
lable at ScienceDirect

Clinical Oncology xxx (xxxx) xxx
Contents lists avai
Clinical Oncology

journal homepage: www.cl in icaloncologyonl ine.net
Clinical Impact of Constitutional Genomic Testing on Current Breast
Cancer Care

W. Cheah, R.I. Cutress, D. Eccles, E. Copson

Cancer Sciences Academic Unit, Faculty of Medicine, University of Southampton, University Hospital Southampton,
Southampton SO16 6YD, UK
Abstract

The most commonly diagnosed cancer in women worldwide is cancer of the breast. Up to 20% of familial cases are attributable to pathogenic mutations in high-
penetrance (BReast CAncer gene 1 [BRCA1], BRCA2, tumor protein p53 [TP53], partner and localizer of breast cancer 2 [PALB2]) or moderate-penetrance
(checkpoint kinase 2 [CHEK2], Ataxia-telangiectasia mutated [ATM], RAD51C, RAD51D) breast-cancer-predisposing genes. Most of the breast-cancer-
predisposing genes are involved in DNA damage repair via homologous recombination pathways. Understanding these pathways can facilitate the develop-
ment of risk-reducing and therapeutic strategies. The number of breast cancer patients undergoing testing for pathogenic mutations in these genes is rapidly
increasing due to various factors. Advances in multigene panel testing have led to increased detection of pathogenic mutation carriers at high risk for developing
breast cancer and contralateral breast cancer. However, the lack of long-term clinical outcome data and incomplete understanding of variants, particularly for
moderate-risk genes limits clinical application. In this review, we have summarized the key functions, risks, and prognosis of breast-cancer-predisposing genes
listed in the National Health Service (NHS) England National Genomic Test Directory for inherited breast cancer and provide an update on current management
implications including surgery, radiotherapy, systemic treatments, and post-treatment surveillance.
� 2024 The Authors. Published by Elsevier Ltd on behalf of The Royal College of Radiologists. This is an open access article under the CC BY license (http://
creativecommons.org/licenses/by/4.0/).
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Introduction

Breast cancer is the most diagnosed cancer in women
worldwide. It is now estimated that about 20% of breast
cancers are familial, with high-penetrance inherited cancer-
predisposing genes such as BReast CAncer gene1/2 (BRCA1/
2), tumor protein p53 (TP53), and partner and localizer of
breast cancer 2 (PALB2), accounting for approximately 30%
of heritable breast cancer cases [1], or around 6% overall [2].
The remaining familial cases are attributable to moderate-
penetrance (e.g., checkpoint kinase 2 [CHEK2], Ataxia-
telangiectasia mutated (ATM), RAD51C/D) and low-
penetrance genes or single-nucleotide polymorphisms
(SNPs) [3,4].

Recognition that specific breast cancer phenotypes are
associated with underlying high-risk gene mutations [5]
has increased referrals for testing. The evolution and
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refinement of carrier probability models and the increased
capacity and reduced costs of genomic testing have lowered
the UK risk threshold for BRCAmutation testing from 20% to
10% [6]. Establishment of BRCA status as a biomarker of
response to platinum chemotherapy and poly-ADP ribose
polymerase (PARP) inhibitors is driving testing of more
patients who could benefit from these treatments [7,8].

Recent advances in sequencing technologies and multi-
gene panel testing have resulted in more comprehensive
testing of increasing numbers of genes than performed
historically [9]. Therefore, it is important to consider
retesting with modern methods in patients who have pre-
viously tested negative but have been diagnosed with a new
breast cancer with clinical features suggestive of an un-
derlying high-penetrance cancer-predisposing gene.

In this review, we focus primarily on the genes currently
listed in the UK National Health Service (NHS) National
Genomic Test Directory R208 for inherited breast cancer
(BRCA1; BRCA2; PALB2; CHEK2; ATM; RAD51C; RAD51D) and
provide an update on current management implications of
pathogenic mutations in these genes including surgery,
College of Radiologists. This is an open access article under the CC BY license
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radiotherapy (RT), systemic treatments (Table 1), and post-
treatment surveillance [10]. The surgical management of
inherited cancer-predisposing genes in patients without
personal history of cancer is discussed elsewhere [11]. Other
rare high-penetrance genes associated with hereditary
cancer predisposition syndromes (e.g., PTEN, STK11, CDH1)
have been excluded from this review, with the exception of
TP53.

