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A B S T R A C T

The problem considered in this paper is assessing the quality of the time delay estimate between
leak signals measured on water pipes. This is practically important, as a quantitative assessment
of the accuracy of time delay estimation (TDE) results makes it possible to infer the reliability
of acoustic leak localisation results in a given situation. Three quality assessment approaches
are developed by considering the statistical properties of the cross-correlation function (CCF):
information-criterion, processing gain, and statistical approaches. In the information-criterion
approach, the Bayes factor (BF) is employed to decide the most likely probability distribution
of observed CCF peak values. The processing gain approach determines the quality of the time
delay estimate using indices that indicate detectability of the CCF peak, namely, the peak-to-side
lobe ratio (PSR) and the peak-to-mean ratio (PMR). In the statistical approach, an index termed
inconsistency score (ICS) is used to describe the quality of TDE results based on root-mean
square of deviations of time delay estimates from their statistical mode. Experimental results
show that the proposed approaches provide effective means of assessing the accuracy of the
time delay estimate in acoustic leak detection applications. Also, the proposed indices can be
employed as figures of merit for selecting best parameters for TDE, for example, filter cut-off
frequencies.

. Introduction

Water pipelines are vital infrastructure for transporting water to consumers, and hence, are subject to high safety, integrity, and
eliability requirements. The presence of leakages makes it difficult to satisfy these requirements [1]. Leakages can cause severe
amage to the pipes and serve as potential entry points for contaminants, especially in low-pressure areas, thereby undermining
he safety of water distribution networks. Loss of water through leakages decreases the reliability of pipelines and can lead to
nability to meet demands. Lost revenue from leakages and cost of repair works place increased financial burden on water companies
nd may result in higher prices for the consumers. Dwindling freshwater supply and increasing threats of prolonged periods of
rought make high prevalence of leakages a serious sustainability issue [2]. The global urban population facing water scarcity is
rojected to increase from 930 million in 2016 to 1.7–2.4 billion people in 2050 [3]. Due to the possibly disastrous consequences of
ater leakages, their timely detection and repair are of primal importance. Different leak detection methods have been developed,

ncluding use of listening sticks, fluid transient methods, optical fibre methods, pressure point analysis, acoustic methods [4].
Among the existing methods, acoustic cross-correlation using leak noise correlators provides a powerful solution for precisely

ocating a leak in water distribution networks [5]. In acoustic cross-correlation method, the leak location is determined from the
ime delay between acoustic/vibration signals acquired at two access points on either side of the suspected leak. Since this method
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Fig. 1. Typical measurement setup for the acoustic cross-correlation method [9].

involves the classical time delay estimation (TDE) problem, it is difficult to make informed inferences about the reliability of leak
localisation results without a quantitative assessment of the quality (accuracy) of the time delay estimate. However, this aspect of the
TDE problem has not received widespread attention in the literature. Most of the existing research focuses mainly on improving TDE
accuracy but fails to provide means for assessing the accuracy of the results. The few heuristic criteria available in the literature for
assessing the quality of the time delay estimate include bandwidth-to-centre frequency ratio (BCFR) proposed in [6] and correlation
quality index (CQI) proposed in [7]. The BCFR refers to the ratio of the bandwidth to centre frequency of the frequency band, over
which the correlation analysis is carried out, while the CQI is the geometric mean of five component indices, namely, bandwidth
index, coherence index, phase index, peak index, and shape index. The application of these indices is based on the observation that
the time delay can be reliably determined when the cross-correlation function (CCF) has a ‘good’ shape characterised by a sharp
and prominent main peak associated with the time delay and small correlation values away from this peak. Each index assesses
the impact of different factors on the CCF shape: bandwidth of the leak signals (BCFR, bandwidth index); external noise (coherence
index); noise, structural dynamics of the pipe system, and reflections (phase index, peak index); correlated noise and reflections
(shape index). Certain drawbacks may render these indices ineffective for assessing the quality of the time delay estimate in some
situations. Firstly, the indices consider only the CCF shape in inferring the quality of TDE results without taking into account the
actual value of the time delay estimate. As a result, they are likely to provide incorrect inference about TDE quality in the presence
of any factor that distorts the time delay estimate without changing the shape of the CCF, for example, when resonances are present
in the analysed bandwidth [8]. Secondly, their usage is based on heuristic, non-rigorous considerations, leading to difficulties in
setting appropriate thresholds and interpreting results. For instance, the shape index attains a high value for CCF of uncorrelated
signals and CCF of leak signals with a ‘good’ shape, making it difficult to distinguish between these two cases. Also, the phase index
may attain a negative value, interpretation of which is unclear. Thirdly, some of the indices included in the CQI are cumbersome
to calculate. An example is the phase index, which requires linear regression.

This paper addresses the research gap concerning lack of adequate and robust indices for assessing the accuracy of the time delay
estimate between measured leak signals. In this work, alternative quality assessment indices based on three different approaches are
developed by considering the properties of the CCF relevant for TDE. In the first approach, the quality of the time delay estimate is
assessed using an information criterion that describes the statistical distribution of the CCF peak value. The second approach termed
the processing gain approach infers the quality of TDE results based on the prominence of the CCF peak. In the third approach, the
root-mean square of deviations of time delay estimates from their statistical mode is used to quantify TDE accuracy. Experimental
signals are used to investigate and compare the effectiveness of the proposed indices. The outline of the paper is as follows. Section 2
gives an overview of the acoustic cross-correlation technique and illustrates the impact of TDE errors on leak localisation results.
Indices for quality assessment of TDE results are proposed in Section 3. Experimental results are presented and discussed in Section 4,
while the main findings are summarised in Section 5.

2. Overview of acoustic cross-correlation

Fig. 1 shows the typical measurement setup used to detect and locate leaks in water pipes. Acoustic/vibration sensors are attached
to access points, typically hydrants or valves, on either side of the suspected leak. In the cross-correlation method, the distance 𝑑1
between the leak and the first measurement point is calculated as [9]

𝑑1 =
𝑑 − 𝑐 ⋅ 𝜏peak

2
(1)

where 𝑐 is the acoustic wave speed in the pipe, 𝑑 = 𝑑1 + 𝑑2 is the distance between the measurement points, and 𝜏peak = (𝑑2 − 𝑑1)∕𝑐
is the time delay between the measured signals. In leak noise correlators, 𝜏peak is usually estimated as the lag corresponding to the
peak of the CCF of the measured signals.
2 
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Fig. 2. Absolute leak localisation error due to TDE error for different relative leak locations.

For accurate determination of the leak location, accurate estimates of 𝑐 and 𝜏peak are required. An error in either of these quantities
will produce a corresponding error in the estimate of 𝑑1. Let 𝑑1 denote the leak location calculated using the time delay estimate
̂peak and some wave speed value 𝑐 in Eq. (1). Denoting 𝛥𝜏peak = 𝜏peak − 𝜏peak and 𝛥𝑐 = 𝑐 − 𝑐, the absolute error in leak location
𝛥𝑑1 = |𝑑1 − 𝑑1| is given by

𝛥𝑑1 =
1
2
|

|

|
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)
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.

