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Abstract. Obtaining a precise form for the predicted gravitational wave (GW) spectrum
from a phase transition is a topic of great relevance for beyond Standard Model (BSM)
physicists. Currently, the most sophisticated semi-analytic framework for estimating the
dominant contribution to the spectrum is the sound shell model; however, full calculations
within this framework can be computationally expensive, especially for large-scale scans. The
community therefore generally manages with fit functions to the GW spectrum, the most
widely used of which is a single broken power law. We provide a more precise fit function
based on the sound shell model: our fit function features a double broken power law with
two frequency breaks corresponding to the two characteristic length scales of the problem –
inter-bubble spacing and thickness of sound shells, the second of which is neglected in the
single broken power law fit. Compared to previously proposed fits, we demonstrate that our
fit function more faithfully captures the GW spectrum coming from a full calculation of the
sound shell model, over most of the space of the thermodynamic parameters governing the
phase transition. The physical origins of the fit parameters and their dependence on the
thermodynamic parameters are studied in the underlying sound shell model: in particular,
we perform a series of detailed scans for these quantities over the plane of the strength of the
phase transition (α) and the bubble wall velocity (vw). Wherever possible, we comment on
the physical interpretations of these scans. The result of our study can be used to generate
accurate GW spectra with our fit function, given initial inputs of α, vw, β/H (nucleation rate
parameter) and Tn (nucleation temperature) for the relevant BSM scenario. �
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1 Introduction

One of the most plausible cosmological mechanisms for producing a stochastic gravitational
wave (GW) background is a first order phase transition [1] . The most common motivation
for such an epoch is electroweak symmetry breaking, which can become strongly first order
in extensions to the Standard Model [2–101]. Other motivations for a cosmic first order
phase transition include dark matter [35, 88, 102–112, 112–121], symmetry breaking chains
from a grand unified group [25, 122–127], or the QCD transition [116–119, 128–139]. The
GW spectrum resulting from a cosmological phase transition has three contributions - a term
arising from the collision of scalar shells, a term arising from crashing sound waves in the
plasma and the after party of turbulence. For most of the parameter space, it is widely
accepted that the sound shell source produces the dominant contribution to the stochastic
GW background [1].

At the present time, the most widely used semi-analytical framework for calculating
the velocity spectrum sourced by sound waves is provided by the sound shell model [140].
The corresponding GW spectrum was calculated for a non-expanding Universe in [141], and
subsequently extended to an expanding Universe in [142]. Alongside the semi-analytical
framework, simulations have recently also made great progress in this area [143–145] and
motivate the use of a broken power law for the GW spectrum, which has been adopted
by the LISA cosmology working group [1]. The single broken power law comes from the
simplifying assumption of ignoring the the details of the velocity profile of the sound waves,
and instead taking the RMS 1 of the fluid velocity, Uf ; the peak frequency is then set by the
mean bubble separation [146]. On the other hand, recent work with the sound shell model
[147, 148] motivates using a double broken power law, which comes from including the full
velocity profile. The use of the full velocity profile results in qualitatively different physics:

1Root mean square.
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the spectrum is better described by a double broken power law since the velocity profile now
contains information about the thickness of the profile, which implies that there is more than
one physically significant scale.

It should be noted that the dependence of the spectral features of a fit on the underlying
thermodynamic parameters of the phase transition (the nucleation temperature Tn, nucleation
rate parameter β, phase transition strength α, and wall speed vw) is a difficult question
and progress can be made by a combination of analytical calculations and numerical fits.
In principle, one could imagine the possibility of reconstructing the values of four thermal
parameters from a hypothetical spectrum [147], (though a more conservative study argued
for three [149]). Such a wealth of information, if it were to be available, would render GW
detectors almost competitive with colliders in the extent of details of the underlying model
they can reveal [79]. In a sense, the community is actually already in the era where the degree
of precision we use in calculating GW spectra becomes important, since LIGO currently puts
constraints on the Pati-Salam unification scenario [150]. This urgency will grow as next
generation detectors cover many more decades in frequency at a much high strain sensitivity
(for a review see [151]). From a beyond Standard Model (BSM) physicist’s point of view, the
ideal workflow would be the following: for every point on the parameter space of the model,
obtain the thermodynamic parameters (Tn, β, α, vw), and compute the GW spectrum using
the sound shell model (or better still, use actual simulations); then check how the parameter
space is constrained by GW detectors. Needless to say, full calculations of the sound shell
model, not to speak of actual simulations, are difficult and expensive; to perform large-
scale scans over the parameter space of particle physics models and obtain the predicted
GW spectrum, portable and simple fits to the spectrum, and the interpretation of the fit
parameters, become necessary.

The main purpose of this paper is to provide such a precise fit function. Elaborating
further, our goal in the current paper will be the following: given a particle physics model with
input values of (Tn, β, α, vw), an appropriate fit function for the GW spectrum is provided,
along with a public code. A historical progression of fit functions can help contextualize our
results: the cornerstone of GW phenomenology has been a broken power law with a peak
set by the mean bubble separation; this was recently improved upon by the double broken
power law fit function introduced in [147, 148] with fit parameters corresponding to the peak
amplitude, two frequency breaks and the spectral slope between them; our fit function is
a further improvement, by introducing an extra parameter that governs the IR behavior of
the spectrum. Scanning over (α, vw), we show that our fit function reproduces, much more
faithfully, the GW spectrum coming from the sound shell model (Fig. 2). We provide data
files and scripts in Python and Mathematica that can be directly used by a front-end user to
generate accurate GW spectra, given inputs of (Tn, β, α, vw) for a given beyond-SM scenario.
This tool is expected to allow the community to fully investigate the extent to which each
individual BSM model can be constrained by future detectors, without actually performing
calculations with the sound shell model.