BReast CAncer Gene 1/2

BRCA1 and BRCA2 were the first genes to be associated
with hereditary breast cancer [12,13]. They are autosomal
dominantly inherited tumor-suppressor genes involved in
double-stranded DNA (dsDNA) break repair by homologous
recombination (HR) (Figure 1). Population frequency of
pathogenic mutation carriers is estimated at 0.2e0.3% rising
to 2% in the Ashkenazi Jewish population [14].

Compared to sporadic cancers, BRCA1-associated tumors
tend to be higher-grade, hormone-receptor, and HER2-
negative [15,16]. While 15e20% of all breast cancers are
triple-negative, up to 60e70% of BRCA1-associated tumors
exhibit this phenotype [17]. BRCA2-associated tumors are
less distinct, typically high-grade ductal; however, several
studies have noted the higher proportion of tumors that
have a lobular-type histology and are human epidermal
growth factor receptor 2 (HER2)-negative compared with
noncarriers [16,18e20]. BRCA-associated breast cancers are
more frequently multifocal/multicentric than sporadic
cancers, more so in BRCA2-associated than in BRCA1-asso-
ciated cancers [21].

BRCAmutation carriers have an estimated lifetime breast
cancer risk of 60e80% [22e25]. Multiple published retro-
spective studies have yielded inconsistent oncological out-
comes in BRCA1/2 mutation carriers, showing same, better,
and worse outcomes than sporadic cancer patients. A meta-
analysis involving 35,972 breast cancer patients, including
3402 BRCA1/2 mutation carriers, showed worst survival
outcomes in BRCA mutations carriers (BRCA1 overall sur-
vival [OS]; hazard ratio [HR]: 1.2; 95% confidence interval
[CI]: 1.08e1.33; p < 0.001) (BRCA2 disease-free survival
[DFS]; HR: 1.35; 95% CI: 1.1e1.67; p ¼ 0.0049) [26]. Studies
included have significant limitations including survivor bias
and failure to adjust for age, treatment, or pathological
factors. The UK POSH study, one of the largest prospective
population-based cohort studies, showed no significant
difference in OS or distant DFS between BRCA1/2 carriers
and noncarriers for young breast cancer patients (age: 40
and younger) diagnosed with early breast cancer at a me-
dian follow-up of 8.2 years [27,28]. There appeared to be an
early survival advantage for BRCA carriers diagnosed with
triple-negative breast cancer (TNBC).

Most published studies conclude that germline BRCA
mutation (gBRCA) carriers have higher rates of in-breast
tumor events (local recurrences or new primary cancers)
and contralateral breast cancer (CBC) but no increased ra-
diation toxicity [29e33]. Thus, gBRCA patients opting for
breast-conserving surgery (BCS) can be offered RT, provided
they arewell informed about the significantly elevated risks
Please cite this article as: Cheah W et al., Clinical Impact of Constitutiona
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of in-breast tumor events and CBC compared to noncarriers
with a similar cancer. RT is usually, but not always, recom-
mended after BCS, whereas RT to the chest wall is recom-
mended for some, but not all, patients after mastectomy. It
is therefore possible that some patients who, based on their
personal and tumor characteristics, would be recom-
mended RT as part of BCS but not postmastectomy, might
opt for immediate risk-reducing surgery at the time of their
cancer oncological surgery to avoid RT and the consequent
impact of this on any breast reconstruction and recon-
structive options planned. Patients choosing BCS should be
offered more intensive surveillance imaging corresponding
to their individual risk [6].

With increased access to BRCA1/2 testing, the shared
decision-making process should ensure that patients fully
understand the benefits and risks associated with different
management approaches. The timing of risk-reducing op-
tions should consider the context (e.g., primary breast
cancer prognosis, age, and comorbidities) for each individ-
ual. The discussion can be influenced by BRCA-testing
turnaround time [34]. Cancer patients without family his-
tory offered immediate genetic testing and opting for risk-
reducing surgery may experience more decisional regret
and require additional psychological support [35]. The
POSH study showed that immediate risk-reducing mastec-
tomy (RRM) for symptomatic breast cancer was not asso-
ciated with short-term/medium-term survival benefit;
therefore, patients may choose to delay surgery until they
are better prepared for the biopsychosocial consequences
[28]. There is currently no evidence on the appropriate end
date for surveillance post BCS. This, coupled with the lack of
evidence to support continued surveillance following RRM
may influence patient decision-making [36].

