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Abstract—A precoded orthogonal time frequency space (OTFS)
modulation scheme relying on faster-than-Nyquist (FTN) trans-
mission over doubly selective fading channels is proposed, which
enhances the spectral efficiency and improves the Doppler re-
silience. We derive the input-output relationship of the FTN
signaling in the delay-Doppler domain. Eigenvalue decomposi-
tion (EVD) is used for eliminating both the effects of inter-
symbol interference and correlated additive noise encountered in
the delay-Doppler domain to enable efficient symbol-by-symbol
demodulation. Furthermore, the power allocation coefficients
of individual frames are optimized for maximizing the mutual
information under the constraint of the derived total transmit
power. Our performance results demonstrate that the proposed
FTN-based OTFS scheme can enhance the information rate
while achieving a comparable BER performance to that of its
conventional Nyquist-based OTFS counterpart that employs the
same root-raised-cosine shaping filter.

Index Terms—faster-than-Nyquist signaling, OTFS, mutual
information, information rate, precoding, doubly selective fading.

I. INTRODUCTION

TRADITIONAL wireless technologies, such as orthogo-
nal frequency-division multiplexing (OFDM), typically

struggle to cope with high Doppler shifts in high-mobility
scenarios. In order to overcome this limitation, orthogonal time
frequency space (OTFS) modulation [1] was proposed, which
modulates data symbols in the delay-Doppler (DD) domain
and allows a sparse and quasi-static channel representation.
Several studies [2–4] considered the OFDM-based OTFS
(OFDM-OTFS) architecture, where a cyclic prefix (CP) is
inserted in each frame, while employing an ideal rectangular
pulse shaping filter that satisfies bi-orthogonality in the time
and frequency domains [1]. By contrast, the input-output
relationship of OTFS using a non-rectangular pulse shaping
filter was derived in [5].

The symbol interval of faster-than-Nyquist (FTN) signaling
is designed to be lower than that given by the Nyquist criterion.
Hence, FTN signaling allows us to boost the transmission
rate without increasing the bandwidth requirement, albeit at
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the cost of producing inevitable inter-symbol interference
(ISI) at the receiver, as detailed in [6]. Several precoded
FTN schemes were proposed for mitigating the impairments
encountered [7–10]. In [7], precoding-aided FTN signaling
based on the eigenvalue decomposition (EVD) of an FTN-
specific ISI matrix was proposed. In [8], EVD-precoded FTN
signaling relying on optimal power allocation (PA) was de-
veloped to improve the information rate. In [9], the EVD-
precoded FTN signaling scheme of [8] was extended to that
applicable to generalized frequency-selective fading channels.
In [10], fast Fourier transform (FFT)-spread multi-carrier FTN
(MFTN) signaling was proposed by relying on the circulant
approximation of the FTN-specific ISI matrix and the noise
covariance matrix. Additionally, several studies discussed data
detection [11–13] and channel estimation [14, 15] for FTN
signaling transmission over doubly selective fading channels to
improve the robustness to the Doppler shift. However, all pre-
vious OTFS studies assumed that the transmitted signal obeys
the time-orthogonal Nyquist criterion, similar to conventional
signaling. Moreover, none of the above FTN signaling schemes
have been designed to mitigate doubly selective fading in the
DD domain.

Against the above background, the novel contributions of
this paper are as follows.

• For the first time in literature, we propose an EVD-
precoded OTFS-based FTN (OTFS-FTN) architecture for
doubly selective fading channels. We will demonstrate
that the proposed OTFS-FTN scheme exhibits robustness
to high Doppler shifts, while enhancing the spectral
efficiency as a benefit of the reduced FTN symbol inter-
val. We derive the input-output relationship between the
transmitted and received symbols of the proposed OTFS-
FTN scheme employing a root-raised-cosine (RRC) pulse
shaping filter in the DD domain. Furthermore, both the
effects of FTN-specific ISI and of the correlated noise
are eliminated with the aid of EVD-based diagonalization
in the DD domain, hence allowing efficient symbol-by-
symbol demodulation at the receiver.