The second purpose of our paper is to attempt to study the physical interpretation
of the fit parameters by way of detailed scans on the plane of (α, vw). We provide scans
over (α, vw) in the deflagration, hybrid, and detonation regimes and study the velocity and
enthalpy profiles, as well as a host of quantities: the maximum velocity vmax, the thermal
efficiency factor κ, the peak frequency fp, the maximum relic density Ωp, the width of the
velocity profile δξ, and the fit parameters b̃ and ã. The dependence of these quantities on
(α, vw) can be highly non-linear. Wherever possible, we make qualitative statements about
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this dependence, as well as correlations with the relative behaviour of other parameters.
This paper is organized as follows. In Section 2, we discuss the general framework for

the calculation of GWs in a first order phase transition and show, in turn, the standard
broken power law approximation (Section 2.1) and the improved double broken power law fit
(Section 2.2). In Section 3 we introduce our new fit function and discuss its faithfulness in
capturing the GW spectrum compared to the older fits. The dependence of various physical
and fit parameters on (α, vw) is discussed in Section 4, where we also display the results of
our scans. Discussions and code for using the new fit function 2 are relegated to the Appendix
A and B. Finally we summarize and conclude in Section 5.

2 General Framework for First Order Phase Transition

In this section we briefly review the framework for the calculation of GWs from sound waves
during a first order phase transition (FOPT) [140–142, 147, 152–158]. The details of a grav-
itational wave spectrum produced by sound waves depend upon a number of macroscopic
features of the phase transition. For instance, it matters how far apart the bubbles are during
the phase transition, how fast the bubbles expand, the fraction of energy released during the
phase transition that is dumped into kinetic energy modes, the details of the fluid veloicty
and of course the temperature at which all this occurs.

Since the background is expanding, the key parameter for describing the nucleation of
bubbles during the phase transition is not the nucleation rate - as the phase transition always
begins when the nucleation rate is fast enough so that the nucleation of bubbles can keep pace
with the expanding Universe. Instead, it is customary to consider how fast the nucleation
rate increases from this bare minimum rate

Γ ∼ e−S(t) ∼ e−S0+β(t−tn) (2.1)

where tn is the time of nulceation at S0 is the value needed to have at least one bubble per
hubble volume . Unless there is a significant amount of supercooling [150], it is β that actually
controls the time scale of the transition. It is straightforward to relate this parameter to the
mean bubble separation [141, 147] , R∗

β

Hn
= (8π)

1
3
vw
r∗

. (2.2)

Here, the wall velocity is denoted by vw and

r∗ = HnR∗ , (2.3)

where Hn is the Hubble rate at the nucleation time. The fraction of the kinetic energy dumped
into the plasma, as well as the details of the velocity profile tend to depend upon how strong
the transition is. This is governed by the change in the trace anomaly, ∆θ in the energy
momentum tensor between the phases, normalized to the enthalpy of the symmetric phase,
ws,

α =
4

3

∆θ

ws

∣∣∣∣
T=Tn

. (2.4)

Making predictions in the sound shell model require solving the hydrodynamic equations and
using the macroscopic thermal parameters of a phase transition as boundary conditions. We

2It can be downloaded from this GitHub link.
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use a bag model to match solutions of thermodynamic variables at the boundary between the
two phases. We consider a non-vanishing bag constant, which we denote as ϵ, [159] which has
the value

α =
4

3

ϵ

wn
. (2.5)

There are three qualitatively distinct types of phase transitions which are delineated by the
value of the bubble wall velocity, compared to the Jouget velocity, vj and the speed of sound,
cs [141, 146, 160]. Specifically, the Jouget velocity is defined as

cJ = cs

(
1 +

√
α(2 + 3α)

)
(1 + α)

, (2.6)

where the detonation regime occurs when vw > cJ > cs , a deflagration of subsonic regime is
when vw < cJ < cs. A hybrid transition involves both deflagration and detonation phases.
Initially, vw < cs and vw < cJ indicating a deflagration. However, as the phase transition
evolves, energy accumulates in the bubble wall or in a shock front preceding the wall, po-
tentially allowing the bubble to accelerate to a velocity vw such that cs < vw < cJ or even
vw > cJ , at which point a detonation may occur [141, 146, 160].

The relative density of GW for each value of z = kR∗ corresponding to a specific fre-
quency k = 2πf is controlled by the kinetic energy fraction K, as well as [141, 147] the
lifetime of the soundshell source, Hnτv and its characteristic scale, HnR∗, for which we use
the shorthand

J = HnR∗Hnτv = r∗

(
1− 1√

1 + 2x

)
≡ r∗Υ , (2.7)

where x = HnR∗/
√
K and r∗ defined in Eq. (2.3). We can then write the gravitaitonal wave

power spectrum at the time it is produced as,

ΩGW(z) = 3K2(vw, α)J
z3

2π2
P̃GW (z) . (2.8)

If one takes the RMS fluid velocity, rather than calculating the gravitational wave spectrum
from the full velocity profile, one can write the frequency dependent analytical form of spectral
density z3P̃GW for GW from Refs. [146, 161] as a broken power law

SSW(f) =

(
f

fSW

)3 [ 7

4 + 3(f/fSW)2

]7/2
. (2.9)

We will be comparing the predictions of the soundshell model to this single broken power law
throughout, as this simplified case is ubiquitous in the literature.

In such a case we take the kinetic energy fraction as K = ΓŪf
2 where Γ = w̄/v̄ is the

ratio of the average enthalpy to the average fluid velocity. Further, the mean squared velocity
defines [141, 162]

U
2
f =

3

w̄v3w

∫
wξ2

v2

1− v2
dξ (2.10)

that can be approximated Uf ≈
√

3
4

κα
1+α and the quantity κ is given by [141]

κ =
3

ϵw3

∫
dξ ξ2w2γ2ν2 . (2.11)
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where we have defined
ξ ≡ r/t , (2.12)

with r being the distance from the center of the bubble and t being the time from the onset
of the phase transition and nucleation.