Recognition of the role of BRCA in dsDNA repair led to the
hypothesis that BRCA-associated tumors are particularly
sensitive to platinum-based chemotherapies that directly
bind DNA. The randomized-controlled TNT (triple negative
tumour) trial demonstrated that BRCA mutation carriers
with metastatic triple-negative breast cancer (mTNBC)
responded significantly better to carboplatin than to non-
carriers [37]. However, in the neoadjuvant setting, all pa-
tients with TNBC benefit from platinum-based chemo-
therapy, regardless of BRCA status [38]. Currently, there is
no consensus on the use of platinum chemotherapy in the
neo-/adjuvant treatment of non-triple-negative breast tu-
mors in BRCA1/2 carriers [39].

Poly ADP ribose polymerase inhibitors (PARPis) such as
olaparib/talazoparib are targeted cancer therapies designed
to exploit the dsDNA-repair deficiency associated with
gBRCA mutations. The OlympiAD and EMBRACA trials have
demonstrated the benefit of olaparib and talazoparib,
respectively, in treating metastatic breast cancer patients
with gBRCA mutations, with improved progression-free
survival compared to treatment of physician’s choice
[40,41]. Additionally, the OlympiA trial demonstrated the
efficacy of adjuvant olaparib in early high-risk breast cancer
with an improved DFS [42]. This led to UK NICE approval
and subsequent amendment of the UK National Genomic
Test Directory to allow testing in patients who do not meet
l Genomic Testing on Current Breast Cancer Care, Clinical Oncology,



Table 1
Characteristics and management strategy for germline mutations associated with hereditary breast cancer

Gene Function Tumor phenotype Population
frequency

Estimated lifetime
risk of breast
cancer

Screening
recommendations

Surgical
implications

RT implications Systemic therapy
implications

BRCA1 Combines with
other tumor
suppressors to
form the BRCA
complex, repair of
dsDNA breaks by
HR

Strongly
associated with
TNBCs

0.2e0.3% (up to 2%
in Ashkenazi
Jewish
populations)

60e80% Annual screening
from age 30

High risk of in-
breast tumor
events.
Discuss RRM.

No contraindications
to use.

Evidence of PARPi
efficacy in HER2-
negative disease in
early/metastatic
setting. Platinum-
based
chemotherapeutic
agents effective in
triple-negative
disease.

BRCA2 Interact with
BRCA1, PALB2, and
RAD51 to form
BRCA complex

Association with
HER2-negative
and lobular
cancers

0.2e0.3% (up to 2%
in Ashkenazi
Jewish
populations)

60e80% Annual screening
from age 30

High-risk of in-
breast tumor
events.
Discuss RRM.

No contraindications
to use.

Evidence of PARPi
efficacy in HER2-
negative disease in
early/metastatic
setting. Platinum-
based
chemotherapeutic
agents effective in
triple-negative
disease.

PALB2 Major BRCA2-
binding partner,
connecting BRCA
complex and
facilitate RAD51
function

ER-positive, HER2-
negative; triple-
negative cancers

0.12% 33e58% Annual screening
from age 30

High-risk of in-
breast tumor
events.
Discuss RRM.

No contraindications
to use.

Ongoing PARPi
trials. Case series
showing good
response to
carboplatin in
metastatic setting.

CHEK2 Cell cycle
checkpoint
regulation,
interacts
downstream with
BRCA1, p53 and
Cdc25c

ER-/PR-receptor
positive; HER2-
positive

0.5e1% (In
Northern
European
populations)

20e37% Annual screening
from age 40

Insufficient
evidence for RRM,
manage based on
individual risk/
family history.

No contraindications
to use. Limited data
showing increased
contralateral BC from
prior RT use. Decision
for use to be based on
conventional clinical
and pathological factors.

No difference
between
anthracycline and
non-
anthracycline-
based
chemotherapy.
Ongoing PARPi
trial.

(continued on next page)
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Table 1 (continued )

Gene Function Tumor phenotype Population
frequency

Estimated lifetime
risk of breast
cancer

Screening
recommendations

Surgical
implications

RT implications Systemic therapy
implications

ATM Initiates signaling
cascade for HR
repair

ER-positive, HER2-
negative

0.4e1% 25e35% Annual screening
from age 40

Insufficient
evidence for RRM,
manage based on
individual risk/
family history.

Avoid in homozygous
carriers due to profound
sensitivity. Contralateral
breast cancer risk possibly
increased due to prior RT
use in rare missense
variants. No strong evidence
to suggest
contraindication in
more common
pathogenic variants.

