the equation, and leading

to quantisation of the RG eigenvalue ✓.

3.2.1 Sturm-Liouville analysis

The last step is to perform the SL analysis, which also di↵ers because of the ⇢ = 0

boundary. For small ⇢ we have

a2(⇢) = 2G⇢+O(⇢2) and a1(⇢) = �GN +O(⇢) , (3.2.13)

where we have set

G =

Z
ddq

(2⇡)d
�̇

[1 + 2�V 0(0)]2
. (3.2.14)

Note that G is of course positive. (By Taylor expanding (3.2.1) one sees that its conver-

gence is guaranteed for any such solution to the flow equation.) The SL weight function

now takes the form

w(⇢) =
1

a2(⇢)
exp

⇢
�

Z
⇢

⇢0

d⇢0
a1(⇢0)

a2(⇢0)

�
, (3.2.15)

where by (3.2.13) a non-zero lower limit, ⇢0 > 0, is required to avoid the integral

diverging (when N 6= 0).

Using w(⇢) we can now cast (3.2.6) in SL form (3.1.20). However, for the SL operator

to be self-adjoint, we need the boundary contributions that appear on integration by

parts, to vanish. This is still true for large field since as ⇢ ! 1, the eigenoperators
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diverge at worst as a power, whilst from (3.2.9) we have a2(⇢) ! 0, and thus w(⇢) ! 0

exponentially fast. At the ⇢ = 0 boundary we require:4

lim
⇢!0

a2(⇢)w(⇢)
�
vi(⇢)v

0
j(⇢)� vj(⇢)v

0
i(⇢)

�
= 0 , (3.2.16)

for any two eigenfunctions vi(⇢) and vj(⇢). This is true for all N > 0 since by (3.2.13)

and (3.2.15) we see that for small ⇢,

a2(⇢)w(⇢) / ⇢N/2 [1 +O(⇢)] . (3.2.17)

We have thus determined that the SL operator is self-adjoint for all N > 0.

Actually, N = 0 is also interesting since it corresponds to the universality class of

fluctuating long polymers [98]. In this case, the above analysis shows that a2(0)w(0) > 0,

which would appear to imply that (3.2.16) is no longer satisfied. However from (3.2.13)

we see that a1(0) = 0 now and thus, from (3.2.12), either ✓i = d or vi(0) = 0 [60].

The first possibility corresponds to the uninteresting solution v(⇢) ⌘ 1, i.e. the unit

operator, which we discard. All the other eigenoperators must thus satisfy vi(0) = 0,

and so (3.2.16) is satisfied in this reduced space. Therefore, with this one proviso, the

SL operator is actually self-adjoint for all N � 0.

For general N < 0, the SL operator fails to be self-adjoint, and thus SL analysis is no

longer applicable. However for N = �2k, k a non-negative integer, something special

happens. The first k+1 eigenoperators with the lowest scaling dimension turn out to have

exactly soluble scaling dimensions, in fact coinciding with the Gaussian ones [154–156].

(The case N = 0 above is the first example, the lowest dimension operator being the

unit operator with scaling dimension zero.) Again, the SL operator is self-adjoint in

the remainder of the space. For example for N = �2, one knows from ref. [60] that

the remaining eigenoperators satisfy vi(0) = v0
i
(0) = 0, and thus vi(⇢) / ⇢2 for small

⇢, whilst for N = �4 boundary conditions force the remaining eigenoperators to satisfy

vi(⇢) / ⇢3 for small ⇢. From that analysis it is clear that in general at N = �2k, we

have that the remaining operators satisfy

vi(⇢) / ⇢k+1 as ⇢! 0 . (3.2.18)

Combining these observations with (3.2.16) and (3.2.17), we see that the SL operator is

indeed self-adjoint in the reduced space defined by excluding the first k + 1 operators.

The SL equation can now be recast in the same way as before, using (3.1.22) for x

and (3.1.23) for  (x) (except for the obvious replacement of ' by ⇢). The resulting

Schrödinger equation is then precisely as before, viz. (3.1.24), and the potential U(x)

also takes precisely the same form in terms of the ai, viz. (3.1.25). However the ⇢ = 0

4Using (3.2.12) and (3.2.13), this can be reduced to lim⇢!0 a2(⇢)w(⇢)(✓i � ✓j) vi(⇢)vj(⇢) = 0 (when
N 6= 0).
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boundary turns into an x = 0 boundary since, by (3.2.13) and (3.1.22), we have

x =
p
2⇢/G+O

⇣
⇢

3
2

⌘
as ⇢! 0 . (3.2.19)

Thus, using a2 from (3.2.13) and a2w from (3.2.17), we see that

 (x) / x
N�1

2 v(x) (3.2.20)

for small x. Hence for all N > 1,  (x) vanishes as x ! 0. On taking into account the

behaviour (3.2.18) we see that in the reduced space,  (x) also vanishes for the special

cases N = �2k. In this limit the leading contributions to the potential come from the

first, third and fourth terms in (3.1.25), and thus we find:

U(x) =
(N � 1)(N � 3)

4x2
+O(1) as x ! 0 . (3.2.21)

The cases N = 1, 3 are exceptional since this leading behaviour then vanishes, whilst the

range 1 < N < 3 will need a separate treatment because the potential is then unbounded

from below.

At the other end of x’s range, we find that

x =

Z
⇢

0
d⇢0

 
(⇢0)

1
2 (m�3)

2
p
F

+O
⇣
⇢0�

1
2

⌘!
=

⇢
1
2 (m�1)

(m� 1)
p
F

+O
⇣
⇢

1
2

⌘
as ⇢! 1 . (3.2.22)

Identifying ⇢ = '2, this is the same formula (3.1.26) as before. The potential U(x)

is again dominated by the first term in (3.1.25), both at LO and NLO. Substituting

the asymptotic expressions (3.2.10) and (3.2.9) for a1 and a2, we find exactly the same

formula (3.1.28) for the large x behaviour of U(x). In particular the leading term is

again that of a simple harmonic oscillator with angular frequency ! = d� d'.

3.2.2 WKB analysis

For the cases N > 3, 0 < N < 1 and N = �2m, we can now proceed with the WKB

analysis in the usual way. In this case we have for the total phase of the wave function:

Z
x
+
n

x
�
n

dx
p
En � U(x) =

✓
n+

1

2

◆
⇡ , (3.2.23)

where x�n and x+n are the classical turning points, i.e. En = d � ✓n = U(x�n ) = U(x+n ).

In contrast to the previous case, the potential is not symmetric and there is no simple

relation between x�n and x+n .

In the large n limit, the contribution from the right hand boundary gives half of what we

obtained before. To see this in detail, let x+0 be some fixed finite value but su�ciently
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large to trust the asymptotic form (3.1.28) of the potential, then the contribution from

the right hand boundary is

Z
x
+
n

x
+
0

dx
p

En � U(x) =
!

2
(x+n )

2
Z 1

x
+
0 /x

+
n

dy

q
1� y2 + �(x+n )

1
m�1�1(1� |y|1+

1
m�1 ) .

(3.2.24)

Taking into account the multiplying factor of (x+n )
2 we see that the lower limit x+0 /x

+
n

of the integral can be set to zero, since the correction is of order O(x+n ) which is smaller

than that given by the � correction. Thus we get half the integral in (3.1.31) (with xn

replaced by x+n ) giving half the left hand side of (3.1.32):

Z
x
+
n

x
+
0

dx
p

En � U(x) =
!⇡

8
(x+n )

2 +O
⇣
(x+n )

1+ 1
m�1

⌘
. (3.2.25)

Using the asymptotic form of the potential, we see that the leading term can be written

as ⇡En/(2!). In the large n limit, the left hand boundary makes a contribution that can

be neglected in comparison. To see this let x�0 be some fixed finite value but su�ciently

small to use (3.2.21). Then the contribution from the left hand boundary is

Z
x
�
0

x
�
n

dx
p
En � U(x) =

1

2

p
(N � 1)(N � 3)

Z
x
�
0 /x

�
n

1
dy

 p
y2 � 1

y
+O(x�n )

!
. (3.2.26)

Since x�n is vanishing for large En, we see that this integral is O(1/x�n ) or, using again

the relation (3.2.21), O(E1/2
n ). That only leaves the portion of the integral that goes

from x�0 to x+0 , but since these boundaries are fixed and finite, we see that this part also

grows as
p
En and thus it too can be neglected in comparison to (3.2.25).

Therefore asymptotically the integral in (3.2.23) is given by (3.2.25). Inverting the

relation to find (x+n )
2 asymptotically in terms of n, we thus find

dn = En = d�✓n = U(x+n ) = 2n!+O
⇣
n

m
2(m�1)

⌘
= 2n(d�d')+O

⇣
n

m
2(m�1)

⌘
as n ! 1 ,

(3.2.27)

i.e. precisely double the value we found for a single component field in (3.1.33) and

independent of N .

We see that technically this arises because the WKB integral is precisely half as large

in the O(N) case, the leading contribution coming from the x+n boundary only. Recall

that at N = 1, 3, the leading behaviour (3.2.21) of U(x) is no longer applicable. Since

the potential is now finite as x ! 0, it is clear from the above analysis that the left

hand boundary continues to contribute at most O(E1/2
n ) ⇠

p
n and so can be neglected.

Thus we see that (3.2.27) applies also to these exceptional cases. Thus also for N = 1

we find twice the previous scaling dimension as a function of large index n. This is

in agreement with that single field result however, because these eigenoperators are a
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function of '2 only. Hence for a single component field, the current n indexes only the

even eigenoperators (those symmetric under '$ �').

Finally, let us show that our result (3.2.27) is also applicable to the range 1 < N < 3.

Although in this case, from (3.2.21), the potential U(x) ! �1 as x ! 0, we know

from (3.2.20) that the solutions we need, have  (x) vanishing there. These solutions

are consistent with the Schrödinger equation (3.1.24) because for small x we have, by

(3.2.20), a diverging second derivative:

�
d2 (x)

dx2
/ �

(N � 1)(N � 3)

4x2
 (x) , (3.2.28)

which is precisely the right behaviour to cancel the divergence in the Schrödinger equa-

tion coming from the U(x) (x) term. Meanwhile the v(x) term in (3.2.20) is well be-

haved in terms of oscillations at small x, behaving similarly to the above cases. Therefore

we are only neglecting a subleading contribution to the total phase, if we work instead

with a modified WKB integral where we replace the lower limit in (3.2.23) with some

finite value x�0 . By the above analysis we then recover (3.2.27) again. In this way we

have shown that the result (3.2.27) is actually applicable for all N � 0 and to the special

cases N = �2k (where k is a non-negative integer).

3.3 Summary and discussion

We have used SL theory and WKB methods to derive the scaling dimension dn of highly

irrelevant operators On around a non-trivial fixed point for scalar field theory, in the

LPA. The scaling dimensions dn are ordered so that they increase with increasing index

n. The dn are derived following the methods developed in [4]. They are given to leading

order in n, together with the power-law dependence on n of the next-to-leading order.

The results apply to all the non-trivial (multi)critical fixed points in 2 < d < 4, for single

component scalar field theory and for O(N) invariant scalar field theory, and also to the

unitary minimal models in d = 2 dimensions. The dn are universal, independent of the

choice of fixed point (except through the anomalous dimension ⌘) and independent of

the cuto↵ choice which we have left general throughout, apart from the weak technical

constraints discussed below eqn. (3.1.14). In particular these constraints allow for

the popular smooth cuto↵ choice (3.1.15). The crucial property leading to universality

is that the results depend only on asymptotic solutions at large field, which can be

derived analytically, and are also universal in the same sense. Although non-universal

cuto↵-dependent terms, in particular (3.1.14) and (3.2.14), enter into the calculation at

intermediate stages, they drop out in the final stages. For a single component real scalar

field, dn is given in (3.1.33). For O(N) scalar field theory, the dn are just twice this,

cf. (3.2.27), independent of N . This is in agreement with the single field result because

here n indexes the eigenoperators that are a function of '2 only.
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The first steps in deriving these results is to recast the eigenoperator equation in SL

form, and then establish that the SL operator is self-adjoint in the space spanned by

the eigenoperators. For a single component scalar field this follows after demonstrating

that the SL weight decays exponentially for large field, since the eigenoperators grow

at most as a power of the field. For the O(N) case the analysis is more subtle because

the relevant space is now the positive real line (parametrised by ⇢ = '2
� 0) and

thus the SL operator is self-adjoint only if the boundary terms at ⇢ = 0 also vanish.

By analytically determining the small ⇢ dependence of the relevant quantities we see

that the SL operator is self-adjoint when N > 0. For N  0, the SL operator is not

self-adjoint and the analysis does not apply. Presumably in these cases one would find

that the scaling dimensions dn are no longer real. However for a sequence of special

cases N = �2k, k a non-negative integer, the SL operator is self-adjoint on a reduced

space spanned by all eigenoperators apart from the first k + 1. The analysis can then

proceed on this reduced space. As we already noted, while most of these special cases are

presumably only of theoretical interest, the N = 0 case describes the statistical physics

of long polymers.

The next step is to cast the SL equation in the form of a one-dimensional time-independent

Schrödinger equation with energy levels En = dn and potential U(x). For the single com-

ponent field this potential is symmetric, and in order to determine the energy levels En

asymptotically at large n, using the WKB approximation, we need only the behaviour of

U(x) at large x. The latter follows from our asymptotic analysis. For O(N) scalar field

theory, the space is the positive real line x � 0, and thus for WKB analysis we need also

the behaviour of the potential U(x) at small x. Here we find that the range 1  N  3

requires a separate treatment because the leading term in U(x) turns negative leading

to a potential unbounded from below. Nevertheless we are able to treat this case and

the end result for dn, (3.2.27), is the same, thus applying universally to all N � 0 and

the N = �2k special cases.

Although these results are universal, they are still derived within the LPA, which is an

uncontrolled model approximation. One might reasonably hope however that the fact

that these results are universal in the sense of being independent of the detailed choice of

cuto↵, is an indication that they are nevertheless close to the truth. On the other hand

the LPA [65] of the Polchinski flow equation [28] is in fact completely cuto↵ independent,

although this property arises rather trivially. It is actually equivalent under a Legendre

transformation [157] to the flow equation (3.1.4) for the Legendre e↵ective action in

LPA, as we study here, but only for a special (but actually popular) choice of additive

cuto↵ known as the optimised cuto↵ [158]. However the optimised cuto↵ does not satisfy

our technical constraints given below (3.1.14) so our analysis is invalid for this case. Nor

in fact does a sharp cuto↵ [30,63,66,159] or power-law cuto↵ [138] satisfy the technical

constraints. What this means is that these particular cuto↵s fail to regularise completely

the region of large fields, in the sense that a2, defined by (3.1.10) or (3.2.8), no longer
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has an asymptotic expansion given simply by integrating over the asymptotic expansion

of its integrand. For these three particular cuto↵s, regions of momenta far from ⇤ alter

the asymptotic expansion of a2 so that it is no longer of the form (3.1.13), or (3.2.9),

and for this reason these cuto↵s are less satisfactory.

Nevertheless, following our methods, it would be straightforward to derive the asymp-

totic scaling dimensions dn in LPA for any or all of these three special choices of cuto↵,

by using the particular form of the LPA flow equation in these cases (which are known

in closed form, since the momentum integrals can be calculated analytically in these

cases). The results will di↵er from the dn derived here and amongst themselves, but

their investigation would improve insight into the accuracy of the LPA in this regime.