The sound shell model differs from the results of numerical simulations as some sound
shells collide before they reach a self similar solution, that is a solution that depends upon
the ratio ξ = r/t only. The effect of this was numerically approximated in Ref. [147] by
introducing an error factor

ΩGW(z) = ΩSSM
GW (z)Σ(vw, α), (2.13)

where ΩSSM
GW (z) is the relic from sound wave model at redshift z and Σ(vw, α) compensates

from the sound shell model’s overestimation of the gravitational waves due to energy lost into
vorticity modes as demonstrated in Ref. [163]. As the precise nature of this factor for all
possible thermal parameters is not known, we assume it as Σ(vw, α) = 1 in order to focus
on other aspects of sound shell model that affect the GW signal. The reader should note
that it is a simple fix to include the results of Ref. [163] if one is working in a regime where
interpolations of their result can be used.

After formation the power spectra will redshift like radiation leading to its dilution and
a shift in the peak frequency such that,

Ω0
GW(f) = F 0

GWΩGW(z(f)), (2.14)

where the F 0
GW factor that redshifts the GW relic from its moment of production in the early

Universe to today is

F 0
GW = Ωγ,0

(
g∗s,0
g∗s

) 4
3 g∗
g∗,0

≃ (3.57± 0.05)× 10−5

(
100

g∗

) 1
3

, (2.15)

assuming g∗ ≃ g∗s at T ≫ Tν .The peak frequency is set by the mean bubble separation and
a redshift factor

f =
z

r∗
f∗,0, (2.16)

where z = kR∗ and the redshift factor is given by

f∗,0 = 2.6× 10−6 Hz
(

Tn

100GeV

)( g∗
100

) 1
6
. (2.17)

Here we use the degrees of freedom of the thermal background of SM particles for energy
density g∗ and entropy density g∗s from Ref. [164].

Putting everything together, the relic density of GW from sound waves is given by
[142, 146]

ΩGWh2 ≃ 1.2× 10−6

(
100

g∗

)1/3

K2Υ

(
Hn

β

)
vwSSW(f) . (2.18)

The low frequency tail of the GW spectrum from sound waves can either have k3 or k9

dependence based on recent studies [165–167]. We will address this issue in the future.
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2.1 Broken Power Law Approximation

If the velocity profile is replaced with the RMS fluid velocity, there is a single scale left in
the mean bubble separation. Thus under this approximation, the gravitational wave power
spectrum is a broken power law (BPL) with a peak set by the mean bubble separation. This
approximation has been the cornerstone of gravitational wave phenomenology and we will
briefly review it here, following Ref. [155]. The peak amplitude is set by a thermal efficiency
factor, which ref [155] develop an analytic approximation for,

κ(α, vw) ≡


v
6/5
w

6.9α
1.36−0.037

√
α+α

, 0 ≲ vw ≲ 0.2,
α2/5

0.017+(0.997+α)2/5
, 0.2 ≲ vw ≲ 0.8,

α
0.73+0.083

√
α+α

, 0.8 ≲ vw ≲ 1.

(2.19)

In the above we have given (very) rough limits of validity of each expression with approximate
values of vw. The peak frequency of the spectrum is given by

fBPL
p = 1.19× 10−6 1

vw

( g∗
100

)1/6
(

T

100

)
× 0.7× β

Hn
, (2.20)

with the mean bubble separation being the only scale in the problem

R∗ = (8π)1/3
β

vw
. (2.21)

The peak assuming adiabatic index Γ ≈ 4/3 is then set in our approximation mostly by the
RMS fluid velocity [146]

ΩBPL
p ≈ 1.2× 10−6

(
100

g∗

)1/3(4

3

)2

Ūf (α, vw)
4Hn

β
vwΥ , (2.22)

which can be related to the thermal efficiency factor and trace anomaly,

Ūf ≈
√

3

4
κ(α, vw)α . (2.23)

The approximation can be rather poor. In Fig. 1, we show a comparison of the GW relic
density coming from the full sound shell model and that calculated using the broken power
law given by Eq. (2.22). The left (right) panel of the first row shows the ratio of the peak relic
densities (frequencies) as a function of vw for several fixed values of α. The second row depicts
the same quantities as a function of α, for several fixed values of vw. There are two metrics
of comparison to keep track of. Firstly, it is clear that Ωp/Ω

BPL
p ∼ 1 and fp/f

BPL
p ∼ 1 is only

achieved for a narrow range of values of {vw, α}. For example, from the top and bottom left
panels, it is clear that Ωp/Ω

BPL
p ∼ 1 is achieved for α ∼ 0.2 − 0.4 with vw ∼ 0.4. Similarly,

from the top and bottom right panels, it is clear that 0.1 ≲ fp/f
BPL
p ≲ 1 is achieved for

vw ≲ 0.3 and for fp/f
BPL
p ∼ 0.3 for vw ≳ 0.9 while being relatively stable across values of α.
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Figure 1. Ratio of Ωp/Ω
BPL
p and fp/f

BPL
p in different cases of either fixed α’s or vw’s. For the

definition of ΩBPL
p see Eq. (2.22).

2.2 Double Broken Power Law Fit

Using the full velocity profile in calculating the gravitational wave spectrum (re)introduces
a second scale, the thickness of the sound shell. A double broken power law fit function to
match the calculated GW spectrum was therefore introduced in Refs. [147, 148]

ΩGW,fit = F 0
GWΩpM(s, rb, b) , (2.24)

Here, Ωp is the peak value of the GW relic density, and the corresponding frequency is fp.
Also, F 0

GW is determined in Eq. (2.15). The parameter rb = fb/fp gives the ratio between
the two breaks in the spectrum. The parameter b gives the spectral slope between the two
breaks. The variable s = f/fp is introduced to normalize the frequency with respect to the
peak frequency. The function M is given by [141, 147, 148]

