of the
ROYAL ASTRONOMICAL SOCIETY

MNRAS 535, 47-64 (2024)
Advance Access publication 2024 October 07

https://doi.org/10.1093/mnras/stae2284

A dissipative extension to ideal hydrodynamics

Marcus John Hatton “* and Ian Hawke
Mathematical Sciences and STAG Research Centre, University of Southampton, Southampton SO17 1BJ, UK

Accepted 2024 October 30. Received 2024 September 26; in original form 2024 July 29

ABSTRACT

We present a formulation of special relativistic dissipative hydrodynamics (SRDHD) derived from the well-established Miiller—
Israel-Stewart (MIS) formalism using an expansion in deviations from ideal behaviour. By re-summing the non-ideal terms,
our approach extends the Euler equations of motion for an ideal fluid through a series of additional source terms that capture
the effects of bulk viscosity, shear viscosity, and heat flux. For efficiency these additional terms are built from purely spatial
derivatives of the primitive fluid variables. The series expansion is parametrized by the dissipation strength and time-scale
coefficients, and is therefore rapidly convergent near the ideal limit. We show, using numerical simulations, that our model
reproduces the dissipative fluid behaviour of other formulations. As our formulation is designed to avoid the numerical stiffness
issues that arise in the traditional MIS formalism for fast relaxation time-scales, it is roughly an order of magnitude faster than
standard methods near the ideal limit.

Key words: hydrodynamics —relativistic processes — methods: numerical — software: simulations — stars: neutron —neutron star

mergers.

1 MOTIVATION

Binary neutron star mergers represent complex astrophysical labora-
tories that probe supernuclear-density matter, strong-gravity space—
time and the origin of the heavy elements in our universe. Merging
neutron stars produce multimessenger signals comprised of ex-
traordinary electromagnetic and gravitational wave components, as
confirmed by their detection in the GW 170817 merger event by the
LIGO-VIRGO-Kagra collaboration (Abbott et al. 2017). Since then,
observations by these ground-based detectors have been used to put
constraints on the mass, radius, and tidal deformability of neutron
stars, informing us in turn about their equation of state (Abbott et al.
2018, 2019).

To simulate these events, we require a highly non-linear, general
relativistic magnetohydrodynamic (GRMHD) model. This is then
coupled to a space-time evolution procedure using numerical rela-
tivity, with neutrino transport and cooling schemes often added as
well. For simplicity, the fluid of the neutron star is often treated as
‘ideal’, in that fluid stresses are purely isotropic.

Recently, however, more attention has been paid to effects resulting
from non-ideal fluid behaviour, for example by Shibata, Kiuchi
& Sekiguchi (2017), Rezzolla et al. (2018), Bemfica, Disconzi &
Noronha (2019), Chabanov, Rezzolla & Rischke (2021), Pandya,
Most & Pretorius (2022), and Yang et al. (2024). These dissi-
pative effects arise due to out-of-equilibrium processes that are
particularly important shortly after the neutron stars merge. When
next-generation, ground-based gravitational wave detectors such
as Cosmic Explorer (Reitze et al. 2019), NEMO (Ackley et al.
2020), LIGO-voyager (Berti et al. 2022), and the Einstein Telescope
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(Punturo et al. 2010) come online, accurately modelling this next-to-
leading-order behaviour will be essential to make precise physical
inferences from observations.

Theoretical work (Chugunov & Yakovlev 2005; Manuel & Tolos
2011; Schmitt & Shternin 2018) and numerical investigations (Ham-
mond, Hawke & Andersson 2021) have been undertaken into the out-
of-equilibrium state of matter and its transport properties in neutron
stars. For example, Urca and reverse-Urca nuclear reactions operate
at an atomic scale and may give rise to an effective bulk viscosity at
the fluid scale that quantitatively affects the gravitational wave signal
we obtain from the merger and its remnant’s ringdown (Alford et al.
2018; Mostetal. 2021, 2022; Hammond, Hawke & Andersson 2023).
Similarly, work has been done to investigate the possible effects of
both shear viscosity (Duez et al. 2004) and heat transport (Alford et al.
2018) in binary neutron star mergers, particularly for modulating
the turbulence that ensues post-merger, both in the remnant itself
and its associated accretion disc. Viscous braking redistributes
momentum in a differentially rotating remnant, removing centrifugal
support that can aid in the collapse of the core into a black hole.
This produces delayed gravitational wave emission. It is also able
to provide thermal support from viscous heating, negating this
effect.

One well-established model of non-ideal hydrodynamics is that of
Miiller—Israel-Stewart (MIS; Israel 1976; Israel & Stewart 1979). Its
theoretical properties have received thorough investigations (Molnar,
Niemi & Rischke 2010; Biswas et al. 2020; Bemfica et al. 2021;
Bemfica, Disconzi & Noronha 2022; Wagner & Gavassino 2024)
and it has been used extensively in the context of high-energy,
quark-gluon-plasma (QGP) physics to model post-collision fluid
evolution (Del Zanna et al. 2013; Du & Heinz 2020), as well as
in the astrophysical community for modelling viscous black hole
accretion (Chabanov et al. 2021), for example.
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The MIS model includes viscous and heat-conductive effects
in the evolved conserved and flux vectors, as well as relaxation-
type sources that drive the non-ideal terms to relativistic analogues
of their Navier—Stokes forms. A numerical issue arises when the
dissipative relaxation time-scales become small and the sources
become °‘stiff’. The relaxation time-scales tend to zero in the ideal
limit, which is relevant for the majority of the lifecycle of a binary
neutron star merger. One must either reduce the time-step of the
simulation drastically or adopt implicit time-integrator methods to
ensure accurate and stable numerical evolution. See Palenzuela et al.
(2009), Dionysopoulou et al. (2013), Miranda-Aranguren, Aloy &
Rembiasz (2018), Ripperda et al. (2019), Wright (2020), Wright &
Hawke (2020), and Dash et al. (2023) for examples of approaches
taken to evolve stiff numerical systems. Both options increase the
computational cost of simulations greatly. Sometimes, ‘best-of-both’
implicit—explicit methods (Pareschi & Russo 2005) may be used but
in any case, the computational cost increases, potentially by orders
of magnitude, when source terms become stiff near the ideal limit.

This in turn limits the spatial resolution of simulations that are
performed, leading to coarse numerical grids that represent fluid
elements with sizes well above those that ‘should’ be used to satisfy
the fluid approximation. That is to say, there is significant variation
in fluid properties occurring over length-scales well below that of
the grid cells’ size. Estimates of the dissipation length-scale above
which structure can form through turbulence suggest that simulations
may need to resolve scales below the cm level (Thompson &
Duncan 1993; Radice & Hawke 2024). However, the current highest-
resolution simulations have fluid elements with sizes &~ 10 m (Kiuchi
et al. 2018). To bridge this gap computationally is impractical for the
foreseeable future.

Instead, to address this ‘sub-grid’ behaviour, extensions to existing
hydrodynamic models have recently begun being employed. These
additions to the model aim to capture, at least in a statistical sense,
either genuine sub-grid microphysics or mathematical artefacts
resulting from the implicit filtering process introduced by coarse
simulations.

Sub-grid models are beginning to see a number of applications in
modelling astrophysical systems. The general principle behind these
extensions is to include additional terms into the equations of motion,
aimed at capturing the effects of unresolved fluid behaviour at scales
below that which can be directly resolved in a numerical simulation.
The benefit of these models lies in their ability to, without greatly
increased computational cost, capture the influence of unresolvable
microphysics or fluctuations, at least in a statistical sense.

A common application of sub-grid sources is in the modelling of
turbulence. In large-eddy simulations, the equations of motion are
explicitly redefined in terms of resolved and unresolved quantities.
A closure relation is then applied that allows the sub-grid fields to
be formulated in terms of the resolved ones. Using this technique, it
is possible to replicate the behaviour that would result, on average,
from using more fine-scale numerical grids.

For instance, Radice (2017) first applied an analogue of the clas-
sical Smagorinsky closure (Smagorinsky 1963) to the equations of
general relativistic hydrodynamics for a merger simulation, showing
that by modelling the sub-grid scale turbulence, the collapse of
the hypermassive neutron star remnant is altered. Other work by
Carrasco, Vigano & Palenzuela (2020) and Vigano et al. (2020) uses
a gradient expansion approach to prescribe the unresolved fields in
the MHD equations. See Radice & Hawke (2024) for a modern
review of the field.

One might ask why these sub-grid models are relevant to the
non-ideal hydrodynamic formulation presented here. In Celora et al.
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(2021), it is shown that when a linear, covariant filtering operation
is applied to an ideal fluid formulation, the fine-scale variation that
is spatially averaged over may be described on the coarse scale
by algebraic terms that mimic those present in a non-ideal fluid
formulation. The corollary of this is that we may use our models of
non-ideal hydrodynamics to describe a fluid that does not genuinely
exhibit dissipative effects, at least not on the coarse scale at which we
simulate it, but instead to capture unresolved effects due to resolution
limitations. In effect, our sub-grid closure relation is given by the
model’s prescription for the non-ideal dissipation terms within it. Of
course, the meaning of the ‘dissipative’ terms changes when we do
this. Instead, they now capture the effects of filtering, and follow-up
work will be published investigating this.

In this paper, we develop an extension to the special relativistic,
ideal hydrodynamic equations that captures the dissipative effects
present in full non-ideal fluid descriptions. This extension, dubbed
a dissipative extension to ideal fluid dynamics (DEIFY), is derived
from first principles arguments and, as such, requires no fine tuning
of parameters for different astrophysical scenarios. The rest of
the paper is laid out as follows. In Section 2, we introduce the
hydrodynamic models we are concerned with: first, zero’th-order
ideal hydrodynamics; then, second-order, non-ideal hydrodynamics
in the MIS formulation. Section 3 introduces the Chapman—Enskog
(CE) expansion we use here and derives a number of simple models to
demonstrate the pertinent points. Section 4 presents the full ‘MISCE’
model with its source derived from applying the CE expansion to the
MIS model. In Section 5, we show results of simulations that use
the MISCE formulation of dissipative hydrodynamics. In particular,
we quantitatively compare results and performance with the MIS
model. Our appendices cover considerations about initial data and
stability for the MISCE model, as well as how one may calculate time
derivatives of primitive fluid variables without using lagged updates.
Finally, in Section 7, we summarize the findings of the previous
sections, discuss how they fit into current astrophysical simulations,
and propose the future direction of the project.