(2)

The last two expressions in Eq. (2) are only valid for 𝜏peak ≠ 0, i.e., when the leak is not exactly at the midpoint of the pipe. It can
be observed that even when the wave speed or time delay is exactly known, leak localisation error due to error in the other can
be large especially if the true leak location is closer to one end of the pipe. Fig. 2 shows the absolute leak localisation error due
to error in the time delay estimate for different locations of the leak when 𝑑 = 100 m, 𝑐 = 354 m∕s, and 𝛥𝑐 = 0. For 𝑑1∕𝑑 = 0.2, a
10% error in the time delay estimate will result in an undesirable absolute leak localisation error of |𝛥𝑑1| = 3 m. Since error in the
time delay estimate has a substantial effect on acoustic leak localisation results, assessing its accuracy is of practical importance. As
stated in the introduction, BCFR and CQI were proposed for assessment of the quality of the time delay estimate. The BCFR can be
calculated from the CCF of the signals as [6]

BCFR ≈ 1
𝜋

√

6(1 − 𝛼) (3)

where 𝛼 is the ratio of the heights of the adjacent and main peaks in the CCF envelope. The CQI is given by [7]

CQI = 5
√

𝑘b𝑘co𝑘ph𝑘pk𝑘sh (4)

where 𝑘b = 1 −
⌢
𝑅2 is the bandwidth index, 𝑘co = 1

𝑁𝑓

∑𝑁𝑓−1
𝑖=1 𝛾2𝑥1𝑥2 (𝜔𝑖) is the coherence index, 𝑘ph = 1 −

√

1
𝑁𝑓−1

∑

(

|

|

|

𝑟ph − 1||
|

− 𝜇
)2

is

the phase index, 𝑘pk = max{𝜌𝑥1𝑥2 (𝜏)} is the peak index, and 𝑘sh = 1 − 𝑅2 is the shape index. Here, max{⋅} represents the maximum

value,
⌢
𝑅2 denotes the second highest peak in the CCF envelope, 𝜌𝑥1𝑥2 (𝜏) is the normalised CCF, 𝑅2 is the height of the second highest

(secondary) peak in the CCF, 𝑟ph is the ratio between the experimental unwrapped cross-spectral phase to its least squares fit, 𝜇 is
the mean of |𝑟ph − 1|, 𝜔𝑖 is the 𝑖th frequency in the frequency band over which the leak noise propagates, and 𝑁𝑓 is the number of
frequency points. These indices assess the CCF shape in terms of how prominent the main peak is relative to other CCF values. Large
values imply that the CCF has a ‘good’ shape desirable for accurate TDE results. On the other hand, low values indicate CCF with
a ‘bad’ shape, in which the main peak may be of comparable height with other peaks, thus making it difficult to unambiguously
identify the time delay. The following scale for inferring the quality of time delay estimates was suggested in [7]: CQI values 0–0.2
denote poor quality, 0.2–0.7 good quality, and 0.7–1.0 excellent quality. Values of BCFR above 0.3 indicate accurate time delay
estimates [6]. These indices may not be effective and robust due to the drawbacks highlighted in the introduction. Developing more
effective quality assessment indices is the main motivation for the work in this paper.
3 
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3. Approaches for assessing quality of the time delay estimate

Since time delay between leak signals is usually estimated using a correlation-based method, this paper will focus only on
assessing the quality of time delay estimates obtained from the peak of the CCF. Referring to Fig. 1, the measured signals 𝑥1(𝑡)
and 𝑥2(𝑡) can be represented as

𝑥1(𝑡) = 𝑙(𝑡)⊗ ℎ1(𝑡) + 𝑛1(𝑡) = 𝑙1(𝑡) + 𝑛1(𝑡) (5a)

𝑥2(𝑡) = 𝑙(𝑡)⊗ ℎ2(𝑡) + 𝑛2(𝑡) = 𝑙2(𝑡) + 𝑛2(𝑡) (5b)

where 𝑙(𝑡) is the signal generated at the leak location (i.e., the leak noise), ℎ𝑖, 𝑖 = 1, 2, is the impulse response function (IRF) that
expresses the relationship between 𝑙(𝑡) and the signal at the 𝑖th measurement point, 𝑙𝑖 = 𝑙(𝑡) ⊗ ℎ𝑖 is the noise-free component of
𝑥𝑖(𝑡), and 𝑛𝑖(𝑡) is the background noise, which is assumed to be uncorrelated with the leak noise. For an infinitely long pipe without
discontinuities, the frequency response function (FRF) 𝐻(𝜔, 𝑑𝑖) = 

{

ℎ𝑖
}

has the following form [9]

𝐻(𝜔, 𝑑𝑖) = exp(−|𝜔|𝛽 𝑑𝑖) ⋅ exp(−j|𝜔|𝑑𝑖∕𝑐) (6)

where 𝛽 is the attenuation factor (a measure of the loss experienced by acoustic waves within the pipe wall), 𝜔 is the radial frequency,
j =

√

−1, and  {∙} denotes the Fourier transform (FT). The CCF 𝑅𝑥1𝑥2 (𝜏) of the leak signals 𝑥1(𝑡) and 𝑥2(𝑡) can be expressed as

𝑅𝑥1𝑥2 (𝜏) = 𝑅𝑙1𝑙2 (𝜏) + 𝑅𝑙1𝑛2 (𝜏) + 𝑅𝑛1𝑙2 (𝜏) + 𝑅𝑛1𝑛2 (𝜏) (7)

where 𝑅𝑢𝑣(𝜏) = 1
𝑇 ∫ 𝑇

0 𝑢(𝑡 + 𝜏)𝑣(𝑡)𝑑 𝑡 is the CCF of signals 𝑢 and 𝑣 [10], and 𝑇 is the measurement time.
Reliable TDE and leak localisation can only be accomplished when a distinct peak can be identified in the CCF. Since the leak

noise and background noise signals are assumed to be mutually uncorrelated, a distinct peak will only be observed in the CCF when
there is ‘strong’ correlation between the measured leak signals. ‘Poor’ correlation due to noise and severe signal attenuation makes
it difficult to correctly identify the time delay from the CCF. High background noise level and interferences, such as reflections and
resonances, increase the ‘background’ correlation values (i.e., CCF values away from the main peak) and induce additional peaks
in the CCF, while signal attenuation broadens and reduces the main CCF peak [9]. In this paper, the term ‘poor correlation’ is used
to indicate that the leak signal level is so low such that noise dominates in the measured signals, while ‘strong correlation’ implies
the contrary. Examples of CCFs of poorly and strongly correlated signals are shown in Figs. 3(a) and 3(b). Assessing the quality
of the time delay estimate can be essentially considered a binary hypothesis problem, the aim of which is to infer whether the
measured signals are strongly or poorly correlated. In practical applications, the true delay is not known a priori, so the quality
of the time delay estimate can only be assessed indirectly by considering the properties of the CCF relevant for TDE, namely, the
location 𝜏 = 𝜏peak and the value 𝑅max of the main peak. The former gives the time delay estimate, while the latter affects the ability
to unambiguously determine this estimate. To facilitate development of indices for assessing the quality of the time delay estimate,
these properties are considered for strongly and poorly correlated signals.