M(s, rb, b) = s9
(

1 + r4b
r4b + s4

)(9−b)/4(
b+ 4

b+ 4−m+ms2

)(b+4)/2

, (2.25)

where the choice of m ensures that for rb < 1 one gets a peak at s = 1 and M(1, rb, b) = 1.
This leads to

m =
(
9rb

4 + b
)
/
(
rb

4 + 1
)
. (2.26)

In our work, when using the fit formula from [147] we use PySwarm optimization package
to determine b and rb. We consider a range of values for b and rb: b ∈ [−200, 200] and
rb ∈ [0, 200].
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3 New Fit Formula

We will find that the fit function Eq. 2.25 described in the previous Section gives a poor
approximation when calculating the accoustic contribution to the gravitational wave spectrum
where the hydrodynamic equations are solved using a non-vanishing bag constant ϵ. However,
physically we still expect a doubly broken power law to work. We therefore, consider the
following new fit function that is different from [147]

ΩGWh2 = Ωp ·
(
f

s̃0

)9

·

(
2 + r̃−12+b̃

b

)
[(

f
s̃0

)ã
+
(

f
s̃0

)b̃
+ r̃−12+b̃

b ·
(

f
s̃0

)12
] . (3.1)

Here the parameters Ωp, s̃0, ã, b̃ and r̃b = fb/fp are calculated by fitting to the numerical
solution to the GW spectrum. The parameter, r̃b controls the ratio between the peaks, b̃
adjusts the spectral slope between the two breaks in the frequency, while ã governs the IR
behavior of the GW spectrum. It should be noted that the two spectral breaks correspond
to the two characteristic length scales in the system: the peak frequency fp corresponds to
the mean bubble separation R∗, while the frequency fb corresponds to the thickness of the
sound shell ∆R∗. Compared to the fit formula in Eq. 2.25, an extra parameter ã has been
introduced. The values of all parameters in Eq. 3.1 are produced from our calculations of
the GW relic density based on the sound shell model [141, 147, 148]. The dependence of the
fit parameters on the underlying physical parameters such as α and vw governing the phase
transition are explored in Section 4.

Figure 2. Histogram for comparison of fits using the fit function in Eq. (2.24) motivated by Ref. [141,
147, 148] and our proposed fit formula in Eq. (3.1).

Before proceeding to compare the different fit formulas, we pause to give details about
our computation procedure. A Monte Carlo approach to fitting Eq. 3.1 to the GW spectrum
of the sound shell model is adopted. Relevant variables Ωp, s̃0, ã, b̃ and r̃b are first initialized.
Our algorithm then executes a loop 100,000 times, each iteration randomly generating the
parameters introduced in Eq. 3.1 to match the GW spectrum from the sound shell model data.
The appropriateness of the fit is measured by calculating residuals - the squared differences
between the logarithms of actual data for ΩGWh2 and the predictions from Eq. 3.1. The
program continually updates the parameters that result in the lowest residuals, storing the
best-fit parameters. After completing all iterations, it uses these parameters to generate
the final predicted model values and calculates the total error between this fit model and
the original sound shell data. The objective is to robustly determine the parameters that
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best explain how the GW spectrum behaves across various frequencies, optimizing the fit to
minimize error.

A comparison of the fit to GW spectrum from [141] as given by Eq. 2.24 to our new
fit in Eq. 3.1 is illuminating. We do a χ2 analysis based on the fit equations and the GW
spectrum produced by the sound shell model, using the full bubble velocity profile based on
[141, 142]. The two histograms in Fig. 2 show the results.

Figure 3. A benchmark point of GW from FOPT showing the relic density of GW with respect to
frequency for “old fit" ([147]), “new fit" (the current work), and sound shell model ([141, 147, 148])
is plotted. Various current and future observational constraints are also shown and labeled using the
integrated sensitivity curves from [168] for different experiments. Here we assume Tn = 100 GeV and
β/H = 1.

As can be seen from the left panel of Fig. 2, the χ2 values for Eq. 2.24 are much larger
than one and most values are above a hundred. On the other hand, the right panel of Fig. 2
shows that most data points have χ2 values smaller than one for the new fit function in Eq. 3.1
introduced in this paper. While some data points do have χ2 large than one, the number
of such points decreases as χ2 increases. In Fig. 3, we consider four benchmark points and
show the χ2 values for the old and new fits in each panel. These benchmarks have these
set of FOPT parameters: [6.13× 10−2, 3.08× 10−3, 1, 100], [1.28× 10−1, 8.66× 10−2, 1, 100],
[3.32×10−1, 6.36×10−2, 1, 100] and [5.99×10−1, 3.47×10−1, 1, 100] for this FOPT parameters
[vw, α, β/H, Tn(GeV)]. For these benchmarks it is apparent that the new fit in Eq. 3.1 matches
better with the sound shell model than the fit formula in Eq. 2.24. Overall, based on these
figures, we have validated the quality of the fit function for most choices of vw and α. This
implies that our proposed fit in Eq. 3.1 more accurately captures the features of GW spectrum
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from the sound shell model and can be used by the community (see Appendix B for the fit
function code).

4 Physical Behavior of Fit and FOPT Parameters

Having demonstrated the appropriateness of our fit function, we proceed towards a deeper
physical understanding of the different parameters that we have introduced. We perform a
scan over the following input parameters: the wall velocity vw and the strength of transition α,
keeping the nucleation temperature Tn = 100 GeV and the bubble nucleation rate β/H = 1
fixed. Using these parameters, we calculate: (i) the maximum velocity vmax, (ii) the width
of velocity profile δξ (defined as the width of the velocity profile in a window 95 % of vmax),
(iii) the corresponding value of ξ as ξmax, and (iv) the difference between the values of the
enthalpy before the wall and after it i.e. δw. Our results are displayed in Figs. 4 - 8 (also see
Appendix A for more scanning plots).