2 HYDRODYNAMIC MODELS

In this section, we outline two models of hydrodynamics that are used
in relativistic astrophysics. In order to simplify the numerics in later
sections and to test the validity of the method, we will limit ourselves
to special relativity. In moving to a general relativistic description,
only the form of the equations should change, and so the analysis
we perform here should still apply. We will also adopt the Einstein
summation convention over repeated indices, where Greek letters
run over 4 indices (1 temporal and 3 spatial) and Roman letters run
over 3 (spatial) indices. 8’] is the Kronecker delta (3,3)-tensor. We
use units where ¢ = 1 throughout.

2.1 Ideal hydrodynamics

The first model we present is that of ideal, non-dissipative hydrody-
namics. This is the simplest relativistic model of fluids that one can
write down. The stress-energy tensor for such a fluid is

T = (o + puu’ + pg"", €0

where p is the energy density of the fluid, p is its pressure, u” is
its 4-velocity, and g"¥ is the metric tensor defining the space—time
geometry. In this paper, we only work in flat space—time such that
the metric is Minkowski and g"" — n*' = diag(—1, +1, +1, +1).

We enforce conservation of energy, momentum, and conserved
current(s) by demanding that the covariant derivative of the stress-
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energy tensor and of a conserved number-current N* = nu” both
vanish. Mathematically, the equations

v, T =0, (2a)

V,N* =0 (2b)

lead to the ideal fluid equations of motion. In conservative form,
these are

D Dv
6, Sj + ai S_]'Ui + [751/ =0, (3)
T v’ + pv!

where the three conserved quantities, {D, S;, t}, correspond to
the fluid density, specific momentum in the j"-direction, and
kinetic energy density, respectively, and are related to the primitive
quantities, {n, v IB p}, namely the baryon number density, fluid 3-
velocity and hydrodynamic pressure via

D =nW, (4a)
S;=(p+pWy, (4b)
T =(p+ p)W?*—D. (40)

Additionally, we have that p = mn(1 4 €), where m is the mass per
baryon and ¢ the specific internal energy. The hydrodynamic pressure
p is given by an equation of state to close the system: numerically,
we often write p = p(n, €) but here it is more convenient to use
p = p(n, p). Specifically, we will use a Gamma-law equation of
state throughout this paper of the form p = (I' — 1)(p — mn), which
typically describes an ideal relativistic gas.

Two more important thermodynamic quantities of interest are
specificenthalpy h = 1 + € + p/(mn) = (p + p)/(mn) and temper-
ature T = p/n (aswell asits inverse § = m/T). Note that we assume
a uniform baryon mass so scale it out of the equations such that
m =1 throughout this paper. Finally, the spatial three-velocity v;
and the Lorentz factor W = (1 — v;v/)~!/2 make up the four-velocity
u, = W(,v;).

2.2 Dissipative hydrodynamics within Miiller-Israel-Stewart
formalism

The second model we present is that describing a non-ideal fluid with
a stress-energy tensor given by

" = (p+p+ Mu"u’” + (p+g"" +q"u" +q"u" + =",
®)

where the new dissipative terms are the bulk viscosity pressure I1, the
heat flux vector g*, and the shear viscosity tensor 7w*". The first of
these encapsulates isotropic stresses (compression and expansion).
The second, momentum transport orthogonal to fluid’s velocity. And
the third, anisotropic stresses within the fluid. To set their form,
and derive the equations of motion of the fluid, we follow the MIS
(Israel 1976; Israel & Stewart 1979) formalism. Their approach, in
words, involves first performing a gradient expansion of entropy-
generating terms to second-order. Then, applying the second law
of thermodynamics such that the entropy-generation rate is always
non-negative and using this condition to set the form of the non-
ideal, dissipative terms. Finally, the additional degrees of freedom
this introduces are wrapped-up into six non-ideal coefficients (three
dissipation ‘strengths’ and three time-scales). This gives us the model
that is our starting point and the one to which we will apply a CE type
expansion, eventually giving us our new ‘MISCE’ model.
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The entire MIS equations, in balance-law form, are given as

QU+ 0, F(U)=S, (6)
where
D nW
S; (o + p+ MW, + W(gov; + q;) + mo;
vl T (p+p+THW? +2qW — (p + T — 700) — D
- X nWIl ’
Y; nWg;
ij nWJt(,'k
(7a)
DV
Sl S;D i
FO — - v
w | (7b)
Yj'Ul_
ijl)l
0
0
S 0 7
= 2a-m (7e)
= @jNs —4;)
%(ﬂjk,Ns — k),
and

Si=(p+p+ W'y, + W(g'v; + q;v') + (p + T8} + 7).
®)

The heat flux and shear viscosity are orthogonal to the four velocity
on all indices, and the shear viscosity is trace free, implying

g0 = v g, (9a)
70; = vy, (9b)
Tjg = vknjk, (9¢)
o0 =~} (9d)

The first-order, relativistic ‘Navier—Stokes’ terms to which the
dissipative system relaxes are

[ns = —¢ 0O, (10a)
gjns = —kT(@;logT + aj), (10b)
TTjk,Ns = —2N0j, (10c)

where the non-ideal coefficients of bulk viscosity, heat conductivity,
and shear viscosity are ¢, «, and 7, respectively, which we may
collectively represent as . The following quantities:

© =0,u", (11a)
a, =u"0yuy, (11b)
ou = (Dt + dyuy — 31,,0) (11c¢)

are the expansion, acceleration, and shear of the 4-velocity, respec-
tively.

The first three conserved quantities ({D, S s 7}), and their asso-
ciated equations of motion, form the non-stiff subsystem, labelled
q, which reduces to the Euler equations (in the form of equation 3)

MNRAS 535, 47-64 (2024)
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in the ideal limit of zero dissipation (§ — 0). The remaining three
conserved quantities, {X, Y;, Z;} are labelled g. These quantities
are evolved with a source that is proportional to the reciprocal
of a possibly small time-scale and may therefore represent a stiff
subsystem. Note that the terms ¢, § should not be confused with the
heat flux, which will intentionally be written in component form, g,
for clarity.

2.2.1 Asymptotic behaviour

One major difference between the two models of hydrodynamics
that are presented here lies in the form of their source terms.
Whilst the ideal model’s source vector is entirely zero, the Israel—
Stewart model’s source vector has non-zero sources for the dissi-
pative evolution components. These terms are proportional to the
reciprocal of the relaxation time-scales, 7. In the limit as ¢ — 0, any
deviation of the dissipative variables from their equilibrium Navier—
Stokes form will be instantaneously quenched. This represents a
reduction to a first-order theory, essentially a relativistic version of
the classical, dissipative Navier—Stokes equations. However, we may
link the dissipation time-scales and strengths, for example through
thermodynamic relations for a Boltzmann gas as in Israel (1976)
where

™ = ¢Bo, (12a)
7, = kBT, (12b)
T = 216 (12¢)

and the B terms are non-negative thermodynamic functions of the
enthalpy, temperature, and pressure given therein. Alternatively, there
are analytical bounds on the ratio of dissipation strengths: time-scales
from enforcing causality due to recent work by Heller et al. (2023).
One can see this practically from the fact that dissipation modifies
the characteristic propagation speeds of waves travelling in the fluid
(sound speeds). For instance, by a factor o< 4/ /71 for bulk viscosity
as seen in Chabanov et al. (2021). This, of course leads to a divergence
when we take the  — 0 limit without taking the £ — 0 limit along
with it. In reality of course, there are no instantaneous processes.
However, there are physically and mathematically motivated reasons
why taking the instantaneous-relaxation limit also implies taking
the zero-dissipation limit, in which case one recovers ‘zeroth-order’
(ideal) hydrodynamics as in Section 2.1.

2.2.2 Numerical difficulties

When the time-scales that the source acts on are shorter than the
time-step of the simulation, T < At, the system is said to be sziff. In
order to maintain a stable evolution, one may either reduce the size
of the time-step used in the simulation, or employ a set of implicit
or semi-implicit time integrators such as those seen in Pareschi &
Russo (2005). In the first case where the time-step, the execution
time will increase by a factor ~ Ar/7, making it impractical for
dissipation acting well below the hydrodynamic time-scale. In the
latter case where (semi-) implicit methods are used, the time-
integrator algorithm is considerably, maybe orders of magnitude,
more costly.

Hence, our motivation is to find a source term that captures
dissipative behaviour but avoids the numerical difficulties of the stiff
MIS system of equations. The following section will derive such a
source term using a CE-type analysis.

MNRAS 535, 47-64 (2024)

First we introduce the notation that will be used. We can re-write
the conservative form of the MIS equations, equation (7) in the
following, more compact way

0iq + 0, f(q.9) =s(q.9) =0, (13a)

oq+ofqp="17, (13b)
where we indicate equations that become stiff as T — 0 with an
over-bar. This means that ¢ = (U, Y;, Z;;} with the corresponding
fluxes, F(q, q), and sources, s(q, q), taken from equation (7). The
remaining conserved variables are non-stiff in the ideal limit, and
denoted ¢ = {D, S, t}. We will also denote the vector of primitive
variables present in ideal hydrodynamics as w = {p, p, n, vy, vy, v}
and the dissipative primitive variables as w = {g;, IT, 7 }.

3 CHAPMAN-ENSKOG EXPANSION

In this section, we will use a type of CE method of expansion to
derive the form of the DEIFY source term. Let us first give a brief
introduction to the historical use of the CE expansion for solving the
Boltzmann equation.

