The University of Southampton
University of Southampton Institutional Repository

Robust and high-performance textile-based triboelectric nanogenerators integrated with 2D materials for sustainable self-powered wearable electronics

Robust and high-performance textile-based triboelectric nanogenerators integrated with 2D materials for sustainable self-powered wearable electronics
Robust and high-performance textile-based triboelectric nanogenerators integrated with 2D materials for sustainable self-powered wearable electronics
The human body continuously generates ambient mechanical energy through diverse movements, such as walking and cycling, which can be harvested via various renewable energy harvesting mechanisms. Triboelectric Nanogenerator (TENG) stands out as one of the most promising emerging renewable energy harvesting technologies for wearable applications due to its ability to harness various forms of mechanical energies, including vibrations, pressure, and rotations, and convert them into direct current (DC) electricity. However, their application is limited due to challenges in achieving performance, flexibility, low power consumption, and durability. Here, we present a robust and high-performance self-powered system integrated into cotton fabric by incorporating a textile-based triboelectric nanogenerator (T-TENG) based on 2D materials, addressing both energy harvesting and storage. The proposed system extracts significant ambient mechanical energy from human body movements and stores it in a textile supercapacitor (T-Supercap). The integration of 2D materials (graphene and MoS2) in fabrication enhances the performance of T-TENG significantly, as demonstrated by a record-high open-circuit voltage of 1068V and a power density of 14.64 W/m2 under a force of 22N. The developed T-TENG in this study effectively powers 200+ LEDs and a miniature watch while also charging the T-Supercap with 4-5N force for efficient miniature electronics operation. Integrated as a step counter within a sock, the T-TENG serves as a self-powered step counter sensor. This work establishes a promising platform for wearable electronic textiles, contributing significantly to the advancement of sustainable and autonomous self-powered wearable technologies.
ChemRxiv
Ali, Iftikhar
edcc154b-691f-44be-9ee4-0ba30cd43094
Karim, Nazmul
31555bd6-2dc7-4359-b717-3b2fe223df36
Afroj, Shaila
9b4a7a26-01db-40c7-a933-f07a7ed58a73
Ali, Iftikhar
edcc154b-691f-44be-9ee4-0ba30cd43094
Karim, Nazmul
31555bd6-2dc7-4359-b717-3b2fe223df36
Afroj, Shaila
9b4a7a26-01db-40c7-a933-f07a7ed58a73

[Unknown type: UNSPECIFIED]

Record type: UNSPECIFIED

Abstract

The human body continuously generates ambient mechanical energy through diverse movements, such as walking and cycling, which can be harvested via various renewable energy harvesting mechanisms. Triboelectric Nanogenerator (TENG) stands out as one of the most promising emerging renewable energy harvesting technologies for wearable applications due to its ability to harness various forms of mechanical energies, including vibrations, pressure, and rotations, and convert them into direct current (DC) electricity. However, their application is limited due to challenges in achieving performance, flexibility, low power consumption, and durability. Here, we present a robust and high-performance self-powered system integrated into cotton fabric by incorporating a textile-based triboelectric nanogenerator (T-TENG) based on 2D materials, addressing both energy harvesting and storage. The proposed system extracts significant ambient mechanical energy from human body movements and stores it in a textile supercapacitor (T-Supercap). The integration of 2D materials (graphene and MoS2) in fabrication enhances the performance of T-TENG significantly, as demonstrated by a record-high open-circuit voltage of 1068V and a power density of 14.64 W/m2 under a force of 22N. The developed T-TENG in this study effectively powers 200+ LEDs and a miniature watch while also charging the T-Supercap with 4-5N force for efficient miniature electronics operation. Integrated as a step counter within a sock, the T-TENG serves as a self-powered step counter sensor. This work establishes a promising platform for wearable electronic textiles, contributing significantly to the advancement of sustainable and autonomous self-powered wearable technologies.

Text
robust-and-high-performance-textile-based-triboelectric-nanogenerators-integrated-with-2d-materials-for-sustainable-self-powered-wearable-electronics - Author's Original
Available under License Creative Commons Attribution.
Download (1MB)

More information

Published date: 18 April 2024

Identifiers

Local EPrints ID: 496009
URI: http://eprints.soton.ac.uk/id/eprint/496009
PURE UUID: 13bf305e-be29-483f-a6b6-88aab7ad2450
ORCID for Nazmul Karim: ORCID iD orcid.org/0000-0002-4426-8995

Catalogue record

Date deposited: 29 Nov 2024 16:04
Last modified: 30 Nov 2024 03:17

Export record

Altmetrics

Contributors

Author: Iftikhar Ali
Author: Nazmul Karim ORCID iD
Author: Shaila Afroj

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×