• As an additional contribution, we derive the mutual
information (MI) characterizing the proposed scheme and
then design the PA to maximize the MI for transmission
over doubly selective fading channels.

• Our simulation results will demonstrate that the proposed
OTFS-FTN scheme achieves a higher information rate
and better BER performance than its conventional time-
orthogonal signaling counterpart using the same RRC
shaping filter.
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II. SYSTEM MODEL

A. Transmit Signal

Each transmission block of the proposed OTFS-FTN
scheme has M subcarriers and N time slots. The information
symbols x = [x0, · · · , xMN−1]

T ∈ CMN are precoded
by a matrix P ∈ CMN×MN , yielding precoded symbols
xp = Px. Note that average symbol energy is defined as
E
[
|xn|2

]
= σ2

x (n = 0, · · · ,MN − 1).
Assuming a subcarrier spacing of ∆f and that T = 1/∆f ,

the frame interval and bandwidth are given by NT and M∆f ,
respectively. Furthermore, the FTN-specific sampling interval
is represented by Tf = T/M = αT0, where α is the FTN
packing ratio and T0 = 1/(2W ) is the symbol interval defined
by the Nyquist criterion, which corresponds to conventional
OTFS modulation. Furthermore, 2W represents the bandwidth
of an ideal rectangular shaping filter. Similar to typical OFDM-
OTFS schemes [3, 4], in order to convert the modulated
symbols in the DD domain to the transmitted symbols in
the time-frequency (TF) domain, the inverse symplectic fast
Fourier transform (ISFFT) is carried out, which corresponds
to the M -point FFT for the columns and the N -point IFFT
for the rows in precoded symbols Xp ∈ CM×N . Then, an M -
point IFFT is utilized for generating the time-domain (TD)
signal, which is expressed by

S = FH
M

(
FMXpF

H
N

)
, (1)

where we consider the relationship of xp = vec(Xp), where
vec(·) represents the column-wise vectorization. Moreover,
FM ∈ CM×M and FN ∈ CN×N represent the M -point
and N -point normalized DFT matrices, respectively. More
specifically, the kth-row and mth-column entry of FN is given
by 1√

N
e−2πj(k−1)(m−1)/N .

Then, the column-wise vectorization of S is represented by

s = vec(S) =
(
FH

N ⊗ IM
)
xp, (2)

where ⊗ is the Kronecker product, and IM ∈ RM×M is the
identity matrix.

For an RRC pulse shaping filter htx(t) having the roll-off
factor β, the baseband OTFS-FTN transmit signal is given by

s(t) =

MN−1∑
n=0

snhtx(t− nTf). (3)

Similar to [5], a cyclic prefix is inserted at the beginning of
each OTFS-FTN frame. Note that by adding a sufficiently long
CP, the detrimental effects of inter-frame interference caused
by FTN transmission can be ignored for the practical range of
packing ratios, i.e., for α ≥ 1/(1 + β) [10, 12].

B. Channel Model

The signal r(t), which is received over the time-varying
channel, is formulated as [1]:

r(t) =

∫∫
h(τ, ν)s(t− τ)ej2πν(t−τ)dτdν + w(t), (4)

where τ and ν denote the delay and Doppler shift, respectively.
Furthermore, w(t) represents the complex-valued additive

white Gaussian noise (AWGN), whose power spectral density
is given by σ2

0 .
Owing to the sparsity of the DD channel, the channel

response h(τ, ν) can be expressed by

h(τ, ν) =

P−1∑
p=0

hpδ(τ − τp)δ(ν − νp), (5)

where δ(·) is Dirac’s delta function, and P is the number
of channel taps. Furthermore, hp, τp, and νp represent the
complex-valued channel gain, the propagation delay, and the
Doppler shift of the pth path. More specifically, we have

τp =
lp

M∆f
, νp =

kp + κp

NT
, (6)

where lp is the delay tap and (kp+κp) is the Doppler shift tap
of the pth path, respectively. Furthermore, lp and kp denote
integers, while κp represents the fractional part of the Doppler
tap in the range of −1/2 < κp ≤ 1/2. Let us assume that the
channel’s maximum delay τmax and the maximum Doppler
shift νmax satisfy τmax ≤ (L − 1)T/M and |νmax| ≤ ∆f/2,
respectively, where L is the CP length. Furthermore, some of
the paths that share the same delay but have different Doppler
shifts are separable only in the DD domain.