Furthermore it would seem possible to generalise any of these special choices of cuto↵

to their own class of cuto↵s with similar properties, and thus understand the extent to

which the results could still be cuto↵ independent, up to some appropriate constraints,

in these cases, and gain a more detailed understanding of why the dn di↵er.

Unfortunately our dn do not seem to match in a useful way to existing results in the

literature. The LPA restricts us to eigenoperators that contain no spacetime derivatives,

and thus our index n counts only over these. In reality all eigenoperators (apart from

the unit operator) contain spacetime derivatives, so in particular it is not clear how our

index n would map into the exact sequence.

However in some special limits the LPA is e↵ectively exact. This is true for the Gaussian

fixed point for example, where dn = nd' (with ⌘ = 0). Our scaling dimensions dn di↵er

from this, but the Gaussian fixed point is specifically excluded from our analysis since

our results apply only to non-trivial fixed points, such that the asymptotic expansion of

the fixed point potential takes the form (3.0.2) or (3.2.4) with A 6= 0.

The LPA also becomes e↵ectively exact in the large N limit [153], and there the scaling

dimensions are dn = 2n (with ⌘ = 0) which again di↵ers from our result (as well as

di↵ering from the Gaussian fixed point result). Furthermore they continue to disagree

even if we now take a second limit such that both n and N are sent to infinity. However

in this case we have an example where the order of the limits matters. The N ! 1

result is derived for dn whilst first holding n fixed, while our result applies first for fixed

N while n ! 1.

The di↵erence can be seen at the technical level. The first term on the right hand

side of the flow equation (3.2.1) is proportional to N . In our analysis however it is

the denominators that dominate. On the other hand in the large N analysis, only the

first term survives, resulting in a first order ODE with no SL properties (or Schrödinger

equation representation). The universal results fall out on the one hand in our analysis

from the asymptotic behaviour at large field, but on the other hand in large N they

fall out from a Taylor expansion around the minimum of the fixed point potential [153].
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There seems unfortunately to be no way to bridge the gap between these two limiting

regimes.

An even clearer example where the exchange of limits do not commute, is provided by

the special cases N = �2k. As we recalled in sec. 3.2, in these cases the first k + 1

eigenoperators degenerate, gaining Gaussian scaling dimensions. But our dn apply to

the highly irrelevant eigenoperators that are found in the reduced space, which excludes

these first k + 1 operators, and hence have non-trivial scaling dimensions. However if

instead we fix on the nth eigenoperator and let N ! �1 by sending k ! 1, we see that

this nth eigenoperator will fall into the excluded space and thus end up with Gaussian

scaling dimensions. The disagreement between the two results will then remain even if

we choose next to send n ! 1.
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Chapter 4

The functional f (R) approximation

This chapter is a review of functional f(R) approximations in the asymptotic safety

approach to quantum gravity. As ref. [146] emphasised, the truncation (4.0.2) is as

close as one can get to the LPA [63, 66], a successful approximation for scalar field

theory in which only a general potential V (') is kept for a scalar field ' (see e.g.

[63,66,72,138,139,150]). The LPA can be viewed as the start of a systematic derivative

expansion [138], in which case this lowest order corresponds to regarding the field ' as

constant. In rough analogy, an approximation of form (4.0.2) may be derived by working

on a euclidean signature space of maximal symmetry, where the scalar curvature R is

constant. (Typically a four-sphere is chosen.) In particular, techniques that have proved

successful in scalar field theory [66,72,138,139,150,151] have been adapted to this very

di↵erent context, and used to gain substantial insight [4, 147,160–162]. Here we mostly

focus on a formulation that uses a non-adaptive cuto↵, resulting in a second order

di↵erential equation. As in previous chapter, this formulation is used as an example

to give a detailed explanation for how asymptotic analysis and Sturm-Liouville analysis

can be used to uncover some of its most important properties. In particular, if defined

appropriately for all values �1 < R < 1, one can use these methods to establish that

there are at most a discrete number of fixed points, that these support a finite number

of relevant operators, and that the scaling dimension of high dimension operators is

universal up to parametric dependence inherited from the single-metric approximation.

Formulations using adaptive cuto↵s, are also reviewed, and the main di↵erences are

highlighted.

The asymptotic safety programme [31–34, 38] is one attempted route to a quantum

theory of gravity. Although quantum gravity based on the Einstein-Hilbert action is

plagued by ultraviolet infinities that are perturbatively non-renormalizable (implying

the need for an infinite number of coupling constants), a sensible theory of quantum

gravity might be recovered if there exists a suitable ultraviolet fixed point [31].
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The task is not just that of searching for an ultraviolet fixed point. They must also have

the correct properties. Perturbatively renormalizable ones exist for example “Conformal

gravity”, based on the square of the Weyl tensor, which thus corresponds to a Gaussian

ultraviolet fixed point [163]. It is apparently not suitable however, because the theory

is not unitary. Suitable unitary fixed points, if they exist, have to be non-perturbative.

They must also satisfy phenomenological constraints, for example they have to allow a

renormalized trajectory with classical-like behaviour in the infrared, since General Rel-

ativity is confirmed by observation across many phenomena and to impressive precision.

Of particular relevance for this chapter is that there should be a fixed point with a

finite number of relevant directions (otherwise it would be no more predictive than the

perturbatively defined theory). Preferably the theory should have only one fixed point,

or at least only a finite number (otherwise again we lose predictivity).

Functional renormalization group equation [28–30,35–37] studies, have flourished into a

powerful approach for investigating this possibility. These equations describe the flow

of the Wilsonian e↵ective action for some quantum field theory, under changes in an

e↵ective cuto↵ scale k. The asymptotic safety literature uses almost exclusively the

flow equation for �k which is, modulo minor details, the Legendre e↵ective action (the

generator of one-particle irreducible diagrams) cut o↵ in the infrared by k. Which is

to be identified as the cut o↵ ⇤ from previous chapters. It was also formulated long

ago [37] (in the sharp cuto↵ limit) and then rediscovered for smooth cuto↵s much later

in refs. [29,30]. Following ref. [29], �k is sometimes called the “e↵ective average action”,

however in this chapter it will simply be called an e↵ective action.

It is not practical to solve the full functional RG equations exactly. In a situation such

as this, where there are no useful small parameters, one can only proceed by considering

model approximations. These always proceed from the following observation: Wilsonian

e↵ective actions can be written as a sum over operators, where the coe�cients are the

couplings for these operators and they evolve with the scale k.

In fact this sum should be restricted to local operators. This is the requirement of

quasi-locality, which comes from the short range nature of the Kadano↵ blocking step

in Wilsonian RG [35], when implemented in the continuum [164, 165]. A related point

is that the Wilsonian RG is performed in euclidean signature, so that “short range” has

a sensible meaning.

The problem is that for any general solution, this sum is infinite, over all possible local

operators allowed by the symmetries (the “theory space”). However, this motivates the

simplest model approximation which is to truncate drastically the infinite dimensional

theory space to a handful of operators. An example is the original truncation studied

by Reuter [32, 166]:

�k[gµ⌫ ] =

Z
d4x

p
g
�
u0(k) + u1(k)R

�
, (4.0.1)
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which retains only the cosmological constant term and the scalar curvature R term.

Where once again we respect the convention of denoting the cut o↵ scale by k used

in the asymptotic safety community. For obvious reasons this is called the “Einstein-

Hilbert truncation”. Classically u0 = ��cc/(8⇡G) and u1 = �1/(16⇡G), where �cc is

the cosmological constant and G is Newton’s constant, but after quantum corrections

these couplings run with k in the functional RG. The minus sign in u1 comes from

working in euclidean signature.

Apart from RG symmetry, these truncations destroy pretty well all the properties that

ought to hold. For example scheme independence (i.e. independence on choice of cuto↵,

or more generally universality), and modified BRST invariance [32,167] (which encodes

di↵eomorphism invariance for the quantum field under influence of the cuto↵) cannot

then be recovered. Furthermore, only by keeping an infinite number of local operators

can the non-local long-range nature of the (one-particle irreducible) Green’s functions be

recovered (see e.g. ref. [168]). One has to trust that by considering ever less restrictive

truncations the description gets closer to the truth. There are some examples that go well

beyond the Einstein-Hilbert truncation by keeping a large number of operators [169–172].

These are based around polynomial truncations, i.e. where everything is discarded except

powers of some suitable local operators, typically the scalar curvature R again, up to

some maximum degree. They appear to show convergence, in particular the number of

relevant operators is found to be three.

Another approximation in the asymptotic safety literature that is necessary in order

to formulate di↵eomorphism invariant truncations, such as eqn. (4.0.1), conflates the

true (quantum) metric with the background metric. It is called the “single metric” or

“background field” approximation, and will be described in the next section. It is harder

to relax this approximation in any substantive way, although see refs. [173–181] for some

approaches.

Whilst very encouraging results are found from multiple studies of such finite order

truncations (see e.g. the review [182]), successful implementations of more powerful

approximations would build confidence in the scenario. The next step is to keep an

infinite number of operators. Arguably the simplest such truncation is to keep a full

function f(R), making the ansatz [4, 146,148,175–177,183–193]

�k[g] =

Z
d4x

p
g fk(R) . (4.0.2)

This is the functional f(R) approximation which is the subject of this chapter. It is

achieved by specialising to a maximally symmetric background manifold, either a four-

sphere or four-hyperboloid.

Closely related approximations have been studied in scalar-tensor [194–196] and uni-

modular [197] gravity, and in three space-time dimensions [189]. In fact, the high order



92 Chapter 4. The functional f(R) approximation

finite dimensional truncations [169–172] were developed by taking examples of these

f(R) equations and then further approximating to polynomial truncations.

Note that the functional f(R) approximation actually goes beyond keeping a countably

infinite number of couplings, the Taylor expansion coe�cients gn = f (n)(0), because a

priori the large field parts of f(R) contain degrees of freedom that are unrelated to all

these gn. For example suppose that at large R one finds that f(R) ⇡ exp(�a/R2), where

a > 0 is some parameter. Such an f(R) is in the form of a standard counter-example in

mathematical analysis. It has the property that gn = 0 for all n.

The functional truncation (4.0.2) still has the problems that were highlighted earlier for

its finite dimensional counterparts. However, again one can hope that it is closer to

the truth. One hint that this is in fact the case is covered at the end of this chapter.

Assuming that the most recent version [4] does have a fixed point solution, then it

turns out that operators with high scaling dimension do begin to display universality –

unfortunately up to an annoying parameter that remains which is clearly caused by the

single-metric approximation.

In this chapter, it will be explained how to construct functional f(R) approximations

and how to interpret them. Important properties of formulations that use an adaptive

cuto↵ [146, 175–177, 183–193] will be reviewed. These result in third order di↵erential

equations, with fixed singularities and problematic asymptotic behaviour. Mostly the

chapter will focus on a non-adaptive cuto↵ formulation [4, 148] that results in a second

order di↵erential equation, using it as an example to give a detailed exposition of the

techniques, especially asymptotic analysis and Sturm-Liouville analysis, that can be used

to prove properties of functional f(R) approximations. In particular, if the second order

formulation is taken to apply to only one of the two spaces (sphere or hyperboloid),

the fixed point solutions form a continuous set and the eigenoperator spectrum is not

quantised. However, if these spaces are joined together smoothly (through flat space

at their boundary), these methods establish that there are at most a discrete number

of fixed points, that the fixed points support a finite number of relevant operators, and

yield the result above for operators of high scaling dimension. They do not establish that

such fixed points actually exist however. Such a demonstration requires more powerful

numerical analysis and/or simpler fixed point formulations [4].

4.1 Flow equations

The starting point is, of course, the functional RG flow equation (1.3.24):

@t�k =
1

2
STr

h
(�(2)

k
+Rk)

�1@tRk

i
, (4.1.1)
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We introduce dimensionless variables as in the previous chapter by multiplication of

appropriate powers of the cut-o↵ scale k. In the f(R) approximation the appropriate

powers are just the canonical (a.k.a. engineering) ones:

f̃k(R̃) ⌘ f̃(R̃, t) = k�4fk(k
2R̃), R̃ = R/k2 . (4.1.2)

(From this point onwards we drop the tilde denoting dimensionless quantities, unless

otherwise specified, but the reader should assume that all the quantities are dimension-

less.)

In this way solutions to the flow equation will reveal all the fixed points of the theory, i.e.

t independent solutions f(R, t) = f(R). Fixed points are characterized by the number of

relevant operators eigenoperators v(R) (operators of definite scaling dimension) that flow

into the fixed point when we increase the cuto↵ scale k. Exceptionally eigenoperators

can appear that are “redundant”, corresponding to a change of variables in the theory

[160,198,199].

Linearising the flow equations around the fixed point and separating variables:

fk(R) = f(R) + ✏ v(R) e�✓t (4.1.3)

This turns the flow equation into an eigenvalue problem where the RG eigenvalue ✓ is

often called a “critical exponent” in the asymptotic safety literature. From its associated

v(R) it can be similarly classified as relevant, irrelevant, marginal or redundant. Thus

if <✓ > 0 then it is relevant, whilst if <✓ < 0 it is irrelevant. In statistical physics, non-

redundant ✓ can be straightforwardly related to experimentally defined and measurable

critical exponents, see e.g. [98]. If computed correctly an important property of a non-

redundant ✓ is that it is universal, which means in particular that its value is independent

of the regularisation scheme and the choice of flow equation [198]. This was the case for

highly irrelevnt operators in scalar theory as we saw in the last chapter.

As already intimated, one is generally interested in those fixed points that have finitely

many relevant operators, because their couplings become the free parameters in the

theory, and will have to be fixed by experiments. Thus, theories based around these

points are predictive and are safe from UV divergences when k ! 1. The goal of

the asymptotic safety program is to verify if such points exist for gravity, analyse their

properties and deduce their consequences, both qualitatively and quantitatively.

Actually, the flow equation (4.1.1) requires a significant amount of adaptation to deal

with the fact that quantum gravity is a gauge theory. In standard fashion, it therefore

requires gauge fixing. This is commonly done by employing the background field method

where the full (a.k.a. total) metric ĝµ⌫ is split into a background gµ⌫ plus fluctuations

(the quantum field):

ĝµ⌫ = gµ⌫ + hµ⌫ . (4.1.4)
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Again we will be using the conventions of asymptotic safety to denote gµ⌫ as the back-

ground metric, rather than ḡµ⌫ as we did in chapter 2. In common with most of the

literature, this chapter will only use a linear split, although other, non-perturbatively

better motivated, splits are possible [182, 191]. Then the gauge fixing is imposed on

the quantum field hµ⌫ in such a way that di↵eomorphism invariance of the background

metric gµ⌫ is retained:

Fµ = r
⌫hµ⌫ �

1

4
rµh

⌫

⌫ , (4.1.5)

where the covariant derivative and raised indices, are defined using the background

metric. The process of fixing a gauge, adds the gauge fixing term

�gf =
1

2↵

Z
d4x

p
ggµ⌫FµF⌫ (4.1.6)

to the e↵ective action, and leads also to a ghost action. In practice the Landau gauge is

chosen: ↵! 0. Finally, it proves useful to make a change of variables, this is explained

in (4.1.10), and this leads to further, auxiliary, fields.

