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Forecasting Digital Asset return: an Application of Machine Learning Model 

 

Abstract:  

In this study, we aim to identify the machine learning model that can overcome the limitations of 

traditional statistical modelling techniques in forecasting Bitcoin prices. Also, we outline the 

necessary conditions that make the model suitable. We draw on a multivariate large dataset of 

Bitcoin prices and its market microstructure variables and apply three machine learning models, 

namely Double Deep Q-learning, XGBoost and ARFIMA-GARCH. The findings show that the 

Double Deep Q-learning model outperforms the others in terms of returns and Sortino ratio and is 

capable of one-step-ahead sign forecast of the returns even on synthetic data. This critical insights 

in forecasting literature will support practitioners and regulators to identify an economically viable 

cryptocurrency forecasting return model. 

 

Keywords: Digital asset; Forecasting price; Bitcoin; Time-series; Machine Learning; 

Reinforcement Learning , Double Deep Q-learning  
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1. Introduction 

In recent years, there has been growing interest in Bitcoin investment as the cryptocurrency 

gains global popularity and acceptance in some countries (Xie et al., 2020; Rehman et al., 

2020). There are more than 81 million crypto wallets user across the world as of November 

2022 (Statista, 2023). The rapid evolution of Bitcoin trading over the past years has often raised 

concerns among investors in terms of overvaluation, overreaction, and irrational behavior of 

the cryptocurrency prices (Amini, 2013; Borgards and Czudaj, 2020; Corbet and Katsiampa, 

2020; Mattke et. al 2021). Investors, market practitioners, and regulators have shown vigorous 

interest in understanding and explaining the movements of cryptocurrency prices in detail 

(Raimundo et al., 2020; Signature Bank failure, March 2023 ). Nevertheless, understanding the 

drivers of changes in cryptocurrency prices remains an open question as the application of 

econometric and statistical modelling has largely failed to adequately provide actionable 

insights in forecasting Bitcoin prices (Chen et al., 2021; Wang et al., 2023). 

 

Given that Bitcoin transactions generate large datasets that can provide critical insights, it is 

therefore important to explore if big data analytical tools such as machine learning could be 

useful solution to overcome the limitation in forecasting Bitcoin prices (Tofangchiet al., 2021). 

In addition, cryptocurrencies like Bitcoin are less efficient when compared to the traditional 

financial assets (Al-Yahyaee et al., 2018), in the context of volatility. Even though, we observe 

a decrease in this volatility over the time, but, the historical volatilities of Bitcoin remains 

almost  ten times higher  than gold and several conventional currencies (Bianchetti et al., 2018). 

Moreover, Bitcoin, possess a combination of properties of other traditional financial and 

speculative asset and has a low correlation with other financial instruments traded in the 

financial market (Klein et al., 2018). Thus, following the literature, we use the highly liquid 

cryptocurrency, Bitcoin in this study (Amiram et al., 2022). In Appendix D, we summarise the 

main socio-economic impact of Bitcoin. Over the years, we mainly observe that researchers 

either focus on one type of value creation mechanism (Kitchens et al., 2018) or adopt the 

additive approach (Grover et al., 2018). Such approaches are difficult to apply in a complex 

set-up, such as explaining complex financial relationships (Gradojevic et al., 2021; Newell and 

Marabelli, 2015). However, in recent years, there have been several recommendations on the 

https://www.cnbc.com/2023/03/13/cryptocurrencies-rally-despite-shutdown-of-crypto-friendly-signature-bank-bitcoin-jumps-10percent.html
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importance of applying big data analytics to generate valuable insights about business 

operation (Grover et al., 2018). As suggested by Hendershott et al. (2021), the adoption of 

machine learning models can be a game changer in the context of investment in cryptocurrency 

trading (Müller et al., 2016). However, application of Machine Learning model invites the 

challenge of identifying the algorithm that possess the capability to  forecast the cryptocurrency 

return with real time data  . Thus, in this research we ask the following question: Does Double 

Deep Q-learning model outperforms the other popular model (XGBoost and ARFIMA-

GARCH) in forecasting cryptocurrency return?  Because of wider discussion about prediction 

efficiency of XGBoost and ARFIMA-GARCH model in forecasting, we decided to compare 

their performance with the Double Deep Q-learning model.  

 

Extant literature documents the challenges in smoothing and forecasting Bitcoin prices 

(Milleret al., 2019; Jana et al., 2021; Kraaijeveld and De Smedt, 2020), especially due to its 

high volatility (Li et al., 2021; Yaya et al., 2021; Gradojevic and Tsiakas, 2021). Moreover, 

while advanced machine learning algorithms are capable to deliver exceptional in-sample 

performances, the ability to generalize out-of-sample remains inherent to a more limited reach 

(Keilbar and Zhang,2021; Anyfantaki et al., 2021). Out-of-sample performance is the most 

important performance indicator to find whether a financial model will deliver the expected 

performance in the real world (Catania and Grassi, 2022; Liang et al., 2020). The lack of logical 

understanding of outputs generated by complex algorithms often regarded as black boxes and 

because of such complication the application of machine learning models remains limited. So 

far, prior literature has largely focused on complex models such as reinforcement learning 

(Tofangchi et al., 2021). Nevertheless, practitioners such as regulators, and some individual 

investors are unlikely to favor the implementation of complex, black box deemed algorithms 

over simpler ones where the relation between cryptocurrency returns and explanatory variables 

can be easily explained and interpreted. Thus, to contribute to the ongoing discussion on 

forecasting cryptocurrency returns, we examine the research question by applying machine 

learning algorithms and displaying various levels of their complexity. In addition, to provide 

critical insights about the model interpretability, we conduct out-of-sample performance test.   
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The sample time-series dataset consists of daily, open, spot prices of Bitcoin for the period 

February 2012–December 2023 sourced from Quandl (3290 daily observations). We randomly 

select the above period to set up a synthetic dataset for the simulation purpose. In the simulation 

process, we aim to invest according to the algorithms and calculate the investment 

performance. We selected Bitcoin in this study because of its popularity, maturity, market 

position as the leading cryptocurrency (Gradojevic et al., 2021) and for its long-term social 

impact1. Our unique finding shows that the Double Deep Q-learning model outperforms the 

others in terms of returns and Sortino ratio and is capable of one-step-ahead sign forecast of 

the returns even on synthetic data. According to these results, the success of machine learning 

models in prediction of cryptocurrency returns is re-established and Double Deep Q-learning 

model adds an extra layer of confidence abouts its predictability in   the forecasting literature. 

 

Our contributions are threefold - firstly, previous research has conflicting views on the 

suitability of these models. To our best knowledge this is the first study to resolve debates with 

empirical evidence on the effectiveness of machine learning models in predicting 

cryptocurrency returns. Secondly, the study uses the Sortino ratio instead of the Sharpe ratio, 

focusing on downside volatility to provide a more accurate risk assessment. Thus, it highlights 

the difference in risk considerations between proprietary traders and investment funds/banks, 

emphasizing the latter’s focus on controlled risk scenarios. Finally, to address the unreliability 

of historical data (Pintelas et al., 2020) we propose using a Variational Autoencoder to create 

synthetic datasets for out-of-sample performance evaluation.  

 

The rest of the paper is organized as follows. Section 2 further offers a general overview of the 

relevant literature and an in-depth discussion of reinforcement learning models. Section 3 

outlines the research methodology by discussing the data and the training architectures. Section 

4 introduces the out-of-sample backtesting methodology based on synthetic data extracted 

from the Variational Autoencoder model. Section 5 compares the out-of-sample performances 

 
1 Socio-economic impact of Bitcoin is summarized in Appendix D 
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in terms of investment strategies and classification statistics. Section 6 concludes and addresses 

potential future work. 