C. Receiver Model

According to (3), (4), and (5), after the removal of the CP
and following matched filtering by the pulse shaping filter
h∗
rx(−t), the received signal z(t) is given by

z(t)=

[
P−1∑
p=0

hpe
j2π

(kp+κp)(t−lpTf )
MNTf s (t− lpTf) + w(t)

]
⋆h∗

rx(−t)

=

P−1∑
p=0

MN−1∑
n=0

hpe
j2π

(kp+κp)(t−lpTf )
MNTf sng (t− (n+ lp)Tf)

+ η(t), (7)

where ⋆ denotes the convolution operation, while we have
g(t) ≜ htx(t) ⋆ h

∗
rx(−t) and η(t) ≜ w(t) ⋆ h∗

rx(−t).
By sampling z(t) at t = 0, · · · , (MN − 1)Tf , we arrive at:

z = [z0, · · · , zMN−1]
T ∈ CMN

= Hs+ η, (8)

where η = [η(0), η(Tf) · · · , η((MN − 1)Tf)]
T with the

correlation matrix E
[
ηηH

]
= σ2

0G [8, 9]. Moreover, G ∈
RMN×MN is a Toeplitz matrix, whose first row and first col-
umn are denoted by [g(0), g(−Tf) · · · , g(−(MN−1)Tf)] and
[g(0), g(Tf) · · · , g((MN−1)Tf)]

T , respectively. Furthermore,
H ∈ CMN×MN denotes the effective channels, which take
into account the effects of both the dispersive channel and
of the FTN-induced ISI. More specifically, the kth-row and
mth-column entry of H is given by

H(k,m)=

P−1∑
p=0

hpe
j2π

(kp+κp)(k−lp)
MN g(kTf − (m+ lp)Tf). (9)

Then, following the M -point FFT and SFFT, the received
samples z in the TF domain Z = vec−1(z) ∈ CM×N are con-
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verted into those in the DD domain Y = FH
M (FMZ)FN ∈

CM×N . Furthermore, Y can be vectorized as follows:

y = (FN ⊗ IM ) z

= (FN ⊗ IM )H
(
FH

N ⊗ IM
)
xp + (FN ⊗ IM )η

= Heqxp + ηeq, (10)

where Heq = (FN ⊗ IM )H
(
FH

N ⊗ IM
)
∈ CMN×MN and

ηeq = (FN ⊗ IM )η ∈ CMN represent the equivalent channel
and the noise in the DD domain.

III. POWER ALLOCATION FOR THE PROPOSED OTFS-FTN

A. Mutual Information

The upper bound of differential entropy with respect to the
received frame y and the correlated noise ηeq are given by
[16]

he(y) ≤ log2
(
(πe)MN

∣∣E [yyH
]∣∣

det

)
, (11)

he(ηeq) = log2

(
(πe)MN

∣∣E [ηeqη
H
eq

]∣∣
det

)
, (12)

where he(·) denotes the differential entropy and e is the base
of the natural logarithm. Observe from (10) that the covariance
matrix of the received frame is represented by

E
[
yyH

]
= E

[
(Heqxp + ηeq) (Heqxp + ηeq)

H
]

= HeqE
[
xpx

H
p

]
HH

eq + E
[
ηeqη

H
eq

]
, (13)

where we have

E
[
ηeqη

H
eq

]
= (FN ⊗ IM )E[ηηH ]

(
FH

N ⊗ IM
)