The true solution involves arbitrarily complicated interactions to arbitrarily high order

between all these fields, molified only by the symmetries (in particular background field

di↵eomorphism invariance and modified BRST invariance [116, 167]). The next steps

in the approximation drastically truncates all of this [32]. It can be summarised as

follows. Only the one-loop contributions from the bilinear ghost and auxiliary field and

fluctuation field actions are retained, i.e. on the right hand side of the flow equation

(4.1.1) only the Hessian from the classical action for these fields is used. The flow of

the bit of the e↵ective action that only depends on the background metric, is therefore

reproduced correctly at one loop. For the part beyond one loop, the correct Hessian in

(4.1.1) for the metric,
�2�k

�hµ⌫(x) �h↵�(y)
, (4.1.7)

is replaced by one in which the functional derivatives are with respect to the background

field instead:
�2�k

�gµ⌫(x) �g↵�(y)
. (4.1.8)

This is the single metric, or background field, approximation. It is almost always ap-

plied in asymptotic safety investigations. The review [181] covers exceptions. It should

be emphasised that already at one loop the single metric approximation is not correct,

because the dependence of the e↵ective action on hµ⌫ has no direct relation to its depen-

dence on gµ⌫ . The replacement above would be correct only if the e↵ective action were

a functional of the full metric (4.1.4) alone, but that relation is broken at the classical

level by the gauge fixing term (4.1.6) (and corresponding ghost action). Nevertheless

the replacement is attractive as a model, because it leaves us with a flow equation for

�k[g] that depends only on the background metric and in a di↵eomorphism invariant

way.
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Now by choosing the background manifold to be one of maximal symmetry, all di↵eo-

morphism invariants can be related either to the volume or the scalar curvature R, which

is a constant: @µR = 0. In this way the e↵ective action has been reduced to (4.0.2): the

functional f(R) approximation.

Plugging this with appropriately scaled fields (4.1.2) (and coordinates x̃µ = kxµ), into

the flow equation (4.1.1), one readily derives the form of the left hand side:

@t�k =

Z
d4x

p
g
⇥
@tfk(R) + 4fk(R)� 2Rf 0

k
(R)

⇤
. (4.1.9)

The right hand side of the flow equation depends on the detailed way the quantum

corrections are handled, which di↵ers between authors [4, 146, 148, 175–177, 183–193].

For this we need to compute the second variation of �k with respect to the fields.

First, the gauge fixing term (4.1.6) is chosen and the ghost action is derived. Then the

transverse traceless (a.k.a. York) decomposition of the metric [200] is used:

hµ⌫ = hTµ⌫ +rµ⇠⌫ +r⌫⇠µ +rµr⌫� +
1

d
gµ⌫ h̄ , (4.1.10)

which separates physical degrees of freedom, viz. hTµ⌫ and h̄, from the unphysical ones

associated with gauge degrees of freedom, namely ⇠µ and �. These fields satisfy

hT
µ

µ = 0, r
µhTµ⌫ = 0, r

µ⇠µ = 0, h̄ = h�r
2�. (4.1.11)

Expressing
p
ĝ and R̂, where the latter is the curvature of the full metric (4.1.4), to

quadratic order in these fields, the elements of the Hessian can be determined for these

components. For example for the physical components one finds

�(2)
hT
µ⌫h

T
↵�

= �
1

2
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◆
+

✓
fk �

1

2
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◆�
�µ⌫,↵� , (4.1.12)
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9f 00
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◆2

+ 3f 0
k

✓
�r

2
�

R

3

◆
�

✓
Rf 0

k
� 2fk

◆�
, (4.1.13)

where the right hand side is evaluated at ĝµ⌫ = gµ⌫ , in preparation for the single metric

approximation. We can write these more compactly if we introduce

Ek(R) = 2fk(R)�Rf 0
k
(R) , (4.1.14)

which is the equation of motion that follows from the action (4.0.2), and express them

instead using the natural Laplacian �s for a spin s component field (on a maximally

symmetric background) [146]:

�0 = �r
2
�

R

3
, �1 = �r

2
�

R

4
, �2 = �r

2 +
R

6
. (4.1.15)

A similar decomposition is applied to the ghost action. In the formulation of ref. [146] the
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contribution to the Hessian coming from the gauge degrees of freedom from the metric

and the ghosts cancel each other exactly. Finally, including the contributions of the

auxiliary fields that encode the Jacobians due to the transverse traceless decomposition

of the metric and the ghost fields, gives the full flow equation (4.1.1) in the single metric

and functional f(R) approximation:

V
�
@tfk(R) + 2Ek(R)

�
= T2 + T

h̄

0 + T
Jac

1 + T
Jac

0 , (4.1.16)

where V =
R
d4x

p
g is the volume of the manifold, and the T objects are the following

spacetime traces:

T2 = Tr
h dtRT

k

�f 0
k
(R)�2 � Ek(R)/2 + 2RT

k

i
, (4.1.17)

T
h̄

0 = Tr
h 8 dtRh̄

k

9f 00
k
(R)�2

0 + 3f 0
k
(R)�0 + Ek(R) + 16Rh̄

k

i
, (4.1.18)

T
Jac

1 = �
1

2
Tr
h dtRV

k

�1 +RV

k

i
, (4.1.19)

T
Jac

0 =
1

2
Tr
h dtRV

S1

�0 +R/3 +R
S1
k

i
� Tr

h 2 dtRV

S2

(3�0 +R)�0 + 4RS2
k

i
. (4.1.20)

The right hand side of (4.1.16) has been subdivided into contributions coming from fields

of di↵erent spins. The first two come from the physical spin-2 traceless part of the metric

and the spin-0 trace of the metric, as the reader can see by using (4.1.12) and (4.1.13)

in (4.1.1). The last two are spin-1 and spin-0 parts coming from field redefinitions.

4.2 Cuto↵ functions

One place where crucial di↵erences occur between the di↵erent implementations is in the

choice of cuto↵ Rk. An apparently attractive strategy is to choose cuto↵s that simplify

the flow equations as much as possible. “Adaptive cuto↵s” are introduced partly with

that aim [146,175–177,183–193]. They implement the following rule for all appearances

of the Laplacian operator �r
2:

�r
2
7! �r

2 + k2r(�r
2/k2) , (4.2.1)

where r(z) is a cuto↵ profile function.

Such a choice also seemingly solves an awkward feature of euclidean quantum gravity,

which is that the euclidean signature Einstein-Hilbert action (4.0.1) has a wrong-sign

kinetic term and propagator for h̄, the so-called conformal instability [107]. This can be

seen in the negative coe�cient for �0 in (4.1.18) in this case. By implementing (4.2.1),

the cuto↵ automatically adapts to this wrong sign, so that it continues to modify the

propagator in the intended way: by adding a momentum dependent mass term. Indeed
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if this were not done, the cuto↵ and kinetic term would have opposite signs, resulting

in a singular propagator. However, this trick does not entirely cure the problem since

it results in poor asymptotic (large R) behaviour. This issue will be briefly touched on

below and in sec. 4.3. For further discussion, see refs. [4, 32, 147,201–203].

Technically the above replacement rule is implemented by setting

R
�

k
= �(2)

k

⇥
�r

2 + k2r(�r
2/k2)

⇤
� �(2)

k
[�r

2] , (4.2.2)

for each mode �, so that the desired e↵ect is created for �(2)
k

[�r
2] + Rk in the flow

equation (4.1.1). Notice that the cuto↵ function is then of the same form as the Hessian

elements themselves and thus now also depends on f(R). This has a particular con-

sequence for the scalar h̄ mode, since �(2)
h̄h̄

contains f 00
k
(R), cf. eqn. (4.1.13). It means

that plugging this type of cuto↵ into the flow equation will result in the appearance of

Rf 000
k
(R), due to the presence of dtRh̄

k
in the numerator in (4.1.18) and the definition

(4.1.2) of fk(R). This makes the flow equation a third order di↵erential equation, which

unfortunately lacks the powerful properties found in a second order formulation (as cov-

ered in sec. 4.3). Furthermore, the factor of R leads to a so-called “fixed singularity” at

R = 0. Third order formulations su↵er from further fixed singularities and, as already

mentioned, poor asymptotic behaviour, this latter leading to continuous eigenoperator

spectra [147]. These problems will be further covered in sec. 4.3.

When using an adaptive cuto↵, the cuto↵ profile function r(�r
2/k2) is almost always

chosen to be the “optimised” profile [61]

r(z) = (1� z) ✓(1� z). (4.2.3)

The advantage of using this setup is that dtRk / ✓(1+r
2/k2), and thus the eigenvalues

of �r
2 are restricted to be less than k2. This means that in denominators one can simply

ignore the ✓ and thus k2r(�r
2/k2) ⌘ k2+r

2. Therefore the net e↵ect in denominators

is just to replace �(2)
k

[�r
2] with �(2)

k
[k2], massively simplifying the computation of

spacetime traces.

The second order formulation [4,148] chooses a non-adaptive cuto↵ function of the form

R
�

k
= km�c�r(�s + ↵sR) (4.2.4)

where s is the spin of the mode �, m� is set such that the cuto↵ has the same dimension

as �(2) for this mode, and c� is a number. In this chapter the c� will be taken to be

positive for all fields. This is a problem for developing solutions fk(R) that approximate

the perturbative quantisation of the Einstein-Hilbert action (4.0.1) because the h̄ Hessian

has the wrong sign there (as noted above). But again the alternative choice c
h̄
< 0

leads to poor asymptotic behaviour at large R, resulting in a continuous spectrum of

eigenoperators [4].
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Notice that the cuto↵s (4.2.4) have been chosen to depend on �s, rather than simply

the �r
2 part [146], and furthermore include an “endomorphism”, a curvature correction

with endomorphism coe�cient ↵s [148]. In refs. [4,148] the traces are computed directly

as a sum over modes. The ↵s are there to ensure that

�s + ↵sR > 0 , (4.2.5)

for all modes, which in turn ensures that they are all integrated out as k ! 0, and that

the flow equation does not su↵er from fixed singularities. For these non-adaptive cuto↵s,

the optimised cuto↵ profile (4.2.3) brings no particular advantage. In fact on a sphere the

trace is a discrete sum and sharp cuto↵ profiles would lead to a staircase behaviour [146],

with an ill-defined limit as R ! 0. Hence, a smooth (infinitely di↵erentiable) cuto↵

profile is used, such as [29]

r(z) =
z

exp(azb)� 1
, a > 0, b � 1 . (4.2.6)

4.3 Flow equations with adaptive cuto↵

In those formulations that use an adaptive cuto↵, spacetime traces are evaluated using a

heat-kernel asymptotic expansion, apart from ref. [146] which uses a direct spectral sum

together with a smoothing procedure (to get over the aforementioned staircase problem).

As an illustration, the result of the earliest four such formulations [183–185] for the flow

of f ⌘ f(R, t) on a four-sphere, can be summarised as:
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Here the function r is the optimised cuto↵ profile (4.2.3), which also leads to the ap-

pearance of the step functions (a.k.a. Heaviside ✓ functions). In ref. [185] the equation is

adapted to polynomial truncations only, which means that the step functions are all set

to one. The first two lines of the right hand side are independent of f(R, t) and encap-

sulate the contributions from the ghosts, auxiliaries, ⇠µ and �. Here we have introduced

the term ⌃. The third and fourth line arises from hTµ⌫ , whilst the final ratio is the con-

tribution from h. Unphysical modes are isolated di↵erently in these implementations,

but the changes can be summarised in the di↵erent expressions

⌃ = 0 , 10R2 ✓
�
1� R

3

�
, �

10R2(R2
� 20R+ 54)

(R� 3)(R� 4)
,

10(11R� 36)

(R� 3)(R� 4)
. (4.3.2)

The first, third and fourth options are derived in refs. [183,185], whilst the second option

comes from ref. [184]. We have suppressed some other details, for more discussion see

ref. [147].

Setting @tf = 0 in the above turns this flow equation into the di↵erential equation that

must be satisfied by a fixed point f(R). It is a highly non-linear third-order ODE (ordi-

nary di↵erential equation). In the formulation [184], the appearance of the ✓ functions,

explicitly and in r, will result in jumps in f 000(R) across the point where they switch on

or o↵, but this can be accommodated.

A more important and generic feature is the existence of fixed and moveable singularities.

These concepts come from the mathematics of analysis of ODEs. To discuss them it is

helpful to cast the fixed point ODE in “normal” form:

f 000(R) = rhs , (4.3.3)

where rhs (right hand side) contains no f 000 terms. A Taylor expansion about some

generic point Rp takes the form:

f(R) = f(Rp)+(R�Rp)f
0(Rp)+

1

2
(R�Rp)

2f 00(Rp)+
1

6
(R�Rp)

3f 000(Rp)+ · · · . (4.3.4)

Since (4.3.3) determines the fourth coe�cient in terms of the first three, we see that

typically (4.3.4) provides a series solution depending on three continuous real parameters,

here

f(Rp) , f 0(Rp) and f 00(Rp) , (4.3.5)

with some finite radius of convergence ⇢ whose value also depends on these parameters.

Therefore the standard mathematical result is recovered that around a generic point Rp

there is some domain D = (Rp�⇢, Rp+⇢) in which there is a three-parameter set of well-

defined solutions. From here one can try to extend the solution to a larger domain, e.g.

by matching to a Taylor expansion about another point within D. A typical problem,

seen also in the LPA and the derivative expansion [66,72,138,150,151] and in the second
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order formulation [4, 148], is that eventually, at some point R = Rc, dependent on the

parameters, the denominator of rhs develops a zero, so that as R ! Rc, (4.3.3) implies

f 000(R) = 2c/(R�Rc) + · · · , (4.3.6)

where c is some constant and the ellipses contains the non-singular part. Integrating

this we see that the solution typically ends in a moveable singularity, of form

f(R) ⇠ c (R�Rc)
2 ln |R�Rc| , (4.3.7)

where “⇠” means that less singular parts are neglected. As already mentioned, fixed

point equations derived with adaptive cuto↵ present another challenge in that they

also have fixed singular points Rc. These correspond in rhs to explicit algebraic poles

in R, where the domain of interest is R � 0 since the equations apply to the four-

sphere. Whatever the formulation there is always one fixed singularity Rc = 0, which

is unavoidable when using an adaptive cuto↵ as we have seen [146, 147]. Di↵erent

formulations have di↵erent numbers and positions for the other fixed singularities (see

e.g. the discussion in refs. [162, 190]) but there is always at least one more. Inspecting

the example (4.3.1), we see that f 000 appears once in the penultimate line in eqn. (4.3.1),

where it is multiplied by the polynomial

R

✓
27�

91

20
R2

�
29

30
R3

�
181

3360
R4

◆
. (4.3.8)

Thus, rearranging the fixed point equation into normal form (4.3.3), results in poles

from the zeroes of this polynomial. Two of these are in the required domain, namely at

Rc = 0 and Rc = 2.0065. There are also two further single poles, at Rc = 3 and Rc = 4,

from the first two lines of the right hand side of (4.3.1).

As R approaches one of these Rc, f will end at a singularity of form (4.3.7) unless the

f–dependent parts in rhs are tuned so as to conspire to cancel the pole. Substituting

the Taylor expansion (4.3.4), with Rp = Rc, one sees that this requirement forces some

generally non-linear combination of f(Rc), f 0(Rc) and f 00(Rc) to vanish. Thus, a fixed

singularity imposes a constraint on the solution, reducing the number of free parameters

by one.