3.1. Information criterion approach

The information criterion approach is based on the statistical distribution of the CCF peak value. It can be shown that 𝑅max
follows different distributions depending on whether the measured signals are strongly or poorly correlated.

3.1.1. Distribution of the CCF peak value
The case of poor correlation is first considered. According to the central limit theorem, the cross-correlation values 𝑅𝑛1𝑛2 (𝜏)

of zero-mean signals 𝑛1(𝑡) and 𝑛2(𝑡) is normally distributed with zero mean and variance
𝜎2𝑛1 𝜎

2
𝑛2

𝑁 , where 𝜎2𝑢 denotes the variance

of 𝑢 and 𝑁 is the signal length [11,12]. This is denoted as 𝑅𝑛1𝑛2 (𝜏) ∼ 
(

0,
𝜎2𝑛1 𝜎

2
𝑛2

𝑁

)

. Based on the extreme value theorem,

𝑅max = max{𝑅𝑛1𝑛2 (𝜏)} is distributed according to a type I generalised extreme value (GEV) or Gumbel distribution with a null
shape parameter, location parameter 𝜇𝛶 (𝑁𝑐 ), and scale parameter 𝑠𝛶 (𝑁𝑐 ) given by [13].

𝜇𝛶 (𝑁𝑐 ) =𝛶 −1
(

1 − 1
𝑁𝑐

)

(8a)

𝑠𝛶 (𝑁𝑐 ) =𝛶 −1
(

1 − 1
𝑁𝑐 ⋅ e

)

− 𝛶 −1
(

1 − 1
𝑁𝑐

)

(8b)

where 𝑁c is the CCF size (number of lags in the CCF), and 𝛶 −1(∙) is the inverse of the cumulative distribution function (CDF) 𝛶 (∙)
of 𝑅𝑛1𝑛2 (𝜏). This is denoted as 𝑅max ∼ GEV1(𝜇𝛶 (𝑁𝑐 ), 𝑠𝛶 (𝑁𝑐 )).

The CCF 𝑅𝑥1𝑥2 (𝜏) in Eq. (7) is the sum of the term 𝑅𝑙1𝑙2 (𝜏) and the noise terms 𝑅𝑁 (𝜏) = 𝑅𝑙1𝑛2 (𝜏) +𝑅𝑛1𝑙2 (𝜏) +𝑅𝑛1𝑛2 (𝜏). The value
of 𝑅𝑙1𝑙2 (𝜏peak ) over multiple realisations of the CCF of strongly correlated leak signals can be assumed to be approximately constant
since it is not affected by noise. Note that this assumption is not strictly true since 𝑅𝑙1𝑙2 (𝜏peak ) depends on the leak noise 𝑙(𝑡), a
random signal. The term 𝑅𝑁 (𝜏) is the sum of three normally distributed zero-mean random variables (CCFs of uncorrelated signals).
Hence, the distribution of 𝑅max in the case of strongly correlated leak signals is a normal distribution with mean 𝜇𝑅max

= 𝑅𝑙1𝑙2 (𝜏peak )
and variance 𝜎2𝑅 = 1

(

𝜎2𝑙 𝜎
2
𝑛 + 𝜎2𝑛 𝜎2𝑙 + 𝜎2𝑛 𝜎2𝑛

)

, i.e., 𝑅max ∼ 
(

𝜇𝑅 , 𝜎2𝑅
)

.

max 𝑁 1 2 1 2 1 2 max max

4 
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Fig. 3. Examples of CCFs of (a) poorly correlated leak signals and (b) strongly correlated leak signals. Comparison of GEV and normal distributions for describing
the PDF of the CCF peak in the case of: (c) poorly correlated leak signals; (d) strongly correlated leak signals.

Figs. 3(c) and 3(d) show the empirical probability distribution functions (PDFs) of 𝑅max for strongly correlated and poorly
correlated simulated leak signals, respectively. The strongly correlated leak signals were obtained by filtering the white noise
signal with the FRFs (Eq. (6)) of a pipe with the following properties: wave speed 𝑐 = 354 m∕s, relatively small attenuation factor
𝛽 = 2.1 ⋅ 10−5 s/m, 𝑑1 = 20 m, and 𝑑2 = 50 m. To obtain poorly correlated leak signals, the pipe attenuation factor was increased to
𝛽 = 2.1 ⋅ 10−3, and white Gaussian noise was added such that the signal-to-noise ratio (SNR) of the resulting signals was −7 dB. Also
shown on Figs. 3(c) and 3(d) are the PDFs of the theoretical distributions GEV1(𝜇𝛶 (𝑁), 𝑠𝛶 (𝑁)) and 

(

𝜇𝑅max
, 𝜎2𝑅max

)

, respectively,
as well as the fitted GEV and normal distributions. In the figures, the empirical and the theoretical PDFs are denoted as 𝑃emp
and 𝑃t h, respectively, while the fitted normal and GEV PDFs are denoted as 𝑃nor mal and 𝑃GEV1

, respectively. The empirical PDFs
were estimated using the MATLAB density estimation function ‘ksdensity’, while the fitted PDFs were obtained using the MATLAB
distribution fitting function ‘fistdist’ with the desired distribution (GEV or normal) specified. The relative agreement between these
PDFs can be objectively assessed using Jeffrey’s divergence (JD), which for two probability distributions 𝑃 and 𝑄 defined in the
same sample space  is given by [14]

JD(𝑃 , 𝑄) =
∑

𝑢∈
(𝑃 (𝑢) −𝑄(𝑢)) ⋅ log

{

𝑃 (𝑢)
𝑄(𝑢)

}

. (9)

A small JD implies high similarity between the distributions, while a high JD indicates that the distributions are very different. Based
on the JD values, 𝑅max is best described by different distributions as predicted above: GEV for poorly correlated leak signals and
normal for strongly correlated leak signals. However, the extent to which the distributions best describe 𝑅max in each case differs.
By visual inspection and from the relatively high value of JD(𝑃t h, 𝑃nor mal) in Fig. 3(c), the normal distribution is a rather poor fit for
𝑅max in the case of poorly correlated signals. On the other hand, while the normal distribution is objectively the better fit in the
case of strongly correlated leak signals, the GEV appears to be a good fit in some regions, as shown by the relatively small value of
JD(𝑃t h, 𝑃GEV1

) in Fig. 3(d).

