
Proceedings of the 11th Rodin User and
Developer Workshop, 2024

June 25th, 2024
Bergomo, Italy

Editors:

Asieh Salehi Fathabadi University of Southampton, UK
Guillaume Verdier Université de Paris-Est Créteil
Kristin Rutenkolk Heinrich Heine University Düsseldorf

Neeraj Kumar Singh University of Toulouse
Sebastian Stock Johannes Kepler University
Laurent Voisin Systerel

1

1This proceeding is supported by the HD-Sec project (https://hd-sec.github.io/), which
was funded by the Digital Security by Design (DSbD) Programme delivered by UKRI to
support the DSbD ecosystem.

Contents

Table of Contents . ii

I Summary iii
Executive Summary . iv
Workshop Programme . 1

II Contributions 2
What’s new in Rodin 3.9 and the Theory plug-in 3
Semantics formalisation: Some experience with the Theory Plug-in 5
Validation of Domain and Meta Models: From Event-B Theories to

Practice . 8
Developing the UML-B modelling tools 10
Correct-by-Construction Synthesis of Sequential Algorithms 18
Schemata of Recursive Functions and Iterative Algorithms 35

ii

Part I

Summary

Executive Summary

Event-B is a formal method for system-level modelling and analysis. The
Rodin platform is an Eclipse-based toolset for Event-B that provides effective
support for modelling and automated proof. The platform is open source and
is further extendable with plug-ins. A range of plug-ins has already been
developed including ones that support animation, model checking, UML-B
and text editor. While much of the development and usage of Rodin takes
place within past and present EU/UK-funded projects: RODIN, DEPLOY,
Advance, EBRP, HiClass, HD-Sec, there is a growing group of users and
plug-in developers outside these projects.

The purpose of the 11th Rodin User and Developer Workshop was to bring
together existing and potential users and developers of the Rodin toolset and
to foster a broader community of Rodin users and developers. For Rodin,
the workshop provided an opportunity to share tool experiences and to gain
an understanding of ongoing tool developments. For plugin developers, the
workshop provided an opportunity to showcase their tools and to achieve
better coordination of tool development effort.

The one-day programme consisted of presentations on tool development
and tool usage. The presentations are delivered by participants from academia
and industry. This volume contains the abstracts of the presentations at the
Rodin workshop on June 25th, 2024. The presentations are also available
online at https://wiki.event-b.org/index.php/Rodin_Workshop_2024.

The workshop was co-located with the ABZ 2024 conference, Bergamo,
Italy. The Rodin Workshop was supported by the University of Southamp-
ton.

Finally, we would like to thank the contributors and participants, the
most important part of our successful workshop.

Organisers

Asieh Salehi Fathabad, University of Southampton
Guillaume Verdier, Université de Paris-Est Créteil
Kristin Rutenkolk, Heinrich Heine University Düsseldorf
Neeraj Kumar Singh, University of Toulouse
Sebastian Stock, Johannes Kepler University
Laurent Voisin, Systerel

iv

https://wiki.event-b.org/index.php/Rodin_Workshop_2024

Programme of the Rodin Workshop 2024
09:00–10:30

• What’s new in Rodin 3.9 and the Theory plug-in - Guillaume Verdier,
Laurent Voisin, Idir Ait-Sadoune

• Semantics formalisation: Some experience with the Theory Plug-in
- Son Hoang, Laurent Voisin, Colin Snook, Karla Vanessa Morris
Wright and Michael Butler

• Validation of Domain and Meta Models: From Event-B Theories to
Practice - Michael Leuschel, Yamine Ait-Ameur, Guillaume Dupont,
Peter Riviere and Neeraj Kumar Singh

10:30–11:00 Break

11:00–12:30

• Developing the UML-B modelling tools - Colin Snook, Michael But-
ler, Thai Son Hoang, Dana Dghaym, Asieh Salehi Fathabadi

• Correct-by-Construction Synthesis of Sequential Algorithms - Dominique
Cansell, Neeraj Kumar Singh

• Schemata of Recursive Functions and Iterative Algorithms - Dominique
Cansell

1

Part II

Contributions

What’s new in Rodin 3.9 and the Theory plug-in

Guillaume Verdier1, Laurent Voisin2, Idir Ait-Sadoune3

1 UPEC
guillaume.verdier@irit.fr

2 Systerel
laurent.voisin@systerel.fr

3 Paris-Saclay University, CentraleSupélec, LMF laboratory
idir.aitsadoune@centralesupelec.fr

1 Introduction

The Rodin platform [1] is an integrated development environment for designing software with
Event-B [2]. Thanks to support from the French ANR project Event-B Rodin Plus (EBRP,
ANR-19-CE25-0010), Rodin and the Theory plug-in are actively updated with bug fixes and
implementation of feature requests. We present the evolution of the Rodin platform since ABZ
2023 and provide some news on the ongoing effort to improve the Theory plug-in [3].

2 Rodin 3.9

A release candidate for Rodin 3.9 was released on April 23rd, 2024 and the final release will be
published around mid-June, just before ABZ 2024.