The Boltzmann equation provides a statistical description of
atomic-scale particle kinetics for a thermodynamic system in a state
of non-equilibrium. It describes the evolution of the one-particle
distribution function, f, and may be written as

pltall.f(x’ p):C[j]s (14)

where p* is the 4-momentum of the particle and f(x, p) is the
8D distribution function which depends on the particle’s 4-position
and 4-momentum. Finally, C[f] is the collision term, an integral
operator (in momentum space) whose precise form depends on the
interactions and statistics of the particle ensemble being considered.
The distribution function counts the particles and is normalized such
that the number density n(x) is given by

_ [ &
o = [ SErep (1)

whilst familiar quantities such as the number current and stress-
energy tensor are given by

Nt = /p“f(x, P, (162)
P

™= /p"p"f(x, P (16b)
P

where fp -«-= [d*p/[(27)® p°] is the Lorentz-invariant integration

measure.

In the early 20th century, Sydney Chapman and David Enskog
introduced a method for solving the Boltzmann equation (for f),
as seen in Chapman & Cowling (1990) and Kumar (1967). Their
approach allows one to derive macroscopic descriptions of fluids,
including the familiar Euler and Navier—Stokes equations (Cercig-
nani & Kremer 2002), and obtain expressions for various transport
coefficients such as thermal conductivity and bulk viscosity in the
process.

One of the central assumptions of the CE analysis is that the
particle collision duration time is not only far less than the time
between collisions, but also far smaller than extrinsic time-scales:
the time-scales associated with macroscopic fluid behaviour. The
solution is in fact obtained as an asymptotic expansion in the
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closely related Knudsen number', where at zero’th order we have
the equilibrium solution.

Work has been done in the field of resistive MHD (Wright &
Hawke 2019, 2020) by applying this method to describe a system
where a source acts rapidly to relax the solution towards equilibrium
(in that case, ideal MHD). A simple but general application of this
type of expansion is presented in LeVeque (2002), in which LeVeque
demonstrates how a coupled system of balance law equations may
be reduced to a single, modified system. One of the coupled
equations contains a potentially stiff source term, whilst the other
is an advection equation. The reduced system is a balance law
with a derivative source term that is non-stiff. Hence, this example
represents a simplified version of the system we have here, seen
in equation (13). Next, we will show how this method works for a
heat-flux model obtained from the MIS equations.

3.1 A simple heat model

To demonstrate the approach, we first apply it to a simple model
governing two variables: the temperature, 7' and the spatial heat flux,
g;. To obtain this model, which will be familiar once derived, we
apply a number of simplifying assumptions to the MIS model.

We work with a static fluid such that the 3-velocity and, hence,
the bulk and shear viscosity all vanish. All Lorentz factors become
unity and the orthogonality relation v,g” = 0 means that go = 0.
We treat our particle number current, n, and hydrostatic pressure, p,
as constants and hence the density, p, is now purely a function of the
temperature i.e. p = p(T) and may be scaled out of the equations.
After setting any remaining constant terms to one, we arrive at

0,T +0;¢g' =0, (17a)

1
0qj = —(qj.Ns — q;)- (17b)
Tq

We note that the acceleration term usually present in the heat-flux’s
source will vanish so that g; ns — —k0;7T and we obtain a rather
simple pair of equations where the first has no source and the second,
the ‘Maxwell-Cattaneo’ equation (Cattaneo 1948), has no flux:

0,T +9;q' =0, (18a)

1
0ug; =~ —(k0;T +4)). (18b)
q

When 7, is small, the heat flux, ¢;, will relax to its equilibrium
value, g; ns, rapidly, with small deviations being modulated by the
size of 7,. Hence, we first write the non-ideal variable ¢; that we
wish to eliminate from the system in terms of its equilibrium value
gjNs = —k0;T and a (small) correction term of order 7, so

aj = qixs + 1443, (19)

where q;]) is to be determined. We can then write the pair of
equations, to first order in 7, as

o, T + aiqgs =9 (rqqi(l)) , (20a)

diqjns = —q". (20b)

IThe Knudsen number (Kn) is a dimensionless number defined as the ratio of
the molecular mean free path length to a representative physical length-scale.
This length-scale could be, for example, the radius of a rigid body emersed
in a fluid.
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Temperature, T

0.0 0.2 0.4 0.6 0.8 1.0

Figure 1. The widening of a top-hat temperature profile through dissipation
by the heat flux within our toy model, both with (dotted lines) and without
(continuous lines) the CE expansion. There is an excellent agreement between
the two, with the small numerical errors being O(zy).

By using the explicit form for the equilibrium value g; ns = —k0; 7,
we can write this as

0T = (k,T)— 0 (rqq}')) , (2la)

3 (—k3;T) = —¢}" (21b)
to obtain an expression for q;”
derivative.

For simplicity, we will assume that « and 7, are constants in
time and space. By commuting the temporal and spatial derivatives
in equation (21b), we can now substitute the leading order form
(zero’th order in 7,;) of the equation of motion for 7', equation (21a),

, but one which includes a temporal

into the relaxation equation (21b), to determine the correction q;-l) =

K26(j3) T as purely spatial derivatives. Inserting this result back into
equation (21a) and writing the result in one spatial dimension, we
finally have the CE form

0T =xdPT — k?7,0"T + O(z). (22)

Note that this result is an evolution equation written purely in terms of
the temperature, T, and is half the size of the original system given by
equation (18). This reduced model is non-stiff (as the source term is
multiplied by the small time-scale 7, not by its reciprocal), but may
lead to other numerical problems due to the higher derivatives. These
features will hold true when we apply the CE expansion method to
the full MIS equations, whereby dissipation will be modelled using
only the primitive variables and their derivatives, and the system size
will be reduced significantly.

Equation (22) is essentially a power series expansion in {«, t}
where the leading term alone (O(x)) gives us the 1D heat equation.
With the next-to-leading order term, (O(rq/cz)) we have a linear,
diffusion-retention equation. That is to say, the second-order deriva-
tives represent diffusive effects that spread heat isotropically and the
fourth-order derivatives retain heat locally. The numerical signifi-
cance of these higher-order terms are described well in (Bevilacqua,
Galedo & Costa 2011).

In Fig.1, we use a ‘top-hat’ initial temperature profile to compare
the CE model equation (22) to its originating equations (equation 18).
We see excellent agreement between the two. The performance
improvement will be quantified below.

MNRAS 535, 47-64 (2024)
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Figure 2. The velocity and bulk viscosity for a 1D test using the model given
by equation (24) (with and without the ‘right-hand side’ terms) and an initially
discontinuous velocity profile. One can see that bulk viscosity can be both
positive and negative and in general acts to smooth gradients in the velocity,
as well as accelerating the leading edge of the shock. #fna = 0.2 and the
non-ideal simulation ran with parameters £ = 1 x 1072 and r; = 1 x 1073,

3.2 Simple viscosity models

Similar ‘toy’ models that govern the evolution of bulk and shear
viscosity may be derived from the MIS equations. For the bulk
viscosity, in one dimension the relevant equations are

00 + 90; (v'v; +118%) =0, (23a)

, 1
9,11 + 0;(IMv") = —7(;akvk +10), (23b)
I

which reduces to the single 1D equation
o v+ ax(v2) = ;axxv + ¢ (0xv0.xv — V0yxxV) (24)

when the CE expansion is performed. At leading order (z; = 0) this is
essentially the viscous Burgers equation, only missing a factor of one
half in the flux compared to its canonical form. In Fig. 2, we test this
model (at next-to-leaing order). The initial velocity profile is given
by a top-hat function with v, = 0.7 for 0.3 <x <0.7 and v, =
0 otherwise. The bulk viscosity is calculated by its CE-expanded
form as IT = Iy + T 1, where [Ty = Iyg = —¢0,v, and I1; =
; [ax (Uax U) - axx 02} .

For the shear viscous case, if we work in two spatial dimensions
but consider a purely y-directed flow (v, = 0) we have

0,y + 0,7y, =0, (25a)

1

atﬂxy = _?(Znaxy + T[xy)- (25b)
T

Given that oy, reduces to 9,v,, we have

0,y = 2n6§2)vy — 4n’t, 6;4)1)), (26)

as the CE form that governs the shear damping of the fluid velocity.
This has an analytical solution in the limit 7, — 0 given by
vy (2, x) ~ v,(0, x)erf(ﬁ), which allows us to test convergence of the
CE expression as the dissipation time-scale vanishes. In Fig. 3, this
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Figure 3. The evolution of the y-directed component of the velocity plotted
across the x-domain at times ¢ = 0.0, 2.0, 10.0. The initial data for the veloc-
ity form a step function and the viscous parameter values are n = 2 x 10~*
and 1, =2 X 10~%. In the left panel, two models’ results are plotted: first,
the MIS-derived simple shear model given by equations (equation 25; solid
lines); secondly, the model obtained applying the CE-expansion to it, given
by equation (26) (dotted lines). In the right panel, the difference between the
two results is plotted. The shear viscosity damps the initial step function,
causing the velocity to develop approximately according to the analytical
error-function. There is no visual difference seen between the two models.
The numerical difference is an order of magnitude smaller than even the value
of O(z;) and is decreasing in time.

Table 1. Code run-times for our simple bulk viscosity model in one
dimension, simulating the initial data seen in Fig. 3. The expected scaling
of the run-time, #,,, Nf, can be seen for both the full model and the CE
expansion (the latter in parentheses). Crucially, a nearly three-fold speed-up is
achieved by using the CE expansion, even with identical numerical methods.

Model Runtimes [s]

Grid N, tfinal Full CE Scaling ~ Speed-up
2048 1.0 5.40 1.60 -(-) 34
4096 1.0 21.92 7.77 4.1 (4.9) 2.8
8192 1.0 92.07 33.17 4.2 (4.3) 29

test case is plotted, and again excellent agreement is seen between
the original relaxation model, the CE-expanded one.

Finally, Table 1 gives a comparison of run-times that indicates
a significant speed-up is achievable using the CE form without
compromising on accuracy. This speed-up of a factor between 2
and 3 comes purely from the reduced system size — both models are
evolved with the same, explicit time-integrators. This is possible for
simple systems like this one, but is often not in the case of the MIS
model, depending on the chosen parameter values. For the full MIS
model where more expensive time integrators would be needed, the
speed-up will be larger, as investigated below.