Ongoing PARPi
trial. Limited
number showing
worst survival and
progression-free
survival with
CDK4/6 use.

RAD51 Forms complex
with paralogs and
interact with
BRCA1/2 at site of
DNA damage

TNBCs 0.04e0.05% 15e20% (up to 40%
with positive
family history)

Annual screening
from age 40 (can
differ depending
on individual risk)

Insufficient
evidence for RRM,
manage based on
individual risk/
family history

No reported
contraindications.

Ongoing PARPi
trial.

TP53 Encodes tumor
suppressor which
acts as an
important cell
cycle checkpoint
regulator,
suppressing
proliferation or
inducing apoptosis

HER2-positive and
mixed ductal and
lobular cancers

0.005% 40e80% Annual screening
from age 20

Mastectomy
preferred over BCS
due to high risk
associated with RT.
High-risk of in-
breast tumor
events.
Discuss RRM

High risk of
radiation-induced
secondary malignancies.
Avoid use where possible.

Limited data
showing potential
efficacy of
carboplatin-based
chemotherapy
over anthracycline
or taxane-based
chemotherapy in
neoadjuvant
setting.

Abbreviations: TP53 ¼ tumor protein p53; RRM ¼ risk-reducing mastectomy; HR ¼ homologous recombinant; BCS ¼ breast-conserving surgery; TNBC ¼ triple-negative breast
cancer; CHEK2¼ checkpoint kinase 2; BRCA1/2¼ BReast CAncer gene 1/2; ATM¼ Ataxia-telangiectasia mutated; ER¼ estrogen receptor; PR¼ progesterone receptor; PALB¼ partner
and localizer of breast cancer; dsDNA ¼ double-stranded DNA; PARPi ¼ poly ADP ribose polymerase inhibitor; HER ¼ human epidermal growth factor receptor.
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Fig 1. The relationship of homologous recombinant (HR) genes in
response to DNA damage. Double-stranded DNA breaks are recog-
nized by the Mre11-RAD50-Nbs1 (MRN) complex, which recruits and
activates ATM. ATM initiates the HR signaling cascade involving
downstream proteins including CHEK2, BRCA1, and p53. CHEK2
phosphorylates >20 proteins that interact with BRCA1. Phosphory-
lated BRCA1 activates HR, in cooperation with BRCA2 and RAD51, and
interacts with numerous proteins including BARD1 and BRIP1 to
modulate DNA repair. PALB2 serves as a major binding partner of
BRCA2, forming the BRCA complex and facilitating RAD51-mediated
strand exchange.
Abbreviations: BRCA1/2 ¼ BReast CAncer gene 1/2; PALB ¼ partner and
localizer of breast cancer; ATM ¼ Ataxia-telangiectasia mutated; CHEK2
¼ checkpoint kinase 2.
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the R208 criteria, but would be eligible for olaparib if they
tested positive for a gBRCA1/2 mutation, under the R444
criteria [10,43].
Partner and Localizer of Breast Cancer 2

PALB2 is a tumor-suppressor gene involved in the HR
repair pathway serving as a BRCA2-binding partner, con-
necting the BRCA complex (BRCA1-PALB2-BRCA2-RAD51)
and facilitating RAD51 function (Figure 1) [44]. Biallelic
mutations in PALB2 result in recessively inherited Fanconi
anemia, whereas monoallelic mutations predispose carriers
to various cancers including breast, ovarian, and pancreatic
Please cite this article as: Cheah W et al., Clinical Impact of Constitutiona
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cancers [45,46]. Over 600 distinct PALB2 variants have been
identified; however, only approximately 140 of them are
pathogenic, leaving >400 missense variants of unknown
significance (VUSs), which presents challenges in variant
interpretation and genetic counseling [47,48].

Pathogenic PALB2 variants are identifiable in approxi-
mately 0.66e2% of breast cancer cases worldwide, higher in
familial cases [49]. PALB2 carriers are considered to have a
highemoderate breast cancer risk (�4-fold higher risk than
base population) [50]. An international study involving 524
families, including familial and unselected breast cancer
cases, determined an absolute breast cancer risk of 52.8%
(95% CI: 43.7%e62.7%) by the age of 80 [51].