 

2. Literature Review 

Introduced by Sutton and Barto (1998), the literature of reinforcement learning relishes several 

extensions that enrich its original scope and application opportunities to various industries (Van 

Moffaert and Nowé,2014). The application of reinforcement learning includes self-driving cars, 

mastering board games such as the AlphaZero chess engine (Silver et al., 2017), etc.  Among the 

extensions of reinforcement learning, the basic Q-learning algorithm (Watkins, 1989) was revised 

as Double Q-learning and can address an overestimation bias of the basic Q-learning model (Van 

Hasseltet al., 2016). Moreover, recent reinforcement learning literature focuses on prioritized 

experience replay to improve data efficiency (Schaul et al., 2015), the dueling network architecture 

(Wang et al., 2016) and Noisy Double Q-learning (Fortunato et al., 2017) for stochastic network 

layers to improve exploration. These several contributions are blended into a rainbow model 

showing that most of the extensions are complementary and capable to produce outperforming 

performances (Hessel et al., 2018). 

 

On the other hand, financial literature has adopted reinforcement learning models in the recent 

years. In our survey of literature, we find an excellent application of reinforcement learning in 

financial markets (Fischer, 2018). Lee et al. (2007) applies multiple Q-learning agents to a stock-

trading framework focused on Korean stock market. Jiang et al. (2017) use a thirty-minute 

cryptocurrency trading strategy and apply an ensemble of identical independent reinforcement 

learning evaluators based on a convolutional neural network, a recurrent neural network, and a 

long-short term memory model. Sadighian (2020) applies deep reinforcement learning to create an 

intelligent market-making strategy testing seven reward functions, extending the previous 

reinforcement learning market-making models based on time-based event environments. Xiong et 

al. (2018) show how a Deep Deterministic Policy Gradient can build an optimal portfolio that 

outperforms the traditional mean-variance asset allocation and a buy and hold strategy on the Dow 

Jones Industrial Average. Wu et al. (2020) apply the Gated Recurrent Unit model to extract 

informative financial features that are eventually used to extract intrinsic characteristics of the US 
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stock market. Besides reinforcement learning, several neural network applications have been 

deployed to the problems of financial forecasting, portfolio optimization, investment strategies and 

risk management. In the work of Chen et al. (2003), we observe one of the first applications of 

neural networks in finance, where they predicted the return direction of the Taiwanese Stock 

Exchange index by means of a probabilistic neural network and showing its capability to 

outperform non-neural network-based strategies. In the field of time series forecasting, recurrent 

neural networks have proven to be particularly useful, thanks to their stateful architecture which 

allows modelling of serial autocorrelation. Edet (2017), predicts the movements of the S&P 500 

index using a recurrent neural network and its variations, namely the long-short-term memory and 

the gated recurrent unit. They applied the networks to fourteen economic variables and four levels 

of hidden layers. 

 

Following Baillie et al. (1996) and Gianfreda, & Grossi (2012) we use the ARFIMA-GARCH 

regression model and  Chen & Guestrin (2016) for  the XGBoost model. After critically examining 

the relevant literature, we cannot find any evidence of studies focusing on the out-of-sample 

performance via synthetic datasets produced with a Variational Autoencoder of a Bitcoin 

investment strategy based on reinforcement learning, XGBoost and the ARFIMA-GARCH 

regression model. 

 

In the extant literature, some reinforcement learning approaches, frameworks and models have 

been proposed, see table in Appendix A. Despite the contributions of these studies, some 

limitations exist.  First, we observe that models in existing studies (see Wu et al., 2020) have 

largely relied on an out-of-sample performance evaluation on a single set of historical data, making  

it  difficult  to  generalize  the  results.  In literature, we mainly observe out-of-sample performance 

evaluation on historical data, with limited focus on synthetic data (Catania and Grassi, 2022). 

When the training data are highly imbalanced (especially relevant for cryptocurrencies given the 

highly volatile and leptokurtic distributions), then models using synthetic data could generate more 

accurate results when applied on real data. One of the most efficient ways to generate a synthetic 

dataset is by means of a Variational Autoencoder (VAE). In this technique, the encoder compresses 

the original dataset into a more compact structure, which is, in turn, transmitted to the decoder to 
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generate an output which represents the original dataset with some noise. The lack of attention by 

scholars on synthetic datasets motivates us to focus on the out-of-sample performance. Second, 

we observe that models in existing studies (see Li et al., 2019) target the maximization of total 

returns or cumulated profits and do not use explanatory variables, rather only focus on time-series 

dependencies. Algorithms targeting total returns or cumulated profits result in extreme portfolios, 

with large exposures in a single asset that widely vary over time. On the other hand, targeting a 

risk-adjusted measure - such as the Sortino ratio - results in more stable, less extreme investment 

strategies. However, cryptocurrencies are characterized by complex distributions that cannot be 

explained by their respective univariate time series, rather the usage of explanatory variables is 

deemed necessary. 

 

3. Methodology 

3.1 Reinforcement Learning – model specification 

Reinforcement learning is a reward-driven process where an agent learns to interact with a complex 

environment via trial-and-error to achieve rewarding outcomes (Sutton and Barto, 1998). The 

agent learns to maximize the reward by choosing the best action in each state of the environment. 

At the heart of reinforcement learning lies the explore-exploit dilemma. In practice, the agent faces 

the dilemma of either exploiting what has been learnt thus far or exploring to gain additional 

knowledge at the risk of recording lower payoffs. 

 

Consider an agent within the environment Ω in discrete time with single step 𝑡 = 1, 2, … , 𝑛 coupled 

with the triplet action, state, and reward (𝑎𝑡, 𝑠𝑡, 𝑟𝑡). At each time 𝑡, the agent is in state 𝑠𝑡 and 

selects an action 𝑎𝑡. The interaction with the environment Ω returns the next reward 𝑟𝑡 + 1 and the 

next state 𝑠𝑡 + 1. The entire set of states and environment rules for transitioning from one state to 

another may be represented as a Markov decision process. In fact, the current state 𝑠𝑡 encompasses 

all the information needed by the environment for processing state transitions and assigning 

rewards. Therefore, an agent tries to choose an action 𝑟𝑡 ∈ 𝐴 that maximizes the expected 

conditional future reward. This approach is named Q-learning (Watkins, 1989), a form of temporal 

difference learning (Sutton and Barto, 1998). 
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Deep reinforcement learning involves the usage of deep neural network architectures to serve as 

function approximators.  A deep-Q-network is a multi-layered neural network 𝑓(𝑥): ℝ𝑛 → ℝ𝑚 

that outputs 𝑄(𝑎𝑡, 𝑠𝑡), where 𝑎𝑡 ∈ 𝐴, 𝑠𝑡 ∈ 𝑆 and 𝑟𝑡 ∈ 𝑅.  As a result, the objective of the 

reinforcement learning becomes learning the optimal set of neural network weights 𝑤𝑡 ∈ 𝑊 that 

minimizes a loss function. The latter, however, is an unobservable process which depends on the 

future combinations of (𝑎𝑡, 𝑠𝑡). As such, one needs to solve a dynamic programming algorithm in 

the form of a Bellman equation.  