We begin with a discussion of Fig. 4. Here, we depict values of r̃b (top panel), b̃ (middle
panel), and ã (bottom panel) on the plane of {vw, α} for three regimes: deflagration (red),
detonation (green) and hybrid (blue). The value of α is chosen to vary from 10−3 − 1, since
we are interested in studying the global behavior of the parameters. For the plot of r̃b, it is
clear that there is some structure: for example, in the deflagration regime, the values of r̃b for
a given α are small at small values of vw, increase around vw ∼ 0.2 − 0.4, before decreasing
again. Similarly, in the detonation regime, the values of r̃b for a given value of vw decrease
with increasing α. A somewhat opposite behavior can be discerned in the hybrid regime,
where increasing α corresponds to lower r̃b. In contrast to the results for r̃b, it is difficult to
discern any structure in the scans of b̃ and ã. It is therefore fruitful to study the dependencies
in a series of two dimensional plots, which we turn to next.

In Fig. 5, we show the velocity and enthalpy profiles with respect to ξ for different
choices of α. The scan has been performed over different values of wall velocity 0 < vw < 1.
The velocity and enthalpy profiles exhibit the behavior expected for the deflagration, hybrid,
and detonation regimes, respectively [79]. In the deflagration mode, the plasma in front of
the bubble wall flows outward while remaining static inside the bubble. The velocity profiles
to the left of the maximum in all panels of Fig. 5 exhibit this behavior. As v(ξ) increases,
a discontinuity appears and v(ξ) → 0; this is the shock front, beyond which a supersonic
deflagration (hybrid) mode develops when the velocity exceeds the sound speed. The value
of α determines the maximum value of vmax and maximum of wmax where the velocity profile
maximises over different values of ξ. Each value of vmax occurs when ξ = vw.

Fig. 6 depicts the behavior of the various physical quantities, as well as the fit parameters,
as a function of vw for several benchmark values of α = 0.001, 0.01, 0.1, 0.3, and 0.5. The
behaviour of vmax w.r.t. vw is shown in the bottom left panel of Fig. 6. It reaches a maximum
that depends on the value α; a similar pattern is exhibited by the thermal efficiency factor
κ defined in Eq. 2.11 and depicted in the top right panel. The results of this panel, as well
as the top right panel depicting κ, are consistent with the left panels of Fig. 5. The peak
frequency fp is depicted in the bottom right panel of Fig. 6 and shows a local maximum
where vmax is maximized. The dependence of Ωp w.r.t. vw is shown in the second row of the
left panel of Fig. 6. Ωp is a decreasing function of vw in the deflagration regime; on reaching
vmax, it rises somewhat and then continues falling in the hybrid and detonation regimes. We
have defined the width of velocity profile δξ as the difference between the values of ξ when
ξmax = vw and v(ξwidth) = 0.95 vmax. This quantity is shown in the left panel of the first
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Figure 4. From top to bottom: scatter plots for vw, α and r̃b; for vw, α and b̃; and for vw, α and ã,
respectively. The type of FOPT is shown in the legend. Here we assume Tn = 100 GeV and β/H = 1.

row. Its behavior matches with expectations from the velocity profiles shown in Fig. 5. The
value of ξmax increases monotonously with vw, independently of α, as shown in the right of
panel of the fourth row of Fig. 6.

We now turn to a discussion of the fit parameters b̃ and ã. Firstly, it should be noted that
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smaller values of b̃ correspond to a situation where more energy resides in the contribution
from the thickness of the sound shell rather than from the bubble separation. Conversely,
larger values of b̃ correspond to more energy residing in the contribution from the bubble
separation. While it is difficult to discern structure, we do find a linearly increasing trend in
b̃ as vw increases, shown by trend lines, albeit crude. Physically, it is reasonable that as vw
increases, more energy should reside in the bubble separation contribution. The behavior of
the fit parameter ã in the left panel of the third row is interesting. It should be noted that
smaller values of ã correspond to sharper IR spectra, while larger values of ã correspond to
shallower IR spectra. It is clear that the value of ã is insensitive to variations in vw in the
deflagration mode, but swiftly decreases after vmax, for all values of α.

We now turn to a discussion of Fig. 8, where a scan over α between 0 and 1 for fixed
values of vw = 0.1, 0.4, 0.7, 0.95 was performed. The plot of the ã parameter versus α is shown
in the fourth row, left panel. ã appears to be constant with a value of around 4, which reduces
when it reaches the maximum of vmax. This is consistent with the behavior in Fig. 6. The plot
of b̃ versus α is shown in the second row of the right panel of Fig. 7. It is difficult to discern
a specific pattern here; nevertheless, we have made a crude linear fit. For vw = 0.1, 0.4, and
0.7, we see that b̃ decreases very mildly with increasing α.

5 Conclusions

The sound shell model currently provides the most sophisticated semi-analytical framework
for calculating the GW spectrum in models of BSM physics. In conjunction with numerical
simulations, a precision GW spectrum frontier is then already somewhat within reach for
particle physicists; one can then ask why fit functions of the type studied in this paper
are even necessary, or why the physical interpretation of fit parameters is an interesting
question. The response is that full calculations of the sound shell model, not to speak of actual
simulations, are difficult and expensive; to perform large-scale scans over the parameter space
of particle physics models and obtain the predicted GW spectrum, portable and simple fits to
the spectrum, and the interpretation of the fit parameters, become necessary. Providing such
a fit – currently the one that most faithfully captures the full results coming from the sound
shell model – has been the goal of this paper. We have shared the results of our work in a set
of CSV, Python and Mathematica files3. These files can be used by the BSM community to
efficiently depict the GW spectrum at various points in the parameter space of their models.

Studies in GW physics are rapidly entering a precision frontier. Indeed, as pointed out
by a subset of the present authors in [158], uncertainties of several orders of magnitude can
be introduced in the calculation of the GW spectrum if one neglects careful treatments of the
source lifetime; mean bubble separation; employing a beyond the bag model approximation
when solving the hydrodynamics equations and explicitly calculating the fraction of energy
in the fluid from these equations rather than using a fit. The incorporation of these effects
constitutes, currently, the “highest level of diligence" (in the parlance of [158]) in obtaining
the GW spectrum. Calculating the full GW spectrum at the highest level of diligence, and
providing the relevant fit functions, constitute concrete future directions.