Many new proof rules have been implemented:
� several rules have been added to the auto-rewriter:

– min(A) ∈ A ≡ ⊤
– max(A) ∈ A ≡ ⊤
– bool(B = TRUE) ≡ B
– E 7→ E ∈ id ≡ ⊤
– E 7→ E ∈ r \ id ≡ ⊥
– E 7→ E ∈ S ◁ id ≡ E ∈ S
– E 7→ E ∈ r \ (S ◁ id) ≡ E 7→ E ∈ S ◁− r

� some auto-rewriter rules can also be applied manually:
– F ∈ {x, y · P (x, y) | E(x, y)} ≡ ∃x, y · P (x, y) ∧ E(x, y) = F
– E ∈ {x · P (x) | x} ≡ P (E)

� some new manual rules have been added:
– f(x) = y ≡ x 7→ y ∈ f
– rewrite an to a× an−1 with an additional sub-goal n ̸= 0
– infer finite({i · P (i) | F (i)}) from finite({i | P (i)})

� new reasoners have been created on inductive types:
– datatype(T1, U1, ...) = datatype(T2, U2, ...) ≡ T1 = T2 ∧ U1 = U2 ∧ ...
– cons(a, b, ...) ∈ datatype(T, ...) ≡ a ∈ destr1set(T, ...) ∧ b ∈ destr2set(T, ...) ∧ ...

3

It is now possible to provide names for new identifiers generated during proofs. For abstract
expression, one can write ident = expr instead of just expr. For universal quantification introduc-
tion, existential quantification elimination and datatype distinct case, a comma-separated list of
identifiers can be provided in the proof control input. If the provided identifiers are not fresh,
they will be used as a base to generate fresh names.

Among bugs fixed, there have been two major ones.
In Rodin 3.8, feature request #371 introduced hiding of rewritten equality identifiers. However,

only selected hypotheses were rewritten: the identifier could still appear in default hypotheses,
while its equality had been hidden. Now, the identifier is either deselected or hidden depending
on whether it appears in default hypotheses or not.

Yannis Benabbi found a breaking bug in the auto rewriter. In some rare cases with nested
comprehension sets, the auto rewriter could “prove” a false goal. The bug has been fixed and the
auto rewriter’s version incremented.

Besides these bugs, miscellaneous crashes and issues related to exception handling have been
fixed. Also, the “Prove automatically” setting is now persisted correctly.

3 Theory plug-in

Before the start of the EBRP project, a release candidate for version 4 had been released in 2017,
without a final release. A final release of version 4 with a few more bug fixes was released on
December 22, 2020, followed by three more bug-fix releases in 2021 and 2022. The remaining
issues in the Theory plug-in are complex ones that require more important changes. A large
refactoring has been started and is ongoing.

First, the handling of formula factories and extensions (created to represent constructions of
the Theory plug-in, such as inductive data types and operators) has been completely reworked.
This should fix many issues related to incompatible formula factories being mixed up. Then, the
static-checker has been cleaned up and improved, as well as the representation of elements in
the Rodin database. The proof obligation generator is the main remaining part that has to be
worked on. It will require quite some work as there are many problems with it, particularly in
relation to proof rules.

4 Conclusion

Rodin is under active development and new versions are released yearly. The Theory plug-in,
which had many issues, is also being updated. It is now going through an important refactoring
to fix most complex underlying issues.

References

[1] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son Hoang, Farhad Mehta, and
Laurent Voisin. Rodin: an open toolset for modelling and reasoning in Event-B. International
Journal on Software Tools for Technology Transfer, 12(6):447–466, Nov 2010.

[2] Jean-Raymond Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, New York, NY, USA, 1st edition, 2010.

[3] Thai Son Hoang, Laurent Voisin, Asieh Salehi, Michael J. Butler, Toby Wilkinson, and Nicolas
Beauger. Theory plug-in for Rodin 3.x. CoRR, abs/1701.08625, 2017.

4

Semantics Formalisation:
Some Experience with the Theory Plug-in

(Extended Abstract)

Thai Son Hoang1[0000−0003−4095−0732], Colin Snook1[0000−0002−0210−0983], Karla
Vanessa Morris Wright3[0000−0002−0146−3176], Laurent

Voisin2[0000−0002−2426−0101], and Michael Butler1[0000−0003−4642−5373]

1 ECS, University of Southampton, Southampton SO17 1BJ, United Kingdom
{t.s.hoang,cfs,m.j.butler}@soton.ac.uk

2 Systerel, 1115 rue René Descartes, 13100 Aix-en-Provence, France
laurent.voisin@systerel.fr

3 Sandia National Laboratories, 7011 East Avenue Livermore, California 94550, USA
knmorri@sandia.gov

In [3], we model the semantics of SCXML [2] using standard Event-B con-
structs, i.e., contexts and machines (Approach 1). The Event-B contexts cap-
ture the SCXML’s syntactical elements while SCXML’s semantical elements are
formalised using Event-B machines. In this talk, we report on our experience
formalising SCXML using the Theory Plug-in [1] (Approach 2), in particular in
comparison to Approach 1.