 

This optimization mechanism, however, would lead to quickly forgetting rare outcomes as well as 

it is prone to strongly correlated updates that violate the i.i.d. assumption of stochastic gradient 

descent algorithms. Experience replay (Lin, 1992) addresses these issues as experience is stored 

in a replay memory from where the network can draw input values, thus potentially including long-

term learning and rare outcomes. At the same time, this allows mixing more with less recent 

experiences for the updates, leading to an update distribution closer to being i.i.d. (Mnih et al., 

2015) introduce experience replay to the deep-Q-network architecture. Moreover, it would be more 

efficient to sample more frequently replay batches where there is more to learn. To do so, (Schaul 

et al., 2015) introduced prioritized experience replay. 

 

We define the following reinforcement learning environment composed of: 

▪ State 𝑆 =  [𝑝, ℎ]: a set including the univariate time-series of prices 𝑝 ∈  ℝ+ and 

the number of contracts held ℎ ∈  ℝ+; 

▪ Action 𝑆 =  [1, −1]: a set of actions where 1 represents a buying order and -1 a 

selling one. The action leads to changes in the holding balance ℎ ∈  ℝ+; 

▪ Reward 𝑟(𝑠𝑡, 𝑎𝑡, 𝑠𝑡+1):  the change of the cumulated return of the investment 

strategy when action at is taken in state 𝑠𝑡 and eventually leading to the new state 

𝑠𝑡+1 and where 𝑟𝑡 = ln (
𝑝𝑡

𝑝𝑡−1
); 

▪ No contract accumulation is possible; hence a single contract can be traded each 

time. 
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The goal is to design an investment strategy that maximizes the Sortino ratio 𝑆𝑅𝑡 for the investors 

in the Bitcoin exchange: 

𝑆𝑅𝑡 =  
𝑟𝑡−𝑟𝑓𝑡

𝜎𝑡,𝑠𝑒𝑚𝑖
    (1) 

where 𝜎𝑡,𝑠𝑒𝑚𝑖 is the semi-standard deviation of the returns generated by the investment strategy, 

and 𝑟𝑓𝑡 is the risk-free rate which we set equal to the three months LIBOR/ SOFR rate. We choose 

to target the Sortino ratio to limit the downside volatility on the strategy since the Bitcoin market 

is characterized by frequent and pronounced volatility spikes. 

 

4.2 XGBoost – model specification 

XGBoost is an implementation of gradient boosting machines belonging to the broader collection 

of tools under the umbrella of the Distributed Machine Learning Community. Its widespread 

adoption followed winning the Higgs Machine Learning Challenge. The XGBoost library provides 

two wrapper classes that allow the random forest implementation provided by the library to be 

used with the scikit-learn machine learning library. One of the most important differences between 

XGBoost and Random Forest is that the XGBoost always gives more importance to functional 

space when reducing the cost of a model while Random Forest tries to give more preferences to 

hyperparameters to optimize the model. As such, while the XGBoost model often achieves higher 

accuracy than decision trees, it sacrifices the interpretability of the explanatory variables. Unlike 

gradient boosting that works as gradient descent in function space, a second order Taylor 

approximation is used in the loss function to make the connection to the Newton Raphson method. 

For an overview of XGBoost models, see Chen and Guestrin (2016). 

 

4.3 GARCH model – model specification 

Generalized Autoregressive Conditional Heteroskedasticity (GARCH) is a statistical model used 

for analyzing time-series data where the variance error is serially autocorrelated. GARCH models 

assume that the variance of the error term follows an autoregressive moving average process. 

GARCH models are commonly employed in modelling financial time series that exhibit time-

varying volatility and volatility clustering. For an overview of GARCH models, see Bollerslev 

(1987). 
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4. Data 

The dataset used is a time-series of daily, open, spot prices of Bitcoin futures (BTC) for the period 

February 2012 – December 2023 sourced from Quandl (3290 daily observations).  The choice of 

the dataset has been driven by data completeness and availability of many explanatory variables. 

Due to the persistent correlation and Granger causality between Bitcoin prices and other 

cryptocurrencies (Ghorbe land Jeribi, 2021), investigation of the former allows establishing a 

gauge over the entire market. In Table 1, we define every explanatory variable used in this study.  

[Table 1 here] 

 

We fractionally differentiate each time series to achieve stationarity. To estimate the fractional 

parameter, we used the algorithm of Geweke and Porter-Hudak (2008), whose estimator is based 

on the regression equation using the periodogram function as an estimate of the spectral density. 

We trained each model on a training sample composed of 60% of the observations and cross-

validated the in-sample estimations by means of k-fold cross-validation, with 𝑘 = 5. Since a 

Portmanteau test rejected the null hypothesis of identically and independently distributed data at 

any confidence interval, the cross- validation was purged to take into consideration the serial 

correlation of the data. As such, in Figure 1 we formed the validation folds with adjacent 

observations, rather than with randomly picked ones. 

[ Figure 1 here] 

The model specifications are fine-tuned via grid search. For the multilinear perceptron within the 

reinforcement learning model, we use two hidden layers with leaky RELU activation function, the 

Glorot kernel initializer, a Ridge regularizer of 0.01 and a Lasso regularizer of 0.01. The training 

is done via Stochastic Gradient Descent with a Nesterov momentum of 0.6. The loss function is 

binary cross-entropy. We chose the multilinear perceptron model as more complex models, such 

as convolutional neural networks or recurrent neural networks, improved the in-sample fitting but 

worsened the model capability to generalize out-of-sample.  In other words, the reduced bias due 

to enhanced model complexity is more than offset by the increased variance. For the XGBoost, we 

use a Ridge regularizer of 0.05 and a Lasso regularizer of 0.02, a maximum tree depth of 5 and 

accuracy as the evaluation metric. In both cases, a validation sample of 20% of the training 
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observation was used to apply the purged five-folds cross-validation algorithm. For the univariate 

ARFIMA-GARCH model, we use an eGARCH(1,1)  specification  with  skewed  t-student  

distribution and an ARIMA(2,0,2) for the mean model. 

 

5. Out-of-sample validation methodology 

To address the research question, we follow the literature and apply the Double Deep Q-learning, 

as it avoids the overestimation problem associated with Q learning. Application of machine 

learning is challenging in case of stock market forecasting because of noisy nature of  the historical 

data. Competitive machine learning approaches mostly act in a supervised manner, ignoring 

several macro factors affecting the financial market, which leads to  over-fitting. As reinforcement 

learning approaches can learn the process to maximize a return function during the training stage, 

we can minimize the overfitting problem. Thus, we use a Q-learning agent, which can be trained 

several times using the same training data and can be  important in the  real-world stock markets 

(Carta et al., 2021). However, Double Deep Q-learning might underestimate the action values at 

times. Since neural networks and machine learning models are prone to overfitting in the training 

sample, the focus should be on the capability to generalize out-of-sample. For this reason, we 

evaluate the models on a strict out-of-sample framework based on ten synthetic datasets generated 

by means of a Variational Autoencoder (VAE), which was introduced by Kingma (2013). The 

VAE reduces the reconstruction error between the input and output of the network when applied 

on real data. Thus, VAE improves the generated data quality by minimizing the distribution 

distances between the real posterior and the estimated one.  

 

The next of this paragraph introduces the VAE model used to produce the synthetic datasets. 

Consider a dataset 𝑋 = {𝑋(𝑖)}
𝑖=1

𝑁
 composed of N i.i.d. samples coming from a random variable 𝑥. 

Let’s assume that the data is generated by a random process involving an unobserved continuous 

random variable 𝑧. The process consists of first generating a value 𝑧 from some prior distribution 

𝑝𝜃(𝑧) to then generating a value 𝑥𝑖 from the conditional distribution 𝑝𝜃(𝑥|𝑧). Let’s assume that 

the PDFs of  𝑝𝜃(𝑧) and 𝑝𝜃(𝑥|𝑧) are differentiable almost everywhere with respect to 𝑧, 𝜃. 