4 GENERAL BALANCE-LAW DERIVATION

We begin with the full MIS model in balance law form, equation (13),
recalling that the non-stiff and stiff conserved variables are labelled
q and ¢, respectively. In order to maintain finite solutions in the
ideal limit, we require that lim,_.s(q, ¢) = 0. This motivates an
expansion of the stiff variables in powers of t, with each increasing
order providing a further deviation from the ideal limit.

In fact, because of the mathematical and physical links between
the dissipation time-scales (7) and strengths (§) discussed earlier, we
choose to perform the expansion in powers of € where both v and
& are O(e). This reflects that in practice these parameters often take
on similar (small) values in numerical simulations. This choice also
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means that O(e”) corresponds to ideal behaviour with no dissipation.
We could equally well perform the expansion in powers of T and
arrive at the same result, simply with a shifted series definition.
Moving on, we now have

7=q0+7 + 7+ O, @7
where g, is O(€%), g, is O(e), g, is O(€?), and so on. To identify the
terms in this expansion, we take the form of the stiff source:

s(q.q) = é(ﬁ —4ns) (28)
and simply rewrite it as

€s(q.9) =9 — qys- (29)

Noting that q v 5 is O(€), we have that at zeroth order (the ideal case)
g =¢q, = 0. At first order we have § = ¢, = g and at second
order we have ¢ = g, where g, is yet to be determined.

At zeroth order, the non-stiff subsystem of equations is given by

01qo(w) + 0; f{(w) =0, (30)

where
D nWw

qw)=1S;| = (o + p)W?v; (31)
T (p+p)W? — p —nW

and

| nWut
fow) = [ (o + p)Wviv; + pét |. (32)

(p+ p)W2i — nW'

These are simply the relativistic Euler equations. At first order, it
can be written as

0: [go(w) + Hy(w, d,w, 3;w)]

+0; [fo(w) + Fj (w, 0,w, 9;w)] =0, (33)
where
0
H(w) = | W(qo,nsvj +qjns) + Tojns (34)

2qo.nsW — Tlys + moo,ns)

and

0
Fiyw) = (nNs(va_; +ODW2+ Wghygvj +4jnsv) + ”ﬁ.NS) - 39)
W(go,nsv' +qyg) + 7 s

Here, we have separated the dissipative parts of the state and flux
vectors and can view H ;) and F ;) as O(e) perturbations on-top of
the ideal O(°) state and flux vectors, g and f. In general, we can
rewrite the expanded system as

ath‘f'aifi):ZR(p) EZ(_a'H(P)_a"Fip)) ’ (36)
p=0 p=0

where each additional term in the series on the RHS of equation (36)
represents a source correction of order €”. Hence, R(O) =0, R(l) =
—9,H 1, — 0;F;), and Ry = —9,H 5, — 0; F5, and so on.

Using symbolic Python, we have fully derived the first-order
(O(€)) source terms in R(l) such that they contain only spatial
gradients. At second order, we have derived the flux contribution
to Ry thatis =9, F 22). The presence of high order time derivatives
in —0,H (), which in turn introduce even higher order spatial
derivatives, leads to algebraic terms that rapidly scale in number
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and complexity, making it impractical to derive and implement, even
using computer algebra packages.

Note that one cannot always directly align powers of € ({¢, k, n} or
{tn, 74, Tr }) with the order of spatial derivatives appearing in these
source terms. To see this, consider the simple (CE) bulk viscosity and
heat flux models from earlier given by equations (22) and (24). In the
former, the next-to-leading order correction is O(Kz‘tq) and contains
a fourth-order derivative, whilst in the latter it is O(¢ try) and contains
a mixture of first-, second-, and third-order derivatives. However, the
leading order correction in each case, R(l), contains mostly second-
order gradients in the primitive variables (9; 0 ;w) with some products
of two first-order derivatives (0; w9 ;w). To see this, consider that the
dissipative variables we move from the state and flux vectors to the
new sources contain first-order gradients. If moved from the flux
vector, becoming —0; F 1&1)’ they pick up another spatial derivative
from the flux-gradient. If moved from the state vector, becoming
—0,H ), they pick up a first-order temporal derivative, which we
will show can be swapped for a first-order spatial derivative. Hence,
they are always diffusive, second-order gradients as one would expect
for dissipation. This can also be seen in equations (22) and (24) at
leading order.

We choose to perform the series expansion and truncation such
that terms O(¢) contain no time-scales and are first-order in the
dissipation strengths {¢, k, n}. Terms considered to be O(e?) are
first-order in the time-scales {zr, 7, 7, } and the strengths. We often
choose to work with the first-order (O(€)) source terms only as
we find that including higher orders generally only makes small
quantitative differences. However, using the O(€?) source, the effect
of varying time-scales for both the MIS and MISCE models will be
shown. Finally, despite the inherent instability of first-order theories
of relativistic dissipation in fluids (Hiscock & Lindblom 1983), we do
not find any instabilities arising with our first-order MISCE model,
at least for the test problems and parameter space explored so far.

In order to make it practical to implement the system numerically,
we need to replace the time derivatives present in R, and Ry
with spatial ones. We have two potentially problematic sources of
time-derivatives. First, the Navier—Stokes forms of the dissipative
variables themselves contain time derivatives. Secondly, the entire
dissipative state vector H (w) is time-differentiated in the equations of
motion. Because both H and F can be expressed entirely as functions
of primitive, non-stiff variables, we need expressions for the time
derivatives of the primitive variables. Making use of the chain rule
and equation (30), which contains the time derivative of the ideal
state vector and hence the primitive variables that constitute it, we
have
ow ow 9q

dw 9q
ot~ dqo Ot

3q0\ ! i
= (Y0 oy ,
g, or (aw) fo+ 0
(37)

where we again note that w is the vector of primitives. This means the

term 22 has a matrix form that is far more easily obtained through

990
an inversion of the matrix %‘ We can use this result to substitute
wherever a time-derivative appears in our source such that we then

have
k(l) = —0,Hys(w, 0;w) — aiF;.\IS(wa o;w) (38)

and our source contains solely first- and second-order spatial
derivatives. For a derivation of higher order approximations to time
derivatives of primitive variables, see Appendix A.

We will dub this new formulation DEIFY (Dissipative Extension
to Ideal Fluid dYnamics) so that Ry is the first-order DEIFY source
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term. Also observe how the source term for DEIFY is proportional
to € whereas the MIS formulation source terms scale as 1/t oc €.
This means that the two forms become stiff in opposing limits —
near the ideal regime (small €) DEIFY will be stable as a result
of a small source term, and will only become stiff, and potentially
unstable, as € grows large. The big benefit of this behaviour is that
near the ideal regime we can confidently evolve DEIFY with explicit
time integrators, knowing that source contributions will remain
small.

In contrast, in the event of very slow-acting (large t) and large-
in-magnitude (large {x, ¢, n}) viscosities and heat fluxes, it will
not be sensible or accurate to evolve DEIFY, even using implicit
schemes. Instead, we may revert to an implementation of the MIS
formulation in this regime, which is likely to be stable with explicit
integrators and therefore less costly. Future work will extend the
approach of Wright (2020), where an adaptive model of resistive
and ideal MHD was implemented. Ours will be able to switch
between different dissipative formulations of hydrodynamics during
evolution, ensuring stability, efficiency, and accuracy.

In summary, both the ideal and highly non-ideal limits, we should
be able to use explicit integration schemes, which have been shown
to provide a speed-up of up to an order of magnitude over implicit
schemes in comparable models of resistive/ideal MHD (Wright &
Hawke 2020). In Section 5.3, we will prove the validity of this claim,
and further explore the intermediate region of non-ideal behaviour
between these two extremes.

4.1 First-order source

In order to compute the DEIFY source term(s), we will need to
calculate matrices and, crucially, their inverses. For instance, we
will need to know the inverse matrix that appears on the RHS of
equation (37), which represents the Jacobian of the primitive vector
with respect to the non-stiff conserved vector.

Here, we have a choice of how to compute the matrices of interest
— that is we can invert them numerically, or try to get the form
of the inverted matrix symbolically. Inverting matrices numerically,
especially when densely populated, can require a large amount of
computation, reducing accuracy as well as slowing down simulations.
If the algebraic form of the matrices were at hand, this would lead
to a far more efficient simulation, and as we are trying to build a
source term to extend ideal hydrodynamics with the intention of being
faster to evolve than other forms of dissipative hydrodynamics, it is
sensible to adopt the performance gains of a purely symbolic source
term.

On this note, let us turn to computing (algebraically) the matrices

(%) and, hence, (%)_l. Here, we will make a simplification
so that the terms appearing in these matrices are human readable:
we take the low-velocity limit, neglecting terms O(v?) and hence
setting the Lorentz factor, W = 1. This assumption is not made for
the numerical implementation. We also have a choice to make over
which two thermodynamic variables are present in our primitive
variable vector w. The equation of state, which relates p, p, and n,
gives us this choice, and we opt to work with w = {p, p, v}. Thus,
our ideal conserved vector is now given by

D p+p/(1—T)
go(w) = S = (o +pw; |, (39)
E=1t+D P

where we have used our equation of state to replace n in the
expression for D and chosen to work with the conserved variable
E for now instead of 7 as it takes a simpler form.
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This gives us the matrix
0pn d,n 0 0 0
3q0 v vy ptp O 0
<%) =] v, v 0 p+p O 40)
v U3 0 0 p+
0 1 0 0 0

1.
and, hence, (%) is

(p+p)/3,n000 —(p+p)o,n/d,n
0 000 (p+p)
—v;/0,n 100 —vi(0pn +0,n)/0,n |. (41)
—v/0,n 010 —v(0pn +0,n)/0,n
—v3/0,n 001 —v3(d,n+0,n)/0,n

(p+p"

Next, using equation (37), this gives us

(p+ p)(1/0pn) —(3,n/3,n)0, E) )

14
a,<p> _(p+p)'( (p+p)oE
v; —v;((1 +9,n/3,m)d,E + (1/9,n)d,D) + 9,5,

“42)

where we can exchange the time-derivatives of the conserved
variables for spatial derivatives of the fluxes using equation (30).
Doing this, and using our equation of state p = (I' — 1)(p —n) to
replace the partial derivatives of primitive variables, we arrive at

» (1 -+ 0; S
GH (P) = —oi8'

vj (o+p)! [v_/((Z —9; S + (1 = I)d;(Dvh)) — ais;]
(43)

which represents expressions for the partial time derivatives of the
primitive variables in terms of purely spatial-derivatives.