Approach 1. Formalisation using Event-B contexts and machines. The formal-
isation using the contexts and machines is summarised in Figure 1. The main
features of this formalisation are:

– The use of constants to define the syntactical elements of SCXML.
– The use of context extension to build the syntactic model gradually.
– The use of axioms to define the syntactic constraints.
– The use of variables and events to capture SCXML’s semantical elements.
– The use of invariants to specify the constraints for the consistency of the

semantics.
– The use of the composition mechanism to combine different parts of SCXML,

namely untriggered statecharts and run-to-completion scheduling.

Approach 2. Formalisation using Theories Plug-in. The formalisation using the-
ories can be seen in Figure 2 The main features of this formalisation are:

– The use of operators and datatypes to define the syntactical elements of
SCXML.

– The use of theory inclusion to build the syntactic model gradually.
– The use of well-definedness (WD) operators to define the syntactic con-

straints.
– The use of operators and datatypes to capture SCXML’s semantical ele-

ments.

5

2 T.S. Hoang et al.

Fig. 1. Formalisation of triggered statecharts using Event-B contexts and machines

Fig. 2. Formalisation of SCXML statecharts using theories

6

Semantics Formalisation: Some Experience with the Theory Plug-in 3

Approach 1. Standard Event-B Approach 2. Theory Plug-in
– Model a single SCXML statechart + Model a datatype of SCXML statecharts
= Syntactical elements are captured
using contexts

= Syntactical elements are captured using
theories

+ Syntactical elements are gradually
added to the model using context ex-
tension

– Gradually introduce syntactical elements
results in nested datatype

= Syntactic constraints are represented
as context axioms

= Syntactic constraints are represented as
WD operators

– Combination of different parts of the
language using the composition plugin
(i.e., outside of standard Event-B)

+ Composition is done by defining composite
datatypes.

= Semantical consistency is encoded as
machine invariants

= Semantical consistency is enconded as the-
ory theorems

+ Consistency proof obligations are de-
composed automatically (per individ-
ual invariants)

– Must manually construct theorems for de-
composing the consistency proof

– No customisation for the provers to
discharge proof obligations

+ Define proof rules for the provers to dis-
charge proof obligations

− Model-related properties (e.g., re-
finement) requires additional tool

+ Model-related properties (e.g., refinement)
can be stated as theory theorems

Table 1. Comparison between standard Event-B and Theory plug-in

– The use of theorems to specify the constraints for the consistency of the
semantics.

– The use of theory inclusion to combine different parts of SCXML, namely
untriggered statecharts and run-to-completion scheduling.

Comparison Summary. The comparison between Approach 1 and Approach 2
can be seen in Table 1.

References

1. Butler, M.J., Maamria, I.: Practical theory extension in Event-B. In: Liu, Z., Wood-
cock, J., Zhu, H. (eds.) Theories of Programming and Formal Methods - Essays
Dedicated to Jifeng He on the Occasion of His 70th Birthday. Lecture Notes in
Computer Science, vol. 8051, pp. 67–81. Springer (2013), https://doi.org/10.
1007/978-3-642-39698-4_5

2. W3C: SCXML specification website. http://www.w3.org/TR/scxml/ (September
2015)

3. Wright, K.V.M., Hoang, T.S., Snook, C.F., Butler, M.J.: Formal language semantics
for triggered enable statecharts with a run-to-completion scheduling. In: Ábrahám,
E., Dubslaff, C., Tarifa, S.L.T. (eds.) Theoretical Aspects of Computing - ICTAC
2023 - 20th International Colloquium, Lima, Peru, December 4-8, 2023, Proceedings.
Lecture Notes in Computer Science, vol. 14446, pp. 178–195. Springer (2023), https:
//doi.org/10.1007/978-3-031-47963-2_12

7

Validation of Domain and Meta Models: From
Event-B Theories to Practice ⋆

Michael Leuschel[0000−0002−4595−1518],
Yamine Aı̈t-Ameur, Guillaume Dupont, Peter Rivière, Neeraj Kumar Singh

Heinrich-Heine Universität Düsseldorf
leuschel@uni-duesseldorf.de

INP-ENSEEIHT/IRIT, University of Toulouse
{yamine,guillaume.dupont, peter.riviere, neeraj.singh}@enseeiht.fr

The Theory plug-in [5] of Rodin provides the ability to add new data types
and operators to Event-B’s mathematical toolkit and extend Rodin’s proof rules.
The theory plug-in plays a major role in a variety of applications: hybrid sys-
tems modelling [9, 3], floating point numbers [1], domain modelling [6], and meta
modelling (EB4EB) [7]. The EBRP research project aims to improve the support
for theories in Rodin. In this article we present how the ProB verification and
validation tool [4] was improved to better support Event-B theories and enable
validation of the above mentioned case studies.