However, the true parameters 𝜃 and the values of the latent variable 𝑧 are unknown. The objective 
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is to find an efficient neural network approximation for the latent variable 𝑧 as this would allow to 

mimic the hidden random process and generate a synthetic dataset that resembles the real data. To 

do so, we employ a Variational Auto-Encoder. Assume the prior over the latent variables to be a 

centred isotropic multivariate Gaussian 𝑝𝜃(𝑧) = 𝑁(𝑧, 0, 𝐼). Let 𝑝𝜃(𝑥|𝑧) be a multivariate Gaussian 

with 𝜃 estimated via a fully connected neural network with a single hidden layer. The true posterior 

is intractable but assuming that is approximated by a Gaussian distribution with an approximately 

diagonal covariance, then the variational approximate posterior is a multivariate Gaussian with a 

diagonal covariance structure:  

 

log 𝑞𝜃(𝑧|𝑥𝑖) ) log 𝑁(𝑧, 𝜇𝑖, 𝜎𝑖𝐼)    (2) 

where 𝑞𝜃(𝑧|𝑥𝑖) is based on an alternative technique for sampling 𝑧 such as Monte Carlo and 

(𝜇𝑖, 𝜎𝑖) are the mean and standard deviation of the approximate posterior which are outputted by 

the neural network as nonlinear functions of 𝑥𝑖 and the variational parameters 𝜙.  

Afterwards, one simply need to sample from the posterior 𝑧𝑖,𝑙 ~ 𝑞𝜃(𝑧|𝑥𝑖) with 𝑧𝑖,𝑙 =  𝑔𝜃(𝑥𝑖, 𝜖𝑙) =

 𝜇𝑖 + 𝜎𝑖𝜖𝑙, where 𝜖𝑙~𝑁(0, 𝐼). It can be proven that the Kullback-Leibler divergence can be 

computed without estimation and the resulting estimator for the datapoint 𝑥𝑖 is given by: 

ℒ(𝜃, 𝜙, 𝑥𝑖) ≅
1

2
∑ (1 + 𝑙𝑜𝑔 ((𝜎𝑗

(𝑖)
)

2
) −(𝜇𝑗

(𝑖)
)

2

− (𝜎𝑗
(𝑖)

)
2

)𝐽
𝑗=1 +

1

𝐿
∑ log 𝑝𝜃(𝑥𝑖|𝑧𝑖,𝑙)𝐿

𝑙=1     (3) 

Where log 𝑝𝜃(𝑥𝑖|𝑧𝑖,𝑙) is a Gaussian fully connected neural network decoding term.  

The robustness of the VAE used in our study is coherent with other studies (Camuto et al. 2021). 

Given this framework, we produce ten multivariate synthetic datasets composed of 1316 

observations (40% of out-of-sample observations). Once again, focusing on out-of-sample 

performance is essential in financial applications to avoid in-sample overfitting. On the other hand, 

the models have been trained and validated on the 60% of in-sample observations. The model 

specification is fine-tuned via grid search. For the VAE, we use two hidden layers with five hidden 

units activated by means of the leaky RELU function, initialised with the Glorot kernel initialiser, 

with a Ridge regularizer of 0.02 and a Lasso regularizer of 0.01. The training is done via Stochastic 

Gradient Descent with a Nesterov momentum of 0.6. The loss function targets the representation 

error via the mean squared error. 
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Figure 4,5,6,7,8,9, 10 in Appendix B compare each variable’s density plot in the original data with 

those in the ten synthetic datasets.  The grey shaded area is the distribution of the synthetic variable 

in each dataset, while the red shaded one is the distribution of the same variable in the original 

dataset. As is visible, the synthetic distributions closely match the original dataset with few 

discrepancies, which are mostly limited to higher standard deviation around the mean and rare 

differences in the tails. 

 

 

6. Results  

In this section, we discuss our findings. We follow the extant literature (e.g., Ding et al. 2022; 

Wang et al., 2023; Kumar et al 2024) to evaluate the performance of our Double Deep Q-learning 

model and compare its performance with two existing models, namely XGBoost and ARFIMA-

GARCH. In line with our aim of offering an approach to forecast Bitcoin prices, we focused our 

evaluation on ten synthetic datasets in terms of an investment strategy based on their one-step-

ahead sign forecasts and in terms of their performances as classifiers. According to Huang (2021) 

the significance of model-predicted signs is crucial for investment strategies and indicates while 

ordinary least squares (OLS) estimators generally yield better Sharpe ratios, sign regression can 

outperform for certain assets. Similarly using sign prediction, Sebastião and Godinho (2021) 

examine the predictability of digital currency using linear models, random forests, and support 

vector machines. They show how the combination of multiple models can achieve annualized 

Sharpe ratios of 80.17% for Ethereum and 91.35% for Litecoin (despite changes in trading costs 

and market volatility). So, we first illustrate how the sign predictions are translated into investment 

strategies. Starting from the Double Deep Q-learning model, the output of the learning process is 

the triplet state, action, and reward (𝑎𝑡, 𝑠𝑡, 𝑟𝑡). As such, given a state 𝑠𝑡, the chosen actions 𝑎𝑡  ∈

 [1, −1] are directly translated into rewards 𝑟𝑡. Hence, the profit and loss of the investment strategy 

are the direct output of the learning algorithm. 

 

The XGBoost model, instead, forecasts the one step-ahead probability 𝑝𝑡 of the next fractional 

return 𝑟𝑡+1 being positive (Chen et al., 2021). Hence, we convert the probability into a trading 

action by using a static threshold of 0.5 with a buying mechanism triggered when 𝑝𝑡 > 0.5, and 
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vice versa. This is a direct yield of having a binary classification as the evaluation objective. 

Finally, the ARFIMA-GARCH is a univariate regression model that forecasts the one-step-ahead 

fractional return. Hence, the strategy is to ‘buy’ when the one-step-ahead predicted return, 𝑟𝑡+1, is 

positive and vice versa. The fractional differentiation algorithm does not alter the sign of the price 

change. As such, increase in price reflects in positive fractional returns, and vice versa. This 

property is important since both the XGBoost and the ARFIMA-GARCH models use fractional 

returns of Bitcoin prices as these are not stationary (Almaafi et al, 2023). 

 

Following Dos Santos and Aguilar (2024), at the next stage, we compare the investment 

performance achieved by the three models on the ten synthetic datasets (also see Arian et all 2024). 

To showcase the applicability of these models, we add to the comparison a naive buy-and-hold 

strategy on the BTC. Tables (Table 4,5 and 6) in Appendix C report the descriptive statistics of 

the returns as well as the Sharpe and Sortino ratios achieved by each strategy in each of the ten 

out-of-sample synthetic datasets. To improve comparability, we also include the average across 

the ten datasets. Double Deep Q-learning achieves the highest average annualized mean return of 

15.8%. This suggests that the model is capable of generating substantial returns over time. 

However,  high returns often come with higher risk. Investors should evaluate their risk tolerance 

and ensure they are comfortable with the potential volatility associated with this strategy. While 

XGBoost outperforms in terms of average annual median return (10.5%) which indicates a more 

consistent and stable return profile. This could be appealing to investors who prioritize stability 

and predictability in their investments. In addition, XGBoost may be less prone to extreme 

outcomes, making it a potentially safer choice for risk-averse investors. Both Double Deep Q-

learning and XGBoost outperform the buy-and-hold strategy (7.9% annual mean and 4.8% annual 

median), ARFIMA-GARCH is the worst performer in terms of both metrics. At the same time, 

ARFIMA-GARCH strategies achieve unstable performances across the ten datasets compared to 

the Double Deep Q-learning and XGBoost whose statistics are stable across the synthetic datasets. 