PALB2 mutations are associated with larger, high-grade,
advanced-stage estrogen receptor (ER)-positive, HER2-
negative cancers than are sporadic cases (odds ratio [OR]:
9.43; 95% CI: (6.24e14.25) resembling the pattern in BRCA2
carriers, possibly reflecting the closely associated functions
of these genes.

Population screening in China revealed a shorter OS for
PALB2-mutation carriers than that for noncarriers (adjusted
HR: 8.38; 95% CI: 2.19e32.11; p¼ 0.002) [52]. Intriguingly, a
prospective study focusing on CBC risks showed that the 10-
year cumulative incidence of CBC in PALB2 carriers was 7.9%
(3.8e16.1) compared to BRCA1 at 23.1% (16.4e32.6) and
BRCA2 at 16.9% (11.8e24.3), but among PALB2 carriers
whose initial breast cancer was ER-negative, the CBC risk
was estimated at 19.7% (9.4e41.1) [53].

There is a lack of clinical studies reporting surgical out-
comes in PALB2-mutation carriers. Due to the high lifetime
and CBC risk, bilateral (prophylactic) mastectomy or
contralateral RRM may be considered, especially in high-
risk families. However, the patienteclinician discussion
should be clear that while risk-reducing surgerymay reduce
the risk of future primary breast cancers, there is currently
no evidence that it improves OS compared to enhanced
surveillance (annual magnetic resonance imaging [MRI]
and/or mammography). The decision to discontinue sur-
veillance (post-BCS) should be based on individual factors
including breast density, comorbidities, and patient adher-
ence to the surveillance protocol [36].

Despite the role of PALB2 in DNA repair, there are no
reports of adverse outcomes or toxicity with the use of RT,
and the decision-making process for RT should be based on
standard clinicopathological characteristics. However, given
the known association of radiation hypersensitivity in
Fanconi anemia patients, any occurrence of acute radiation
toxicities in a PALB2 pathogenic mutation carrier should
prompt a medical review of the patient to assess whether
there are any clinical features of Fanconi anemia and further
interrogation of germline DNA sequence to look for a
pathogenic PALB2 variant in the opposite allele.

The close relationship between PALB2 and the BRCA
genes has triggered studies of the efficacy of platinum
chemotherapy and PARPi in PALB2 carriers [54]. A series of
two patients with germline PALB2 mutations showed
excellent response to adjuvant platinum-based agents in
the metastatic setting [55]. Several Phase II trials are un-
derway to evaluate PARPi (olaparib/talazoparib) in mTNBC
l Genomic Testing on Current Breast Cancer Care, Clinical Oncology,
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patients with non-BRCA germline HR genes, including
PALB2. PARPi are not currently licensed for use in non-
gBRCA patients for breast cancer.

Checkpoint Kinase 2

The checkpoint kinase 2 (CHEK2) gene is a tumor-
suppressor gene that encodes a protein kinase that phos-
phorylates>20 proteins and interacts downstreamwith the
BRCA1, p53, and Cdc25c pathways involved in cell cycle
checkpoint regulation, inhibition of cellular proliferation,
and activation of DNA repair pathways [56].

Several CHEK2 pathogenic protein-truncating variants
have been linked to a moderate increased breast cancer risk
(two- to three-fold above population baseline risk). There
are many VUSs commonly reported in multigene panels;
however, that does not significantly increase breast cancer
susceptibility [57,58]. Pathogenic variants, such as the
c.1100delC loss-of-function variant, are most prevalent in
individuals of European ancestry, with a population fre-
quency of 0.5e1% in Northern Europe [59]. The cumulative
lifetime risk of breast cancer in CHEK2 carriers varies be-
tween 20 and 37% by the age of 70, depending on family
history [60,61].

CHEK2 variants are mostly associated with hormone-
receptor-positive and HER2-positive breast cancer and
more aggressive breast cancers compared to sporadic can-
cers, with a tendency toward younger onset, multifocality,
higher degree of nodal involvement, and bilateral disease at
presentation [17,58,62]. Intriguingly, the relative risk of
CHEK2-associated breast cancers decreases significantly
with age [58,59,63].