3.1.2. Bayes factor as a quality assessment index
Since 𝑅max follows different distributions depending on the strength of correlation between the measured leak signals, the

problem of assessing the quality of the time delay estimate can be considered a model selection problem, or more specifically,
the problem of deciding whether the observed CCF peak values are best described by a type I GEV distribution (denoted as 𝑀1)
or a normal distribution (denoted as 𝑀2). Information criteria, such as the Bayes factor (BF), are widely employed in such model
discrimination problems. The BF of two candidate models is defined as the ratio of their marginal likelihoods, i.e., the likelihoods of
the two models integrated over the prior probabilities of their parameters [15]. For a large sample size, the BF BF𝑀1 ,𝑀2

of models
𝑀1 and 𝑀2 can be approximated as [16]

BF = exp
{

−
BIC𝑀1

− BIC𝑀2
}

(10)
𝑀1 ,𝑀2 2

5 
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Table 1
Scales for the interpretation of the BF.
log10

(

BF𝑀1 ,𝑀2

)

BF𝑀1 ,𝑀2
Strength of evidence in support of 𝑀1

Kass and Raftery (1995) Jeffreys (1998)

<0 <1 Negative (supports 𝑀2)
0 to 1∕2 1 to 3.2 Barely worth mentioning

1∕2 to 1 3.2 to 10 Substantial Substantial

1 to 3∕2 10 to 31.6 Strong Strong
3∕2 to 2 31.6 to 100 Very strong

>2 >100 Decisive

where BIC𝑀𝑖
is the Bayesian Information Criterion (BIC) of model 𝑀𝑖, 𝑖 = 1, 2, given by [17]

BIC𝑀𝑖
= 𝑘 log

(

𝑁𝑅
)

− 2 log
(

𝐿𝑀𝑖

)

(11)

where 𝐿𝑀𝑖
is the maximised value of the likelihood function of 𝑀𝑖, i.e., 𝐿𝑀𝑖

= Pr
{

𝑅̂max
|

|

|

𝜃̂ , 𝑀𝑖

}

, 𝜃̂ are the parameter values that
maximise the likelihood function, 𝑅̂max is the observed CCF peak data, 𝑁𝑅 is the sample size (number of CCF peak values), and 𝑘
is the number of parameters in the model distribution 𝑀𝑖. A value of BF𝑀1 ,𝑀2

> 1 implies that 𝑀1 is more strongly supported by
the data under consideration than 𝑀2. Two scales proposed by Kass and Raftery [18] and Jeffreys [14] for the interpretation of the
BF are shown in Table 1. In both scales, inference is made in favour of 𝑀1 only if there is at least a substantial evidence in support
of 𝑀1. Otherwise, it is decided in favour of 𝑀2. Based on this, the time delay estimate is considered accurate if BF𝑀1 ,𝑀2

≥ 3.2 and
inaccurate otherwise. Note that the inference has been formulated as accepting or rejecting the hypothesis that 𝑅max follows a GEV
distribution. This is because as illustrated above, difficulty may arise in distinguishing between normal and GEV distributions for
CCF peak value of strongly correlated signals. Conversely, a substantial evidence in support of GEV distribution (𝑀1) is expected
when the signals are poorly correlated.

3.2. Processing gain approach

A parameter used for assessing the performance of a signal processor is the signal-to-noise (SNR) SNRout of its output [19].
Given the same input signals, signal processors with higher output SNR are generally more robust to noise and other factors that

ay negatively impact performance. For a correlation-based time delay estimator, SNRout is essentially the SNR of the CCF, which
can be defined as the ratio of a ‘useful’ component to a ‘noise’ component in the CCF. Here, a ‘useful’ component denotes the part
of the CCF that contains information about the time delay (for example, the CCF peak height), while the ‘noise components’ refer
o CCF components that interfere with the ability to unambiguously determine the time delay (for example, CCF values away from
he main peak). Two indices based on this definition of SNRout are described in the following subsections.

3.2.1. Peak-to-side lobe ratio as a quality assessment index
The SNR of the CCF can be expressed as the peak-to-side lobe ratio (PSR), which is defined as

SNRout = PSR =
𝑅2
𝑥1𝑥2

(𝜏peak )

var
{

𝑅𝑥1𝑥2 (𝜏f ar )
} (12)

where var
{

𝑅𝑥1𝑥2 (𝜏f ar )
}

denotes the variance of the CCF ‘side lobe’. Here, ‘side lobe’ refers to the ‘background’ CCF values at lags 𝜏f ar
ar away from the main CCF peak. If the CCF is computed in the lag interval −𝑛𝑐 ≤ 𝜏 ≤ 𝑛𝑐 , then 𝜏f ar encompasses lags at least 𝑛𝑐∕2

away from 𝜏peak . The PSR can be considered a quantitative measure of peak detectability with a higher value indicating a CCF with
a prominent peak and low values off from this peak, which is desirable for accurate TDE. A low PSR value implies a less prominent
main peak in the CCF. In this sense, it characterises the CCF shape like the BCFR.

The PSR can be expressed analytically. Since 𝑅𝑛1𝑛2 (𝜏) ∼ 
(

0,
𝜎2𝑛1 𝜎

2
𝑛2

𝑁

)

, the quantity
𝑅𝑛1𝑛2 (𝜏)

√

var
{

𝑅𝑛1𝑛2 (𝜏)
}

∼  (0, 1), i.e., a standard

normal random variable. Thus, in the case of poorly correlated signals, the square root of the PSR follows a type I GEV distribution;
specifically,

√

PSR ∼ GEV1
(

𝜇𝛷(𝑁𝑐 ), 𝑠𝛷(𝑁𝑐 )
)

, where 𝜇𝛷(𝑁𝑐 ) and 𝑠𝛷(𝑁𝑐 ) are evaluated using Eq. (8) with 𝛷(∙) the standard normal
DF. The expected value of the PSR for such signals can thus be expressed as [13]

PSR = [

𝜇𝛷(𝑁𝑐 ) + 𝛾 ⋅ 𝑠𝛷(𝑁𝑐 )
]2

=
[

(1 − 𝛾)𝛷−1
(

1 − 1
𝑁𝑐

)

+ 𝛾 ⋅𝛷−1
(

1 − 1
𝑁𝑐 ⋅ e

)]2 (13)

where 𝛾 = 0.5772 is the Euler–Mascheroni constant.
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In the case of strongly correlated signals, the square root of the PSR is normally distributed, and the PSR can be expressed as
Appendix)

PSR = 𝑇
𝜋(𝛽 𝑑)2

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1
2𝛽 𝑑 exp(−2𝜔1𝛽 𝑑)

2
∑

𝑘=0

(2𝜔1𝛽 𝑑)𝑘
𝑘!

+
𝑁0
𝑆0

1
2𝛽 𝑑1

exp(−2𝜔1𝛽 𝑑1)
2
∑

𝑘=0

(2𝜔1𝛽 𝑑1)𝑘
𝑘!

+
𝑁0
𝑆0

1
2𝛽 𝑑2

exp(−2𝜔1𝛽 𝑑2)
2
∑

𝑘=0

(2𝜔1𝛽 𝑑2)𝑘
𝑘!