The inevitable fixed singularity at Rc = 0 can thus be seen as restoring consistency since

it reduces the three parameter set of solutions to a two parameter set, in agreement in this

respect with what is obtained from the non-adaptive-cuto↵ second order formulation.

Unfortunately, since there are a further three fixed singularities, these equations are

overconstrained, and thus there are no fixed point solutions f(R) that are valid over the

whole range R � 0.
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However, these fixed singularities are artefacts of the regularisation procedure: it is

possible to move them and eliminate most of them. Benedetti and Caravelli were the

first to realise this, and we will refer to their version [146] as the “BC” formulation.

Before regularisation, the Jacobian trace (4.1.19) has a denominator that vanishes if

�1 vanishes. Likewise the Jacobian trace (4.1.20) has a denominator that vanishes

when �0 vanishes. Recalling the form (4.1.15) of the �s, and that the net e↵ect of the

adaptive optimised cuto↵ is to replace �r
2 with k2 in the denominator, we see that

these contributions give poles 1/(1�R/4) and 1/(1�R/3) (after using (4.1.2) to scale

to dimensionless quantities). These are the poles that are visible in the first two lines of

the right hand side of (4.3.1).

BC eliminate them by using an endomorphism, namely by using r(�s) instead of r(�r
2)

[146] (a so-called cuto↵ of type II [185]). Then one is left with the Rc = 0 singularity, and

a fixed singularity at some positive Rc which is due to the fact that the h̄ trace vanishes

there [146,147]. These fixed singularities thus reduce f(R) solutions to a one-parameter

set.

Now there is still the danger of encountering a moveable singularity (4.3.7), and this

imposes further restrictions on the remaining parameter. Such a singularity can appear

at any value of R, and in particular at large R where the equations can then be solved

analytically by developing the solution as an asymptotic expansion. In scalar field theory

[66, 72, 138, 139, 150, 151] and in the second order formulation [4], what is found is that

this asymptotic expansion has less than the full number of parameters expected. One

can also show that the missing parameters are associated with fast growing perturbations

that are incompatible with an asymptotic solution. In this way it is possible to deduce

analytically the number of constraints that moveable singularities are responsible for

imposing.

The result for scalar field theory is that the parameters are fixed, typically to a handful

of values [66,138,151], corresponding to a finite set of fixed points, or in special cases a

discrete infinity of fixed points [150]. However, there is at this stage also the possibility

that there are no fixed point solutions. The actual number of solutions then needs to

be determined numerically.1 We will see this at work in the second order formulation in

sec. 4.5 where we describe in detail how to find asymptotic solutions fasy(R).

Unfortunately for third order formulations, asymptotic analysis typically does not find

su�cient constraints [162]. For example for the BC formulation, the asymptotic solution

turns out to have the maximum three parameters [147]:

fasy(R) = AR2 +R

⇢
3

2
A+B cos lnR2 + C sin lnR2

�
+ · · · , (4.3.9)

1Although some may be found analytically, e.g. the Gaussian fixed point, or special cases [192].
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where the ellipses stand for asymptotic corrections with lower powers of R, and the three

parameters are restricted only by the inequality:

121

20
A2 > B2 + C2 . (4.3.10)

Thus, one still expects to find one-parameter sets (i.e. lines) of global solutions f(R) in

this case, and that is exactly what is found by careful numerical analysis [147]. Asymp-

totic analysis also shows that the BC formulation has continuous eigenoperator spectra.

Initially it was suggested that these e↵ects can be attributed to the fact that all eigen-

operators are redundant if the equation of motion (4.1.14) for the fixed point f(R),

has no solution for R in the required range R � 0 [160]. But it is now clear that the

poor behaviour is again associated to the scalar mode h̄ [147,190,201], and is one more

malign e↵ect of the conformal instability [107,147,201]. In fact precisely these problems

reappear in the second order formulation if one chooses c
h̄
< 0, as already mentioned in

sec. 4.2.

As emphasised in ref. [162], asymptotic analysis plays three powerful rôles. Firstly, as

just sketched and discussed in detail in sec. 4.5.1, it allows one to deduce the dimension

of the solution space. Secondly the asymptotic solution provides a way to validate nu-

merical solutions since if one can integrate out far enough, the numerical solution should

match the asymptotic solution, allowing a reliable determination of the asymptotic pa-

rameters.

Finally, the asymptotic solution actually contains only the physical part of the fixed

point e↵ective action. To see this, we need to return temporarily to labelling scaled

quantities with a tilde, and recall that the e↵ective infrared cuto↵ k is added by hand

such that the physical Legendre e↵ective action is recovered only in the limit that this

cuto↵ k ! 0. This must be done while holding the physical quantities such as R fixed,

rather than scaled quantities R̃. In normal field theory, e.g. scalar field theory, the

analogous object is the universal scaling equation of state, which for a constant field

precisely at the fixed point takes the simple form

V (') = A'd/d' , (4.3.11)

where d is the space-time dimension and d' is the full scaling dimension of the field

(i.e. incorporating also the anomalous dimension). In the current case we keep fixed the

constant background scalar curvature R. Thus by (4.0.2) and (4.1.2), the only physical

part of the fixed point action in this approximation is:

f(R)|phys = lim
k!0

k4 f̃(R/k2) = lim
k!0

k4 f̃asy(R/k2) . (4.3.12)

For example from (4.3.9), for the BC formulation one finds:

f(R)|phys = AR2 . (4.3.13)
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This is invariant under changes of scale as it must be, and is a sensible answer for the

scaling equation of state precisely at the fixed point. We will find the same answer from

the second order formulation.

We still have the problem that since there are one-parameter sets of fixed-point solutions,

A is not fixed. In third order formulations one can use the ability to add endomorphisms

to try to patch this up [190] but asymptotic analysis then shows there is actually a whole

zoo of possibilities for the scaling equation of state and dimension of the solution space,

depending on parameter choices in the endomorphisms [162]. One can also try to extend

the solution to negative R. This does reduce the solution space of the BC formulation

to a discrete set but that set appears to be empty since no numerical solutions were

then found [147]. A more careful version of this strategy is also used in the second order

formulation.

Actually one can question whether the large R̃ = R/k2 regime makes physical sense

[189,190,192]. The problem arises when the cuto↵ depends on modified Laplacians, e.g.

as in (4.2.5), where the endomorphism is added to ensure that the minimum eigenvalue is

positive. It is most easily seen if we take a sharp (step function) cuto↵ profile, and write

the minimum eigenvalue as R�min. Then once k2 < R�min, i.e. R̃ > 1/�min, there are

no more modes to be integrated out. This means that the functional behaviour in this

large R̃ regime is meaningless since it is not describing any actual changes. However the

physical Legendre e↵ective action is only reached by taking k ! 0, and this argument

would appear to imply that such a limit is inherently ill-defined.

In fact this conundrum is another artefact of the single-metric approximation [175]. In

reality one should be integrating out over an ensemble of manifolds described by the

fluctuating full metric ĝµ⌫ . The Wilsonian RG only makes sense when applied to such

an ensemble. Then no matter how small k is, there are always manifolds with su�ciently

small curvature that their eigenvalues remain to be integrated out. It is possible to repair

the single-metric approximation su�ciently in this case by retaining the scale degree of

freedom hµ⌫ / gµ⌫ in the fluctuation field dependence, and thus regaining an ensemble

of manifolds. However the net result of such a repair is the same type of functional RG

equations again, but now with a clear explanation for why the large R̃ regime should be

trusted [175–177].

We now abandon third order formulations and concentrate on a second order formulation

[4, 148], which in almost all respects has more promising behaviour.

4.4 Evaluating traces

In the formulation [4,148] the traces are evaluated by a direct spectral sum. In common

with the rest of the literature one chooses a (globally) maximally symmetric background
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Spin s Eigenvalue �s,n Multiplicity Dn,s

0 n(n+3)�4
12 R (n+2)(n+1)(2n+3)

6

1 n(n+3)�4
12 R n(n+3)(2n+3)

2

2 n(n+3)
12 R 5(n+4)(n�1)(2n+3)

6

Table 4.1: Values of the multiplicities and eigenvalues for evaluating the traces.

manifold. There are three to choose from: the four sphere S
4, which has a finite volume

and positive curvature, so the spectrum of the allowed modes form a discrete set that

have to be summed over; the hyperboloid H
4 which has negative curvature and infinite

volume so the spectrum is continuous; and finally flat space R
4, which is a limiting case

for both of the two previous manifolds when R ! 0. As we will see they all need to be

considered. Actually they become smoothly joined together in an ensemble which thus

allows the same flow equation to be defined over the entire domain �1 < R < 1.

4.4.1 Sphere

On the sphere the traces are evaluated using

TrW (�s) =
X

n

Dn,sW (�n,s) (4.4.1)

where �n,s are eigenvalues of the �s defined in (4.1.15), and Dn,s are their multiplicities.

Explicit values are shown in table 4.1 [146]. There are a few caveats. Not all the modes

contribute in the sum, for example vectors satisfying rµ⇠⌫ + r⌫⇠µ = 0 and the scalar

modes � = constant. Because of this, the tensor mode and the vector mode sums start

at n = 2, the scalar mode of the Jacobian starts at n = 1 and the h̄ mode starts at

n = 0. As an example the explicit expression of T Jac

1 with non-adaptive type cuto↵

(4.2.4) after evaluation using (4.4.1) and plugging in the multiplicities from 4.1 is

T
Jac

1 = �
1

4

1X

n=2

n(n+ 3)(2n+ 3)
cV (2r(�1,n)� 2�1,nr0(�1,n))

�1,n + cV r(�1,n)
. (4.4.2)

Where cV is some positive constant.Now the requirement (4.2.5) means that �n,s+↵sR >

0 must be satisfied. For the tensor and vector modes it is su�cient to set ↵2 = ↵1 = 0,

however from table 4.1 we see that we must have ↵0 > 1/3.

4.4.2 Hyperboloid

As already mentioned, the hyperboloid has a negative curvature, an infinite volume,

and a continuous spectrum of eigenvalues. The traces on this manifold are evaluated
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using [204]

TrW (�s) =
2s+ 1

8⇡2

Z
d4x

p
g

✓
�

R2

12

◆2 Z 1

0
d�

✓
�2 +

�
s+

1

2

�2
◆
� tanh(⇡�)W (��,s).

(4.4.3)

Even though there is now an infinite volume factor in the flow equation (4.1.16), this

precise factor also appears above, so the equations still make sense once we cancel this

factor from both sides. The eigenvalues of the spectrum are

��,s = �
R

12
�2 � �sR , where �0 =

25

48
, �1 =

25

48
, �2 =

9

48
. (4.4.4)

Using the same flow equation, and thus the same endomorphism parameters ↵s, the

requirement (4.2.5) must again be satisfied. We can still take ↵2 = ↵1 = 0, but now ↵0

also has an upper bound ↵0 < 25/48. Explicitly the T
Jac

1 on the hyperboloid becomes:

T
Jac

1 =
3

8⇡2

Z
d4x

p
g

✓
R4

144

◆Z 1

0
d�

✓
�2 +

9

4

◆
� tanh(⇡�)

cV (2r(��,1)� 2��,1r0(��,1))

��,1 + cV r(��,1)
.

(4.4.5)

Other traces are evaluated in the analogous way.

4.4.3 Flat space

Finally, evaluating traces on flat space can be achieved by taking the limit as R ! 0 from

positive or negative side. If we start from the positive side we first make a substitution

p = n
p
R/12 then take R ! 0 while keeping p fixed. All Laplacians then become

�n,s ! p2 and p2 can be identified as the flat space momentum. Plugging in our choice

of the cuto↵ (4.2.4), and performing these substitutions, yields

@tfk(0) + 4fk(0) =
1

8⇡2

Z 1

0
dpp3

"
16c

h̄

2r(p2)� p2r0(p2)

9f 00
k
(0)p4 + 3f 0

k
(0)p2 + 2fk(0) + 16c

h̄
r(p2)

+ 10cT
r(p2)� p2r0(p2)

�f 0
k
(0)p2 � fk(0) + 2cT r(p2)

� 3cV
r(p2)� p2r0(p2)

p2 + cV r(p2)

� 4cS2

2r(p2)� p2r0(p2)

3p4 + 4cS2r(p
2)

+ cS1

r(p2)� p2r0(p2)

p2 + cS1r(p
2)

#
(4.4.6)

This same equation is arrived at if we take R ! 0 from the negative side by first setting

p = �
p
�R/12 on the hyperboloid and holding p fixed. The form of these equations

already give some information about the possible solutions, and can help guide numerical

searches [4]. In particular, by inspection, it is clear that there are no fixed singularities,

and choices for fk(0), f 0
k
(0) and f 00

k
(0) can be made that give well defined non-singular

integrals.
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4.5 Fixed point solutions

The fixed point solution to the flow equation fk(R) = f(R) occurs when @tfk(R) = 0.

An advantage of the non-adaptive cuto↵ is that @tfk(R) only appears once on the left

hand side of (4.1.16), so the fixed point equation is

2V E(R) = T2 + T
h̄

0 + T
Jac

1 + T
Jac

0 . (4.5.1)

Another crucial advantage is, like (4.4.6), inspection of the trace equations (4.1.17) –

(4.1.20) makes clear that there are no fixed singularities any more. The flow equation

is non-linear and very hard to work with, so solving the equations exactly is unfeasible.

The strategy is to solve analytically for f(R) around R = 0 as a Taylor expansion and

around R = ±1 by an asymptotic expansion. Then numerical methods can be used to

try to patch in a solution that goes smoothly from the Taylor expansion at R = 0 to the

asymptotic solutions at R = ±1.

4.5.1 Asymptotic analysis

We now explain in detail how to develop asymptotic solutions, using these equations as

an example. In these large R limits, the equations simplify due to rapidly decaying cuto↵

profiles r(z). At first sight, it looks like all the traces on the right hand side of the flow

equation vanish and one is only left with (4.1.14), the equation of motion E(R) = 0.

This is actually true on the hyperboloid and the fixed point solution is therefore the

solution of E(R) = 0 namely

f(R) = AR2, (4.5.2)

where A is an arbitrary constant. At any finite R this is then accompanied by rapidly

decaying corrections as discussed later, cf. eqn. (4.5.17).

The story is di↵erent on the sphere since upon closer inspection not all of the terms in

the sums vanish. There are three such terms, the n = 0 and n = 1 components from

T
h̄

0 and the n = 1 of T Jac

0 . To see this for the n = 0 case, note that from table 4.1,

�0 = �R/3. Thus, using (4.2.4), the denominator of this term in the sum (4.1.18) is

given by

9f 00(R)�2
0+3f 0(R)�0+E(R)+16Rh̄

k
= R2f 00(R)�Rf 0(R)+E(R)+16k4c�r([↵0�

1
3 ]R)

(4.5.3)

Now, assuming that the leading asymptotic behaviour is f(R) = AR2, we see that the

first two terms cancel each other, and likewise E(R) vanishes, so we are left only with

the cuto↵ term in the denominator. Therefore this term takes the form of

1

k4 r(z)

d

dt

⇥
k4r(z)

⇤
= 4� 2z

d ln r(z)

dz
(4.5.4)
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with z set equal to z = [↵0 �
1
3 ]R.