3GitHub link.
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Figure 5. Velocity and ethalpy profiles for fixed values of α. Each row of these panels corre-
sponds to a color that are blue, orange, green, red and violet equivalent to a specific value of
α = 0.001, 0.01, 0.1, 0.3, 0.5 shown in the legends.
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Figure 6. Plots for different variables with respect to α for fixed α’s are shown. Each of colors blue,
orange, green, red and violet corresponds to a specific value of α = 0.001, 0.01, 0.1, 0.3, 0.5 shown in
the legends. We describe them in the main text. Here we assume Tn = 100 GeV and β/H = 1.
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Figure 7. Plots for different variables with respect to α for fixed vw’s are shown. Each of colors blue,
orange, green and red corresponds to a specific value of vw = 0.1, 0.4, 0.7, 0.95. We describe them in
the main text. Here we assume Tn = 100 GeV and β/H = 1.
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Figure 8. Velocity and enthalpy profiles for fixed values of wall velocity vw. Each row of these
panels corresponds to a color that are blue, orange, green and red equivalent to a specific value of
vw = 0.1, 0.4, 0.7, 0.95 shown in the legends.

The precision GW frontier has several other challenges that lie outside the scope of
this work. The transitions between the different power law regimes in the GW spectrum,
the existence of new regimes, the shape of the GW spectrum near the peak, and the peak
frequency depend on several factors: fluctuations in the local temperature affect the distri-
bution of nucleated bubbles [169]; energy lost to vorticity can suppress the spectrum [163];
and dissipative effects encoded by the shear viscosity, bulk viscosity, and thermal conduction
can also suppress the spectrum [170]. Calculating these effects would make further material
progress on the precision frontier.
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A Other Scanning Plots

We have shown other scanning plots over δξ and κ parameter space in this section in Fig. 9.
We also represented the variation of some of our new fit parameters: r̃b, b̃ and ã as introduced
in Eq (3.1). In first panel we have shown the plot for r̃b i.e. the ratio of frequencies between
two peaks. As Fig. 9 shows large values of r̃b are accumulating between 0 ≲ δξ ≲ 0.01 and
10−2 ≲ κ ≲ 0.5 for all regimes and r̃b decreases as δξ and κ are changing from these regions.
Also, the second panel shows the changes parameter b̃ w.r.t. δξ and κ. For deflagration and
hybrid regimes increasing δξ and κ makes b̃ larger. However, for the detonation regime b̃
slightly reduces by decreasing of κ. In the last panel we examine the variation of parameter
ã that deviates from 4 depending on the values of δξ and κ. As it can be seen the points in
deflagration and hybrid regimes are almost independent of δξ and κ. However, as κ increases
ã also increases for detonation regime.

B GW Spectrum for a Specific Choice of FOPT Paramters

Here we briefly explain how one can use our script to calculate the spectrum of GW from
sound waves of FOPT. We provide two scripts written in Python and Mathematica.

B.1 Mathematica script

The Mathematica script is displayed below:
1 (*Load the CSV file*)
2 data = Import[NotebookDirectory [] <> "data -fopt -fit.csv"];
3

4 (* Extract and clean column names from the first row*)
5 columnNames = StringTrim /@ First[data];
6

7 (* Remove the header row to isolate the data*)
8 data = Rest[data];
9

10 (*Print column names to check*)
11 Print[columnNames ];
12

13 (* Assign each column to a separate variable using safe access to \
14 Position *)
15 vw = If[Length[Position[columnNames , "vw"]] > 0,
16 data[[All , Position[columnNames , "vw"][[1, 1]]]] , {}];
17 alpha = If[Length[Position[columnNames , "alpha"]] > 0,
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Figure 9. From top to bottom: scatter plots for δξ, κ and r̃b; for δξ, κ and b̃; and for δξ, κ and ã.
The type of FOPT is shown in the legend. Here we assume Tn = 100 GeV and β/H = 1.

18 data[[All , Position[columnNames , "alpha"][[1, 1]]]], {}];
19 betaH = If[Length[Position[columnNames , "betaH"]] > 0,
20 data[[All , Position[columnNames , "betaH"][[1, 1]]]], {}];
21 Tn = If[Length[Position[columnNames , "Tn"]] > 0,
22 data[[All , Position[columnNames , "Tn"][[1, 1]]]] , {}];
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23 fp = If[Length[Position[columnNames , "f_p"]] > 0,
24 data[[All , Position[columnNames , "f_p"][[1, 1]]]] , {}];
25 Omp = If[Length[Position[columnNames , "Om_p"]] > 0,
26 data[[All , Position[columnNames , "Om_p"][[1, 1]]]] , {}];
27 at = If[Length[Position[columnNames , "at"]] > 0,
28 data[[All , Position[columnNames , "at"][[1, 1]]]] , {}];
29 bt = If[Length[Position[columnNames , "bt"]] > 0,
30 data[[All , Position[columnNames , "bt"][[1, 1]]]] , {}];
31 rbt = If[Length[Position[columnNames , "rbt"]] > 0,
32 data[[All , Position[columnNames , "rbt"][[1, 1]]]] , {}];
33 s0t = If[Length[Position[columnNames , "s0t"]] > 0,
34 data[[All , Position[columnNames , "s0t"][[1, 1]]]] , {}];
35 omega0t =
36 If[Length[Position[columnNames , "omega_0t"]] > 0,
37 data[[All , Position[columnNames , "omega_0t"][[1, 1]]]], {}];
38 K = If[Length[Position[columnNames , "K"]] > 0,
39 data[[All , Position[columnNames , "K"][[1, 1]]]] , {}];
40