+
𝑁2

0

𝑆2
0

𝜔2

⎤

⎥

⎥

⎥

⎥

⎥

⎦

−1

(14)

where flat spectra 𝐺𝑙 𝑙(𝜔) = 𝑆0 and 𝐺𝑛1𝑛1 (𝜔) = 𝐺𝑛2𝑛2 (𝜔) = 𝑁0 have been assumed for the leak noise and background noise signals in
the analysed frequency region 𝜔1 ≤ 𝜔 ≤ 𝜔2 with 𝜔2 ≫ 𝜔1. From this expression, it can be observed that the PSR of leak signals attains
a higher value in situations where the accuracy of the time delay estimate is expected to be higher: lower pipe attenuation factor
𝛽, smaller inter-sensor distance 𝑑, longer measurement duration 𝑇 , and larger ratio of the powers of the leak noise and background
noise 𝑆0∕𝑁0.

Inference about the quality of the time delay estimate is made by comparing the PSR value to a threshold 𝜆PSR that can be set
using the common approach in binary hypothesis testing as

𝜆PSR =
[

𝐹−1
√

PSR
(1 − 𝜉)

]2
(15)

where 𝐹−1
√

PSR
(∙) is the inverse of the CDF of the type I GEV distribution GEV1

(

𝜇𝛷(𝑁𝑐 ), 𝑠𝛷(𝑁𝑐 )
)

, and 𝜉 is the allowable false positive

rate (AFPR), which denotes the probability that PSR exceeds 𝜆PSR for poorly correlated signals. If the PSR exceeds 𝜆PSR, then it is
inferred that the time delay estimate provided by the CCF is accurate. Otherwise, the estimate is considered inaccurate.

3.2.2. Peak-to-mean ratio as a quality assessment index
An alternative way to define the SNR of the CCF is in terms of the mean of the correlation values as the peak-to-mean ratio

(PMR) given by

PMR = 𝑅max
1
𝑁c

∑

|𝑅𝑥1𝑥2 (𝜏) |
. (16)

The PMR describes how much the CCF peak ‘sticks out’ above the CCF mean level. It is a heuristic measure used in the water
ndustry to infer reliability of cross-correlation results. For the background noise signals 𝑛1(𝑡) and 𝑛2(𝑡), the absolute value

𝑅𝑛1𝑛2 (𝜏)
|

|

|

follows a folded normal distribution [20] with mean

√

2𝜎2𝑛1𝜎
2
𝑛2

𝜋 𝑁 and variance
(1 − 2

𝜋 ) ⋅ 𝜎
2
𝑛1
𝜎2𝑛2

𝑁
. Therefore, according to

the central limit theorem, provided 𝑁𝑐 is large, the quantity 𝜅(𝜏) =
𝑅𝑛1𝑛2 (𝜏)

1
𝑁c

∑

|𝑅𝑥1𝑥2 (𝜏) |
∼  (0, 𝜋∕2). From this, it follows that

PMR ∼ GEV1

(

𝜇𝐹𝜅 (𝑁𝑐 ), 𝑠𝐹𝜅 (𝑁𝑐 )
)

, where 𝜇𝐹𝜅 (𝑁𝑐 ) and 𝑠𝐹𝜅 (𝑁𝑐 ) are evaluated using Eq. (8) with 𝐹𝜅 (𝑢) = 𝛷

(

𝑢
√

𝜋∕2

)

. Thus, when

the signals are poorly correlated, the expected value of the PMR can be expressed as [13]
PMR =𝜇𝐹𝜅 (𝑁𝑐 ) + 𝛾 ⋅ 𝑠𝐹𝜅 (𝑁𝑐 )

=
[

(1 − 𝛾)𝛷−1
(

1 − 1
𝑁𝑐

)

+ 𝛾 ⋅𝛷−1
(

1 − 1
𝑁𝑐 ⋅ e

)]

⋅

√

𝜋
2
.

(17)

Comparison of Eqs. (13) and (17) shows that the PMR and PSR are closely related. The PSR is the squared value of the PMR scaled
by a factor of 𝜋∕2.

In the case of strongly correlated leak signals, the PMR cannot be expressed analytically since there is no closed form expression
for the absolute correlation value |

|

|

𝑅𝑥1𝑥2 (𝜏)
|

|

|

. However, it can be easily observed that like the square root of the PSR, the PMR of

leak signals will be normally distributed in this case.
Following the same procedures employed for the PSR, accurate time delay estimate is inferred if the PMR exceeds a threshold

PMR given by

𝜆PMR = 𝐹−1
PMR(1 − 𝜉) (18)

where 𝐹−1
PMR(∙) is the inverse of the CDF of the type I GEV distribution GEV1

(

𝜇𝐹𝜅 (𝑁𝑐 ), 𝑠𝐹𝜅 (𝑁𝑐 )
)

. Compared to BCFR and CQI
hresholds, which are set arbitrarily, the PSR and PMR thresholds defined in Eqs. (15) and (18) are likely to be more robust and

reduce incidents of false alarms (i.e., incorrectly inferring strong correlation when there is none).
7 
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3.3. Statistical approach

One issue with the information criterion and processing gain approaches described above is that they do not explicitly take the
actual value of the time delay estimate into account. To deal with this issue, an additional quality assessment index, referred to as
the inconsistency score (ICS) and denoted as 𝐶s in this paper, is proposed as follows:

𝐶s =

√

√

√

√
1
𝑁𝑅

𝑁𝑅
∑

𝑘=1

(

𝜏peak,𝑖 − 𝜏peak
)2 (19)

where 𝑁𝑅 is the number of CCF realisations (obtained from signal segments or multiple measurements from the same leak), 𝜏peak,𝑖
s the time delay estimate from the 𝑖th CCF realisation, and 𝜏peak is the assumed true delay taken as the statistical mode of the time

delay estimates. Here, the term assumed is used to emphasise that the true delay is not known a priori. The ICS is similar to the
standard deviation but defined in terms of the mode instead of the mean. A justification for the choice of the statistical mode over
the statistical mean in the definition of the ICS is that the effects of outliers are less pronounced on the mode. In this work, a time
delay estimate is said to be inconsistent if it differs from the assumed true time delay by more than some given value. The ICS
assesses the inconsistency of time delay estimates obtained from multiple CCF realisations. In the case of strongly correlated signals,
values of 𝜏peak obtained from different CCF realisations will be nearly equal and close to the assumed true delay, thus resulting in a
small ICS value. Conversely, large variability in the time delay estimates results in a large ICS value in the case of poorly correlated
signals.

3.4. Workflow for assessing the quality of the time delay estimate

The steps for assessing the quality of the time delay estimate using the approaches described above can be summarised as follows:

1. Divide the measured signals into non-overlapping segments. Overlapping segments may result in correlated CCF peak values,
distribution of which may not conform to either GEV or normal. For an accurate approximation of BIC, it is important to
ensure that the number of segments is high (at least 30) [21].

2. Compute the CCF between corresponding segments of the two signals and determine the CCF peak value and time delay
estimate in each CCF realisation.