Meta Models The EB4EB meta modelling framework [7, 2] provides deep
and shallow embeddings of Event-B in Event-B itself. We managed to improve
ProB so that both embeddings can be validated. This required, e.g., improving
symbolic treatment of the relational image operator (used by E4BEB to apply
guards, invariants or before-after-predicates to states) and support for inductive
data types. Figure 1 shows ProB2-UI for the EB4EB deep embedding of a 24-
hour clock. Note that the before-after-predicate of the model is infinite (as it is
separate from the guards). Model checking the deep embedding took 1.8 seconds
for 1440 states. This is about one order of magnitude slower than the original
clock model (0.12 secs), due to the interpretation overhead of EB4EB.

Visualisation of Event-B Models with Theories In the lower middle
half of Fig. 1 you can see a visualisation of the current state of the meta model.
Here B formulas control the attributes of SVG (sclabale vector graphics) objects,
in this case the hour and minute hands of the clock. These attributes are often
floating point numbers or strings. As these are not available in Rodin, the VisB
formulas are written in classical B with additional access to ProB’s external
functions. In Fig. 1, an existing SVG image of a clock was used1 and the hour
and minute hands were rotated by setting the transform attributes using floating
point calculations. To enable visualisations of Event-B theories in general, we
have made the Event-B theory operators available in VisB formulas, as well as
in ProB’s REPL and other features.

Hybrid Systems and Support for Reals Support for floating point num-
bers has been added to ProB, in line with Atelier-B’s new datatypes FLOAT

⋆ This work was supported by the IVOIRE project funded by DFG/FWF grant # I
4744-N, as well as the EBRP project funded by ANR grant ANR-19-CE25-0010.

1 https://github.com/tomchen/animated-svg-clock

8

2

and REAL. Various B operators now work with floats: +, -, *, /, Σ,Π, min, max.
ProB also provides a library (LibraryReals.def) with external functions, e.g.,
trigonometric functions like RSIN and RCOS. This is useful for visualisations, as
seen above, but also for hybrid systems modelled in Event-B. Axiomatic opera-
tors in Event-B theories can now be linked to these operators (in .ptm mapping
files). This was used to enable animation and visualisation of the floating point
theory in [1] as well as floating number approximations of some hybrid models
from [9, 3]. In future we want to also support precise reals [8].

Fig. 1. Screenshot of an animation of deep embedding of clock model

References

1. I. Aı̈t-Sadoune. A floating-point numbers theory for Event-B. In Proceedings MEDI
2023, pages 30–43, 2023.

2. Y. A. Ameur, G. Dupont, I. Mendil, D. Méry, M. Pantel, P. Riviere, and N. K.
Singh. Empowering the Event-B method using external theories. In Proceedings
IFM 2022, LNCS 13274, pages 18–35, 2022.

3. G. Dupont, Y. A. Ameur, N. K. Singh, and M. Pantel. Event-B hybridation: A
proof and refinement-based framework for modelling hybrid systems. ACM Trans.
Embed. Comput. Syst., 20(4):35:1–35:37, 2021.

4. M. Leuschel and M. J. Butler. ProB: an automated analysis toolset for the B
method. STTT, 10(2):185–203, 2008.

5. I. Maamria, M. Butler, A. Edmunds, and A. Rezazadeh. On an Extensible Rule-
based Prover for Event-B. In ABZ2010, February 2010.

6. I. Mendil, P. Riviere, Y. A. Ameur, N. K. Singh, D. Méry, and P. A. Palanque.
Non-intrusive annotation-based domain-specific analysis to certify Event-B models
behaviours. In Proceedings APSEC 2022, pages 129–138. IEEE, 2022.

7. P. Riviere, N. K. Singh, and Y. A. Ameur. EB4EB: A framework for reflexive
event-b. In Proceedings ICECCS 2022, pages 71–80. IEEE, 2022.

8. K. Rutenkolk. Extending modelchecking with ProB to floating-point numbers and
hybrid systems. In Proceedings ABZ’23, pages 366–370, 2023.

9. W. Su, J. Abrial, and H. Zhu. Formalizing hybrid systems with Event-B and the
Rodin platform. Sci. Comput. Program., 94:164–202, 2014.

9

Developing the UML-B modelling tools

Colin Snook[0000−0002−0210−0983], Michael Butler[0000−0003−4642−5373], Thai Son
Hoang[0000−0003−4095−0732], Asieh Salehi Fathabadi[0000−0002−0508−3066], and

Dana Dghaym[0000−0002−2196−2749]

ECS, University of Southampton, Southampton, U.K.
{cfs, m.j.butler, t.s.hoang, A.Salehi-Fathabadi, D.Dghaym }@soton.ac.uk

Abstract. UML-B is a UML-like diagrammatic front end for the Event-
B formal modelling language. We have been developing UML-B for over
20 years and it has gone through several iterations, each with significant
changes of approach. The first version was an adaptation of a UML tool,
the second generated a complete Event-B project, the third contributed
parts of an Event-B model, and the fourth (currently under development)
provides a human usable text persistence. Here we outline the reasons
for these different developments and summarise the lessons learnt.