= σ2
0Geq, (14)

while Geq = (FN ⊗ IM )G
(
FH

N ⊗ IM
)
∈ CMN×MN . From

(11)–(14), we arrive at the upper-bound of the MI between the
received frame and the precoded symbols in the form of:

I(xp;y) = he(y)− he(ηeq)

≤ log2
(πe)MN

∣∣E [yyH
]∣∣

det

(πe)MN
∣∣E [ηeqηH

eq

]∣∣
det

= log2

∣∣HeqE
[
xpx

H
p

]
HH

eq + σ2
0Geq

∣∣
det

|σ2
0Geq|det

= log2

∣∣∣∣IMN+
1

σ2
0

HeqE
[
xpx

H
p

]
HH

eqG
−1
eq

∣∣∣∣
det

,(15)

where the EVD of Geq is given by

Geq = VΛVH , (16)

while V ∈ CMN×MN is a unitary matrix and Λ =
diag [λ0, · · · , λMN−1] ∈ RMN×MN is a diagonal matrix
whose diagonal elements are set in descending order. Hence,
(15) can be rewritten as

I(xp;y) ≤ log2

∣∣∣∣IMN+
1

σ2
0

HeqE
[
xpx

H
p

]
HH

eqVΛ−1VH

∣∣∣∣
det

= log2

∣∣∣∣IMN+
1

σ2
0

E
[
xpx

H
p

]
HH

eqVΛ− 1
2Λ− 1

2VHHeq

∣∣∣∣
det

= log2

∣∣∣∣IMN+
1

σ2
0

E
[
xpx

H
p

]
BHB

∣∣∣∣
det

, (17)

where B = Λ− 1
2VHHeq.

Based on the EVD, we have BHB = UΞUH ,
where U ∈ CMN×MN is a unitary matrix and Ξ =
diag [ξ0, · · · , ξMN−1] ∈ RMN×MN is a diagonal matrix,
whose diagonal elements are in descending order. Then, (17)
is further rewritten by

I(xp;y) ≤ log2

∣∣∣∣IMN +
1

σ2
0

E
[
xpx

H
p

]
UΞUH

∣∣∣∣
det

= log2

∣∣∣∣IMN +
1

σ2
0

Ξ
1
2UHE

[
xpx

H
p

]
UΞ

1
2

∣∣∣∣
det

,(18)

where we have Ξ
1
2UHE

[
xpx

H
p

]
UΞ

1
2 =

σ2
x

(
PHUΞ

1
2

)H
PHUΞ

1
2 , which is a positive semi-definite

Hermitian matrix.
Let us assume E

[
xxH

]
= σ2

xIMN . Then, according to
Hadamard ’s inequality [17], the expression in (18) is max-
imized, when Ξ

1
2UHE

[
xpx

H
p

]
UΞ

1
2 is a diagonal matrix,

which satisfies

UHE
[
xpx

H
p

]
U = σ2

xΓ

PE
[
xxH

]
PH = σ2

xUΓUH

P = UΓ
1
2 , (19)

where Γ = diag [γ0, · · · , γMN−1] ∈ RMN×MN is a real-
valued diagonal matrix.

When the precoding matrix P satisfies (19), the MI of (18)
is upper-bounded by

I(xp;y) ≤ log2

∣∣∣∣IMN +
σ2
x

σ2
0

Ξ
1
2ΓΞ

1
2

∣∣∣∣
det

=

MN−1∑
n=0

log2

(
1 +

σ2
xγnξn
σ2
0

)
. (20)

The transmitted energy of each frame in the proposed
OTFS-FTN scheme is calculated by

EN = E
[∫ ∞

−∞
|s(t)|2 dt

]
= E

[∑
k

∑
m

sks
∗
mg((k −m)Tf)

]
= σ2

x tr
{
ΓUH(FN ⊗ IM )G(FH

N ⊗ IM )U
}

= σ2
x tr{ΓΦ}

= σ2
x

MN−1∑
n=0

γnϕn, (21)

where

Φ = UH(FN ⊗ IM )G(FH
N ⊗ IM )U ∈ CMN×MN , (22)

and ϕn(n = 0, · · · ,MN − 1) denotes the nth diagonal entry
of Φ. Furthermore, tr(·) denotes the trace operation. Since
the total power of the transmitted symbols is given by EN =
MNσ2

x, the expression in (21) has to satisfy the following
condition:

MN−1∑
n=0

γnϕn = MN. (23)
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B. Power Allocation

To maximize the MI of (20) under the energy constraint of
(23), the Lagrange function is given by

J(γn, λ)=

MN−1∑
n=0

log2

(
1+

σ2
xγnξn
σ2
0

)
−λ

(
MN−1∑
n=0

γnϕn−MN

)
,

(24)

where λ denotes the Lagrange multiplier. To optimize the
coefficients γn (n = 0, · · · ,MN − 1) in (24), the following
conditions have to be satisfied:

J(γn, λ)

∂γn
= 0, subject to γn ≥ 0. (25)

Hence, the optimal coefficients γn are represented by

γn = max

(
1

(ln 2)λϕn
− σ2

0

ξnσ2
x

, 0

)
, (26)

which can be solved by the classic water-filling algorithm sim-
ilar to that used in the singular-value decomposition (SVD)-
based multiple-input multiple-output (MIMO) systems [18].

Upon normalizing (20) by the frame duration MNαT0 and
the associated bandwidth 2W (1 + β), the information rate of
EVD-precoded OTFS-FTN signaling is given by

R=
1

2W (1 + β)MNαT0

MN−1∑
n=0

log2

(
1+

σ2
xγnξn
σ2
0

)
[bps/Hz] ,

(27)

which corresponds to the achievable bound.

C. Demodulation

Upon multiplying y by the weight matrix D =
UHBHΛ− 1

2VH ∈ CMN×MN , we arrive at

yd = Dy

= UHBHΛ− 1
2VHHeqxeq +Dηeq

= ΞΓ
1
2x+ ηd, (28)

where we have ηd = Dηeq ∈ CMN , associated with a
diagonal correlation matrix, yielding:

E
[
ηdη

H
d

]
= DE

[
ηeqη

H
eq

]
DH

= σ2
0U

HBHΛ− 1
2VHGeqVΛ− 1

2BU

= σ2
0Ξ. (29)

Observe from (28) and (29) that the effective channel is
diagonalized, and the correlated noise is whitened. Therefore,
efficient symbol-by-symbol demodulation can be carried out.
More specifically, let us consider the nth received symbol yd,n
in (28). Then, the probability density function for calculating
the corresponding log-likelihood ratio (LLR) is given by

p (yd,n | xn) = exp

(
−
∣∣yd,n − ξn

√
γnxn

∣∣2
ξnσ2

0

)
. (30)

IV. PERFORMANCE RESULTS

Fig. 1 shows the normalized information rate of the pro-
posed OTFS-FTN signaling scheme with and without PA, each
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Fig. 1. Normalized information rate of the proposed OTFS-FTN signaling
scheme with and without PA. The information rates of the conventional
Nyquist-based OTFS schemes with the ideal rectangular pulse filter (β = 0)
and the RRC filter (β = 0.25) are also plotted.
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Fig. 2. BER performance; (a) perfect/estimated CSI, (b) comparisons with
EVD-FTN signaling [9], DMFTN signaling [12], and OFDM.

employing the RRC shaping filter having a roll-off factor
of β = 0.25. Also, we limit the range of packing ratio to
α ≥ 1/(1 + β) for avoiding an ill-conditioned case [6]. The
basic system parameters are set to (P,M,N) = (20, 128, 12),
and the maximum integer Doppler-shift tap is given by kmax =
5 (≥ kp). The Nyquist-based symbol interval is normalized
to T0 = 1 for simplicity. In the proposed scheme operating
without PA, the precoding matrix is set to Γ = IMN , i.e.,
P = U. The symbol packing ratio was set to α = 0.9
and 0.8. Moreover, the conventional Nyquist-based OTFS
signaling scheme (α = 1) employing the same RRC filter
having β = 0.25 is chosen as a benchmark. Furthermore, the
upper bound employing the ideal rectangular shaping filter
(β = 0) is also considered. Observe in Fig. 1 that the proposed
OTFS-FTN signaling scheme relying on PA outperformed the
Nyquist-based scheme employing the RRC filter, as well as
the proposed scheme dispensing with PA while approaching
the ideal upper bound associated with the rectangular filter
(β = 0).