Turning to the n = 1 components, note that from table 4.1, both �0 and �1 vanish for

n = 1. In (4.1.18), apart from the cuto↵ term the whole denominator therefore vanishes

(because E(R) vanishes). In (4.1.20) it is the second component that has a vanishing

denominator apart from the cuto↵ term. The S1 (first) component does not su↵er from

the same problem because there is also the +R/3 part in the denominator. However,

the cuto↵ dependence is the same for the n = 1 contributions namely r(↵0R) and the

numerical factors are such that these two n = 1 contributions exactly cancel each other.

Altogether then, e↵ectively the only term on the RHS (right hand side) of the flow

equation that does not vanish asymptotically is the n = 0 component of the T
h̄

0 trace.

This is a problem however, since the n = 0 component of T h̄

0 contributes a term that

grows at least as fast as R2. This is inconsistent with the fact that the LHS (left hand

side) of flow equation has been set to vanish asymptotically. Actually this analysis shows

that f(R) grows faster than R2. For example in the best-case scenario the RHS ⇠ R2

but that implies f(R) ⇠ R2 lnR so that the LHS is left with an E(R) ⇠ R2 to balance

the contribution from the n = 0 component of T h̄

0 .

Therefore we now assume that f(R) actually grows faster than R2 at large R. But this

means we need to check again which terms in the traces have denominators that would

vanish without a cuto↵. By inspection none of the traces that depend on f(R) can now

have this issue. In particular the n = 1 component of the T
h̄

0 trace no longer has a

denominator that could vanish, because E(R) no longer vanishes at large R, while for

the n = 0 component the f 00(R) part in the denominator now dominates at large R.

So the only contribution that survives on the RHS at large R, is now the n = 1 S2

component of T Jac

0 .

Keeping just this term it turns out one can solve the fixed point equation in closed

form, thus obtaining the correct asymptotic behaviour for general cuto↵ function r(z).

Using the values from table 4.1 we have that the multiplicity of the n = 1 component

is D1,0 = 5, note that mS2 = 4 and that 1/V = R2/384⇡2 for the four-sphere. Thus,

keeping only this leading term on the RHS of the flow equation, we have

2f(R)�Rf 0(R) =
R2

768⇡2


�10 + 5↵0R

r0(↵0R)

r(↵0R)

�
. (4.5.5)

This is exactly soluble. Indeed dividing through by R3 it can be rewritten as

�
d

dR

✓
f(R)

R2

◆
=

1

768⇡2


�
10

R
+ 5

d

dR
ln r(↵0R)

�
, (4.5.6)

which can be immediately integrated to give

f(R) =
5R2

768⇡2
ln

R2

r(↵0R)
+AR2 + o(R2) as R ! +1 , (4.5.7)
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where we included the integration constant A and finally we noted that terms that grow

slower than R2 will be generated by iterating this asymptotic solution to higher orders,

hence the o(R2) part. The ln r term actually dominates, i.e. the large R behaviour is

dominated by cuto↵-dependent e↵ects. For example using the cuto↵ (4.2.6), gives the

first three terms in this series:

f(R) =
5a↵b

0

768⇡2
R2+b+

5

768⇡2
R2 lnR+AR2+

16c
h̄

5ab(1 + b)↵b

0

✓
↵0 �

1

3

◆
e�a(↵0� 1

3)
b
R

b
+ · · · .

(4.5.8)

To get the next term in the series, the solution is substituted back into the fixed point

equation and the next leading correction is isolated. This leads to the last displayed

correction above. It is exponentially decaying and comes from the n = 0 term in the T h̄

0

trace. One finds that other corrections decay faster provided that ↵0 < 5
6 + ↵1. This

is satisfied thanks to the restrictions on the ↵i parameters discussed in secs. 4.4.1 and

4.4.2. Substituting (4.5.8) back into the fixed point equation and proceeding similarly

one can in principle develop the whole asymptotic series. It is an infinite series of ever

faster decaying terms and is indicated by the ellipses. In particular these terms will

include a power series in A.

At this point we have succeeded in finding consistent asymptotics. f(R) does grow faster

than R2 on the sphere, as assumed, and using such a form in the RHS of the fixed point

equation one can see that the n = 1 S2 component of T Jac

0 dominates at large R, which

leads back to the above equation.

Recall that the fixed point equation is actually second order. But the asymptotic so-

lutions only have one free parameter A, even though there should be two. To find out

where the second parameter has gone we linearise about the fixed point f(R) + �f(R)

and plug it into the flow equation (4.5.1) to get

�a2(R) �f 00(R) + a1(R) �f 0(R) + a0(R) �f(R) = 4 �f(R) , (4.5.9)

with

a2 =
144ch
V

Tr

"
�2

0(2r(�0 + ↵0R)� (�0 + ↵0R)r0(�0 + ↵0R))

(9f 00(R)�2
0 + 3f 0(R)�0 + E(R) + 16chr(�0 + ↵0R))2

#
, (4.5.10)

a1 = 2R�
16ch
V

Tr

"
(3�0 �R)(2r(�0 + ↵0R)� (�0 + ↵0R)r0(�0 + ↵0R))

(9f 00(R)�2
0 + 3f 0(R)�0 + E(R) + 16chr(�0 + ↵0R))2

#

+
2cT
V

Tr

"
(R/2��2)(2r(�2 + ↵2R)� (�2 + ↵2R)r0(�2 + ↵2R))

(�f 0(R)�2 � E(R)/2 + 2cT r(�2 + ↵2R))2

#
, (4.5.11)
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a0 =
32ch
V

Tr

"
(2r(�0 + ↵0R)� (�0 + ↵0R)r0(�0 + ↵0R))

(9f 00(R)�2
0 + 3f 0(R)�0 + E(R) + 16chr(�0 + ↵0R))2

#

+
2cT
V

Tr

"
(2r(�2 + ↵2R)� (�2 + ↵2R)r0(�2 + ↵2R))

(�f 0(R)�2 � E(R)/2 + 2cT r(�2 + ↵2R))2

#
. (4.5.12)

In the large R limit a1(R) ⇠ 2R and a0 and a2 vanish asymptotically. Then it is

tempting to simply set a0 and a2 to zero to find the asymptotic solution to (4.5.9). But

if this is done there is only one solution �f(R) = �AR2. In fact this is just the leading

term in an asymptotic series which is nothing but what one would derive from (4.5.8)

by di↵erentiating with respect to A. (Recall that the ellipses actually contain a power

series in A.) This asymptotic solution is an exact series solution to (4.5.9) where a0 and

a2 are only involved in constructing the subleading corrections. To find more than the

one parameter �A in the solution to (4.5.9), �f 00(R) cannot be neglected, implying that

higher derivatives must dominate over lower ones in the large R limit. Hence, the other

solution is one where �f(R) can at first be neglected. Then writing (4.5.9) as

d

dR
ln �f 0(R) =

a1(R)

a2(R)
=) �f(R) = B

Z
R

dR0 exp

Z
R

0

dR00a1(R
00)

a2(R00)
, (4.5.13)

where B is the second parameter. For the explicit form, a2 is needed. It gets its leading

contribution from the same source as the last displayed term in (4.5.8). Using the same

cuto↵ choice, (4.2.6), asymptotically

a2(R) =
24576⇡2c

h̄

25ab(1 + b)2↵2b
0

✓
↵0 �

1

3

◆1+b

R1�b e�a(↵0� 1
3)

b
R

b
+ · · · . (4.5.14)

Recalling that a1 = 2R to leading order, the integrals can be evaluated by successive

integration by parts, as an asymptotic series and where each term is given in closed

form.

Since this strategy is used many times in this kind of asymptotic analysis let us sketch

it on the indefinite integral:

Z
dRG(R) eF (R) =

G(R)

F 0(R)
eF (R)

�

Z
dR

✓
G(R)

F 0(R)

◆0
eF (R) . (4.5.15)

The above equality follows by integration by parts, however if F (R) grows at least as

fast as R for large R, where F is either sign, and G(R) grows or decays slower than an

exponential of R, then the integral on the right is subleading compared to the integral

on the left. Iterating this identity then evaluates the integral in the large R limit as

eF (R) times an asymptotic series, the first term on the RHS being the leading term.

In this way, using the cuto↵ (4.2.6), the solution (4.5.13) on the sphere turns out to be

�f(R) ⇠ B exp

⇢
12(1 + b)2↵2b

0

12288⇡2c
h̄

✓
↵0 �

1

3

◆�1�2b

R ea(↵0�1/3)bRb

�
. (4.5.16)
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The analysis proceeds similarly on the hyperboloid [4]. As R ! �1, one finds:

f(R) = AR2+
cS1

96
p

3⇡a3b3

✓
25

48
� ↵0

◆ 5�3b
2

(�R)2�
3b
2

n
1 +O

⇣
|R|

� 1
2

⌘o
e�a[(↵0� 25

48)R]
b

+· · · .

(4.5.17)

The correction is again a decaying exponential because ↵0 is restricted to ↵0 < 25/48.

All scalar traces (thus also A) contribute to the O
⇣
|R|

� 1
2

⌘
term, and the ellipses stand

for terms with faster decaying exponentials. The asymptotic behaviour of a2 turns out

now to be:

a2(R) =
4c

h̄

81A2
p
3⇡ab

✓
25

48
� ↵0

◆ 5�b
2

(�R)1�
b
2 e�a[(↵0� 25

48)R]
b

+ · · · (4.5.18)

(the ellipses being faster decaying terms). And thus one finds on the hyperboloid

�f(R) ⇠ B exp

⇢
81A2

2c
h̄

r
3⇡

ab

✓
25

48
� ↵0

◆� b+5
2

(�R)1�b/2 ea[(↵0�25/48)R]b
�
. (4.5.19)

However, there is a problem here. Both these solutions (4.5.16) and (4.5.19) for �f(R),

are rapidly growing exponentials of an exponential. In the asymptotic regime, these

perturbations are no longer small, thus invalidating the initial linearization assumption

used to derive them. Therefore, these solutions must be discarded and thus we conclude

that the fixed points have only one free parameter on both the sphere and hyperboloid.

These results allow us to draw important conclusions. Each of the asymptotic fixed point

solutions, (4.5.8) and (4.5.17), contribute one constraint on the flow equation.2 There

are no boundary conditions coming from R = 0, so we can expect one-parameter sets

of fixed point solutions on both S
4 and H

4. At first sight this is a disappointing result

for the asymptotic safety program. However, if we now use R
4, eqn. (4.4.6), to match

smoothly between these solutions then we have two boundary conditions on a second

order di↵erential equation, one coming from the sphere and one from the hyperboloid.

Thus, there can now only be at most a discrete set of solutions. In the next section

more evidence will be presented for why these topologies should be considered smoothly

joined together in this way.

4.5.2 Global solutions

We already noted before that the flow equations are non-linear and very hard to work

with, both on the sphere and on the hyperboloid. Solving the equations exactly is

unfeasible. The asymptotic forms of the flow equations yields two asymptotic solutions

2For example at some initial very large R we can set 2f(R) = Rf
0(R) since this boundary condition

imposes the leading behaviour (4.5.2). Using the subleading corrections we can furnish a more accurate
Robin boundary condition at more reasonable values of R.
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at R = ±1 ((4.5.8) and (4.5.17)) however, the existence of a global solution can only

be checked numerically as we explain below.

For the numerical computations on the sphere we first note that the sums of the form

(4.4.2) converge very rapidly due to the cuto↵ profile (4.2.6). If one chooses simple

values for the parameters, such as a = b = 1, ↵1 = ↵2 = 0 and ↵0 = 1/2 (to satisfy

(4.2.5)) we see from table 4.1 that the cuto↵ profile decays as an exponential of ⇠ n2.

For this reason, it is su�cient to take the sums to some finite n = nmax for numerical

computations. One needs to be careful in the limit R ! 0, because the sums do not

converge. In fact the constant R0 part of the Taylor expansion of T Jac

1 grows as a sum

of n3, the R1 term behaves as a sum over n5, and the higher powers of R are even worse.

Recognizing that sending R to zero is the flat space limit, we can perform the infinite

sums in this limit by going to an integral over momentum, as we do in sec. 4.4.3. For

example, for the fixed point, this tells us how the R2 term in the expansion

f(R) = f(0) + f 0(0)R+
R2

2
f 00(0) + ... (4.5.20)

depends on the constant and R1 terms. However, it is important to note that we cannot

expand beyond R2 on the sphere in this way. If we try to do this, we find that the

integrals do not converge. Furthermore, the Euler-Maclaurin corrections which account

for the di↵erence between sum and integral do not converge. This indicates that beyond

R2, the small R behavior is no longer simply a Taylor expansion in R.

In numerical analysis, we can take the advantage of the asymptotic solutions, since

the solutions have a single free parameter A and the other terms are exponentially

suppressed as already explained in sec. 4.5.1. Hence, by starting at R = Rmax and

integrating down to R = 0 we only need to scan a single parameter, instead of two,

f(0) and f 0(0) going the other way round. For smaller values of R one needs to increase

the number nmax up until the solution matches the Taylor expansion. Using 4th order

Runge-Kutta integrator programmed in MATLAB we were able to integrate down from

Rmax = 10 with nmax = 5 to R = 0.02 with nmax = 50, which then matched smoothly

with the Taylor expansion. With the exponential cuto↵ profile (4.2.6) and choosing

ch = cV = cT = cS1 = cS2 = 1, the solutions have been found on the sphere this way, in

a narrow region around A = �0.01.

The hyperboloid is handled similarly, except that the sums are already integrals which,

for finite R, can be evaluated numerically. However, no solution was found, although a

more comprehensive numerical analysis might find one [4].
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4.6 Eigenoperators

So far we have analyzed the flow equation in the f(R) approximation at the fixed point

(where @tf(R) = 0). Assuming that there is a global solution, we now turn to the

question of whether the theory is predictive. This is answered by solving the eigenvalue

equation and figuring out how many relevant operators the fixed point solution has.

Relevant operators are the ones that fall into the fixed point when increasing the cuto↵

scale k. The number of these operators corresponds to the number of parameters that

will have to be fixed experimentally. We now prove that in this second order formulation,

if we take the equations to apply simultaneously across the three spaces S4, R4 and H
4,

there are a finite number of relevant operators [148]. Plugging (4.1.3) into the flow

equation (4.1.16) we get a second order ordinary di↵erential eigenvalue equation:

�a2(R) v00(R) + a1(R) v0(R) + a0(R) v(R) = �v(R) (4.6.1)

where the eigenvalues � = 4 � ✓, v(R) is the eigenoperator, and the ai’s are given by

eqns. (4.5.10 – 4.5.12).

4.6.1 Asymptotic analysis

The first step is to apply asymptotic analysis to the eigenoperator equation. The pro-

cedure closely follows that for the fixed point in sec. 4.5.1. As already noted there, a0

and a2 decay exponentially fast and in the large R limit a1 ⇠ 2R. Then the asymptotic

form of the eigenvalue equation is:

� v(R)� 2Rv0(R) = �a2(R) v00(R) . (4.6.2)

Starting with the left hand side the solution is

v(R) / |R|
�
2 + · · · , (4.6.3)

where the ellipses stand for subleading corrections from the ai’s, in particular from the

RHS. The solutions have one parameter, the constant of proportionality. The missing

parameter must come from a solution for which v00(R) cannot be neglected. But this

implies diverging derivatives and thus v(R) can be neglected. The equation is then

analogous to what we had before where the second solution is now v(R) ⇠ �f(R) in

(4.5.16) on the sphere and (4.5.19) on the hyperboloid.