1 Introduction and Motivation

Towards the end of the last century it was widely recognised that formal mod-
elling is beneficial in reducing specification errors, but despite various arguments
regarding the cost benefits of early error detection, it was difficult to dispel the
view that they were costly to achieve and required ‘special’ engineers or math-
ematicians. We investigated these beliefs through empirical experiments and
interviews with industry experts. The experiments [23] established that formal
specifications are no more difficult to understand than computer programs of
equivalent complexity. However, when interviewed, industry exponents of formal
methods warned that it is the choice of useful abstractions that is difficult and
requires experience [22]. Abstraction is something of an art and often counter to
the nature of engineers used to looking for solutions. Finding abstractions that
are amenable to verification tools adds another complication which can only be
mitigated by experience and expertise.

We postulated that a visual modelling tool would aid engineers in exploring
and choosing different abstractions. This theory was grounded in ‘The Cognitive
Dimensions of Notations Framework’ [5] which provides a ”common vocabulary
for discussing many factors in notation, UI or programming language design”.
(In the following, the terms from the framework are shown in italics). Using this
framework, we postulated that, for systems modelling, we need abstractions for a
close mapping to the problem domain, but this requires premature commitment
(early decisions) which makes specification more difficult especially when com-
pounded by viscosity (the effort needed to change the specification) which can be
high in a large textual specification with many inter-dependencies. The UML-B

10

2 C.F. Snook et al.

diagrams help by increasing the visibility of chosen abstractions through visual-
isation and reducing viscosity. The reason the diagrams are efficient is because
a single diagram entity represents many lines of formal specification text com-
pared to a textual specification. A translation tool then converts the diagram
into a textual form for formal verification and validation. This iterative pro-
gressive evaluation alleviates the difficulty of making premature commitments.
A more detailed usability assessment of UML-B using cognitive dimensions is
discussed in [17].

The B-method [1] is a method of software development using the formal mod-
elling language, B which is based on set theory and first order predicate logic.
It supports the concept of abstraction and incremental refinement with verifica-
tion by proof. Event-B [2] is a formal modelling language for modelling discrete
systems. Event-B was developed from the B-method and hence also supports
abstraction and incremental refinement with verification by proof. We chose to
use B, and later Event-B, as our underlying formal specification language be-
cause they provide a notion of formal refinement with strong tool support for
verification using theorem provers as well as model checking and animation tools.

We chose to use the UML (Unified Modelling Language) [18] as the ba-
sis for our diagrammatic modelling because it was already fairly widespread
and therefore familiar within industry. Event-B models are based on set theory
which involves collections of instances and their relationships. This has a nat-
ural visualisation as an entity-relationship diagram which can be represented
using UML class diagrams. Behaviour in Event-B is modelled as events that fire
spontaneously when their guards are true and alter the variables using actions
that are treated as a set of simultaneous parallel substitutions. Here there are
some important differences between Event-B events and UML state-chart tran-
sitions. However, a state-machine representation, similar in structure to UML
statecharts, is useful for representing the behaviour of Event-B models. Hence
we developed the UML-B diagrammatic modelling tools [19,20] and have been
supporting and developing them for over 20 years during which time we have
enjoyed many collaborations with various industry sectors. Our current research
work, industrial case studies and tool installations are shown on our UML-B
website [12].

2 History of UML-B

Driven by experience gained through industrial collaboration, UML-B has been
developed over the last 22 years, going through several distinct and fundamen-
tally different versions. This section gives a history of the development of UML-B
and the motivation for changing to a new approach in each case.

2.1 Version 1 - Extending standard UML

The initial concept of UML-B (in 2000) was to translate from UML into the B
formal notation. (This was before Event-B and Rodin existed). Hence the first

11

Developing the UML-B modelling tools 3

version of UML-B [20] was based on the IBM Rational Rose UML tool. Ratio-
nal Rose provided a visual basic scripting facility for the user to add tooling
features to enhance the diagrams. UML-B was implemented as a script that
traversed the UML diagrams and output a B model as a text file. The UML-B
model was constructed as a standard UML class diagram but with some restric-
tions and additional properties added as UML stereotypes. Invariants, could be
added to classes and guards and actions could be added to class methods, in
order to fully specify the behaviour of the model. The notation used for these
textual annotations was derived from the target notation, B, but with support
for automatic quantification over instances of a class or parameterisation of the
contextual class instance (‘self’). Here we may have been able to use OCL for
the constraint language and possibly, in a declarative style, for actions. However,
this would have entailed more work to invent a translation and caused more sep-
aration between the specification and the verification languages. For this reason
we took the easier route of basing our constrain/action language on Event-B
rather than OCL.

The generated B file was then imported into the B-Core tool [4] for formal
analysis. Unfortunately, the Rational Rose tool was a Windows-based applica-
tion, whereas the B-Core tool was only available for Linux operating systems.
Therefore the user had to switch to a different operating system in order to
analyse the formal model.