Let us now demonstrate what the MISCE sources look like. These
are too complex to write in full, so we consider the case of bulk
viscosity only, restrict to one spatial dimension and again work in
the low-velocity approximation such that W = 1 (but not neglecting

terms O(v?)). Then, [ys = —¢0,v*. The leading order source term,
R(]) = —6,H(1) — afo]) in full is
0 0
R(]) = —6, 0 — ax HNsl)% (443)
0 0
= 0 + 0, vfamv" + 20, (0, v%)? , (44b)
—0,0,v" 0

where from equation (43) we have

3,0,v" = (p+ p) (2 = T)(: 0,2 S* + (3, S")(Dxvx))
+(1 = )3, (D)) — ., (S v, + p)] (45a)

= [(2 = )2, 0, vy + 3v:(0,v:)0:(p + p) + (0:v.)%)
+(p + P)_l(l - F)(vx axxn + naxxvx)
_axxvx - Uxax(P+P)—(P+P)7lax.xP)] (45b)

and, finally, we have an expression for R(;, that is expressed purely
in (second-order) spatial gradients of the primitive variables. The
full expressions (without simplification) are not human-readable, but
are attached as additional material with this submission. The code to
derive them can be found at https://www.github.com/MarcusHatton/
ComputerAlgebra, whilst their implementation can be seen at https:
/Iwww.github.com/MarcusHatton/METHOD.
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4.2 Second-order source

A similar but more complex calculation can be made to derive the
next order (second) of dissipative correction to ideal hydrodynamics.
Beginning again with the conservation law

0 [qo(w) + Hyy + Hey| +0; [fy(w)+ Fijy + Fl, ] =0 (46)
it follows that
Ry = —0,Hp — 0, FY. (47)

At first order, the form of H, F and hence R(l ) followed simply
from the definition of the Navier—Stokes terms which are of O(e).
At second order, we use the stiff subsystem

3, (W) + 0; (nWv'w) = g(w —Wys) (48a)

—i 1
0,9 +9,f (q.9) = E@ —qns) (48b)

and make the substitution § =q,+¢, +¢,=0+qys+ ¢, to
obtain, at order O(e?),

€ |0:qys + aifi(qs ENS):| =q,. (49)

Because the NS forms of the stiff variables can be defined entirely
in terms of the non-stiff primitive variables (qN s=4qy S(q)), SO too
can q,. The vectors H ), F ;) are given by

0
W(qo,)v; + 45,) + o),
2go,0)W — o) + 700,2))

H)(w) =

and

0
Féz)(il)) = H(z)(vivj + 8’1)W2 + W(q(IZ)U/ + q_j‘(z)vi) + 7'[;:,(2)
W(qo.ov' + 4(2) + 70,20

Putting these results together and making substitutions wherever
we find time-derivatives of the primitive variables (as before) allows
us to arrive at a purely spatial form for R ;).

5 RESULTS

Next, we will perform numerical tests of our implementation of the
MISCE model, with comparison primarily to the established MIS
model from which it has been derived. A code named Multifluid
Electromagneto-HydroDynamics (METHOD) was used to perform
these simulations, which may be found at https://www.github.com/
MarcusHatton/METHOD, having been forked and extended from its
creator’s repository at https://www.github.com/AlexJamesWright/
METHOD. Instructions on how to run the simulations and reproduce
the results of this chapter are to be found on the ‘MISCE Paper’
branch.

For explicit time-integration, we mostly use a second-order,
operator-split Runge—Kutta (RK) scheme and occasionally a fourth-
order RK scheme for comparison (Gottlieb & Shu 1998). For semi-
implicit time-integration, we use a Strong Stability Preserving (SSP)
scheme from Pareschi & Russo (2005) that uses two explicit and
two implicit sub-steps and gives second-order convergence in time-
step At. To calculate the fluxes, we use a flux-vector splitting
approach paired with third- or fifth-order Weighted Essentially Non-
Oscillatory (WENO) reconstruction (Shu 1998). Our numerical grid
is a static Cartesian one. For further details on the numerical scheme
employed, see Wright & Hawke (2019).

These will be standard tests such that we may compare results
against the literature and check for agreement. These tests are also
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chosen to reflect the physics we are interested in capturing for actual
neutron star mergers.

5.1 Shocktubes

Shocktubes are simple, 1D tests useful for closely analysing the
behaviour of the fluid model and its numerical implementation. They
are designed to produce a set of forward- and backward-travelling
waves, and in particular, discontinuities in the fluid’s properties.
These waves (contact, rarefaction, and shock) are the fundamental
propagation modes of the fluid and will certainly be produced at the
point of merger, and thereafter whenever a sharp jump in density,
pressure, or temperature occurs such as between different phases of
matter within the neutron star. They also involve advection of the
fluid, which will be important for the inspiral phase of the merger as
tidal forces will drag fluid around the star as they orbit their mutual
centre of mass.

The initial data for these tests are similar to those of Takamoto &
Inutsuka (2011) but with zero initial velocity. We also share the same
equation of state, allowing for a favourable quantitative comparison
to be made. A domain of one spatial dimension is initially split into
bordering left and right states [L, R] where the primitive variables
in the two states are

p 10
L:|n]=1[38 (50)
0 23

for the left state and

p 1
R: |n|=1[2 ShH
0 2.5

for the right state. The pressure, p, and number density, n, are set
in the initial data and the equation of state, p = (I' — 1)(p — n),
determines the energy density, p. We set a value of I' = 5/3 for the
adiabatic index.

In Fig. 4, we see the expected production of the three travelling
waves: the left-moving rarefaction; right-moving contact-wave; and
(faster) right-moving shockwave. These are most easily seen in the
energy density plot in the top-left. The bulk viscosity has a smoothing
effect on these waves, particularly on the shockwave, where it also
significantly increases the propagation speed of the shock-front —
this can also be seen directly in the velocity plot (top-right). The bulk
viscosity itself (bottom-right) spikes at the shock where the velocity
gradients are highest. Its positivity there indicates a resistance to the
rapid compression of the fluid by the shockwave, with the reverse
being true for the rarefaction.

In Fig. 5, we take a closer look at a shocktube profile for the
fluid’s number density with bulk viscosity and heat flux present.
Three results from the MIS model are plotted for differing dissipative
time-scales t (the same for both types of dissipation), and one for
the MISCE model (at leading order, so the time-scale does not enter
into the EoM). In particular, we see convergence of the MIS result
to the MISCE result as t is decreased. This is expected given that
for the MIS model, in the T — 0 limit, any off-shell deviations from
relativistic Navier—Stokes behaviour are instantaneously quenched.
This means that the MIS model’s behaviour should match that of
the leading-order MISCE model in this limit, where terms O(t) and
higher are neglected.
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Figure 4. A shocktube simulation comparing results of an ideal fluid with a viscous one using the MISCE formulation at leading order. A bulk viscosity parameter
of £ =1x 1072 and ¢ =5 x 1072 is used in each of the two viscous cases. The energy density, velocity, Navier—Stokes bulk viscosity and temperature are
plotted. The increase in shock propagation speed and smearing of discontinuities due to the inclusion of bulk viscosity are both visible physical effects.
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Figure 5. The evolution of the number density for a ‘stillshock’ test — a shocktube with zero initial velocity. There is bulk viscosity and heat flux present with
coefficients ¢ =5 x 1072 and ¥ = 5 x 1073, The three panels show the entire domain (left), the rarefaction wave (centre) and the shockwave (right). The two
models (MIS, MISCE) are compared in all three panels, with the dissipative time-scale t varying for the MIS model but held constant at zero for the MISCE
model (making it the leading-order version). One can see the approach of the MIS solution towards the MISCE solution as t — 0. For the rarefaction wave
they have converged in the fastest case, but for the shock there are still differences. In particular, one can see the increase in speed of the shock as the ratio ¢ /7,
increases for the MIS model. It is catching up to the MISCE solution, which can be thought of as its limiting case.
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5.2 Kelvin-Helmholtz instabilities

The Kelvin—Helmholtz instability (KHI) is a shearing instability that
results when two (or more) fluid regions flow in opposite directions
past each other, each usually differing in density. A wide range of
fluid behaviours can be observed depending on the precise initial
data, but here we will be varying the shear viscosity only, to focus
on its effect. In the most interesting cases, there is an initial linear
growth phase of the instability at the interface, followed by a non-
linear phase where the creation of vortices and a complex network
of shocks typically precedes the onset of smaller-scale turbulence.

Neutron star matter in mergers is likely to be Kelvin—-Helmholtz
unstable as the two objects collide and shearing flows develop. The
KHI is known to play an important role in post-merger dynamics
where it moderates the cascade of energy between macroscopic and
microscopic scales through the action of shear viscosity in the fluid.
This is important in the spin-down of the remnant where the rotational
energy of the fluid is converted to small-scale turbulence and then
to either magnetic energy through the dynamo effect or dissipated
through viscous heating. We will also analyse the integrated power
spectrum of kinetic energy resulting from turbulence induced by
the KHI. This has famously been shown by Kolmogorov to have a
universal scaling relation with wavenumber for at least part of its
spectrum, a result which was generalized by Qian (1994).