[Table 2A, B and C here] 

 

Nevertheless, the Double Deep Q-learning records the highest annualized standard deviation 

across the ten datasets, averaging 33.2% compared to 26.9% of XGBoost and 24% of ARFIMA-
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GARCH. Investors might use Double Deep Q-learning as part of a diversified portfolio to balance 

risk and reward, leveraging its potential for high returns while mitigating overall portfolio risk. All 

the models have a larger standard deviation compared to the buy-and-hold strategy whose 

annualized standard deviation is 20.7% (also see Grot et al. 2022). At the same time, Double Deep 

Q-learning records a large average kurtosis of 9.7x, while XGBoost and ARFIMA-GARCH 

achieve a kurtosis below three, improving on the 6.7x of the buy-and-hold strategy. However, the 

larger standard deviation and kurtosis of Double Deep Q-learning are offset by the largest, positive 

average skewness of 2.4 and the lowest downside volatility of 3.1%. In fact, the objective function 

of Double Deep Q-learning is to maximize the Sortino ratio, which embeds minimizing the 

downside volatility while maximizing the returns. This implies that its higher average standard 

deviation is the result of higher upside volatility. Figure 2 plots the average standard deviations 

while Figure 3 plots the average downside volatilities both calculated on a rolling window of one 

hundred days. ARFIMA-GARCH returns, instead, are mostly symmetrical (positive and negative 

returns are roughly equal in magnitude and frequency) while the downside volatility is the highest 

across all the synthetic datasets. This means that while the returns are symmetrical, the negative 

returns (losses) can be quite large and frequent, leading to higher risk during downturns. So, the 

model’s performance could be more erratic during the financial crisis, requiring investors to be 

vigilant and possibly adjust their strategies accordingly. Investors may need to implement robust 

risk management strategies to mitigate this downside risk. From these figures, it is evident that 

both Double Deep Q-learning and XGBoost can effectively curtail the standard deviations and the 

downside volatility of the investment strategies. From this follows an expectation of superior risk-

adjusted performances, such as Sharpe and Sortino ratios, wherein an improved performance is 

linked to lower volatility, all else equal. 

[Figure 2 and 3 here] 

 

 

In terms of Sharpe ratio, Double Deep Q-learning and XGBoost achieve a similar performance of 

0.63x, while ARFIMA-GARCH underperforms due to lower returns not sufficiently offset by 

lower standard deviation. The findings are consistent with the existing studies (Wang et al., 2020). 

For the ARFIMA-GARCH strategy the same applies in terms of Sortino ratio. Double Deep Q-
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learning, instead, is the best performing model in terms of Sortino ratio (best risk-adjusted returns 

by focusing on downside risk) on the back of lower downside volatility (meaning it is less likely 

to experience significant losses, which is crucial for risk-averse investors) and higher returns, 

followed by the XGBoost strategy which also outperforms the buy-and-hold strategy. This makes 

the machine learning model an attractive option for investors seeking high returns with controlled 

risk. 

Moving to the performance of the classification models, Table 3 reports statistics of the confusion 

matrices generated by each classifier. All the confusion matrices are based on the model’s ability 

to correctly classify the sign of the one-step-ahead realized return on the average of the ten out-of-

sample synthetic datasets. The sign is extracted in the same way as presented in the previous 

section. The realized classes in the average out-of-sample datasets are well balanced, with 50.3% 

of the observations belonging to the buying class and the rest to the selling one. Double Deep Q-

learning and XGBoost outperform ARFIMA-GARCH in terms of all the metrics proposed. The 

latter, in fact, can barely improve on the performance of a random classifier as it records a 51.9% 

accuracy and a 95% confidence interval lower bound below the 50% threshold. Double Deep Q-

learning and XGBoost, instead, achieve fairly similar results. The latter records the highest out-of-

sample classification accuracy of 76.35%. Moreover, both Double Deep Q-learning and XGBoost 

have larger specificity compared to sensitivity. In other words, both models are better suited in 

identifying days when selling is the best strategy compared to buying (Filos 2019). ARFIMA-

GARCH, on the other hand, records higher sensitivity compared to specificity, yet not far enough 

from the performance of a random classifier. 

[Table 3 here] 

 

7. Conclusions 

In this study, we investigate whether a machine learning inspired model can successfully forecast 

cryptocurrency returns. We need machine learning models to find easy explanation for investors 

and policy makers and also to address the limitations of statistical models  explained in the existing 

recent studies (Chen et al., 2021; Wang et al., 2023). To address the above  question, we evaluated 

the performance of three models, namely Double Deep Q-learning, XGBoost and ARFIMA-

GARCH in forecasting Bitcoin prices as well as to a buy-and-hold strategy. Our results show that 
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the Double Deep Q-learning model outperforms the other models in terms of returns and Sortino 

ratio while the ARFIMA-GARCH model represented the worst performing model across all tests. 

In layman terms, by using above models we identified one of the best models that can consider the 

risk factor appropriately in forecasting and can be suitable for any investors with any level of risk-

taking behavior. The findings suggest that in practice, an investment strategy will only be 

penalized for volatility in a down-moving market, which is a great assurance for investors. It is 

also important for the policy makers to know that our findings suggest a less damage of economic 

value of the market during the time of extreme volatility. Based on these results, the study offers 

three main contributions. 

 

First, our study contributes to the literature on cryptocurrency returns by settling the debates on 

the suitability of machine learning models in forecasting cryptocurrency returns.  In prior finance 

literature, there are debates about the suitability of machine learning models in forecasting (Sun 

Yin et al., 2019). While some studies (Chen et al., 2021; Gradojevic et al., 2021) argue that 

machine learning models can forecast cryptocurrencies returns, others (Christodoulou et al., 2019) 

disagree, leading to inconclusive debates. Moreover, existing research (Xie et al., 2020) tends to 

use regression approaches or primarily focus on out-of-sample performance evaluation on a single 

subset of historical data opening the results to more criticisms as to the suitability of machine 

learning models. However, in this study, we move beyond the existing research by evaluating the 

suitability of three machine learning models as well as used the entire historical data of Bitcoin to 

overcome the single historical snapshot criticism. By doing so, the study offers critical insights 

that address the criticism of existing research as well as attempts to settle the ongoing debate in 

the literature. 

 

Second, whereas existing research mainly uses the total cumulated profit as target function, only 

focusing on the time series of returns and out-of-sample backtesting on historical data, our study 

contributes new insights by targeting a risk adjusted measure such as the Sortino ratio, which 

penalizes an investment strategy only for volatility in a down-moving market, as opposed to Sharpe 

ratio which penalizes for volatility in any market movement. For instance, prior studies (Li et al., 

2019) use cumulated profit, which is criticized for not accurately reflecting risk considerations. 
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However, our approach of risk adjusting using the Sortino ratio offers a more holistic 

representation of risk targeting cumulated profit results in an investment strategy with extreme 

allocations, without considering the riskiness of the position. The difference becomes particularly 

relevant when different types of investors are considered. While, on one hand, proprietary traders 

are focused on maximizing the profit and loss function of their investment strategies, investment 

funds and banks are focused on delivering higher returns amid controlled risk scenarios.   For these 

reasons, these institutions are mostly evaluated against risk-adjusted measures, such as the Sortino 

ratio. A widespread adoption of cryptocurrencies to foster broad societal consequences also passes 

through the inclusion of these instruments among the traded instruments of such large institutions. 