2.2 Version 2 - UML-B: Like UML but different

In 2004 the Rodin project [3,15] was started with the aim of developing a new
extensible formal modelling platform to support the new Event-B notation for
systems modelling. It includes Event-B editors, static checking tools and mathe-
matical theorem provers for verification of the models. This gave an opportunity
to greatly improve UML-B and a new version was developed with a different
concept from the first version.

– We no longer tried to bend UML to our purpose but instead, developed our
own diagrammatic modelling notation borrowing ideas from UML only when
they fitted.

– We had an integrated extensible modelling platform based on Eclipse [8,7]
which greatly improved the workflow from source model to verification re-
sults.

– The Event-B notation was aimed at systems level modelling and so UML-B
followed suit. The concept of UML-B was always more aligned to systems
level rather than software development, hence Event-B was a better fit for
our purposes.

This version of UML-B [19] generated an entire Event-B project from a UML-
B project. Hence all modelling had to be done in UML-B since anything the user
did to the Event-B model would be overwritten the next time the UML-B was
translated. More and more features were added to UML-B in order to support

12

4 C.F. Snook et al.

different modelling use cases. The action and constraint notation for invariants,
guards and actions was continued in this version and developed further by adding
new features. Class diagrams and state-machines were supported, but both de-
viated from their UML counterparts in order to provide a better correspondence
with the target formalism. It should be noted that through our industrial col-
laborations we were gradually appreciating the significance of the very different
semantics between UML statecharts and UML-B state-machines. An example
of this was that users tended to attach the same event to two transitions of the
same state-machine expecting one of them to fire depending on which state was
active. However, in UML-B this creates two transitions that must fire together
and hence never do so (since both sources can never be active at the same time).
Therefore we referred to UML-B as being ‘UML-like’ from this point on and
took care to prepare users for the differences.

The UML-B modelling language used the Eclipse Modelling Framework [24]
(EMF) where a meta-model is constructed to define the abstract syntax of a
modelling language and the EMF tools then generate Java code that can load
model instances of that language and serialise (persist) them. The default format
for model serialisation is XMI (an XML based notation for model interchange),
but this can be overridden with any user-defined serialisation format. For this
version of UML-B, the default XMI format was used for serialisation. EMF is a
very useful basis for defining modelling notations and we have continued to use
it for all our future version of UML-B as well as any other model tooling that
we have developed. We used the Graphical Modelling Framework (GMF) [14] to
develop the concrete diagram syntax, editors and tooling.

Although this version of UML-B was quite popular with industrial users
that were relatively new to formal modelling, a significant portion of users were
already familiar with Event-B and would prefer to have the full flexibility of
working in Event-B and using the diagram notations more selectively.

2.3 Version 3 - iUML-B: Extending Event-B

In 2008, The ‘Deploy’ project [13] was started as a follow on from the Rodin
project with the aim of promoting the use of the Rodin platform, and its associ-
ated plug-ins such as UML-B, in industry. During this project a new version of
UML-B was developed that could work alongside Event-B, rather than overwrite
the Event-B models all the time.

Since the new iUML-B needed to be an extension of Event-B rather than a
separate language, a new EMF meta-model was needed. An Event-B text editor
(Camille) was also developed by Heinrich Heine University in Dusseldorf and
since both needed an EMF meta-model for Event-B, researchers at Dusseldorf
and Southampton, as well as University of Newcastle, worked together to produce
a common EMF based framework and meta-model for Event-B [21] which could
be used as the basis for future tools. The iUML-B meta-model then extends
the Event-B meta-model to support class diagrams and state-machines using
a generic extension mechanism built into the meta-model. The iUML-B model

13

Developing the UML-B modelling tools 5

was serialised (i.e. saved/persisted) within a single extension element within the
Rodin Event-B model.

In this version of UML-B, the diagrams still generate Event-B elements but
not the complete Event-B model. Some parts of the Event-B model are expected
to already exist and the diagrams elaborate them by providing further details.
For example a UML-B class no longer generates the data item (set, constant or
variable) that models the set of instances, but it can generate invariants that
constrain the set of instances. Similarly, attributes and associations, ‘elaborate’
existing data elements by generating invariants about their type (being a rela-
tion between the containing class instances and the attribute/association type).
Class methods and state-machine transitions ‘elaborate’ events that already ex-
ist in the Event-B and contribute extra parameters, guards and actions. This
strategy of elaboration allows the modeller to retain control over the Event-B
model and choose which parts to model in Event-B and which parts to model
diagrammatically in UML-B. (For expediency, the UML-B diagram editor pro-
vides an option to create the elaborated elements if they do not already exist in
the Event-B).

However, a disadvantage of diagrammatic models is that it becomes more
difficult to get a quick overview of all the details in the model. In a textual
syntax all of the details of the model are visible in the same view, even if they
are complicated to interpret, whereas in a diagram, it is cumbersome to show
everything on the canvas. Hence in UML-B certain model details are given in
the associated contextual properties view which only becomes visible when the
appropriate model element is selected. This led to some users asking for a human
readable text persistence for UML-B. Other advantages of a human readable text
persistence are that it may be easier to compare different versions of models
(provided order is maintained) and to copy and paste sections of models. (Note
that the default persistence is XMI (a variant of XML) which is ASCII text, but
designed for machine loading and therefore difficult to read).