To investigate this process, we use the initial conditions from
Beckwith & Stone (2011), as well as the spectral analysis laid
out by them. The data are defined within a 2D domain where
x € [—1.0,1.0] and y € [-0.5,0.5]. The domain is then divided
into two-fluid regions, with the inner region contained roughly within
x € [—0.5, 0.5] and the outer elsewhere. The two-fluid regions have
differing densities and flow past each other with velocities directed
in the positive and negative y-directions. There is a narrow transition
layer between the two where a small, spatially varying perturbation
to the x-directed velocity is also introduced to induce mixing. The
primitive variables are

vy, tanh (x;O'S)
Uy x—0.5
p | = po + p1 tanh( . ) x> 0.0 2
v, Aoy sin(27 y) exp ( 477;)# )
and
—vyy, tanh (”aﬁ)
Uy
o | = po — pi tanh (£22) 200, (52b)
Uy — Aoy sin(27 y) exp ( 4%2032 )

where the shear velocity is vy, = 0.5, the boundary layer thickness is
a = 0.01, the densities are given by (09, p1) = (0.55, 0.45), and the
perturbation has an amplitude Ap = 0.1 over a characteristic length
! = 0.1. The initial pressure is uniform, p = 1.0, and the adiabatic
index is set to I' = 4/3. We use periodic boundaries in the both the
x and y directions.

Figs 6 to 7 show the development of the KHI for the fluid’s number
density. Figs 6 and 8 show its development for an ideal (inviscid)
fluid. For the former, the early-time behaviour is the focus, with
the initial growth of the interface instability visible, followed by
large-scale mixing and finally the formation of small-scale structure
as energy cascades from longer to shorter scales. In the latter, the
asymmetry of the initial perturbation has had time to grow into a
macroscopic asymmetry. One can also see vortices forming and the
onset of turbulence in the wide mixing layer.
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Figure 6. The short-term development of a Kelvin—-Helmholtz unstable fluid
with negligible viscosity until # = 6.25. This uses the MISCE model that
reduces to the ideal Euler equations in the inviscid limit. The number density
is shown in colour, as is the case for all KHI plots here. The initial perturbation
grows rapidly until the interface breaks and large-scaling mixing occurs,
followed by the onset of turbulent behaviour which produces shocks and
smaller-scale vortices.
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Figure 7. The long-term evolution of the KHI using the MISCE model at
leading order with a shear viscosity parameter of 7 = 1 x 1073, The shear
viscosity has an intermediate value here: it suppresses large-scale mixing of
the two fluids but vortices still form in a narrow shearing layer that is stable
even at late times. The asymmetry is again visible here, but obscured for
similar reasons.
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Figure 8. The long-term development of the Kelvin—-Helmholtz instability
until #+ = 30.0, for an ideal fluid with negligible viscosity, again using the
MISCE model. The longer simulation time allows the asymmetric initial
perturbation at the interface to give rise to large-scale asymmetric vortex
formation.
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Figure 9. The power spectra for the kinetic energy density in the KHI
at medium and long times, for an inviscid fluid (top) and one with weak
shear viscosity, n = 1 x 10™* (bottom). This uses the MISCE formulation at
leading order with a grid of size Ny = Ny, = 800. The expected Kolmogorov
scaling of the power spectrum is seen in the inertial regime at earlier times. In
the inviscid case, the numerical viscosity has a minor damping effect on the
power spectrum at late times and high wavenumbers (short length-scales). A
greater damping effect is seen in the viscous case, as well as a ‘ringing’ at
high wavenumbers due to coupled action of fluid element discretization and
local viscosity: these wavenumbers correspond to length-scales of a few, or
even a single, cell(s).

In Fig. 7, the long-term behaviour for a viscous fluid is shown.
Viscosity suppresses the perturbation’s growth and stabilizes the
mixing at the interface. Vortices do form, still, but they are confined
to a smaller corridor between the two bulk fluid regions, and in
general the behaviour is less chaotic. We observe similar qualitative
behaviour to Takamoto & Inutsuka (2011), who performed compara-
ble simulations. Fig. 9 shows the power spectra for the kinetic energy
in our KHI simulations. Two comparisons are made: one between
early (r = 12.0, blue curve) and late (r = 30.0, orange curve) times;
and one between an inviscid (top panel) and viscous (bottom panel)
fluid. In both cases, the system loses energy over time. For the
inviscid case, this is due to numerical dissipation. For the viscous
case, there is the additional effect of viscous dissipation, which
causes the steeper drop-off for the orange versus the blue curve.
The expected Kolomogorov scaling for the inertial range is plotted
and matches well with the data for all but the late-time viscous case,
where dissipation has more efficiently moved energy to the shorter
length-scales, giving a steeper dependence on wavenumber. Finally,
the ‘ringing’ effect seen for the highest wavenumbers in the late-
time, viscous case is, we believe, a numerical artefact. Dissipative
behaviour in the MISCE model is captured using a complex mixture
of spatial gradients of the primitive variables, generally calculated
using simple central differencing rather than, for example, a WENO
scheme which is designed to be non-oscillatory. For the highest
wavenumbers here, corresponding to a few or even a single cell(s),
these derivatives may be causing small-scale oscillations in fluid
variables that have no qualitative significance.

5.3 Code performance

There are a few key metrics of code performance we must now
consider. First, how the runtime of simulations scales with resolution.
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Figure 10. The ‘SineWave’ initial data (and its evolution with the MISCE
model at second order) used to assess numerical convergence with resolution.
Shear viscosity causes the flattening of features in the y-direction velocity
across the x-domain here. This simulation was performed using 3200 cells in
one dimension up to a code time of 50.0.

Secondly, the convergence of the simulation output, which is assessed
in two ways: the self-convergence of the MISCE results to a very high
resolution simulation output; the asymptotic approach of the MISCE
results to either leading-order or ideal fluid behaviour as the non-
ideal coefficients approach zero. Finally, we present a comparison of
runtimes, showing the significant speed-up achieved by the MISCE
model.

5.3.1 Scaling and convergence

By evolving smooth ‘SineWave’ initial data (Fig. 10), we are able
to assess the convergence of our MIS and MISCE implementations
with resolution. Considering the error due to finite resolution, we
define it as the difference between ‘true’ solution (the one obtained
at infinite resolution) and the finite-resolution solutions our code
actually produces: € = Qrue — Qnum-

Then we make the usual assumption that this error follows a
power-law scaling in the grid-size: £ o« Ax". Different approaches
exist for extracting the value of » in this expression, and we choose
here to use self-convergence, where each resolution’s solution is
compared to its neighbours to produce a set of convergence powers at
different resolutions. We do this because different components of our
numerical scheme (the time-integrator, cell-interface reconstruction
method etcetera) each have individual expected convergence rates
that blend together to give an overall convergence. This means that
different components can dominate the error at different resolutions,
and we are able to assess the transition between them using this
approach.

We show in Table 2, a summary of convergence orders for
different models and resolutions. In Fig. 11 we plot convergence rate
against resolution for our MISCE model, and in Fig. 12 we plot the
convergence rate over time for a simulations at different resolutions,
again using our MISCE model. In summary, we see a transition from
high-order convergence at low resolutions to lower order convergence
at higher resolutions. For both models, the error at low resolutions
is dominated by the time integrator and reconstruction algorithm,
which are high-order schemes and hence their error converges away
quickly.

At high resolutions, we see a drop in the overall convergence order.
For the MISCE model, this is because there are many spatial deriva-
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Table 2. The self-convergence of a smooth sin-wave evolution using different
models of non-ideal hydrodynamics and different numerical schemes. The
expected orders of convergence are seen. At very high resolution, the
first-order central differencing used in the MISCE model source’s spatial
derivatives causes the convergence order to drop to 2"¢. For the MIS
model, we use lagged-updates to calculate the required time derivatives. This
similarly caps the order of convergence at first when very high resolutions
are used and error from other components of the numerical scheme are tiny.

Self-convergence

Model Integrator Reconstruction  Resolution Order
MISCE RK2 WENO3 100 2.45
MISCE RK4 WENOS 50 4.5
MISCE RK4 WENOS5 100 4.7
MISCE RK4 WENOS 200 3.9
MISCE RK4 WENOS5 400 2.6
MISCE RK4 WENOS 800 2.1
MISCE RK4 WENOS 1600 2.0
MIS SSp2 WENOS 400 4.0
MIS SSP2 WENOS5 800 5.7
MIS SSp2 WENOS 1600 1.0

Table 3. A comparison of computational time required for different hydro-
dynamic models and time-integrators. These results are for KHI simulations
using 40 CPU nodes and MPI memory management on the IridisS super-
computer. The MISCE model gives about an order of magnitude speed-up
compared to the MIS model (when evolved with explicit methods instead of
implicit ones). RK2 refers to an operator-split, second-order RK scheme and
SSP2(222) refers to a second-order implicit-explicit scheme.

Average runtime

Model Integrator ~ Resolution Endtime Runtime (Speed-up)
MIS SSp2 200x400 6.25 1h22m
MISCE RK2 200x400 6.25 6m (x14)
MIS SSp2 400x800 6.25 3h22m
MISCE RK2 400x800 6.25 29m (x7)
MIS SSp2 800x1600 6.25 26h10m
MISCE RK2 800x1600 6.25 3h7m (x8.4)
MIS RK2 800x1600 18.0 15h45m
MISCE RK2 800x1600 18.0 9h8m (x1.7)
MIS SSp2 800x1600 3.75 22h3m
MISCE RK2 800x1600 3.75 1h54m (x11.6)

tives of the primitive variables in the complex source terms, which
are evaluated using second-order central differencing. Increasing the
order of this central differencing does increase the convergence rate,
but makes negligible difference to quantitative results. For the MIS
model, we require temporal derivatives of the primitive variables.
These are evaluated using backwards-differencing on the primitives’
values at the current and previous time-step. This introduces a first-
order error due to these lagging updates that does not converge away
with resolution, and hence appears as the dominant error at high
resolutions.

5.3.2 Model comparison

We show in Table 3, a comparison of runtimes between the MIS and
MISCE models for the KHI. We primarily present results comparing
the MIS model evolved with the SSP2(222) IMEX time-integrator
(Pareschi & Russo 2005) and the MISCE model evolved with an
operator-split RK2 time-integrator. Whilst this comparison may seem
‘unfair’ at first, due to the costly nature of IMEX schemes compared
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to explicit ones, it is justified. Whilst for much of a merger simulation
the neutron star fluid may be accurately treated as ideal or near-ideal,
when dissipation does become significant its parameter space will
certainly extend into the region where the MIS model becomes stiff
and IMEX schemes are needed to evolve it stably.