Data from the Breast Cancer Association Consortium
(BCAC) revealed a significantly elevated risk of breast-
cancer-specific death (HR: 1.63; 95% CI: 1.24e2.15; p <

0.001) in CHEK2 carriers compared to that in noncarriers
[64]. Similarly, CHEK2 carriers also had worse OS (at 10
years, 60.7%, 95% CI: 42.5e74.8) than noncarriers (OS:
70.2%; 95% CI: 67.8e72.5) in a young-onset early breast
cancer cohort [62]. Several studies have demonstrated an
approximately two-fold risk of CBC in CHEK2 carriers (a 10-
year cumulative incidence of 7.9%) [53,64,65]. Since most
CHEK2-associated breast cancers are ER-positive, adjuvant
endocrine therapy is associated with a reduced incidence in
CBC, with an effect size similar to that of sporadic ERþ
breast cancers [66].

Limited case series have shown similar locoregional
recurrence rates after BCSþRT for CHEK2 carriers compared
to that for noncarriers [67]. It is still recommended, how-
ever, that CHEK2 carriers undergo an enhanced surveillance
programmewith annual mammography/MRI post BCS [36].
Currently, RRM is recommended only for high-risk in-
dividuals whose risk of developing breast cancer exceeds
30%; considering factors such as age at diagnosis, family
history, menopausal status, hormonal receptors of initial
cancer, cosmesis and patient preference, and motivation to
adhere to an enhanced surveillance programme [6].

There are no reports of distinct radiosensitivity in CHEK2
mutations or long-term complications except for one study
Please cite this article as: Cheah W et al., Clinical Impact of Constitutiona
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of 233 bilateral breast cancer patients including 15
CHEK2*1100delC-mutation carriers, reporting an increased
risk of CBC in the irradiated CHEK2 carriers (OR: 6.5; 95% CI:
1.5e28.8; p ¼ 0.005) [68]. This has not yet been substanti-
ated, and the use of RT in CHEK2 carriers should be based on
conventional clinicopathological factors.

Some studies have investigated the chemosensitivity of
CHEK2-associated cancer. Studies including patients with
the CHEK2 c.1100delC mutation showed no difference in
response to anthracycline/non-anthracycline-based regi-
mens compared with non-carriers [69,70]. Currently, there
are no published studies of platinum-based agents in
CHEK2-associated breast cancer. A Phase II study evaluating
olaparib in HR-related genes including CHEK2 failed to
observe a response in the metastatic setting, although this
was limited by sample size [71]. Overall, the sensitivity of
CHEK2-associated breast cancer to specific treatment regi-
mens remains unclear and warrants further development of
clinical trials stratified by CHEK2 status.
Ataxia-telangiectasia Mutated

The Ataxia-telangiectasia mutated (ATM) gene encodes a
serine threonine kinase that initiates the signaling cascade
for HR repair involving downstream effector proteins
including BRCA1/2, PALB2, CHEK2, and p53 in response to
dsDNA breaks (Figure 1) [72,73]. Biallelic mutations cause
the autosomal recessive Ataxia-telangiectasia (AT) neuro-
degenerative disorder, characterized by cerebellar ataxia,
oculomotor abnormalities, increased malignancies, and
profound radiosensitivity.

Monoallelic pathogenic heterozygous ATMmutations are
present in approximately 0.4e1% of the general population.
They are associated with a moderately increased breast
cancer risk of two- to three-fold above the population level,
with an estimated lifetime risk of 25e35% [74,75]. Data
from the CARRIERS consortium of >15,104 patients,
including 116 ATM carriers, concluded that ATM pathogenic
variants were not significantly associated with CBC (a 10-
year cumulative incidence of 4.0%) [53]. One missense
pathogenic variant c.7271T > G appears to confer a higher
risk than do other variants (OR: 3.76; 95% CI: 2.76e5.12),
with estimates of cumulative lifetime risk similar to BRCA2
[76].

The large-scale sequencing study, BRIDGES, revealed a
strong association between ATMmutations and ER-positive,
HER2-negative high-grade tumors (OR: 4.99; 95% CI:
3.68e6.76) compared to sporadic cases, although ER-
positive, HER2-negative low-grade tumors were the most
common [17].