Lastly, our study enriches the literature on financial asset forecasting by offering an alternative 

perspective in forecasting Bitcoin returns. By conducting this study on Bitcoin price forecasting, 

we enrich the investment literature (Mattke et al., 2021; Mai and Hranac,2013; Gefen, 2002). The 

extant literature (Ibrahim et al., 2021) predominantly uses time-series data of cryptocurrency 

prices, which often do not take other critical peculiarities - such as market microstructure - into 

consideration. By relying solely on time series data of cryptocurrency price, the results of these 

studies are sometimes criticized for robustness. Our study overcame this challenge by using a set 

of explanatory variables (average block size, has rate, transaction volume, transaction per block, 

transactions excluding popular addresses and number of transactions), in addition to time-series 

data of cryptocurrency prices. Thus, this approach allows us to take into consideration the peculiar 

market microstructure of cryptocurrencies. By using explanatory variables to augment limitations 

in solely relying on time-series data, this study contributes a novel process that advances 

cryptocurrency returns forecasting research. In addition, Bitcoin time-series exhibit high volatility 

and leptokurtosis, which, coupled with the short trading history, makes out-of-sample evaluations 

based on historical data highly unreliable (Pintelas et al., 2020). For this reason, we contribute to 

the finance literature by proposing the usage of a Variational Autoencoder to simulate the original 

distribution of the underlying data in ten synthetic datasets and evaluate the out-of-sample 

performances on these. 

 

Practically, the study also offers some critical insights. First, the results demonstrate that it is 

possible to use machine learning models to successfully predict cryptocurrency returns. This 
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means practitioners using and those thinking of using machine learning models can be more 

confident in applying machine models. It is difficult for the practitioners to use the findings of the 

prior studies because most of them cannot accurately reflect risk consideration by using cumulated 

profit (Li et al., 2019). However, we use a more holistic approach where the Sortino ratio is 

relevant for  different types of investors. Second, the results of this study offer practitioners a 

benchmark and reference point for their application of machine learning models since existing 

research has only provided anecdotal evidence. Lastly, the study offers some strategies to cope 

with the cryptocurrency volatility. For instance, we define an environment where an agent learns 

to choose the best suited between two actions, buy or sell a BTC future contract, during each 

trading day to maximize the Sortino ratio of the investment strategy. We choose to target the 

Sortino ratio to limit the downside volatility on the strategy since the Bitcoin market is 

characterized by frequent and pronounced volatility spikes. Creating a consistently profit-making 

investment algorithm based on online learning would attract more long-term investors and 

potentially win the regulatory consensus (Sun Yin et al., 2019) for creating regulated spot trading 

venues. Therefore, this would result in improved long-term market liquidity and lower market 

volatility. The virtuous cycle would complete with the more widespread adoption of digital coins, 

fueling positive societal impact hidden beneath the merely speculative aims. As such, the scope of 

this manuscript is to propose an online machine learning model, the Double Deep Q-learning, and 

analyze its performance both in terms of investment strategy and as a classifier. Like all research, 

this study has some limitations, which presents an avenue for future studies. First, this research 

only focused on Bitcoin, therefore future studies can use other cryptocurrencies such as Ethereum, 

Litecoin, Doge coin, etc., validate our findings towards wide generalization. Second, our study 

used three popular machine learning models, namely Double Deep Q-learning, XGBoost and 

ARFIMA-GARCH in forecasting Bitcoin prices. Second, future studies can explore further 

development and refinement of cross-validation methods tailored to financial data, particularly 

focusing on mitigating overfitting and improving model robustness. It is also important to examine 

the application of the Combinatorial Purged Cross-Validation (CPCV) method to real-world 

financial markets to validate its effectiveness and practicality. Finally, financial institutions can 

explore the validation techniques on regulatory compliance. 
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Table 1 The variables composing the dataset used in this study 

Name     Description 

BTC Bitcoin price in USD 

AVBLS Average block size  

HRATE Hash rate (diff.) 

ETRAV Estimated transaction volume (diff.) 

NTRBL Transactions per block (diff.) 

NADDU Transactions excluding popular addresses (diff.) 

NTREP Number of transactions (diff.) -1.6 

Note: In Table 1 we define the variables used in this study. The abbreviations are defined in the second column and 

in other tables and in the text we used the abbreviations 
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Table 2A Annualized descriptive statistics for Double Deep Q-learning investment strategy 

Sample Mean Median 
Std. 

deviation 
Skewness Kurtosis 

Volatility 

Skew 

Downside 

volatility 

Sharpe 

ratio 

Sortino 

ratio 

V1 15.629% 8.214% 33.005% 1.990 6.023 60.054 3.011% 0.592 4.190 

V2 15.385% 7.950% 33.718% 2.194 6.150 61.466 3.258% 0.589 4.333 

V3 15.811% 7.746% 31.953% 1.844 5.455 64.304 2.735% 0.649 4.258 

V4 14.885% 7.646% 32.691% 2.493 6.517 68.208 3.085% 0.655 4.412 

V5 15.762% 6.941% 34.191% 2.310 5.753 71.336 3.213% 0.636 4.422 

V6 15.666% 8.247% 33.215% 1.931 5.866 66.233 2.698% 0.627 4.097 

V7 15.915% 8.146% 33.869% 2.583 6.273 66.259 3.104% 0.603 4.386 

V8 15.865% 7.123% 33.040% 2.321 6.483 67.120 2.948% 0.611 4.380 

V9 15.756% 7.016% 33.817% 1.762 5.636 71.153 2.739% 0.618 4.180 

V10 15.396% 7.246% 33.684% 2.358 6.912 69.235 3.232% 0.598 4.137 

Average 15.607% 7.627% 33.318% 2.179 6.107 66.537 3.002% 0.618 4.279 

Notes: In Table 2A, we report the annualized descriptive statistics for Double Deep Q-learning investment strategy in 

each of the ten out-of-sample synthetic datasets. V1-V10 denote each of the out of sample synthetic datasets. In the 

last row of the table, we included the average of the ten datasets. 
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Table 2B: Annualized descriptive statistics for XGBOOST investment strategy 

Sample Mean Median Std. 
deviation 

Skewness Kurtosis Volatility 
Skew 

Downside 
volatility 

Sharpe 
ratio 

Sortino 
ratio 

V1 16.169% 7.398% 35.145% 2.167 6.239 72.821 2.938% 0.598 4.657 

V2 16.086% 7.523% 32.517% 1.761 5.691 64.059 3.240% 0.591 4.475 

V3 16.419% 6.651% 33.157% 2.129 6.938 67.732 2.740% 0.675 4.630 

V4 16.439% 7.066% 32.237% 2.275 7.721 69.766 3.341% 0.621 4.436 

V5 15.751% 7.879% 34.236% 2.055 5.461 64.796 3.121% 0.604 4.301 

V6 15.750% 7.197% 34.442% 2.738 6.406 71.401 3.196% 0.620 4.606 

V7 15.946% 6.335% 33.251% 2.448 5.630 65.679 2.771% 0.618 4.355 

V8 15.624% 7.871% 31.230% 2.180 5.977 69.754 3.199% 0.645 5.277 

V9 15.551% 6.578% 31.988% 2.286 6.716 56.727 3.325% 0.660 4.693 

V10 16.288% 7.903% 31.758% 2.391 7.046 68.861 2.790% 0.651 4.507 

Average 16.002% 7.240% 32.996% 2.243 6.382 67.160 3.066% 0.628 4.594 
Notes: In Table 2B, we report the annualized descriptive statistics for XGBOOST investment strategy in each of the 

ten out-of-sample synthetic datasets. V1-V10 denote each of the out of sample synthetic datasets. In the last row of 

the table, we included the average of the ten datasets. 
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Table 2C: Annualized descriptive statistics for ARFIMA-GARCH investment strategy 