Now we ask whether these solutions are actually valid. The linearised solution (4.1.3) is

meant to describe the RG flow ‘close’ to the fixed point. For any fixed ✏, if |v(R)/f(R)| !

1 as R ! ±1 that is not necessarily true since linearisation is no longer valid. In this
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case one can set

fk(R) = f(R) + ✏ vk(R) , (4.6.4)

and, without linearising, ask for the correct evolution for vk(R) at large R. For large

negative R the RHS of the flow equation (4.1.16) can be neglected. For large positive

R, the RHS of the flow equation can be neglected except for the n = 1 S2 component of

T
Jac

0 , which however just cancels the contributions from the LHS that grow faster than

R2 resulting from f(R), cf. (4.5.8). Since in fact the O(R2) part of f(R) also vanishes

from the LHS (on both sphere and hyperboloid), in the large R regime one has

@tvk(R)� 2Rv0
k
(R) + 4 vk(R) = o(R2) . (4.6.5)

Any part of vk(R) growing at least as fast as R2 is then easily solved for, and gives

mean-field evolution involving some arbitrary function v:

vk(R) = e�4t v(R e 2t) + o(R2) . (4.6.6)

It will be the same function v that was introduced in the linearised solution (4.1.3) if

one requires as boundary condition, vk(R) = v(R) at k = µ. The question that remains

is whether the RG evolution (4.6.6) is consistent with what we found by linearising.

For the power-law solution (4.6.3), linearisation is valid at large |R| if and only if �  4.

This follows from the hyperboloid fixed point asymptotics (4.5.17), the sphere side (4.5.8)

requiring only the weaker constraint, �  4+2b. On the other hand if � > 4, one can use

the general perturbation (4.6.4), finding the solution (4.6.6). Substituting the explicit

form (4.6.3) of the boundary condition, gives:

vk(R) = v(R) e�✓t + o(R2) , (4.6.7)

where ✓ = 4 � �, i.e. the linearised solution (4.1.3) is reproduced. We conclude that

asymptotically, power-law eigenoperators (4.6.3) are valid solutions for any �. Their t

evolution is multiplicative and given by the flow of a conjugate coupling g(t) = ✏ e�✓t,

cf. (4.1.3).

On the other hand, the solutions that behave asymptotically as v(R) ⇠ �f(R), are grow-

ing exponentials of exponentials. Linearisation is not valid at large |R|, where the t

dependence is given instead by (4.6.6). Now we cannot separate out the t dependence.

Therefore, such perturbations cannot be regarded as eigenoperators evolving multiplica-

tively.

Excluding them leads to quantisation of the spectrum. This is because the large R de-

pendence (4.6.3) provides a boundary condition on both the sphere and the hyperboloid
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side, and linearity provides a further boundary condition since one can choose a normal-

isation e.g. v(0) = 1. These three conditions over-constrain the eigenoperator equation

(4.6.1) leading to quantisation of �, i.e. to a discrete eigenoperator spectrum.

4.6.2 Sturm-Liouville analysis

As in the previous chapter we wish to write the eigenvalue equation in SL form so that

we can use the properties of these equations to draw conclusions about the spectrum of

the eigenvalues. First we define the weight function

w(R) =
1

a2(R)
exp�

Z
R

dR0a1(R
0)

a2(R0)
. (4.6.8)

Multiplying with the eigenvalue equation (4.6.1) and rearranging, casts it in Sturm-

Liouville form:

�
�
a2(R)w(R)v0(R)

�0
+ w(R)a0(R)v(R) = �w(R)v(R) . (4.6.9)

Notice that the trace in a2 is positive. This is because the cuto↵ is monotonically

decreasing, hence r0(z) < 0 and r(z) > 0, so the sign of a2 depends on c
h̄
, which is

positive. This implies that the weight function w(R) > 0 as required.

Next we check if the operator is self-adjoint. Taking v = vj(R), multiplying by vi(R),

and integrating over R, gives:

�

Z
viLvj = �

Z
vi
�
a2wv

0
j

�0
+

Z
via0wvj . (4.6.10)

If the operator L (3.1.18) is self-adjoint then this should be the same for j $ i. The

first term on the RHS can be written as

�

Z ⇥
vi
�
a2wv

0
j

�⇤0
+

Z ⇥
vj
�
a2wv

0
i

�⇤0
�

Z �
a2wv

0
i

�0
vj . (4.6.11)

Thus what is required is that the first two terms above cancel each other. This is

automatically satisfied if R is taken to have the full range since w(R) ! 0 exponentially

fast as R ! ±1. If the di↵erential equation is restricted to either the four-sphere or four-

hyperboloid, there would be a boundary at R = 0. The weight function does not vanish

there and thus the operator L would then not be self-adjoint. This is another powerful

hint that the correct treatment is to smoothly join the three topologies together. Note

also that none of these equations would make sense if the exponentially growing set of

solutions v(R) ⇠ �f(R) are included, where �f(R) is given by (4.5.16) or (4.5.19). From

(4.5.13) and (4.5.15) one can see that actually these �f(R) ⇠ 1/w(R) and thus such v(R)

are not square integrable under the weight function w(R) since w(R)v2(R) ⇠ 1/w(R),
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which diverges at large R. Hence, this condition only picks out the correct solutions

from the eigenvalue equation and justifies the use of Sturm-Liouville techniques.

Thus, when restricted to perturbations that grow only as a power at large |R|, the eigen-

value equation (4.6.1) is of Sturm-Liouville type. The consequences for the spectrum

of the eigenvalues can be seen by a standard transformation to Liouville normal form.

Define a coordinate x as

x =

Z
R

0

1p
a2(R0)

dR0. (4.6.12)

Then x ! ±1 as R ! ±1 because a2(R) vanishes at large |R|. Defining the ‘wave-

function’

 (x) = a
1
4
2 (R)w

1
2 (R)v(R), (4.6.13)

(4.6.1) can be transformed into

�
d2 (x)

dx2
+ U(x) (x) = � (x), (4.6.14)

which is just the one-dimensional Schrödinger equation with energy �. The potential

turns out to be [148]

U(x) = a0 +
a21
4a2

�
a01
2

+ a02

⇣ a1
2a2

+
3a02
16a2

⌘
�

a002
4

. (4.6.15)

This potential has no singularities at finite x. Asymptotically the term proportional to

a21 will dominate for x ! ±1 and thus the potential U(x) ! +1. This then implies

the following important properties:

1 The eigenvalues �n are discrete, real and non-degenerate.

2 There exists a lowest eigenvalue �0 (i.e. bounded from below).

3 The only accumulation point is at infinity.

Asymptotic analysis already showed that the eigenvalues are discrete, but this Sturm-

Liouville analysis allows to conclude much more. Now it is straightforward to see that

there is a finite number of relevant operators such that ✓n = 4� �n � 0. Indeed this is

so because �n ! 1 as n ! 1 and because there exists a lowest eigenvalue �0.

But these results should be accepted with caution. Recall that to obtain them some

severe approximations were used, such as the single metric approximation and the trun-

cation to the function f(R). One way to judge the validity of the results is to check

the extent to which they are scheme independent (universal), in particular independent

of the choice of cuto↵. It turns out that the critical exponents ✓n can be solved for

analytically, again by using asymptotic analysis, and this gives a precise way to answer

the question of scheme dependence in this regime.
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From (4.5.14) and (4.5.18), the reader can see that the leading contribution to a2 takes

the following form on both sphere and hyperboloid:

a2(R) =
1

G2(R)
e�2F (R) (4.6.16)

where F (R) is positive and proportional to |R|
b and G(R) goes like a power of R. They

therefore satisfy the conditions required to use the trick (4.5.15) on the equation (4.6.12)

defining x. Then asymptotically

x =
G(R)

F 0(R)
eF (R) + ... (4.6.17)

where the ellipsis stand for multiplicative subleading terms. Alternatively this can be

seen by di↵erentiating (4.6.12) and (4.6.17) with respect to R. The potential can then

be approximated to leading order as

U(x) =
a21
4a2

=
R2

a2(R)
=
⇥
RF 0(R)

⇤2
x2. (4.6.18)

Evidently RF 0(R) = bF (R) and thus, taking logs of (4.6.17),

U(x) = (bx ln |x|)2
⇢
1 +O

✓
ln ln |x|

ln |x|

◆�
x ! ±1 , (4.6.19)

where in the equation above the order of the subleading correction is also indicated. (The

latter requires taking into account iterations of (4.5.15) and the subleading corrections

to a2.) Using the WKB approximation one can then find the critical exponents for large

n [4]:

✓n = �b (n lnn)

⇢
1 +O

✓
ln lnn

lnn

◆�
as n ! 1 . (4.6.20)

The result shows almost a linear dependence on n. This much is similar to the key result

of an almost-Gaussian scaling behavior [205], resulting from extensive numerical work

done on large polynomial truncations of a third order formulation up to n  70 [170].

They use an adaptive cuto↵ so there is no direct comparison, and they use the optimised

profile (4.2.3) with no free parameters in the cuto↵, so universality is not tested in this

way. Indeed the scaling dimension should be universal. The leading behaviour of this

expression is independent of all parameters in the chosen general family of cuto↵s, except

one, namely the parameter b in (4.2.6). Explicitly, it is independent of a in (4.2.6), and of

all the c� and ↵i. Unfortunately the dependence on b still amounts to strong dependence.

Actually this remaining dependence is an artefact of the single-metric approximation

[32].3 We have seen that it comes from the Rb dependence of F (R) in (4.6.16), equiv-

alently (4.5.14) and (4.5.18). This in turn arises from the cuto↵ dependence in eqn.

3More generally, single-field approximations are a known source of artefacts [161].
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(4.5.10) and in particular the cuto↵ profile’s dependence on R (through in fact the low-

est eigenvalue). To see that the dependence in (4.6.20) is an artefact of the single-metric

approximation, imagine for the moment that the single-metric approximation was not

made and yet somehow the initial ansatz (4.0.2) still made sense. (In reality such a sim-

ple ansatz would no longer be possible because di↵eomorphism invariance is replaced by

BRST invariance for the quantum fields and furthermore it is badly broken, but let us

overlook that for the moment.) Now the curvature in it is the full quantum curvature R̂,

due to the full quantum metric ĝµ⌫ in (4.1.4). The trace and the cuto↵ in (3.1.10) come

from summing over modes on the background manifold in (4.1.1) so they depend on the

background curvature R. The Hessian in (4.1.1) will result in di↵erentiating f(R̂) with

respect to the fluctuation field hµ⌫ or equivalently di↵erentiating with respect to ĝµ⌫ .

Thus ultimately the eigenoperator perturbation equation (4.5.9) would take the form:

�a2(R, R̂) �f 00(R̂) + a1(R, R̂) �f 0(R̂) + a0(R, R̂) �f(R̂) = 4 �f(R̂) (4.6.21)

with in particular:

a2 =
144ch
V

Tr

"
�2

0(2r(�0 + ↵0R)� (�0 + ↵0R)r0(�0 + ↵0R))

(9f 00(R̂)�2
0 + 3f 0(R̂)�0 + E(R̂) + 16chr(�0 + ↵0R))2

#
. (4.6.22)

In deriving (4.6.20) one is interested in the large R̂ dependence of (4.6.21). This depends

on the large R̂ dependence of the fixed point functional f(R̂), and this feeds in to the

coe�cients ai(R, R̂). But there is no exp(�aR̂b) dependence because the cuto↵ profile r

depends only on the background curvature R, either directly or through the Laplacians

whose eigenvalues only depend on the background manifold.

4.7 Summary and discussion

The f(R) model introduced in ref. [148] where already SL theory was applied to give a

proof that, around any fixed point in such a model, there are a finite number of relevant

couplings and an infinite number of irrelevant couplings gn, these latter having scaling

dimensions ✓n ! �1 as n ! 1. Note that the scaling dimensions are also proved to

be real, in contrast to what is found typically in finite dimensional truncations. In this

chapter we scrutinise both the explicit and implicit assumptions that go into this proof,

and we combine SL techniques with asymptotic analysis at large R [147, 162] to find

out significantly more about the nature of these fixed points and their eigenoperator

spectrum.

Both of these methods can be developed while keeping the cuto↵ general, which must

however be taken to be smooth. We keep general the c� (the overall size of the cuto↵ for

each field component). As in ref. [148], we set the endomorphism parameters ↵2 = ↵1 =

0, but we keep ↵0 general apart from the constraint 1/3 < ↵0 < 25/48 required to ensure
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that all modes are integrated out in the limit k ! 0. We take the same cuto↵ profile

for all field components, since these are all closely tied to the metric either through

changes of variables or via BRST invariance. For most of the chapter to be concrete we

specialise to the exponential-style cuto↵ profile [29], but we keep its parameters a > 0

and b � 1 general. In particular we are able to determine the asymptotic form of the

SL weight !(R) for these cases. It is a rapidly decaying for the hyperboloid and sphere

respectively. We show that it is intimately involved in other asymptotic properties, chief

amongst them being the detailed form of the asymptotic behaviour of the ✓n:

✓n = �b (n lnn)

⇢
1 +O

✓
ln lnn

lnn

◆�
as n ! 1 . (4.7.1)

If computed exactly, these scaling dimensions should be universal. Thus it is gratifying

to find that in this model approximation, they are independent of all parameters except

one within our general family of cuto↵s. It is also encouraging to find that the ✓n have

an almost linear dependence on n, since in this respect it is similar to the numerical

evidence for near-Gaussian (but complex) dimensions found in ref. [170] for n  70 in

an adaptive optimised cuto↵ version of the f(R) approximation. However the overall

dependence on b still amounts to strong residual cuto↵ dependence, precluding any

more meaningful comparison. We saw that the blame for this lies squarely with the

single metric approximation. In fact single field approximations are a known source of

artefacts [161].

SL theory requires the RG eigenvalue equation to be second order in R derivatives. This

is achieved if and only if we use a non-adaptive cuto↵ profile. While that leads to the

disadvantage of significantly more complicated flow equations compared to those using

an adaptive optimised cuto↵ [61], it does allow us also to ensure that the fixed point

ODE has no fixed singularities.

This is an advance on f(R) approximations with adaptive cuto↵, where such fixed singu-

larities are endemic. While the fixed singularity at R = 0 appears there for a clear phys-

ical reason [146,147], the same is not true for those at R 6= 0. These latter fixed singular-

ities can be introduced or shifted to di↵erent places, depending on the model [190,192],

but it seems to be impossible to eliminate them entirely [146, 148, 175–177, 184–193].

However, solutions depend sensitively on them, in particular determining whether fixed

points exist as global solutions and if so whether they form a continuous set [147,162].

On the other hand an adaptive cuto↵ profile has the advantage in that it adapts to

the sign of the Hessian. In our case we have to fix the sign of the cuto↵ via c�. The

Hessian is positive for nearly all field components, requiring c� > 0, as would anyway

be expected for convergence of the functional integral. However the physical scalar

component h̄, a.k.a. the conformal factor, is an exception. If we are to describe the

regime corresponding to perturbative quantisation of the Einstein-Hilbert term we need

to choose c
h̄
< 0 [32, 201, 202, 206]. Otherwise we need to rely on fk(R) containing
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higher order terms [207] so that f 00
k
(R) is positive. We choose c

h̄
> 0 for the body of the

chapter, following ref. [148].