In this case, a significant speed-up of about an order of magnitude
is achieved using the MISCE model. When the two models are
compared using explicit time-integrators for both, a speed-up of
nearly a factor of 2 occurs, owing to the reduced system size.

6 FURTHER CONSIDERATIONS

6.1 Rapid evolution of reduced initial data

The source terms in MIS models drive the dissipative variables
towards their equilibrium values on time-scales . We therefore
expect that, when our initial data (or otherwise) put us significantly
out-of-equilibrium, at times 7 < 7, there will be a systematic error in
the dissipative variables that decays roughly as e™"/".

However, a CE-expanded model does not possess this type of
source term nor indeed any explicit dissipative variables at all.
Instead, the primitive variables and their derivatives are used to
produce dissipative effects. We therefore expect that we will need to
make modifications to the primitive variables’ initial values to reflect
their out-of-equilibrium status in lieu of having terms that explicitly
define our out-of-equilibrium state.

Let us demonstrate the effect of not making appropriate adjust-
ments to the primitive variables to reflect their out-of-equilibrium
state. We take the simple heat model presented earlier in equa-
tion (18), in one dimension:

3,T +d.qg =0, (53a)

1
0,9 = —;(KaxT +q9); (53b)

q

and its CE form, equation (22),
0T =« [0PT — k7, 09T] . (54)

By introducing a fast time variable 7 = ¢/7, on the scale of the
relaxation rate, we can perform a matched asymptotic expansion
valid even at small times. This transforms equation (53) into

aTT + Tqaxq = 07 (552‘1)

07qg = —q — k0, T. (55b)

From equation (55), the power series expansion now gives that the
temperature 7 is independent of 7 to leading order and

0790 = —qo (56)
which can be integrated directly to give
qo=Coe™ ", (57)

where Cy is a constant of integration. We immediately see that this
exponential behaviour in fast time, 7, cannot be captured by a power
series expansion in the original time, ¢.

Noting that Cy = ¢(t = 0) + O(z,), we relabel Cy as Agg because
it represents an initial offset of the heat-flux at 7 — 0*. To compare
this early time behaviour between the two models (equations 53 and
54), we can Taylor-expand each in terms of 7 to an arbitrary (small)
time 7 =1 about 7 = 0. This is equivalent to considering the
evolution up to time t = 7,. From the relaxation model equation (53)
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Figure 11. The self-convergence rate of the MISCE model (at second order)
for different resolutions. For lower resolutions, the convergence order is
between fourth and fifth due to the use of an RK4 time-integrator and
a WENOS reconstruction scheme. At higher resolutions, a transition to
second-order convergence is seen due to the presence of first-order central
differencing used for spatial derivatives in the MISCE source terms.

we have

T(T=1)>~T(T =0)+ %-f- %-i- (T =0+
(582)

—T(T=0)—1, anqO +0E) (58b)

whilst from the CE model equation (54), we have

oT, 9T,
T(T=1)~T(T =0)+ <—°+rqa—7l

oT +> (T=0+..

(59a)

=T(T =0)+ O(x)). (59b)

Comparing the two, we see that we can match the two temperatures
at small times by making an initial-data adjustment given by

Tt =0,x)— T(t=0,x)— 1,0, Aqo. (60)

This accounts for the fast-relaxation behaviour and removes the
exponentially decaying, leading-order systematic error in the so-
Iution. In words, we are taking into account the heat flux (¢) that
would have produced our initial, out-of-equilibrium temperature (7')
distribution. Otherwise, our reduced system does not have access to
this knowledge and will not equilibrate accordingly.

This can be seen in Fig. 13, where a 1D ‘top-hat’ temperature
profile evolves up to t = 1 x 1073, using non-ideal parameter values
k=1x 103 and 7, = 1 x 10~*. Here, we are not interested in the
usual, long-term evolution where heat would slowly diffuse outwards
and the temperature profile would adopt a decaying Gaussian shape.
Instead, we are interested in the very short-term evolution due to the
inclusion of an initial heat flux Agy = sin(67 x) into the MIS-derived
heat model given by equation (53).

In the left panel, the temperature of the MIS-derived relaxation
model is shown with solid lines, whilst the initial temperature with the
offset computed in equation (60) is shown with dotted lines. Excellent
agreement is seen, indicating that this offset would work when
applied to a reduced order model such as the MISCE approach. The
right panel shows the heat flux of the MIS-derived relaxation model,
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Figure 12. The self-convergence of the (second-order) MISCE model across
time for a range of resolutions. The simulation data can be seen in Fig. 10,
although this convergence test is carried out on the number density, n. For
lower resolutions, the convergence order is between fourth and fifth due to
the use of an RK4 time-integrator and a WENOS reconstruction scheme. At
higher resolutions a transition to second-order convergence is seen due to the
presence of first-order central differencing used for spatial derivatives in the
MISCE source terms.

showing that the system has relaxed to equilibrium, illustrating that
this applied offset has the appropriate magnitude.

In summary, injecting an initial heat-flux into a relaxation-type
system leads to an exponentially fast adjustment of the corresponding
conjugate primitive variable: the temperature, in this case. We are
able to derive an analytical expression for this adjustment behaviour
that depends on the spatial gradient of the injection and the non-
ideal parameter controlling its time-scale, 7, in this case. Even in the
reduced system found using the CE-expansion, we are able to adjust
the sole remaining variable (the temperature) to capture the offset
that is quickly arrived at by the original relaxation system.

The same effect would be observed when using the full MIS model
of non-ideal hydrodynamics, where an initial bulk or shear viscosity
would lead to an exponentially fast adjustment of the velocity, albeit
likely small in magnitude. If one uses our MISCE model for capturing
far out-of-equilibrium dissipation, the initial conditions of the non-
ideal variables (viscosity, heat-flux) can and should still be taken
account of by adjustment of their conjugate primitive variables (such
as velocity and temperature).

6.2 Stability analysis

It is important to consider the numerical stability of the CE systems
introduced here. Usually, conservation laws are evolved for hydro-
dynamic simulations of ideal fluids in special relativity of the form

01 + 0. f =0, (61)

where we choose to write it in one spatial dimension for simplic-
ity. The Courant—Friedrichs—Lewy (CFL) condition sets a stability
criterion for these strongly hyperbolic systems given by

C: 0f | Ar <C (62)

T log|ax T M
where At is the time-step and Ax is the spatial resolution. C is
the Courant number and C,,, is a constant that determines its
maximum stable value and depends on the particular numerical

scheme employed. Typically, C,,., = O(1) for explicit schemes.
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Figure 13. The evolution of the temperature and heat flux for the initial data described in Section 6.1 using the relaxation model given by equation (53).
The initial heat flux means the data is initially out-of-equilibrium. The non-ideal parameters are ¥ = 1 x 10~3 and T =1x 1074, so the system relaxes to
equilibrium on the time-scale shown here, as seen by the heat flux relaxing to nearly zero. The analytical result for the appropriate adjustment to the initial data,
derived in Section 6.1, is also plotted in the left-hand panel (dotted) and shows excellent agreement with the numerical evolution result.

For linear systems involving higher-order spatial derivatives, such
as the heat equation given by

3, T =xd?T, (63)

a von Neumann stability analysis is usually performed, where the
numerical errors are decomposed into a Fourier series. For a forward-
time, centre-spaced (explicit) numerical scheme this analysis finds
that

At 1
K—s < =

Ax?2 T 2
is the condition necessary for stability. For the CE heat system given
by equation (22)

3, T =«kdPT — k7, 0T, (65)

(64)

the conditions for stability are more complex. See Bevilacqua et al.

(2011) for a treatment of higher-order differential terms relevant to

our work here. The analysis gives us the inequality for stability of
At At 1

KT_XQ +4TqK2A7x4 < E. (66)

This clearly yields the previous heat-equation limit when the first

term is dominant. In the limit where Ax — 0 and the secondlteArIP
X

becomes dominant, we instead obtain the condition Af < i
A

which is the stricter condition of the two in this limit. We expect
a cross-over of stability between the two criteria when Ax? = 47,«.
At this point, the overall stability condition given by equation (66)
above yields At < 7,. See Fig. 14 for a visualisation of these stability
criteria.

The stability criteria for the full, non-linear MISCE model we
have developed will be more complex still, given the presence
of many mixed derivatives. Hence, we primarily investigate its
stable parameter space empirically. However, we can first glean
some insight analytically, although the usual von Neumann stability
analysis is not applicable to the non-linear terms, and we therefore
consider the linear terms only here.

We make the ansatz that the solution can be written as g;' =
q" exp(ila Ax) where n and [ index the time-step and a grid-point,
respectively, and « is a spatial frequency present in the data. Using
central finite differencing, the MISCE sources will produce a solution

101 c
....... KE

N 4Tgk?s
o — K HATKES
£ 6
5]
Py
3 41
S
&

2<

S

0.02 0.04 0.06 0.08 0.10

Ax

Figure 14. The stability criteria of equation (66) are plotted separately
(dashed, dotted) and summed (solid). The red, shared region shows where the
simple heat flux model given by equation (65) should be stable, according to
the standard von Neumann analysis technique using a Fourier series of errors.
The heat dissipation parameter values here are 7, = 0.01, « = 0.05, and the
CFL factor is C = 0.5 hence the crossover between the two stability criteria
occurs at Ax >~ 0.045.

growth rate per step, g, with the following form:

- 28 6w (2) 4+ 6228 (sin20) — 25in (0))
= — s - T—— (SIn — Z81n
a4 Ax? 2 Ax3

car sin* o
Ax* 2)’

where 0 = o Ax/2,& = {¢, k, n}and A, B, and C are functions of the
primitive variables. We anticipate a cross-over between the various
stability criteria as resolution varies.