Sample Mean Median Std. 
deviation 

Skewness Kurtosis Volatility 
Skew 

Downside 
volatility 

Sharpe 
ratio 

Sortino 
ratio 

V1 15.142% 7.900% 38.452% 2.544 6.850 68.406 4.136% 0.573 4.182 

V2 13.772% 11.948% 36.895% 2.329 9.079 78.723 3.233% 0.598 4.090 

V3 14.834% 11.427% 34.989% 2.248 9.985 74.034 4.219% 0.542 3.956 

V4 13.769% 9.690% 35.835% 3.125 9.272 86.801 4.164% 0.533 3.264 

V5 13.921% 9.357% 34.081% 3.700 6.567 68.946 3.316% 0.519 3.329 

V6 15.352% 11.693% 34.977% 4.191 7.457 69.753 4.222% 0.611 3.602 

V7 14.423% 9.612% 43.990% 2.840 6.558 81.582 3.699% 0.582 3.826 

V8 14.697% 8.286% 33.505% 3.701 7.763 75.759 3.305% 0.488 3.470 

V9 11.811% 11.263% 34.425% 2.438 7.026 71.307 4.049% 0.493 3.321 

V10 15.682% 10.647% 33.529% 3.779 6.954 66.600 4.214% 0.601 2.581 

Average 14.340% 10.182% 36.068% 3.089 7.751 74.191 3.856% 0.554 3.562 
Notes: In Table 2 C, we reported the annualized descriptive statistics for ARFIMA-GARCH investment strategy in 

each of the ten out-of-sample synthetic datasets. V1-V10 denote each of  the out of sample synthetic datasets. In the 

last row of the table, we included the average of the ten datasets. 
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Table 3 Statistics of confusion matrices 

 Double Deep Q-Learning XGBoost ARFIMA-GARCH 

Accuracy (%) 75.27 76.35 51.93 

95% CI lower (%) 77.6 78.34 54.68 

95% CI upper (%) 72.8 73.94 49.17 

Sensitivity (%) 74.11 74.57 52.4 

Specificity (%) 76.42 78.1 51.45 

Balanced Accuracy (%) 75.26 76.34 51.93 

 

Note: Table 3 reports statistics of the confusion matrices generated by each classifier. The classifiers are Double Deep 

Q-Learning; XGBoost and ARFIMA- GARCH. The statistics are reported in percentage. 
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Appendix 

 

A. Comparative Table for existing literature 
Articles Reinforcement 

learning model 

Application 

domain 

Limitations 

Wu et al., (2020) Gated Deep Q-learning Equity single stock Out   of   sample   performance   

evaluated on a single set of historical 

data. 

Borrageiro et al., 

(2022) 

Recurrent Reinforcement 

Learning 

Bitcoin versus US 

Dollars; trading 

perpetual swap 

derivatives contract 

Monte Carlo simulation of 250 trials, 

obtained reasonable variability of re- 

turns. 

No out-of-sample data analysis. 

Zhang and Maringer, 

(2016) 

Genetic Algorithm- Re- current 

Reinforcement Learning (GA-

RRL) 

Daily prices, trading 

volume, price-earning, 

price-cash flow, debt-

market value of S&P 

500 US firms 

GA-RRL trading system did not 

out- perform the buy-and-hold 

strategy by producing a greater 

number of positive Sharpe ratio. 

Li et al., (2019) Deep Reinforcement 

Learning 

Equity single stock Out   of   sample   performance   

evaluated on a single set of historical 

data. Low volatility time series re- 

moved. Maximizes cumulated profit. 

Cumulates large positions (n con- 

tracts). No explanatory variables 

(Time-dependency) 
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Zhang et al., (2020) Deep Q 

Reinforcement 

Learning 

Multi assets future 

contracts 

Out   of   sample   performance   evaluated on a 

single set of historical data. Maximizes 

cumulated profit. Cumulates large positions (n 

con- tracts). No explanatory variables 

(Time-dependency) 

Deng et al., (2016) Fuzzy Deep 

Direct 

Reinforcement 

Equity indexes and 

commodity futures 

Out   of   sample   performance   evaluated on a 

single set of historical data. Maximizes 

cumulated profit. Cumulates large positions (n 

con- tracts). No explanatory variables 

(Time-dependency) 

Moody et al., (1998) Recurrent 

Reinforcement 

Learning 

Equity index Out-of-sample   performance   evaluated on a 

single set of historical data. 

Yang et al., (2020) Deep Q-

Reinforcement 

Learning 

Equity Index Out-of-sample performance evaluated on a single 

set of historical data. Maximizes cumulated 

profit. 

Lee et al., (2018) Inverse 

Reinforcement 

Learning 

Bitcoin Out-of-sample performance   evaluated ed on 

multiple sets of historical data. Maximizes 

cumulated profit. 

Adhami and 

Guegan (2020) 
DCC, ADCC Multi assets, 

cryptocurrencies (bitcoin, 

tokens) 

Evolution of the economic impact of ICOs on the 

real economy and financial stability is still to be 

tested. No use of machine learning. 
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Schnaubelt,  (2022)  Backward-induction Q-

learning, Deep double 

Q-networks 

Multiple assets Used out-of-sample performance 

of reinforcement learning algorithms 

and   benchmark   strategies. No 

implementation of feature 

representations from the data using 

CNN and routing orders to multiple 

exchanges 

Alonso-Monsalve et al., 

(2020) 

Compares the 

performance of four 

different network 

architectures 

Multiple cryptocurrency 

forecasting 

For Dash and Ripple because of noise 

and temporal behavior. The data 

generation parameters are not sufficient. 

Short-term trend prediction has its own 

limitation with network architecture. 

    

Dempster and 

Leemans, (2006) 

Adaptive Reinforcement 

learning. The parameters 

are dynamically 

optimized to maximize a 

trader’s utility. Adaptive

 reinforce- 

Historical data on foreign 

exchange markets 

Risk management layer can  be  

extended to control several automated 

FX trading systems that trade different 

currencies. Out-of-sample cumulative 

profit measured. 

 
utility 

  

Note:  Table in Appendix A summarises the most relevant literature related to our study 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



36  

 

Appendix B Synthetic distributions (obtained via VAE) vs original ones [Figure 

4-10] 

 

 
 
Appendix C Annualized descriptive statistics for investment strategies 
 
 
Table 4 Annualized descriptive statistics for XGBoost investment strategy 

  Mean Median 
Std. 

deviation 
Skewness Kurtosis 

Volatility 

Skew 

Downside 

volatility 

Sharpe 

ratio 

Sortino 

ratio 

V1 12.96% 11% 27.87% 84 4.2 9.25 6.44% 0.62 1.68 

V2 13.71% 11.34% 26.03% 78 3.01 12.75 5.39% 0.7 2.12 

V3 11.09% 9.56% 27.94% 60 2.16 6.68 7.17% 0.53 1.29 

V4 12.81% 10.62% 25.84% 66 2.29 10.82 5.66% 0.66 1.89 

V5 13.14% 10.10% 27.43% 71 2.53 10.39 6.06% 0.63 1.81 

V6 13.44% 10.91% 26.79% 64 1.71 11.65 5.69% 0.66 1.97 

V7 12.79% 10.64% 26.98% 71 2.36 9.75 6.12% 0.63 1.74 

V8 12.98% 11.28% 26.72% 79 2.59 10.91 5.80% 0.64 1.87 

V9 13.07% 10.39% 25.85% 47 1.48 10.21 5.85% 0.67 1.86 

V10 12.32% 9.65% 27.92% 104 5.02 9.3 6.34% 0.58 1.62 

Average 12.83% 10.55% 26.94% 72 2.73 10.17 6.05% 0.63 1.78 

 
Note: Tables 4 reports the descriptive statistics of the returns as well as the Sharpe and 

Sortino ratios achieved by XGBoost investment strategy in each of the ten out-of-sample 

synthetic datasets. To improve comparability, we also include the average across the ten 

datasets. V1-V10 denotes the out of sample synthetic datasets. 