It turns out that on the sphere, we can find the leading asymptotic behaviour of the fixed

point solution f(R) in the large R limit for completely general cuto↵ profile r(z). The

result, (4.5.7), is di↵erent from the assumed form in ref. [148]. In fact it is dominated

by cuto↵ e↵ects. For the exponential cuto↵ it takes the form (4.5.8). This limit also

ought to be universal, giving the physical equation of state. Here we saw that the blame

lies squarely with the course-graining of constant scalar modes in the Jacobian of the

change of variables to York decomposition. We saw that this had no e↵ect on the ✓n

formula (4.7.1) however.

The asymptotic solution contains one parameter, A, whereas for a second-order ODE

we would expect a general solution to have two. By perturbing around this result we

saw that to leading order the other parameter multiplies �f(R) ⇠ 1/!(R). Since this

perturbation grows more rapidly than f(R), it is not valid asymptotically and thus we

see that asymptotically there is only a one-parameter set of fixed point solutions. If we

consider the flow equations as applying only to the sphere, we would then have line(s)

of fixed points. This is one motivation for widening the domain of applicability of the

flow equations. As discussed in sec. 4.4.3 nor would we be able to apply SL theory, the

obstruction coming from the existence of an R = 0 boundary (where the equations go

over to those of flat space). This provides another motivation. As a final motivation

we appeal to the encouraging evidence found in polynomial approximations to f(R)

equations [169–172, 183]. These polynomials probe both signs of R. We saw at the end

of sec. 4.4.3 that if we wish to keep the same cuto↵ profile for all modes we cannot

analytically continue our equations into R < 0 however. Instead we match the solution

into the equations on the hyperboloid, which also has the property that the equations

go over to the flat space ones at its R = 0 boundary.

On the hyperboloid the leading asymptotic behaviour is cuto↵ independent as it should

be, being f(R) ⇠ AR2 (for a typically di↵erent A compared to the sphere side). We also

provided the leading corrections coming from cuto↵ terms (4.5.17), as we did also on

the sphere (4.5.8). Again a perturbation to this solution takes the form �f(R) ⇠ 1/!(R)

and is thus ruled out. Therefore the asymptotic behaviour as R ! ±1 provides two

constraints on a global solution for f(R) leading to at most a discrete set of fixed points.

This is of course what one would hope to see for asymptotic safety.4

The situation is just as encouraging for the eigenoperators v(R). Since in the eigen-

operator equation (4.6.1), a2(R) vanishes asymptotically on both the sphere and the

hyperboloid (for the explicit formulae see (4.5.14) and (4.5.18) respectively), the lead-

ing asymptotic behaviour for an eigenoperator is given by v(R) / |R|
�
2 , which is again

4Note that had we introduced fixed singularities into the f(R) equations we would then have found
f(R) to be overconstrained and have no global solutions.
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universal, as it should be (if computed exactly). For any RG eigenvalue � the other

solution grows rapidly with |R|, satisfying asymptotically v(R) ⇠ 1/!(R) (in agreement

with �f(R) which corresponds to a putative marginal operator). It is ruled out because

it does not evolve multiplicatively under the RG. Since the ODE is linear second order,

requiring v(R) / |R|
�
2 overconstrains the equations and leads to quantisation of �, again

as one would hope to see.

Furthermore these ‘power-law’ eigenoperators are square-integrable under the SL weight,

thus providing the missing justification for using SL analysis. From general SL theory,

this is already enough to confirm that the eigenoperators vn(R) form a discrete spectrum

and to show that the RG scaling dimensions �n, possibly finitely degenerate, have a finite

minimum (thus there are a finite number of relevant directions) and form an infinite

tower such that (ordering the eigenoperators so �n are non-decreasing in n) the �n ! 1

as n ! 1. The vn(R) can be chosen to be orthonormal under the SL weight !(R). In

fact, the rest of the SL analysis in ref. [139] can then be straightforwardly taken over to

show that arbitrary bare perturbations �fk0(R) (at some UV scale k = k0) will evolve

into the space of interactions that can be expanded over the vn(R) such that the series

converges in the square-integrable sense. The map to Liouville normal form allows us

to take this further by computing the large distance behaviour (4.6.18) of its potential,

and from there, by a standard application of WKB analysis, to derive the asymptotic

form (4.7.1) of the ✓n = 4� �n as quoted above.

All this is predicated on there actually being a global solution to the fixed point equation.

We have searched numerically for such a solution in the case a = b = 1, ↵0 = 1/2 (recall

from sec. 4.4.2 that it has to lie between 1/3 and 25/48) and all the c� = 1. We

found global solutions on the sphere that asymptote to (4.5.8) for a small region around

A = �0.01, starting at R = 10 and integrating down to the flat space fixed point

equation, but we have not been able to find global solutions on the hyperboloid. These

are challenging integro-di↵erential (on the sphere-side sum-di↵erential) equations so it

is likely that more numerical work is required. This includes exploring other choices

of parameters. In fact our solutions on the sphere matched the asymptotic solution

(4.5.8) at R = 10, only by choosing to match f 0(R) and f 00(R) and then computing

f(R) from the fixed point equation (rather than the more obvious route of setting f(R)

and f 0(R) from the asymptotic formula). This indicates that the asymptotic series has

not been taken quite far enough for these R values. On the hyperboloid, the asymptotic

corrections in (4.5.17) fall only slowly, so would surely have to go much further to

provide a similarly accurate starting point. In fact it would be beneficial to explore

simpler equations, if these can be found. An attractive starting point would be to use

non-adaptive cuto↵ together with the exponential parametrisation explored in ref. [191].

Note that if lines of fixed points can be found on both sphere and hyperboloid, there

would still have to be a matching point where these f(R) agree to second order in their
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Taylor expansion (4.3.4) about R = 0, in order to have found a globally defined fixed

point.





123

Chapter 5

Summary and conclusions

The research presented in this work has delved into the complexities of perturbative and

non-perturbative renormalization techniques, and the intricacies of quantum gravity.

The research highlights the importance of non-perturbative methods in understanding

the high-energy behavior of quantum gravity. This concluding chapter aims to summa-

rize the key findings, reflect on the challenges encountered, and propose directions for

future research.

Perturbative methods, although robust, are extremely di�cult to apply in quantum grav-

ity calculations. Even with constraints coming from RG equations and BRST symmetry,

it is still not feasible to do calculations to high orders. The FRGE approach emerged as

a powerful tool for exploring the behaviour of e↵ective couplings at high energies. By

integrating out modes incrementally and examining the resulting di↵erential equations,

one is able to investigate the structure of fixed points and the flow of couplings in theory

space. This approach provided valuable insights into the stability and predictability of

quantum field theories, particularly in the context of asymptotically safe gravity. One of

the key takeaways from this thesis is the significance of a non-trivial fixed point solutions

in quantum gravity. If such a fixed point exists, with the correct properties, it would

result in a renormalizable and predictive theory of quantum gravity [208]. However, to

move forward one has to employ various approximations and despite great e↵orts the

existence of such points is not certain. The FRGE methods combined with asymptotic

analysis provide a viable pathway for studying these fixed points, o↵ering a promising

direction for future research. Despite positive results presented in this thesis, it has also

highlighted several challenges that need to be addressed. The complexity of the equa-

tions involved, the need for precise numerical methods, and the limitations of current

analytical techniques are some of the hurdles that future research must overcome.

Throughout this thesis, the issue of non-renormalizability in quantum gravity has been

a central theme. By quantizing the Einstein-Hilbert action in Euclidean signature,

we have explored the divergences that arise in four-dimensional perturbative quantum
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gravity. To address these divergences, it is necessary to introduce an infinite number

of counterterms. The sheer number of divergent vertices has limited the exploration

of perturbative gravity. However, we explored these divergences and have shown the

underlying structure imposed by BRST symmetry and RG equations, which allows us

to somewhat simplify the calculations. We have calculated the divergent vertices up

to two loops, incorporating explicit results for quantum fields, background fields, and

mixed fields. We have shown that the background field does not get renormalized, only

the quantum fields do. RG equations allowed us to deduce how higher loop divergences

can be expressed in terms of one loop divergence, however it is not possible to calculate

o↵-shell divergences to all orders and resum them to gain insights into the high-energy

behavior of quantum gravity from an e↵ective Einstein-Hilbert action. The primary

obstacle lies in the fact that the generalized �-functions for the metric are not finite,

contrary to the assumptions made in [103]. Our research highlights the necessity of RG

equations and counterterm diagrams for maintaining consistency with the Zinn-Justin

equation and shows how di↵eomorphism transformations are modified due to quatum

corrections. The results emphasize that, despite the theoretical appeal of resumming

loop divergences, the practical limitations present significant challenges. Our findings

contribute to a deeper understanding of the perturbative structure of the divergences of

the Einstein-Hilbert action.

In the investigation into non-pertubative methods for scalar field theory, we employed

flow equations in the Local Potential Approximation (LPA) and applied Sturm-Liouville

and WKB methods. In the asymptotic regime these methods allow for analytic calcu-

lations of critical exponents of highly irrelevant operators. This exploration revealed

important parallels between scalar field theories and gravity, particularly in the di�cul-

ties that arise in gauge theories. Since scalar field theory has no local symmetries the

scaling dimension of highly irrelevant operators are universal. These insights are cru-

cial as they o↵er potential pathways for extending the applicability of renormalization

methods to more complex theories.

The functional f(R) approximation was another significant focus of this thesis. We

have derived the flow equations, implementing cuto↵ functions, and analyzed the flow

equations in various geometries, to gain a comprehensive understanding of the f(R)

approximation’s applicability. The flow equations depend on the way the cut-o↵ is

implemented. Commonly in the f(R) truncation an adaptive cut-o↵ is used, where

it depends on the function itself. This makes it possible to find analytical solutions,

however the price to pay is a third order di↵erential equation with fixed singularities.

A “pure” cut-o↵ choice has been proposed by [148], which showed that a finite number

of relevant directions is a consequence of the structure of the equations given that a

fixed point solution exists. The solution however, must exist on the full range of the

curvature R 2 [�1,+1]. The scaling dimensions in this framework was found to be

almost universal, however there still remains a cut-o↵ dependant constant. This can be
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contrasted to the scalar field case where no local symmetries are present. Due to the

gauge nature of gravity one is forced to use the single metric approximation which is to

blame for the non-universality of the scaling dimensions.

Looking ahead, a promising avenue for future research emerges. Using FRGE for gauge

theories such as gravity various approximations give rise to answers that depend on

arbitrary parameters, in particular when mixing the background and quantum metrics

in the single metric approximation. Therefore there is a need to disentangle the two

fields [181, 209]. Results from perturbative analysis show how these fields are related

in the e↵ective action via renormalization group equations and BRST symmetry. In

particular the divergences in background field do not appear separately and does not

have to be renormalized. This is an important conclusion that could be used in non-

perturbative analysis. Further investigation of proper treatment of background and

quantum metrics in quantum gravity using functional renormalization group is needed.

This study could be motivated based on the results we presented here for perturbative

treatment of gravity.

The interplay between theoretical predictions and experimental observations remains a

pivotal area of investigation in the field of quantum gravity [210–213]. Although direct

experimental evidence for quantum gravity e↵ects is currently inaccessible, the ques-

tion of whether gravity should be quantized remains an open issue. Nonetheless, the

field of quantum gravity phenomenology is gaining considerable attention and momen-

tum. It is well-established that local operations and classical communication (LOCC)

are insu�cient to produce entanglement [214–217]. Many proposals have emerged aim-

ing at entanglement detection generated by gravity [218–222]. Another approach of

demonstrating quantum nature of gravity is by utilizing spatial superposition of source

masses [223–225]. However, practical implementation of these experiments faces signifi-

cant challenges due to their high costs and the extreme sensitivities required. Detection

of single graviton detection was argued long ago by Dyson to be unfeasible [226]. Recent

proposals, such as those presented by [227], suggest experimental setups analogous to the

photoelectric e↵ect for photons, which might be sensitive to single graviton detection.

However, the e�cacy of such experiments in conclusively proving the quantum nature

of gravity remains a subject of debate [228].

In summary, this thesis has focused primarily on the renormalization of quantum field

theories within both perturbative and non-perturbative frameworks, with a significant

emphasis on its application to gravity. Central themes included the assessment of the

validity and implications of approximations and assertions within quantum gravity re-

search. Utilizing perturbation theory tools, we demonstrated a method to uncover the

underlying structure of divergences in quantum gravity. We critically examined propos-

als concerning reparametrization issues, highlighting shortcomings in existing arguments.

Our investigations extended the use of the FRGE and asymptotic analysis to their limits,

demonstrating the feasibility of calculating critical exponents analytically under specific
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approximations while also acknowledging their inherent limitations. The usefulness of

the renormalization group highlighted throughout this work underscores its potency as

a robust tool for investigating quantum field theories and quantum gravity.
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Appendix A

FORM code

FORM is a powerful symbolic manipulation software specifically designed for handling

large-scale algebraic calculations commonly encountered in high energy physics. It is

particularly useful for its ability to e�ciently process complex expressions involving

many terms, which are typical in quantum field theory computations. FORM excels in

tasks such as expanding perturbation series, calculating Feynman diagrams, and deriving

beta functions. Its speed and capacity to handle extensive algebraic manipulations make

it an invaluable tool for researchers, enabling them to perform intricate calculations that

would be impractical to do by hand or with less specialized software. The user manual

and installation instructions can be found here.

A.1 Graviton three point interaction vertex

Here we present FORM code that perturbatively expands the Einstein-Hilbert action

and returns the three-point interaction vertex given in (1.4.16). In the following code

the first argument of the field H refers to momentum label, the second two arguments

refers to spacetime indices.