3. Calculate the BIC (Eq. (11)) of the CCF peak values, assuming a type I GEV distribution (𝑀1) and a normal distribution
(𝑀2), and then the BF (BF𝑀1 ,𝑀2

) using Eq. (10). Calculate the ICS using Eq. (19) and the PSR using Eq. (12) (or PMR using
Eq. (16)). Note one may either evaluate the PSR or PMR value from the CCF of the whole signal or take the average of values
obtained from different CCF realisations.

4. A high quality of the time delay estimate is inferred under the following conditions:

(a) The BF BF𝑀1 ,𝑀2
is less than 3.2. This suggests there is a lack of substantial evidence supporting the hypothesis that

the signals are poorly correlated.
(b) The PSR (PMR) is greater than the threshold 𝜆PSR (𝜆PMR) computed using Eq. (15) (Eq. (18)).
(c) The ICS is less than some selected threshold 𝜆ICS. Based on simulation results, an inconsistency threshold of 1 is

suggested. This value may, however, be adjusted if necessary, depending on the properties of the signals being
considered.

(d) The proportion of inconsistent estimates (PiCE) is less than some selected proportion, for example, 20%. This additional
condition is included to avoid situations with a lot of outliers among the time delay estimates.

If any of these conditions is not satisfied, then low quality is inferred, and the time delay estimate is deemed inaccurate.
As already stated, poor correlation due to noise, interferences, and severe signal attenuation can result in reduced main peak,

higher side lobe (‘background’ values), and appearance of additional peaks in the CCF. Each of the proposed indices may be more
ensitive to some of these effects than others. For example, the PSR is sensitive to larger side lobe but less so to additional peaks that

occur close to the main peak due to reflections in the measured signals [9]. Use of multiple indices based on different methodologies
as proposed above will, therefore, be more robust for assessing the quality of time delay estimates than using a single index.

4. Results and discussion

In this section, the effectiveness of the proposed quality assessment indices is evaluated using experimental signals.

4.1. Comparative study of quality assessment indices

The performances of the existing and proposed alternative quality assessment indices were compared for datasets consisting
of signals acquired on a laboratory leakage test rig. Fig. 4(a) shows the schematic of the rig, which consists of two 6-metre long
MDPE pipes joined with a 90◦ elbow. Each pipe has with an outer diameter of 63 mm and thickness of 6.2 mm. Leaks can be
simulated by opening valves installed on two 6-millimetre holes at the points marked L1 and L2 in the schematic (as shown in
Fig. 4(b)). The rig is fitted with B200 hydrophones (https://www.neptune-sonar.co.uk/products/hydrophones/b200) and 352C22
8 
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Fig. 4. Laboratory pipe leakage rig. (a) Schematic of the leakage rig. (b) Setup for leak simulation. (c) Access point for sensor installation.

Table 2
Metrological characteristics of the B200 hydrophone and 352C22 accelerometer.

Sensor B200 hydrophone 352C22 accelerometer

Sensitivity −212 dB re 1 V/mPa
(2.8 × 10−5 mV∕mPa)

1.0 mV∕(m s−2)

Useful frequency range 10 Hz to 180 kHz 0.3 Hz to 20 kHz
Resonant frequency 170 kHz ≥50 kHz
Measurement range Not available ±4900 ms−2 peak
Operating temperature −5 to +40 ◦C −54 to +121 ◦C

accelerometers (https://www.pcb.com/it/products-it-it?model=352c22), the metrological characteristics of which are summarised
in Table 2. These sensors are installed/mounted at the access points labelled X1, X2, and X3 as shown in Fig. 4(c). An additional
accelerometer was mounted at a point located 2 m from X3 (this point will be denoted as X4). The acoustic wave speed in the
MDPE pipe is 354 m/s (experimentally determined by exciting the pipe with a white noise signal using a shaker at the elbow and
estimating the time delay between the pipe responses at X1 and X2). This value is the average of the wave speed values obtained
for 10 hydrophone and accelerometer measurements.

Ten datasets consisting of leak signals acquired using hydrophones (4 datasets) or accelerometers (6 datasets) at the measurement
points on the leakage test rig were analysed to evaluate the effectiveness of the quality assessment indices. The signals were measured
at a sampling rate of 40 kHz for 30 s. Half of the hydrophone and accelerometer datasets were acquired in the presence of a leak
at L1, while the rest were acquired when a leak was simulated at L2. For each dataset, the CCFs of the pairs of signals measured at
points bracketing the leak (i.e., X1-X2, X1-X3, X1-X4) were computed with a maximum time lag of 8192 samples (205 ms). Prior to
computing the CCF, the signals were first passed through a notch filter to remove any mains components, i.e., power-line frequency
components, present in the signals. Mains components appear as spikes in the auto-power spectrum at 50 Hz and its harmonics. Each
CCF of the leak signals is classified as either ‘high-quality’ or ‘low-quality’. A CCF is considered ‘high-quality’ if it is characterised
by a prominent peak that gives an accurate time delay estimate. In this paper, a time delay estimate is considered accurate if it is
within one time-domain delay resolution (inverse of the sampling frequency), i.e., 0.025 ms, from the true time delay. A CCF that
9 
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Fig. 5. Examples of CCFs obtained from accelerometer signals measured in the leakage rig in the presence of a leak at L1. (a) High-quality CCF of X1 and X2
signals. (b) Low-quality CCF of X1 and X3 signals.

Table 3
TDE quality assessment results for experimental leak signals. Yellow cells indicate
positive inference about high quality (i.e., values that exceed, or in the case of the
BF, ICS, and PiCE is less than, the quality assessment threshold).
Index Threshold High-quality CCF Low-quality CCF Noise-only CCF

𝜏peak (ms) 9.039 26.667 –
𝜏peak (ms) 9.025 21.675 −103.7
PiCE 0.2 0.03 0.90 0.98
ICS 1.0 0.38 189 5854
BF 3.2 0.1 11.3 22.7
PSR 33.6 13 626 18.8 16.07
PMR 7.3 49.9 5.9 5.01
BCFR 0.3 0.54 0.38 0.053
CQI 0.2 0.45 0.42 0.17

Table 4
Average values of TDE quality indices for leak signals measured in the leakage test rig. Proportion of correct
inferences are indicated in brackets.

Index Threshold High quality Low quality Noise-only

PiCE 0.2 0.03 0.79 0.97
ICS 1 0.55 (1.0) 313.6 (0.89) 3626 (1.0)
BF 3.2 0.76 (0.94) 5.5 (0.78) 31.4 (1.0)
PSR 33.6 9835 (1.0) 28.7 (0.78) 14.7 (1.0)
PMR 7.3 33.4 (0.94) 6.9 (0.78) 4.9 (1.0)
BCFR 0.3 0.69 (0.82) 0.23 (0.22) 0.036 (1.0)
CQI 0.2 0.76 (0.88) 0.34 (0.33) 0.25 (1.0)

does not give an accurate time delay estimate is considered ‘low-quality’ regardless of its shape. There are a total of 17 high-quality
CCFs and 9 low-quality CCFs. An example of a high-quality CCF of signals measured at X1 and X2 is shown in Fig. 5(a), while
Fig. 5(b) depicts a low-quality CCF calculated from signals acquired at X1 and X3.