There is a lack of survival and surgical outcome data on
ATM-associated breast cancers. Currently, there is insuffi-
cient evidence to recommend RRM, and the decision should
be guided by family history. An exception is the c.7271T> G
variant, where RRM should be discussed, in line with other
high-penetrance genes. ATM carriers are recommended to
adhere to an enhanced surveillance program post BCS with
annual mammogram/MRI [36].
l Genomic Testing on Current Breast Cancer Care, Clinical Oncology,
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Concerns regarding potential excess toxicity of RT in ATM
heterozygous carriers have been investigated. The WECARE
population-based caseecontrol study reported on a small
number of patients in the cohort with ATM pathogenic/
likely pathogenic variants showing an increase in CBC risk
for carriers that was slightly higher in those receiving RT
(cumulative 10-year incidence: 7.4% [2.0e27.8) versus 10.5%
[3.9e28.2]) [77]. Another study, including 91 ATM carriers
(23 pathogenic and 68 VUSs), found no evidence of
increased toxicity or secondary/contralateral cancers (a
median follow-up of 32 months) [78]. Among the seven
patients diagnosed with CBC at a median 8 years after RT,
six were VUS carriers. Overall, current evidence suggests
that RT is safe for pathogenic ATM mutation carriers [79].

There are currently no published reports on platinum-
based agents in ATM-associated breast cancer. The effec-
tiveness of PARPi in ATM-associated metastatic breast can-
cer is under investigation [71]. Limited retrospective data
from a study evaluating cyclin-dependent kinase (CDK) 4/6
inhibitors in four patients with ATMmutations showed that
HR gene carriers with advanced ER-positive, HER2-negative
breast cancer had the worst survival and progression-free
survival outcomes compared to noncarriers [80].

RAD51C/RAD51D

The RAD51 gene is another important DNA-repair gene in
the HR pathway. RAD51C/D encodes a key protein that forms
a complex with accessory paralog proteins that interact
with BRCA1 and BRCA2 to facilitate DNA repair at the
damage site. BRCA2 contains RAD51-binding domains and
promotes RAD51-dependent strand exchange [81].

A population analysis study involving 60,466 breast
cancer patients and 53,461 controls detected pathogenic
variants of RAD51C and RAD51D in 0.11% and 0.10% of breast
cancer patients and 0.05% and 0.04% in controls (OR: 1.93; p
¼ 0.0070 and 1.80; p ¼ 0.018), respectively [82]. Pathogenic
variants, such as RAD51D c.270_271dupTA, are estimated to
confer a moderately increased lifetime breast cancer risk of
15e40%, which can vary significantly depending on family
history [83]. Current UK guidelines recommend using risk-
prediction tools such as CanRisk to determine age-specific
risks for directing screening and management strategies
[84].

The tumor subtype distribution of RAD51C and RAD51D is
similar. RAD51C/D mutations are strongly associated with
TNBC (OR range: 5.71e6.19) as opposed to ER-positive,
HER2-negative tumors (OR range: 1.17e1.52) [17,82].
RAD51D carriers tend to have a more aggressive profile,
including positive axillary lymph nodes, high-grade tumors,
and earlier onset of breast cancer (mean age: 45.4 years),
similar to BRCA1/2-carriers, than noncarriers (51.3 years)
[85]. RAD51D carriers also had worse survival outcomes in
terms of recurrence-free survival (unadjusted HR: 3.00; 95%
CI: 1.56e5.80; p ¼ 0.001) than noncarriers.

Despite the lack of data on surgical outcomes and CBC
risk in RAD51C/D carriers, the substantial lifetime risk of
breast cancer associated with a positive family history
supports discussion of RRM. Following a UK-wide
Please cite this article as: Cheah W et al., Clinical Impact of Constitutiona
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consensus meeting, the UK Cancer Genetics Group
(UKCGG) issued guidelines recommending clinicians
discuss RRM if the lifetime risk exceeds 30% following an
individualized risk assessment and appropriate counseling
in RAD51C/D pathogenic variant carriers without personal
history of breast cancer [84,86]. The role of contralateral
RRM in improving OS for high-penetrance genes remains
controversial despite being effective in reducing CBC risk,
perhaps evenmore sowith respect tomoderate-penetrance
genes such as RAD51C/D.

There are limited data on the use of RT in RAD51C/D
mutations. However, the RAD51 genes form part of the BRCA
complex (BRCA1-PALB2-BRCA2-RAD51) and despite their
role in DNA repair, there are no reported toxicities in the
other genes of the complex [87]. Therefore, the use of RT in
breast cancer patients with RAD51C/D mutations should be
individualized and based on classic clinical and pathological
factors.

There are currently no published clinical reports on use
of platinum-based agents in RAD51C/D-associated breast
cancer. RAD51C/D mutations are hypothesized to exhibit
similar sensitivity to PARPi [88]. A Phase II trial (Clinical-
Trials.gov NCT02401347) is underway evaluating the use of
the PARPi talazoparib in non-BRCA1/2 HR pathway genes
including RAD51C/D.