First, we note that the validity of our expansion only applies when
7 K 1 and indeed we find that our simulations are unstable when
T 2> 1072, In Hiscock & Lindblom (1983), conditions are provided
for the stability (and causality) of MIS theory. There, the B coeffi-
cients given in equation (12), which represent the ratio of dissipation
strengths (§ = {¢, «, n}) to time-scales (t = {rr, 7,4, 7)), are used

+&%7
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to determine the stability of the theory. Unsurprisingly then, we find
the same is true here: a lower bound from causality appears on the
ratio t /.

In particular, we find that for shocktube tests, 7, /k = T8, 2 0.5
aswell as /¢ = By 2 0.1 grants stability. Similarly, for KHI tests,
7. /n = B2 2 0.2 gives stability. These ratio conditions coupled with
the small-t requirement work together to create a stability region
bounded at either end, at least when next-to-leading order terms o< ©
are included in the MISCE source.

For a Boltzmann gas, the 8 coefficients have thermodynamic forms
that we can calculate analytically. We expect them to usually be
~ O(1). Indeed, we have implemented these thermodynamic forms
such that the timescales used are dynamically adjusted during the
simulation—little difference is made to using preset values.

6.3 Extension to GR

Here we briefly consider the form our model would take if we were
to extend it to General Relativity, in anticipation of future work. We
follow the fairly standard numerical relativity definitions as laid out
in Chabanov et al. (2021). In particular, we introduce the unit time-
like vector n that is normal to the spatial hypersurfaces, on which an
induced spatial metric y,,, = g, + n,n, is defined, where g, is the
space—time metric and g = det(g,,,) = «./Y relates the determinants
of the two. The components of r are given by n,, = (—«, 0, 0, 0) and
n* = a~!(1, —p")" where « is the lapse scalar and B; = y;; 8/ is the
shift-vector.
The hydrodynamic equations in GR then become

3 (v7YU) +0; (VY F'(U)) = /7S, (67)

where

D nW
S; (p+ p+ W2 + W(gov; +q;) + 7o;
U | T [ 2|+t TOW?+2q0W = (p+ 11— 700) — nW
X nWII
Vel nWgql
7k nWrik
DV!
asi—pS;
i Si —BE—DV!

F=|° . , 68
v (68)
yivi
Zikyi

0
%aSikaj){l‘_k + S,«aj_ﬁ" — Eajot
aSY K,'_,' -8/ a_,-a
§= - ®(Ins — T+ An) ‘
%(Vliqgs -q/ + Aé + rtlgf; + fq%tji)

%(V}f}ﬁf”ﬁ; — ik + A!rk + frrgi'];k + T Jl[k)

and we have defined V! = av' — B/, K,,, = —V,n, —n,a™ as the
extrinsic curvature and a(’j,) =n"V,n* as the acceleration of the
normal observer. The A terms represent the next-to-leading order
contributions to the dissipative terms’ sources and the G and ‘H
terms represent couplings between the dissipative variables and the
gauge and curvative variables.

Let us consider how the MISCE derivation will work now: more
details and an illustration in a different context are given in Wright
(2020). We consider the t — 0 limit so that the source terms G
and H are irrelevant for the expansion about this limit. We also
neglect higher-order corrections as usual so that the A terms vanish.
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The perturbative expansion about the Navier—Stokes equilibrium is
conceptually the same, if algebraically more complex. The procedure
that replaces time derivatives of the perturbative quantities with
spatial derivatives of equilibrium quantities does, however, involve
derivatives of more terms that appear in equation (68).

For instance, derivatives of the (square root of the) spatial metric’s
determinant (,/y) appear in equation (67). The spatial derivatives
are fairly straightforward to calculate using finite-differencing.
However, we would like to avoid using finite-differencing for the
temporal derivatives, which requires additional memory allocation
and is generally low-order accurate. To this end, we use the equa-
tion, V,/—g = 0, as well as the relation, ,/—g = ay, to arrive at
the identity

@8, /7 + /70 =0 (69)

which, with index p = 0, gives

2y = W, (70)

o

where the time-derivative of « is usually calculated anyway as it is
needed for the evolution of the gauge.

7 CONCLUSIONS

We have presented a dissipative extension to the relativistic, ideal
hydrodynamic equations often used in astrophysical simulations.
Motivated by the relaxation form of the MIS sources for the dissipa-
tive variables, new source terms are derived by writing the dissipative
variables as a series expansion in deviations from their equilibrium,
relativistic Navier—Stokes values. The series is paramterized by the
dissipation strength and time-scale coefficients, and its terms are
found using an order-by-order comparison of the MIS equations of
motion. This leads to a rapidly convergent series in the case of fast-
acting, weak dissipation, which we term the MISCE formulation.

This new system is numerically non-stiff in the exact limit where
the commonly used MIS equations of motion are stiff and inaccurate
in the opposing limit. Because much of the matter in a neutron star
may be treated as a near-ideal fluid, the MISCE equations of motion
may be evolved explicitly, giving accurate results with execution
times that are about an order of magnitude reduced. Even when both
models are evolved with the same, explicit integrators, the MISCE
formulation is nearly twice as fast, owing to its reduced system size.
It also converges to the Euler equations in the zero-dissipation limit,
allowing for the natural evolution of a fluid, which is mostly ideal
with some areas of non-equilibrium behaviour.

Within its domain of validity, we have demonstrated it to produce
highly similar results to the MIS formulation for a range of initial
data. It is able to capture dissipative effects near discontinuous data
without the onset of Gibbs oscillations and shows little error growth
(compared to MIS results) for smooth solutions over dissipation
strengths and time-scales spanning many orders of magnitude. For
more complex simulations of Kelvin—Helmholtz instabilities, the
expected scaling laws are reproduced for the kinetic power spectrum
across the inertial range of wavenumbers.

The realm of stability for our new model is considered in
Section 6.2 and is dependent both upon the dissipation coefficients
(in particular the ratio of strength to time-scale) and the simulation’s
space—time resolution, with a sharper dependence on the spatial
resolution. The presence of many mixed-order derivatives in the
source terms can lead to instabilities when spatial resolutions are
pushed very high, though this effect may be mitigated somewhat
by using better numerical-derivative approximations (than simple
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finite-differences) such as slope-limiting ones. In Section 5.3.1, we
presented results showing the expected convergence for the fourth-
order RK and fifth-order WENO schemes we use. One caveat is
that at high resolutions, the MISCE formulation, which makes use
of second-order central-differencing of the primitive variables, starts
converging at second-order in the grid-spacing. Similarly, the MIS
formulation starts converging at first-order for high resolutions, when
the dominant error contribution is the first-order time derivatives
calculated using lagged updates.

In Section 4, to simplify the form of the matrices in the source that
we present, we made the assumption that terms of O(v?) and higher
were negligible, and hence that the Lorentz factor, W, could be set
to unity. Whilst for simulations we use the entire, non-simplified
expressions that we derived using computer algebra, the differences
this made to results were small, and were generally eclipsed by
resolution effects. However, the differences may be more significant
for fluid velocities approaching the speed of light, such as in the final
orbits of a binary neutron star pre-merger, or for the significantly
out-of-equilibrium matter created in the merger itself.

Although all simulations have been performed in the special
relativistic limit, the techniques we have used are not limited to
this alone. A general relativistic extension to MISCE is (in principle,
at least) straightforward and already underway — we have sketched
the structure of this in Section 6.3. In addition, we have developed
an adaptive code prototype that evolves different dissipative fluid
formulations in different physical regimes (e.g. MIS and MISCE) to
minimize computational work and maximize accuracy and stability.
Together, this should allow for more efficient, dissipative simulations
of neutron star mergers and accretion on to compact objects.

The authors acknowledge the use of the IRIDIS High Performance
Computing Facility, and associated support services at the University
of Southampton, in the completion of this work. Open source
software used includes SYMPY (Meurer et al. 2017), MATPLOTLIB
(Hunter 2007), and cminpack (Devernay 2017).

DATA AVAILABILITY

The data used to perform the analyses and produce the figures in this
article were obtained using the METHOD (https://www.github.com
/MarcusHatton/METHOD) codebase, originally developed by Alex
James Wright (Wright & Hawke 2019, 2020; Wright 2020), and will
be shared with any interested party upon reasonable request.
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APPENDIX A: APPROXIMATING TIME
DERIVATIVES

In Section 4 we showed that by making use of the fundamental
conservation-law equation

O:g(w) + 0, f'(w) =0 (A1)

and the simple chain-rule for derivatives, we are able to arrive at
an approximation to time derivatives of the primitive variables,
w, containing only spatial derivatives of the fluxes (or primitive
variables).

d dw d g\ '
l:ll:_ %9 0, f' =—-AB (A2)
ot 0q Ot ow
where
g\ ! ,
A:(i) B=0,f" (A3)
ow

In the case of BDNK models of dissipative fluids, and of our
MISCE model presented here (to first-order), we may write both

the conservative and flux vectors in an expanded form that separates
(first-order) derivatives in the primitive quantities:

0 [g0)(w) + eqy(w, d,w, d;w)]
+0i [flow) + € f{;y(w, d,w, d;w)] =0 (A4)

where € parametrizes the size of dissipation in the fluid model.
Under the assumption that dissipation is small compared to the bulk
behaviour of the fluid, € is small. This is the regime when using the
MISCE makes sense, anyway.

Now we cannot only consider the contribution of the fluid variables
themselves to the time-derivative of the state vector (0, w), but also
the contribution of the temporal and spatial derivatives (w, w’). We
first rewrite A and B as

A= [0ugo+€dug,] ", B=1[0:f)+edifl]. (A5)

After much manipulation, and using the assertion that € is indeed
small to expand a sum of matrices to leading order, we arrive at

B AV S
A= Kl_e(aw) aw> (W) , (A6a)

ofi of! of of
B = [fow/+e<lw’+flw/+ flw”)]. (A6b)

ow w ow ow’

Note that we can choose to use the form of A in equation (A3) and
invert the sum of matrices, rather than using the approximate small-¢
trick that leads to A in equation (A6a). Similarly, we can choose
the expression for B from equation (A3) which makes use of the
fluxes themselves directly, or we may use its form in equation (A6a)
which requires evaluation of second-order spatial differences of the
primitives.
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