41 (* Define the data points *)
42 dataVWAlphaFP = Transpose [{vw, alpha , fp}];
43 dataVWAlphaOmP = Transpose [{vw , alpha , Omp}];
44 dataVWAlphaAt = Transpose [{vw, alpha , at}];
45 dataVWAlphaBt = Transpose [{vw, alpha , bt}];
46 dataVWAlphaRbt = Transpose [{vw , alpha , rbt}];
47 dataVWAlphaS0t = Transpose [{vw , alpha , s0t}];
48 dataVWAlphaOmega0t = Transpose [{vw, alpha , omega0t }];
49 dataVWAlphaK = Transpose [{vw, alpha , K}];
50

51

52 (* Create interpolating functions *)
53 intFP = Interpolation[dataVWAlphaFP , InterpolationOrder -> 1];
54 intOmP = Interpolation[dataVWAlphaOmP , InterpolationOrder -> 1];
55 intAt = Interpolation[dataVWAlphaAt , InterpolationOrder -> 1];
56 intBt = Interpolation[dataVWAlphaBt , InterpolationOrder -> 1];
57 intRbt = Interpolation[dataVWAlphaRbt , InterpolationOrder -> 1];
58 intS0t = Interpolation[dataVWAlphaS0t , InterpolationOrder -> 1];
59 intOmega0t =
60 Interpolation[dataVWAlphaOmega0t , InterpolationOrder -> 1];
61 intK = Interpolation[dataVWAlphaK , InterpolationOrder -> 1];
62

63 (* Evaluate at a point *)
64 vw0 = 0.5;
65 alpha0 = 0.5;
66 fp0 = intFP[vw0 , alpha0 ];
67 at0 = intAt[vw0 , alpha0 ];
68 bt0 = intBt[vw0 , alpha0 ];
69 rbt0 = intRbt[vw0 , alpha0 ];
70 s0t0 = intS0t[vw0 , alpha0 ];
71 Omegap0 = intOmega0t[vw0 , alpha0 ];
72 K0 = intK[vw0 , alpha0 ];
73

74 (* Degrees of freedom *)
75 gstarData = Import[NotebookDirectory [] <> "gstar.txt", "Table"];
76 gHighTemp = {{1.*10^14* gstarData [[1, 1]], gstarData [[1, 2]]}};
77 dataG1 = Join[gHighTemp , gstarData ];
78 TData = dataG1 [[All , 1]];
79 gstarData = dataG1 [[All , 2]];
80 gstarFun = Interpolation[Transpose [{TData , gstarData }]];
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81

82 (* Frequency domain *)
83 fdomainDefault = 10^ Range[-24, 24, 48/999] // N;
84

85 (* Generating fit parameters from the interpolated function *)
86 fb0 = rbt0*fp0;
87 (*This part can be modified based on different nucleation \
88 tamperatures and bubble nucleation rates.*)
89 betaHDefault = 1;
90 betaHNew = 10;
91 TnDefault = 100;
92 TnNew = 1000;
93

94 rstarDefault = (8 \[Pi]) ^(1/3)*vw0/betaHDefault;
95 rstarNew = (8 \[Pi]) ^(1/3)*vw0/betaHNew;
96 gstarDefault = gstarFun[TnDefault ];
97 gstarNew = gstarFun[TnNew];
98

99 xDefault = rstarDefault /(K0 ^(1/2));
100 JDefault = rstarDefault *(1 - 1/(1 + 2* xDefault)^(1/2));
101 FgwDefault = 3.57*10^ -5*(100/ gstarDefault)^(1/3);
102 xNew = rstarNew /(K0 ^(1/2));
103 JNew = rstarNew *(1 - 1/(1 + 2*xNew)^(1/2));
104 FgwNew = 3.57*10^ -5*(100/ gstarNew)^(1/3);
105

106 f0Default = 2.6*10^ -6*( TnDefault /100)*( gstarDefault /100) ^(1/6);
107 kR = fdomainDefault *( rstarDefault/f0Default);
108

109

110 (*GW spectrum -default *)
111 omegaFitDefault =
112 Omegap0 *( fdomainDefault/
113 s0t0)^9*((2 +
114 rbt0 ^(-12 + bt0))/(( fdomainDefault/s0t0)^
115 at0 + (fdomainDefault/s0t0)^bt0 +
116 rbt0 ^(-12 + bt0)*( fdomainDefault/s0t0)^12)); // Quiet
117

118

119

120 f0New = 2.6*10^ -6*( TnNew /100) *( gstarNew /100) ^(1/6);
121 fdomainNew = kR/( rstarNew/f0New);
122 omegaFitNew = (omegaFitDefault /( FgwDefault*JDefault))*( FgwNew*JNew);
123

124

125 (* Plotting *)
126 ListLogLogPlot [{ Transpose [{ fdomainDefault , omegaFitDefault }],
127 Transpose [{fdomainNew , omegaFitNew }]},
128 PlotRange -> {{1.*10^ -12 , 1.*10^4} , {1.*10^ -22 , 1.*10^ -2}} ,
129 Frame -> True ,
130 FrameLabel -> {"f (Hz)",
131 "\!\(\* SubscriptBox [\(\[ CapitalOmega ]\), \
132 \(GW\)]\) \!\(\* SuperscriptBox [\(h\), \(2\) ]\)"},
133 PlotLabel -> "FOPT - GW", GridLines -> Automatic , Joined -> True ,
134 PlotLegends -> {"Tn = 100 GeV , beta/H = 1",
135 "Tn = 1000 GeV , beta/H = 10"}, FrameStyle -> 18, ImageSize -> 800]

Listing 1. Mathematica code to calculate the spectrum of GW from sound waves of FOPT.
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B.2 Python script

We have written the following code in Python to calculate GW from the phase transitions:

1 # Python script for this manuscript
2 import numpy as np
3 from scipy.interpolate import LinearNDInterpolator
4 from scipy.interpolate import interp1d
5 import matplotlib.pyplot as plt
6 import pandas as pd
7

8 # Load the CSV file into a DataFrame
9 df = pd.read_csv(’data -fopt -fit.csv’)