Table 3 shows the values of the quality indices obtained for the high-quality and low-quality CCFs shown in Fig. 5 as well as the
values for a pair of background noise signals measured at X1 and X2. The BF and ICS were calculated from the CCFs of 1-second
signal segments, while the PSR and PMR were calculated from the CCF of the whole signal. The PSR and PMR thresholds were
computed with an AFPR of 0.001. A time delay estimate is considered consistent if it differs from the assumed true delay by less
than 2 samples (or 0.05 ms), and inconsistent otherwise. In the high-quality case, the assumed true delay is very close to the true
delay, and all signal segments but one yield consistent estimates. In contrast, the assumed true delay differs substantially from the
true delay in the low-quality and noise-only cases, and the high PiCE values indicate high variability in the estimates. The proposed
quality assessment indices give inferences about the time delay estimate that are consistent with the quality of the CCFs in all three
cases. While the BCFR and CQI give correct inferences in the high-quality and noise-only cases, they fail for the low-quality case.

The performance of the existing and alternative quality assessment indices were compared for all ten datasets. Table 4 presents
the average values of the indices. The proportion of cases correctly identified by each index is indicated in brackets. The proposed
indices achieve a higher true positive rate (TPR) and lower false positive rate (FPR) than the BCFR and CQI. Among all individual
indices, the ICS achieves the best performance with the highest TPR of 100% and lowest FPR of 11%. The BF and PMR perform
slightly worse than the PSR, achieving a TPR of 94% compared to 100% for the PSR.

As indicated by their relatively higher TPR and lower FPR, the proposed indices are more effective than the BCFR and CQI.
Examining the two CCFs shown in Fig. 5 above reveals a possible reason for the bad performance of the CQI and the BCFR.
Resonances and reflections present in the signals measured on the test rig manifest as additional peaks close to the main peak
10 
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Fig. 6. Ottawa leakage test rig.

Fig. 7. CCFs of hydrophone leak signals. (a) Raw signals; (b) Filtered in the range [3, 133] Hz; (c) Filtered in the range [5, 106] Hz; (d) Filtered in the range
[11, 91] Hz; (e) Filtered in the range [19, 88] Hz. Each CCF is normalised to its peak value.

in the CCF. As can be observed from Eqs. (3) and (4), reflection peaks immediately adjacent to the main CCF peak results in a low
values for the BCFR and the bandwidth index even in CCFs with a ‘good’ shape, possibly leading to an incorrect inference. These
additional peaks will also have more effect on the PMR than the PSR, as they will tend to increase the mean of the absolute values
of the CCF, whereas they have no effect on the variance of the far points. The poor performances of the BCFR and CQI may also be
related to the choice of their thresholds, which have been set heuristically without rigorous analysis. Refinement of the threshold
selection methodology may improve their performance.

4.2. Selection of time delay estimation parameters using quality assessment indices

The proposed quality assessment indices can be used to assess the effectiveness of available choices for TDE parameters, for
example, filters. To illustrate their suitability for this purpose, the indices were applied to experimental signals acquired in a 200-
metre long 150-millimetre diameter PVC pipe system located in a leakage test facility in Ottawa Canada, the schematic of which
is shown in Fig. 6. A detailed description of the test site and measurement procedures has been given in [22]. Leak signals from a
leaky joint in the buried pipe were measured using hydrophones installed on risers connected to two hydrants, one upstream and the
other downstream of the joint. The distances between the leak and the measurement points were 32.8 m and 76.7 m (these distances
include the lengths of the downstream and upstream risers: 3.7 m and 3.2 m, respectively). The signals were passed through an
anti-aliasing filter with cut-off frequency set at 200 Hz and then sampled at 500 Hz. Hence, the time-domain resolution of the time
delay estimate is 2 ms. Since the acoustic propagation speed in the PVC pipe was experimentally determined as 484 m/s [23], the
true time delay is 90.7 ms.

To investigate the sensitivity of the proposed indices to changes in the quality of the time delay estimate, the signals were
passed through different bandpass filters in order to obtain time delay estimates of different qualities. Fig. 7 shows the CCFs of the
raw and filtered signals. Among these, only the CCFs of signals filtered in the frequency bands [11,91] (Fig. 7(d)) and [19,88] Hz
(Fig. 7(e)) give accurate time delay estimates: 92 and 90 ms, respectively, which differ from the true delay by less than the time-
domain resolution of 2 ms. These passbands fall within the frequency regions where the unwrapped cross-spectral phase (Fig. 8(a))
is approximately linear and the coherence (Fig. 8(b)) is high. This example illustrates the importance of properly selecting cut-off
frequencies in correlation-based TDE methods.

Table 5 shows the values of the quality assessment indices obtained for raw and filtered signals. The BF and ICS were calculated
from 1-second signal segments. Also shown in Table 5 are the time delay estimates 𝜏 obtained from the CCFs and the absolute
peak
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Fig. 8. Spectral analysis of raw hydrophone signals. (a) Unwrapped cross-spectral phase; (b) Magnitude-squared coherence.

Table 5
TDE quality assessment results for raw and filtered experimental leak signals. Yellow cells
indicate positive inference about high quality.
𝜏peak (ms) 90.7

Passband (Hz) Raw [3,133] [5,106] [11,91] [19,88]
𝜏peak (ms) 444 232 232 92 90
𝛥𝑑1 (m) 85.5 34.2 34.2 0.31 0.17

Index Threshold

𝜏peak (ms) 446 232 232 92 90
PiCE 0.2 0.93 0.78 0.73 0.11 0.07
ICS 1 51.5 37.6 14.4 0.68 0.28
BF 3.2 9.91⋅1015 21.8 118 0.52 0.29
PSR 33.6 3.31 18.6 20.7 73.8 339
PMR 7.3 1.85 4.59 4.75 7.53 13

error in the leak location 𝛥𝑑1. The values of the proposed indices are consistent with the quality of the time delay estimate. The
large relative difference in the values of the indices for the low-quality and high-quality cases shows that they are adequate for
assessing the effectiveness of available TDE parameters. The PSR and PMR are especially practically convenient for this application,
since they can be calculated from a single CCF realisation.

Based on the experimental results presented in this section, the proposed quality assessment indices, namely BF, PSR, PMR, and
ICS, can discriminate between low-quality and high-quality time delay estimates. Thus, they present an effective means to objectively
assess the reliability of TDE results. However, it is important to note that their effectiveness may reduce in the absence of a leak but
presence of correlated background noise, since their use is based on the assumption that ‘low-quality’ CCFs only result from poorly
correlated signals. Development of means to check for the presence of correlated background noise when assessing the quality of
the time delay estimate will be considered in a future study. Further experimental validation of the indices in different measurement
environments is highly recommended.