 

 

 

 

 

 

 

 

 

 

 
 



37  

Table 5 Annualized descriptive statistics for ARFIMA-GARCH investment strategy 

  Mean Median 
Std. 

deviation 
Skewness Kurtosis 

Volatility 

Skew 

Downside 

volatility 

Sharpe 

ratio 

Sortino 

ratio 

V1 3.49% 1.85% 17.38% 0.27 3.08 1.16 7.44% 0.03 0.04 

V2 5.59% 4.02% 26.34% -0.04 2.13 1.07 11.54% 0.03 0.04 

V3 4.92% 3.07% 23.21% -0.08 1.93 1.09 10.12% 0.03 0.04 

V4 6.27% 11.28% 24.31% -0.18 1.79 1.03 10.74% 0.03 0.05 

V5 4.83% 0.21% 21.49% 0.22 1.81 1.21 9.11% 0.03 0.04 

V6 15.06% 14.01% 30.66% -0.02 1.32 1.22 13% 0.06 0.1 

V7 2.82% 6.75% 25.13% -0.13 1.89 0.98 11.23% 0.01 0.02 

V8 1.79% 3.59% 19.89% -0.14 2.08 0.98 8.89% 0.01 0.02 

V9 5.56% 1.86% 29.51% 0.05 1.11 1.12 12.77% 0.02 0.04 

V10 4.83% 9.29% 22.60% -0.22 3.92 0.98 10.11% 0.03 0.04 

Average 5.52% 5.59% 24.05% -0.03 2.11 1.08 10.50% 0.03 0.04 

 
Note: Tables 5 reports the descriptive statistics of the returns as well as the Sharpe and 

Sortino ratios achieved by ARFIMA-GARCH investment strategy in each of the ten out-of-

sample synthetic datasets. To improve comparability, we also include the average across the 

ten datasets. V1-V10 denotes the out of sample synthetic datasets. 
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Table 6 Annualized descriptive statistics for Bitcoin buy-and-hold investment strategy 

  Mean Median 
Std. 

deviation 
Skewness  Kurtosis  

Volatility 

Skew 

Downside 

volatility 

Sharpe 

ratio 

Sortino 

ratio 

BTC 7.96% 4.79% 20.70% 1.21 6.73 8.71 4.69% 20.2 1.41 

 
Note: Tables 6 reports the descriptive statistics of the returns as well as the Sharpe and 

Sortino ratios achieved by Bitcoin buy -and hold investment   strategy. 
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Appendix D 

Socio-Economic Impact of Bitcoin 

 
 

In 2021, the traditional Bitcoin mining process came under severe scrutiny due to its intense 

energy consumption and heavy environmental impact. In May 2021, Tesla’s chief 

executive officer Elon Musk tweeted that he had suspended accepting bitcoin as a means 

of payment amid concerns about the rapidly increasing use of fossil fuels for Bitcoin mining 

and transactions (Caitlin Ostroff, 2021).  However, the aim of most cryptocurrencies is to 

create a long-lasting, positive societal impact (Islam et al., 2021). Following is a list of few 

prominent examples, Cardano (2021) is a decentralized blockchain platform using an 

environmentally sustainable blockchain network by relying on less energy-consuming 

cryptocurrency miners. SolarCoin (2021) mines a new coin for each megawatt hour 

generated from solar technology. BitGreen (2021) uses a low-energy Proof of Stake 

algorithm. Stellar (2021) involves no transaction costs for using its network enabling more 

cost-effective cross-country transactions. Ripple (2021) uses the Ripple Protocol 

Consensus Algorithm wherein at least 80% of the network’s validators must approve a 

transaction before being added to the Ripple ledger, resulting in a secure network, and 

allowing users to transfer money with little expense and greater speed. 

 

Enhancing the liquidity on cryptocurrency markets would result in lower volatility and 

wider long-term cryptocurrency adoption, hence creating a durable social imprint beyond 

the merely speculating scopes.  Al-Yahyaee et al.  (2020) find that higher market liquidity 

diminishes market volatility, in turn resulting in enhanced market efficiency via a more 

fluid non-arbitrage pricing activity. Market efficiency is more pronounced in highly liquid 

cryptocurrency markets as active traders are most likely to arbitrage away any sign of return 

predictability (Wei et al., 2018).  

 

The scarce liquidity also halts a wider cryptocurrency adoption by long-term investors such 

as large corporates.  In fact, as per the current accounting standards, digital coins are 

considered intangible assets with an indefinite life. As such, if the mandatory periodic 

impairment tests evidence any descent of market value below the carrying balance sheet 

value, a write-down pressuring the profitability of the business would be necessary. 

Conversely, corporates can only record a revaluation gain when the assets are disposed 
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(Paul Vigna, 2021). A survey from research firm Gartner (2021) in February 2021 found 

that only 5% of chief financial officers considered holding cryptocurrencies as a corporate 

asset. Moreover, the regulators have so far adopted a cautious approach in regulating the 

cryptocurrency markets due to their volatile nature (Karisma, 2022). As of August 2021, 

the SEC is close to accepting a regulated futures trading venue for cryptocurrencies since 

future trading comprises stricter rules than spot trading like which those mutual funds are 

subject to (Michael Wursthorn, 2021). 

 

Therefore, creating a consistently profit-making investment algorithm based on online 

learning that requires little maintenance and supervision would attract more long-term 

investors and potentially win the regulatory consensus for creating regulated spot trading 

venues. Consequently, this would result in improved long-term market liquidity and lower 

market volatility. The virtuous cycle would complete with the more widespread adoption 

of digital coins, fueling the positive societal impact hidden beneath the merely speculative 

aims. 

 

 

 

Forecasting Digital Asset return: an Application of Machine Learning Model 

 

Figure 1 shows the scatter plots and densities for each pair of variables in the dataset as well 

as their univariate distributions along the main diagonal. 

 

Figure 1 Scatter plots and densities for each pair of variables as well as univariate 

distributions 
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Figure 2 Rolling standard deviations obtained by each strategy 

Figure 3 Rolling downside volatilities obtained by each strategy 



42  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Appendix B Synthetic distributions (obtained via VAE) vs original ones [Figure 

4-10] 

 

 

 

Figure 4 BTC - Bitcoin Price 
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Figure 5 AVBLS - Average Block size 

Figure 6 HRATE - Hash Rate 

Figure 7 ETRAV - Estimated Transaction Volume 
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Figure 8  NTRBL - Transaction per block 

Figure 9 NADDU - Transactions excluding popular addresses 
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Figure 10 NTREP Number of Transactions 