*Calculating three graviton interaction vertex

* Define variables: *

Symbols k;

Indices alpha ,beta ,gamma ,delta ,rho ,sigma ,mu ,nu ,a;

Vectors U,V,k1 ,k2 ,k3 ,k4;

CFunctions g,H,Gamma ,invg ,sqrtg ,f;

NTensors [H];

Functions [div],div ,G,F;

* EINSTEIN HILBERT ACTION *

Global EH=-2* sqrtg*invg(mu,nu)*( div(rho)* Gamma(rho ,mu ,nu)-

div(mu)* Gamma(rho ,rho ,nu)+ Gamma(rho ,nu ,mu)* Gamma(sigma ,sigma ,rho)

-Gamma(rho ,nu,sigma)*Gamma(sigma ,mu ,rho) )/k^2;

sum rho , sigma , mu, nu;

https://github.com/vermaseren/form
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.sort

* CHRISTOFFEL SYMBOLS *

repeat;

id once Gamma(sigma?,mu?,nu ?)=(1/2)* invg(sigma ,rho)*(

div(nu)*g(mu,rho)+div(mu)*g(nu,rho)-div(rho)*g(mu ,nu));

sum rho;

endrepeat;

* DERIVATIVE OF THE METRIC *

id div(mu?)*g(alpha?,beta ?)=k*[H](alpha ,beta ,mu);

* INVERSE OF THE METRIC *

repeat;

id once invg(mu?,nu?)=d_(mu ,nu)-k*[H](mu,nu)+k^2*[H](mu ,alpha )*[H](alpha ,nu)

-k^3*[H](mu ,alpha )*[H](alpha ,beta )*[H](beta ,nu);

sum alpha ,beta;

endrepeat;

* ROOT OF THE METRIC DETERMINANT *

id sqrtg =1+(k/2)*[H](rho ,rho)-(k^2/4)*[H](mu,nu)*[H](mu,nu)

+(k^2/8)*[H](rho ,rho)*[H](mu,mu)+k^3/6*[H](rho ,mu)*[H](mu,nu)*[H](nu,rho)

+k^3/48*[H](rho ,rho )*[H](mu ,mu)*[H](nu ,nu)-k^3/8*[H](rho ,rho )*[H]mu ,nu)*[H](mu ,nu);

sum mu,nu ,rho;

* SELECTING THE TERMS THAT WE NEED *

if(count(k,1) >1) discard;

if(count(k,1) <1) discard;

id k=1;

.sort

* DISCARD TOTAL DERIVATIVES *

*id F?(?nu)*div(mu?)=F(?nu)*[div](mu);

*id div(mu?)=0;

*id [div](mu?)=div(mu);

*DEFINE DIFFERENTIATION*

repeat;

id div(mu?)*F?(?nu)=F(?nu,mu)+F(?nu)*div(mu);

endrepeat;

id div(mu?)=0;

* IDETIFY H AS A COMMUTING OBJECT *

id [H](?mu)=H(?mu);

* SYMMETRIZE THE FIRST TWO INDICES OF GRAVITON AND SIMPLIFY *

symmetrize H 1,2;

renumber 1;

* APLY MORE SYMMETRIES BETWEEN INDICES THAT WAS MISSED DUE TO CONTRACTIONS *

** MOVE INDICES **

id H(alpha?,beta?,gamma ?)*H(mu?,gamma?,nu?)=H(alpha ,beta ,gamma )*H(gamma ,mu,nu);

id H(alpha?,beta?,gamma ?)*H(mu?,gamma ?)=H(alpha ,beta ,gamma )*H(gamma ,mu);

id H(alpha?,beta?,gamma ?)*H(beta?,mu?,alpha ?)=

H(alpha ,beta ,gamma )*H(mu,beta ,alpha );

id H(alpha?,beta?,gamma ?)*H(beta?,mu?)*H(mu?,alpha?,nu?)=

H(alpha ,beta ,gamma )*H(beta ,mu)*H(alpha ,mu ,nu);

id H(alpha?,beta?,gamma ?)*H(mu?,beta ?)*H(mu?,alpha?,nu?)=

H(alpha ,beta ,gamma )*H(beta ,mu)*H(alpha ,mu ,nu);
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** RELABEL DUMMY INDICES **

id H(alpha?,beta?,gamma ?)*H(mu?,beta?,alpha)=H(alpha ,beta ,gamma )*H(mu,alpha ,beta);

renumber 1;

symmetrize H 1,2;

* CONVERT TO MOMENTUM SPACE *

id H(?a)*H(?b)*H(?c)=H(k1 ,?a)*H(k2 ,?b)*H(k3 ,?c);

*id H(k1?,alpha?,beta?,gamma?,delta ?)=k1(delta )*k1(gamma )*H(k1 ,alpha ,beta);

id H(k1?,alpha?,beta?,gamma ?)=k1(gamma)*H(k1,alpha ,beta);

B k;

Print+s;

.sort

.store

save EH.sav EH;

.end

Listing A.1: FORM code that perturbatively expands the Einstein-Hilbert action

with vanishing cosmological constant and returns three point interaction vertex.

A.2 Graviton two-point one loop divergence

Here we present FORM code to calculate the divergent part of the one loop graviton

propagator (including the contribution coming from the ghost loop). This script calls

the EH.sav file from appendix A.1.

* Calculation of graviton one loop correction to the propagator *

Off Statistics;

* DEFINE VARIABLES: *

Tensors dd ,[q];

Functions an;

CFunctions div ,exp ,H,FD ,G,D,Gam ,I,Rt ,R,Hq;

NFunctions [FD],[GJ],[c],[JbDJ],[JGJ],[cb],[FDbg],[FDg],[DJ],[JbD];

Dimension dim;

Indices a,b,c,d,e,f,g,alpha ,beta ,gamma ,delta ,mu ,nu;

Symbols n,m,x,M,eps ,qM ,be ,al;

Vectors k1 ,k2 ,k3 ,p,q,p1 ,p2 ,p3 ,l1 ,l2 ,l3;

* LOAD THREE GRAVITON VERTEX FILE: *

load EH.sav EH;

Local V3grav=EH;

.sort

* DEFINE THE GHOST -ANTI -GHOST -GRAVITON INTERACTION TERM: *

Local V3ghost =1/2*H(k1 ,a,b)*[c](k2 ,c)*[cb](k3 ,a)*k1(c)*k3(b)

+1/2*H(k1,a,b)*[c](k2 ,c)*[cb](k3 ,b)*k1(c)*k3(a)

+be/al*H(k1,b,b)*[c](k2 ,a)*[cb](k3 ,c)*k1(a)*k3(c)

+H(k1,a,b)*[c](k2 ,a)*[cb](k3 ,b)*k2(c)*k3(c)

+H(k1,a,b)*[c](k2 ,a)*[cb](k3 ,c)*k2(c)*k3(b)

+2*be/al*H(k1,a,b)*[c](k2 ,a)*[cb](k3 ,c)*k2(b)*k3(c);

sum a,b,c,d,e,f;

multiply replace_(al ,1); *Feynmann gauge
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multiply replace_(be , -1/2);

.sort

* DEFINE Hq TO BE AN EXTERNAL FIELD and H TO FORM A LOOP *

id H(?a)=H(?a)+Hq(?a);

if( (match(Hq(?a))>1 ) ) discard;

if( (match(Hq(?a))<1 ) ) discard;

.sort

* INCLUDE THE EXPONENTIALS FROM FOURIER TRANSFORM *

Local ghVa=V3ghost*exp(k1,k2,k3);

Local ghVb=ghVa*replace_(k2 ,l2)* replace_(k3 ,l3)* replace_(k1 ,l1);

Local grVa=V3grav*exp(k1,k2 ,k3);

Local grVb=grVa*replace_(k2 ,l2)* replace_(k3 ,l3)* replace_(k1 ,l1);

.sort

drop V3grav ,V3ghost ,V4grav ,V4ghost;

* TAYLOR EXPAND AND MULTIPLY WITH SOURCE TERMS *

Local GravLoop2 = -1/4*1/4* grVa*grVb*[JGJ ]*[ JGJ];

Local GhostLoop2 =1/4* ghVa*ghVb*[JbDJ ]*[ JbDJ];

.sort

drop ghVa ,ghVb ,ghVc ,grVa ,grVb ,grVc;

.sort

* DEFINE THE EXTERNAL MOMENTUM TO BE p AND q *

id once Hq(k1?,a?,b?)*Hq(l1?,c?,d?)=

replace_(k1,p)* replace_(l1,q)*Hq(k1 ,a,b)*Hq(l1 ,c,d);

.sort

* CHANGE THE FIELDS TO FUNCTIONAL DERIVATIVES W.R.T. SOURCES *

id H(?a)=[FD](?a);

id [c](?a)=[ FDg](?a);

id [cb](?a)=[ FDbg ](?a);

* REARRANGE THE SOURCES SINCE VARIABLES IN SQUARE BRACKETS DO NOT COMMUTE *

repeat;

id [JGJ ]*[FD](?b)=[FD](?b)*[JGJ];

endrepeat;

* ACT WITH THE FUNCTIONAL DERIVATIVES ON THE SOURCE TERMS *

repeat;

id [FD](k1?,a?,b?)*[ JGJ ]=2*[GJ](k1 ,a,b)+[JGJ ]*[FD](k1,a,b);

id [FD](k1?,a?,b?)*[GJ](k2?,c?,d?)= replace_(k2,-k1)*G(k2 ,c,d,a,b)

+[GJ](k2,c,d)*[FD](k1 ,a,b);

id [FDg](p?,a?)*[ JbDJ ]=[JbD](p,a)+[ JbDJ ]*[FDg](p,a);

id [FDbg](p?,a?)*[ JbDJ ]=[DJ](p,a)+[ JbDJ ]*[ FDbg](p,a);

id [FDbg](p?,a?)*[ JbD](q?,b?)= replace_(q,-p)*D(q,a,b)+[JbD](q,b)*[ FDbg](p,a);

id [FDg](p?,a?)*[DJ](q?,b?)= replace_(q,-p)*D(q,b,a)+[DJ](q,b)*[ FDg](p,a);

id [FDg ](?a)*[JbD ](?b)=[JbD](?b)*[FDg](?a);

id [FDbg ](?a)*[DJ](?b)=[DJ](?b)*[ FDbg ](?a);

endrepeat;

id [FD](?a)=0;

id [FDg ](?a)=0;

id [FDbg ](?a)=0;

.sort

* INTEGRATE OUT THE DELTA FUNCTIONS THAT ARISE FROM THE EXPONENTIAL FACTORS *

id exp(k1?,p,k2?)= replace_(k1 ,-p-k2);
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id exp(p,k1?,k2?)= replace_(k1 ,-p-k2);

id exp(k1?,k2?,p)= replace_(k1 ,-p-k2);

id exp(k1?,k2?,k3?)=exp(k1+k2+k3);

id exp(q)=0;

id exp(p+q)= replace_(q,-p);

* RELABEL THE INTERNAL LOOP MOMENTUM TO BE q *

multiply replace_(k1,q);

multiply replace_(k2,q);

multiply replace_(k3,q);

* RELABEL MOMENTA INSIDE THE LOOPS SO THAT THE PROPAGATORS TAKE A SIMILAR FORM *

id D(-p+q,?a)=D(-p+q,?a)* replace_(q,-q);

id D(p-q,?a)=D(p-q,?a)* replace_(q,-q);

id D(-p-q,?a)=D(p+q,?a);

id G(-p+q,?a)=G(-p+q,?a)* replace_(q,-q);

id G(p-q,?a)=G(p-q,?a)* replace_(q,-q);

id G(-p-q,?a)=G(p+q,?a);

* INSERT EXPLICIT FORM OF THE PROPAGATORS *

id G(p?,a?,b?,c?,d?)=I(p)*1/2*( d_(a,c)*d_(d,b)+d_(a,d)*d_(c,b)) -

(1/2+ eps /2)*I(p)*d_(a,b)*d_(c,d);

id D(p?,a?,b?)=d_(a,b)*I(p);

id I(-q)=I(q);

.sort

* ADD BOTH CONRIBUTIONS FROM GHOST AND GRAVITON LOOPS *

Local TotalLoop=GhostLoop2+GravLoop2;

.sort

* DISCARD THE TADPOLE CONTRIBUTIONS (thee vanish in dimensional regularization) *

if(match(I(p+q))==0) discard;

.sort

* PERFORM FEYNMAN INTERGAL TRICK (where qM=q+M) *

id I(q+p)*I(q)=I(qM)^2* replace_(q,q-(1-x)*p);

id Hq(p?,a?,b?)=Hq(p,a,b); *(this is to free momenta from the contractions)

* FREE CONTRACTIONS OF MOMENTA *

repeat;

id once q.p=[q](a)*p(a);

sum a;

endrepeat;

repeat;

id once Hq(p?,a?,q)=Hq(p,a,b)*[q](b);

id once Hq(p?,q,a?)=Hq(p,c,a)*[q](c);

id once Hq(p?,q,q)=[q](d)*[q](e)*Hq(p,d,e);

sum b,c,d,e;

endrepeat;

* ODD NUMBER OF MOMENTA INTEGRATION VANISHES *

.sort

if ( count ([q] ,1)== 1 ) discard;

if ( count ([q] ,1)== 3 ) discard;

* REWRITE THE CONTRACTIONS SUCH THAT THE INTGRAND IS ONLY A FUNCTION OF q^2 *

mult dd;
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repeat;

id dd(?a)*[q](b?) = dd(?a,b);

id dd(?a)*[q](p) = dd(?a,p);

endrepeat;

id dd(?a) = an(nargs_ (?a)/2)* dd_(?a)*(q.q)^( nargs_ (?a)/2);

repeat id an(n?pos_) = an(n -1)*(1/2*1/(n+1));

id an(0) = 1;

id I(qM)^2=I(0 ,2);

repeat id q.q*I(m?,n?)=I(m+1,n);

* PERFORM THE FEYNMAN INTEGRAL *

id I(m?,n?) = theta_ (2+m-n)*Gam(n-m-2,eps)/fac_(n-1)* fac_(m+1)*(x*(1-x)*p.p)^(2+m-n);

id x^n? = 1/(n+1);

.sort

* EVALUATE THE GAMMA FUNCTIONS *

repeat id Gam(n?neg_ ,eps) = Gam(n+1,eps)/n;

id Gam(0,eps) = 1/eps;

multiply replace_(dim ,4-2*eps); *(plug in the dimension)

* DISCARD THE FINITE TERMS *

if (count(eps ,1)>-1) discard;

id 1/eps = 1; *(just to tidy things up)

.sort

* SYMMETRIZE TO SIMPLIFY THETERMS *

id Hq(-p,p,N1_?)=Hq(-p,N1_?,p);

id Hq(p,p,N1_?)=Hq(p,N1_?,p);

id Hq(-p,N1_?,N2_ ?)=Hq(-p,N2_?,N1_?);

id Hq(-p,N1_?,N1_ ?)*Hq(p,N2_?,N2_?)=Hq(-p,N2_?,N2_ ?)*Hq(p,N1_?,N1_?);

.sort

* COMBINE THE CONTRIBUTIONS TO THE PROPAGATOR FROM GHOST AND GRAVITON LOOPS *

Local TotalSimplified=TotalLoop;

.sort

* COLLECT THE TERMS INTO Rt (Ricce tensor) and R (Ricci scalar) *

skip GravLoop2 ,GhostLoop2 ,TotalLoop;

id Hq(p,N1_?,p)*Hq(-p,N1_?,p)*p.p=-2*(Rt(-p,a,b)*Rt(p,a,b)

-1/2*Hq(p,p,p)*Hq(-p,p,p)+1/4* Hq(p,p,p)*Hq(-p,N1_?,N1_ ?)*p.p

+1/4*Hq(p,N1_?,N1_?)*Hq(-p,p,p)*p.p -1/4*Hq(p,N1_?,N1_ ?)*Hq(-p,N2_?,N2_?)*p.p^2

-1/4*Hq(p,N1_?,N2_ ?)*Hq(-p,N2_?,N1_ ?)*p.p^2);

sum a,b;

id Hq(p,p,p)*Hq(-p,p,p)=R(p)*R(-p)+Hq(p,p,p)*Hq(-p,N1_?,N1_ ?)*p.p

+Hq(p,N1_?,N1_ ?)*Hq(-p,p,p)*p.p-Hq(p,N1_?,N1_ ?)*Hq(-p,N2_?,N2_ ?)*p.p^2;

.sort

* SYMMETRIZE AGAIN *

id Hq(-p,N1_?,N2_ ?)=Hq(-p,N2_?,N1_?);

id Hq(p,N1_?,N2_ ?)=Hq(p,N2_?,N1_?);

id Hq(-p,N1_?,N1_ ?)*Hq(p,N2_?,N2_?)=Hq(-p,N2_?,N2_ ?)*Hq(p,N1_?,N1_?);

B Hq,eps;

Print;

.sort

.end
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Listing A.2: FORM code that calculates the divergent part of the one loop two-point

vertex of the graviton.
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