5. Conclusion

In this paper, three approaches were developed for assessing the quality of the time delay estimate by considering the statistical
properties of the cross-correlation function (CCF). The information criterion approach uses the Bayesian Factor (BF) to assess the
probability distribution of the CCF peak values. In the processing gain approach, two indices, the peak-to-side ratio (PSR) and
the peak-to-mean ratio (PMR) are employed to describe the detectability of the CCF peak relative to other values in the CCF. The
statistical approach assesses the accuracy of the time delay between signals based on an index termed the inconsistency score
(ICS), which is defined as the root-mean square of deviations of time delay estimates from their statistical mode. Experimental
results demonstrate that the proposed indices are more effective in correctly inferring the quality of the time delay estimate
compared to existing indices available in the literature. They also present viable means of selecting the best available parameters
in correlation-based time delay estimation (TDE) methods, for example, the cut-off frequencies of the applied filters.
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Appendix. Expression for the peak-to-side lobe ratio of leak signals

If the leak noise spectrum 𝐺𝑙 𝑙(𝜔) is assumed to be flat with power spectral density 𝑆0, the expected value of the CCF peak
max = 𝑅𝑥1𝑥2 (𝜏peak ) is given by

E{𝑅max} = 𝑅𝑙1𝑙2 (𝜏peak ) =
𝑆0
𝜋 𝛽 𝑑 (A.1)

where 𝑅𝑙1𝑙2 (𝜏) = −1
{

𝐺𝑙1𝑙2 (𝜔)
}

= −1 {𝐺𝑙 𝑙(𝜔)exp(−|𝜔|𝛽 𝑑)exp(−j𝜔𝜏peak )
}

is the biased CCF of the noise-free components of measured

leak signals (i.e., the first term in Eq. (5)), and 𝑆0 is the power spectral density of the leak noise which has been assumed to be flat,
i.e., 𝐺𝑙 𝑙(𝜔) = 𝑆0. For a long measurement time 𝑇 , the variance of the cross-correlation value at an arbitrary lag 𝜏 is given by [24]

var {𝑅𝑥1𝑥2 (𝜏)} ≈
1
𝑇 ∫

∞

−∞

(

𝑅𝑥1𝑥1 (𝜁 )𝑅𝑥2𝑥2 (𝜁 ) + 𝑅𝑥1𝑥2 (𝜁 + 𝜏)𝑅𝑥1𝑥2 (𝜁 − 𝜏)
)

𝑑 𝜁 . (A.2)

The cross-correlation values of bandlimited signals approaches zero at lags 𝜏 much greater than the correlation time of the signals,
which implies that 𝑅𝑥1𝑥1 (𝜁 )𝑅𝑥2𝑥2 (𝜁 ) ≫ 𝑅𝑥1𝑥2 (𝜁 + 𝜏)𝑅𝑥2𝑥1 (𝜁 − 𝜏) for 𝜏 ≫ 0 [24]. Thus, since the leak noise and the background noise
signals are assumed to be uncorrelated, the variance at 𝜏f ar ≫ 𝜏peak can be approximated as

var {𝑅𝑥1𝑥2 (𝜏f ar )} ≈
1
𝑇 ∫

∞

−∞

(

𝑅𝑙1𝑙1 (𝜁 )𝑅𝑙2𝑙2 (𝜁 ) + 𝑅𝑙1𝑙1 (𝜁 )𝑅𝑛2𝑛2 (𝜁 )

+ 𝑅𝑛1𝑛1 (𝜁 )𝑅𝑙2𝑙2 (𝜁 ) + 𝑅𝑛1𝑛1 (𝜁 )𝑅𝑛2𝑛2 (𝜁 )

)

𝑑 𝜁

= 1
2𝜋 𝑇 ∫

∞

−∞

(

𝐺𝑙1𝑙1 (𝜔)𝐺𝑙2𝑙2 (𝜔) + 𝐺𝑙1𝑙1 (𝜔)𝐺𝑛2𝑛2 (𝜔)

+ 𝐺𝑛1𝑛1 (𝜔)𝐺𝑙2𝑙2 (𝜔) + 𝐺𝑛1𝑛1 (𝜔)𝐺𝑛2𝑛2 (𝜔)

)

𝑑 𝜔
(A.3)

where the last equality follows from Parseval’s theorem. Rewriting the auto-power spectra 𝐺𝑙1𝑙1 (𝜔) and 𝐺𝑙2𝑙2 (𝜔) in terms of the pipe
RF (Eq. (6)) and assuming flat spectra 𝐺𝑛1𝑛1 (𝜔) = 𝐺𝑛2𝑛2 (𝜔) = 𝑁0 for the background noise signals in the analysed frequency region

𝜔1 ≤ 𝜔 ≤ 𝜔2 with 𝜔2 ≫ 𝜔1, this equation is expressed as

var {𝑅𝑥1𝑥2 (𝜏f ar )} ≈
1
𝜋 𝑇 𝑆2

0

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
2𝛽 𝑑 exp(−2𝜔1𝛽 𝑑)

2
∑

𝑘=0

(2𝜔1𝛽 𝑑)𝑘
𝑘!

+
𝑁0
𝑆0

1
2𝛽 𝑑1

exp(−2𝜔1𝛽 𝑑1)
2
∑

𝑘=0

(2𝜔1𝛽 𝑑1)𝑘
𝑘!

+
𝑁0
𝑆0

1
2𝛽 𝑑2

exp(−2𝜔1𝛽 𝑑2)
2
∑

𝑘=0

(2𝜔1𝛽 𝑑2)𝑘
𝑘!

+
𝑁2

0

𝑆2
0

𝜔2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

. (A.4)

The integrals have been evaluated using the relation [25]

∫

𝑏

0
𝜔𝑛exp(−𝑎𝜔)𝑑 𝜔 = 𝑛!

𝑎𝑛+1

[

1 − exp(−𝑎𝑏)
𝑛
∑

𝑘=0

(𝑎𝑏)𝑘

𝑘!

]

,… , 𝑎 > 0. (A.5)

Hence, the PSR is obtained as

PSR =
(

E{𝑅max}
)2

var {𝑅𝑥1𝑥2 (𝜏f ar )}

= 𝑇
𝜋(𝛽 𝑑)2

⎛

⎜

⎜

⎜

⎜

⎜

⎝

1
2𝛽 𝑑 exp(−2𝜔1𝛽 𝑑)

2
∑

𝑘=0

(2𝜔1𝛽 𝑑)𝑘
𝑘!

+
𝑁0
𝑆0

1
2𝛽 𝑑1

exp(−2𝜔1𝛽 𝑑1)
2
∑

𝑘=0

(2𝜔1𝛽 𝑑1)𝑘
𝑘!

+
𝑁0
𝑆0

1
2𝛽 𝑑2

exp(−2𝜔1𝛽 𝑑2)
2
∑

𝑘=0

(2𝜔1𝛽 𝑑2)𝑘
𝑘!

+
𝑁2

0

𝑆2
0

𝜔2

⎞

⎟

⎟

⎟

⎟

⎟

⎠

−1

.

(A.6)

Data availability

Data will be made available on request.
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