Tumor Protein p53

Tumor protein p53 (TP53) is a crucial tumor-suppressor
gene that regulates cell cycle checkpoints by regulating
the transcription of numerous genes that subsequently
suppress proliferation or induce apoptosis following DNA
damage [89]. Pathogenic gTP53 variants are associated with
LieFraumeni syndrome (LFS), a rare autosomal, dominantly
inherited cancer predisposition syndrome associated with
various early-onset primary cancers, including central ner-
vous system tumors, bone and soft tissue sarcomas, adre-
nocortical carcinomas, gastrointestinal, and lung, prostate
and breast cancers [90,91].

Breast cancer is the most frequent cancer in adult female
TP53-carriers. While the frequency of pathogenic TP53
variants in the general population is estimated at 1 in
20,000 (0.005%), data from the CARRIERS consortium and
BCAC identified pathogenic TP53 variants in 19 of 32,247
(0.06%) and 7 of 48,826 (0.01%) unselected breast cancer
patients [82,83,92]. TP53 pathogenic variants confer a 20- to
40-fold increased breast cancer risk between ages 20 and
40, with an estimated cumulative incidence of approxi-
mately 85% by the age of 60 [92,93].

A unique study comparing LFS patients with a patho-
genic TP53 mutation to a cohort of early young onset breast
cancer showed that TP53 carriers were more likely to have
hormone-receptor and HER2-positive (triple-positive)
breast tumors (42% vs 8%; p¼ 9.3�10�5) [94]. Furthermore,
data from BRIDGES also demonstrated that TP53 carriers
were more likely to develop HER2-positive tumors (45% of
cases), and mixed lobular and ductal tumors rather than
pure ductal carcinoma subtypes [17]. Given the association
of TP53 with HER2-positive and YOBC, patients aged <30
l Genomic Testing on Current Breast Cancer Care, Clinical Oncology,
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(or <35 for HER2-positive breast cancer) who test negative
for other breast-cancer-predisposing genes are eligible for
LFS testing under the UK National Genomic Testing Direc-
tory R216 [10].

There are limited studies on clinical outcomes of gTP53
mutation carriers. A Chinese study of 10,053 early-stage
breast cancer patients, including 50 gTP53 patients,
revealed worse survival outcomes in terms of relapse-free
survival (HR: 2.24; 95% CI; 1.15e4.33; p ¼ 0.02) and OS
(HR: 4.6; 95% CI: 2.26e9.41; p < 0.001) than sporadic and
wild-type TP53 cases [95]. Studies assessing the risk of
developing CBC have shown significantly elevated 10-year
cumulative risks, ranging from 17.9e53%, depending on
population selection [96,97].

Several studies have shown a significantly elevated risk
of radiation-induced secondary malignancies, up to 30%, in
TP53 carriers receiving adjuvant RT [98e100]. Secondary
malignancies documented include sarcomas and thyroid
cancers. Therefore, current guidelines recommend avoiding
RT whenever possible, favoring mastectomy over BCS [101].
Use of RT should be considered on an individualized basis,
following a multidisciplinary team discussion, for cases
with a significant risk of locoregional recurrence post
mastectomy in pathogenic gTP53 carriers.

The European Reference Network GENTURIS has issued
guidelines recommending the use of nongenotoxic chemo-
therapies due to the potential risk of developing new ma-
lignancies with genotoxic chemotherapies, as demonstrated
in an LFS mouse model [102,103]. A Chinese study including
50 TP53-carriers in an unselected breast cancer population
showed a higher rate of pathological complete response in
TP53-carriers treated with taxaneecarboplatinebased neo-
adjuvant chemotherapy compared to anthracycline- or
taxane-based chemotherapy (50% vs 0%; p ¼ 0.006) [95].
There are currently no published reports on the treatment
response to targeted therapy despite the association of TP53
with HER2-positive breast cancers.
Conclusion

Knowledge of the relevance of inherited pathogenic
variants for treatment and surveillance decisions is
increasing and for selected patients, and early germline
genetic testing at the time of breast cancer diagnosis may
contribute to optimal treatment planning. However, the
very small number of less frequently identified germline
pathogenic variants often result in a lack of certainty
regarding effect sizes and wide confidence intervals around
risk estimates. More large-scale prospective long-term
outcome data are needed, particularly on a national basis,
with linkage to genetic data to enable very large cohort
studies for assessing risks and clinical outcomes.
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