10

11 # Assign each column to a separate variable
12 vw = df[’vw’]. to_numpy ()
13 alpha = df[’alpha’]. to_numpy ()
14 betaH = df[’betaH’]. to_numpy ()
15 Tn = df[’Tn’]. to_numpy ()
16 f_p = df[’f_p’]. to_numpy ()
17 Om_p = df[’Om_p’]. to_numpy ()
18 at = df[’at’]. to_numpy ()
19 bt = df[’bt’]. to_numpy ()
20 rbt = df[’rbt’]. to_numpy ()
21 s0t = df[’s0t’]. to_numpy ()
22 omega_0t = df[’omega_0t ’]. to_numpy ()
23 K = df[’K’]. to_numpy ()
24

25 # Interpolatoin over data (t : tilde)
26 int_f_p = LinearNDInterpolator(list(zip(vw, alpha)), f_p)
27 int_Om_p = LinearNDInterpolator(list(zip(vw , alpha)), Om_p)
28 int_at = LinearNDInterpolator(list(zip(vw, alpha)), at)
29 int_bt = LinearNDInterpolator(list(zip(vw, alpha)), bt)
30 int_rbt = LinearNDInterpolator(list(zip(vw, alpha)), rbt)
31 int_s0t = LinearNDInterpolator(list(zip(vw, alpha)), s0t)
32 int_omega_0t = LinearNDInterpolator(list(zip(vw, alpha)), omega_0t)
33 int_K = LinearNDInterpolator(list(zip(vw , alpha)), K)
34

35 vw0 = 0.5
36 alpha0 = 0.5
37

38 # Generatng fit parameters from the interpolated function
39 f_p0 = int_f_p(vw0 , alpha0)
40 at0 = int_at(vw0 , alpha0)
41 bt0 = int_bt(vw0 , alpha0)
42 rbt0 = int_rbt(vw0 , alpha0)
43 s0t0 = int_s0t(vw0 , alpha0)
44 omega_p0 = int_omega_0t(vw0 , alpha0)
45 K0 = int_K(vw0 , alpha0)
46

47 # Degrees of freedom
48 # arXiv: https :// arxiv.org/pdf /1503.03513
49 filename = "gstar.txt"
50 data_g = np.loadtxt(filename , skiprows =0)
51 g_high_temp = np.array ([[1. e14 * data_g[0, 0], data_g[0, 1]]])
52 data_g1 = np.concatenate (( g_high_temp , data_g))
53 T_data = data_g1[:, 0] # [GeV]
54 gstar_data = data_g1[:, 1] # [GeV]
55 gstar_fun = interp1d(T_data , gstar_data)
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56 #
57 f_b0 = rbt0 * f_p0
58 # This part can be modified based on different nucleation tamperatures and

bubble nucleation rates.
59 # beta over H
60 betaH_default = 1
61 betaH_new = 10
62 # Nucleation temperature
63 Tn_default = 100 # GeV
64 Tn_new = 1000 # GeV
65 #
66 rstar_default = (8*np.pi)**(1/3)*vw0/betaH_default
67 rstar_new = (8*np.pi)**(1/3)*vw0/betaH_new
68 # Degrees of Freedom
69 gstar_default = gstar_fun(Tn_default)
70 gstar_new = gstar_fun(Tn_new)
71 #
72 x_default = rstar_default /(K0 **(1/2))
73 J_default = rstar_default *(1 -1/(1+2* x_default)**(1/2))
74 Fgw_default = 3.57*1e -5*(100/ gstar_default)**(1/3)
75 x_new = rstar_new /(K0 **(1/2))
76 J_new = rstar_new *(1 -1/(1+2* x_new)**(1/2))
77 Fgw_new = 3.57*1e -5*(100/ gstar_new)**(1/3)
78

79 # Frequency
80 fdomain_default = 10**np.linspace ( -24 ,24 ,1000)
81

82 f0_default = 2.6*1.e-6*( Tn_default /100)*( gstar_default /100) **(1/6)
83 omega_p0_default = omega_p0
84 kR = fdomain_default * (rstar_default/f0_default)
85

86 # GW spectrum - default
87 omega_fit_default = omega_p0_default * (fdomain_default/s0t0)**9 * (
88 (2 + rbt0 **(-12 + bt0)) /
89 (( fdomain_default/s0t0)**at0 + (fdomain_default/s0t0)**bt0 +
90 rbt0 **(-12 + bt0) * (fdomain_default/s0t0)**12))
91

92 f0_new = 2.6*1.e-6*( Tn_new /100)*( gstar_new /100) **(1/6)
93 fdomain_new = kR / (rstar_new/f0_new)
94 omega_fit_new = (omega_fit_default / (Fgw_default*J_default) ) * (Fgw_new*

J_new)
95

96

97 # Plotting
98 plt.figure(figsize =(10, 6))
99 plt.loglog(fdomain_default , omega_fit_default , label=’FOPT - Sound Waves - GW

- $T_n = 100$ GeV and $\\beta /H = 1$’)
100 plt.loglog(fdomain_new , omega_fit_new , label=’FOPT - Sound Waves - GW’)
101

102 # Set limits for frequency and GW relic axes
103 plt.xlim (1.e-12, 1.e4)
104 plt.ylim (1.e-22, 1.e-2)
105 plt.legend ()
106 plt.xlabel(’f (Hz)’)
107 plt.ylabel(’$\Omega_{GW}h^2$(f)’)
108 plt.grid(True)
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109 plt.show()

Listing 2. Python code to calculate the spectrum of GW from sound waves of FOPT.

Using the above script and the files provided along with this paper one can generate the
predicted GW spectrum by inserting the input parameters from a beyond Standard Model
scenario and the cosmological scale that the phase transition occurs at. These input param-
eters are α, vw, β/H and Tn: with these, one can produce the GW spectrum from the above
Python and Mathematica scripts 4.
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