2.4 Version 4 - xUML-B: A human usable text persistence

The Camille text editor for Event-B was very popular but still serialised models
using the Rodin XML-based format. Another problem with Camille was that it
is very difficult to extend a concrete syntax. Hence extensions to the Event-B
modelling language (e.g. UML-B) were difficult to accommodate. To obtain an
extensible and true human usable text serialisation for Event-B we developed a
new ’front-end’ for Event-B using XText [6,16] which we call ‘CamilleX’ [9]. Due
to the difficulty of extending Rodin models, CamilleX models are written in a
separate human readable text file. Hence the source models are separate from
the Rodin models which are automatically re-generated for verification purposes
when the CamilleX model is saved. Regeneration is efficient since the translations
are very fast and the Rodin verification builders are designed to find and re-
use existing proofs wherever possible. Further discussion on the development of
CamilleX is given in [10]

14

6 C.F. Snook et al.

However, this meant that the UML-B models can no longer be persisted
inside the Rodin models. Hence we are now developing an alternative persistence
scheme for iUML-B so that its models are stored separately from the elaborated
Rodin models. The new UML-B persistence is also based on XText so that we
have a human readable persistence for UML-B. We call this version xUML-B.

3 Conclusions

The main lessons we have learnt from our experiences of developing UML-B are.

– Heavily featured semi-formal modelling languages such as UML are difficult
to use for precise formally verifiable specification. While UML covers a wide
range of users needs it doesn’t support the precise mathematical semantics
needed for proof. UML can be specialised through profiles and stereotypes,
but users are confused if familiar features are not used or represent different
semantics. Therefore, it is better not to try to translate UML but to invent
a new notation that is better suited to the target formalism.

– A downside of making a new notation similar to a well-known existing one
such as UML, is that users may be confused when the model does not behave
as they are used to. An example of this is the difference between UML-B
state-machines and UML statechart ‘run to completion’ semantics.

– Model edition, checking and verification needs to be highly integrated so
that changes can be quickly assessed.

– While there are many users that are attracted to a self contained diagram-
matic notation, experienced users want the flexibility to choose between
diagrammatic and textual representations for different parts of a model.

– Even when diagrams are used, users express a strong desire for a human
usable textual persistence which helps with maintenance activities such as
version comparison and copy and paste as well as enabling a quick oversight
of the content

A common reaction to UML-B is to question the decision not to translate
standard UML. There is of course a desire not to proliferate new languages un-
necessarily. As we have already discussed, the UML semantics is not easily used
for representing Event-B semantics. For example, we have extensively researched
ways to reconcile run to completion semantics (used in UML statecharts) with
Event-B style refinement [11]. An alternative approach would be to develop a
new formalised theory of refinement for UML and provide new theorem provers
to support it. However, we believe this would be extremely difficult simply be-
cause great care was taken to achieve tractable refinement and proof in Event-B
by keeping to a simple and appropriate semantics.

Acknowledgements

This work is supported by the HiClass project (113213), which is part of the
ATI Programme, a joint Government and industry investment to maintain and
grow the UK’s competitive position in civil aerospace design and manufacture.

15

Developing the UML-B modelling tools 7

References

1. J-R. Abrial. The B Book - Assigning programs to meanings. Cambridge University
Press, 1996.

2. J-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge
University Press, 2010.

3. J-R Abrial, M. Butler, S. Hallerstede, T.S. Hoang, F. Mehta, and L. Voisin. Rodin:
An open toolset for modelling and reasoning in Event-B. Software Tools for Tech-
nology Transfer, 12(6):447–466, 2010.

4. B-Core(UK). B-Toolkit User’s Manual, Release 3.2. Oxford, UK, 1996.

5. A. Blackwell and T. Green. Chapter 5 - notational systems—the cognitive di-
mensions of notations framework. In J.M. Carroll, editor, HCI Models, Theories,
and Frameworks, Interactive Technologies, pages 103–133. Morgan Kaufmann, San
Francisco, 2003.

6. M. Eysholdt and H. Behrens. Xtext: Implement Your Language Faster Than the
Quick and Dirty Way. In OOPSLA, pages 307–309. ACM, 2010.

7. The Eclipse Foundation. The Eclipse Project Website. http://www.eclipse.org,
2009. Accessed Sept. 2022.

8. E. Gamma and K. Beck. Contributing to Eclipse: Principles, Patterns, and Plugins.
Addison Wesley Longman Publishing Co., Inc., Redwood City, CA, USA, 2003.

9. T. S. Hoang and D. Dghaym. Event-B and Rodin Documentation Wiki: CamilleX.
http://wiki.event-b.org/index.php/CamilleX, 2018. Accessed Sept. 2022.

10. T.S. Hoang, C. Snook, D. Dghaym, A. Salehi Fathabadi, and M. Butler. Building
an extensible textual framework for the rodin platform. F-IDE 2022, Lecture Notes
in Computer Science (to be published), 2022.