Next, to evaluate the achievable BER performance, we
considered the extended vehicular A (EVA) model [19] with
the number of channel taps P = 9. Each channel tap has a
single Doppler shift generated through Jakes’ formula νp =
νmax cos (θp), where θp is uniformly distributed over [−π, π].
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Fig. 3. BER performance for different packing ratios with the fixed trans-
mission rate. (a) Rt = 1.5 bps/Hz. (b) Rt = 3 bps/Hz.

Furthermore, to achieve a near-capacity BER performance,
a 3/4-rate low-density parity check (LDPC) coding scheme
associated with a maximum of 50 iterations was used for every
transmission frame.

Fig. 2(a) shows the BERs of the proposed OTFS-FTN
signaling scheme for the different maximum Doppler shifts of
νmax = 3, 6, and 12 kHz. Furthermore, we considered QPSK,
∆f = 30 kHz, and (M,N,α, β) = (64, 30, 0.82, 0.25).
In addition to the perfect channel state information (CSI)
scenario, we also considered the scenario where DD-domain
channel estimation of [4] is employed at the transmitter under
the assumption of channel reciprocity. Observe in Fig. 2(a)
that the proposed scheme associated with PA outperformed
that without PA even in the presence of channel estimation
errors, while achieving a performance close to that of the
scheme without PA and with perfect CSI. Fig. 2(b) compares
the proposed scheme to the three benchmarks, i.e., the EVD-
based FTN (EVD-FTN) signaling [9], open-loop differential
multi-carrier FTN (DMFTN) signaling [12], and conven-
tional OFDM. We considered QPSK, ∆f = 60 kHz, and
(M,N,α, β) = (256, 6, 0.85, 0.25). It can be seen in Fig. 2(b)
that the proposed scheme outperformed the benchmarks in the
simulated scenario.

Fig. 3(a) and (b) show the BERs of the proposed OTFS-
FTN scheme under different packing ratios while employing
the same RRC filter (β = 0.25). The parameters are set as
∆f = 30 kHz, νmax = 7.5 kHz and (M,N) = (128, 12).
The transmission rate is given by Rt =

3
4 ·

1
2W (1+β) ·

1
MNαT0

·∑MN−1
n=0 bn [bps/Hz], where bn denotes the number of bits

mapped onto the nth symbol, and the coefficient 3/4 represents
the coding rate. The transmission rates of Rt = 1.5 and
3 bps/Hz are considered. Based on the bit-loading concept
of [8, 9] and on (26), either QPSK, 16–QAM, 64–QAM, or
256–QAM is assigned to each activated symbol to achieve the
target transmission rate Rt. It can be seen from Fig. 3(a) that
the proposed scheme using PA (α = 0.8 and 0.9) outperformed
the Nyquist-based benchmark. Furthermore, in Fig. 3(b), the
reduction in the packing ratio improved the BER performance
at Rt = 3 bps/Hz.

V. CONCLUSIONS

In this paper, we proposed a new EVD-precoded OTFS
modulation scheme in the context of FTN transmission under
the doubly selective fading channels. Based on EVD-aided
diagonalization, efficient symbol-by-symbol demodulation is
achieved in the DD domain. Furthermore, by maximizing the
mutual information of the proposed OTFS-FTN scheme, we
derived the PA coefficients, maximizing MI. Our performance
results demonstrated that the proposed FTN-OTFS scheme ex-
hibited a higher information rate than its conventional Nyquist-
based time-orthogonal signaling counterpart using the same
RRC shaping filter.
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