11. K. Morris, C. Snook, T. S. Hoang, G. Hulette, R. Armstrong, and M. Butler.
Formal verification and validation of run-to-completion style state charts using
event-b. Innovations in Systems and Software Engineering, Mar 2022.

12. The University of Southampton. The UML-B website. https://uml-b.org/, 2021.
Accessed Sept. 2022.

13. The Deploy Project. The deploy project website. http://www.deploy-project.

eu/, 2008. Accessed Sept. 2022.

14. The Graphical Modelling Project. The GMP project website. https://www.

eclipse.org/modeling/gmp/, 2010. Accessed Sept. 2022.

15. The Rodin Project. Rigorous open development environment for complex systems.
http://rodin.cs.ncl.ac.uk/, 2004. Accessed Sept. 2022.

16. The XText Project. The XText project website. https://www.eclipse.org/

Xtext/, 2020. Accessed Sept. 2022.

17. R. Razali, C. Snook, M. Poppleton, and P. Garratt. Usability assessment of a UML-
based formal modeling method using a cognitive dimensions framework. Human
Technology, 4(1):26–46, May 2008.

18. J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Language Refer-
ence Manual. Addison-Wesley, Reading, MA., 1998.

19. M.Y. Said, M. Butler, and C. Snook. Language and tool support for class and
state machine refinement in UML-B. In A. Cavalcanti and D. Dams, editors, FM
2009: Formal Methods, pages 579–595, Berlin, Heidelberg, 2009. Springer Berlin
Heidelberg.

20. C. Snook and M. Butler. UML-B: formal modelling and design aided by UML.
ACM Transactions on Software Engineering and Methodology, 15(1):92–122, 2006.

16

8 C.F. Snook et al.

21. C. Snook, F. Fritz, and A. Iliasov. Event-B and Rodin Documentation Wiki: EMF
Framework for Event-B. http://wiki.event-b.org/index.php/EMF_framework_

for_Event-B, 2009. Accessed Sept. 2022.
22. C. Snook and R. Harrison. Practitioners’ views on the use of formal methods: an

industrial survey by structured interview. Information and Software Technology,
43(4):275–283, 2001.

23. C. Snook and R. Harrison. Experimental comparison of the comprehensibility of a z
specification and its implementation in java. Information and Software Technology,
46(14):955–971, 2004.

24. D. Steinberg, F. Budinsky, M. Paternostro, and Ed Merks. Eclipse Modeling Frame-
work. The Eclipse Series. Addison-Wesley Professional, 2nd edition, 2008.

17

Correct-by-Construction Synthesis of
Sequential Algorithms

Dominique Cansell1 and Neeraj Kumar Singh2

1 EBRP, Lessy, France
dominique.canselll@gmail.com

2 INPT-ENSEEIHT / IRIT, University of Toulouse, Toulouse, France
nsingh@enseeiht.fr

Abstract. Jean-Raymond Abrial introduced a method in 2001 for constructing
sequential algorithms using a correct by construction approach, which involves
using IF and WHILE event merging rules on a concrete model to ensure correct-
ness. However, manual derivation of sequential algorithms is error-prone due to
the lack of tool support. To address this issue, we present a tool to automate the
merging rules proposed by Abrial. This tool allows users to generate sequential
algorithms from a verified abstract model and refined models in Event-B, while
preserving given invariants. One key feature of the tool is the creation of a com-
plex guard binary tree structure derived from the Event-B specification, aiding in
sequential algorithm generation and error identification. The tool has been evalu-
ated using standard examples developed by Abrial, demonstrating the importance
of automating sequential algorithm derivation without relying on post-verification
steps.

Keywords: Sequential algorithms · Correct-by-construction · Event-B · Refine-
ment and Proofs.

1 Introduction

A key feature of Event-B [3] and B methods [1] is to offer correct-by-construction
support for building complex systems. Several industry initiatives [4, 2, 10] have suc-
cessfully employed these approaches in the rigorous development of software systems
to detect flaws at an early stage of system development and to build confidence in the
correctness of their systems. These methods allow us to design a complex system ab-
stractly and then gradually refine it to a concrete level that is very close to implemen-
tation. Generating programming language source code manually from concrete models
can be a potentially error-prone process. However, there are some prototype tools avail-
able, but they may not produce code that closely resembles traditional programs. As
a result, it is difficult to employ formal techniques approaches in traditional software
development, and many industries avoid using them. We argue that one explanation for
this is a lack of tool support for synthesising sequential algorithms or source code as
classical programs.

To synthesize sequential algorithms, J. R. Abrial proposed many examples of algo-
rithms construction using refinement with his two merge events rules to produce con-
ditional and loop algorithms and one rule to add initialisation in 2001. From 2014 to

18

2 Cansell and Singh

2019 J. R. Abrial gave lecture “Analysing and Constructing Computer Programs" espe-
cially in Shangai. Twenty two years after J. R. Abrial ask to D. Cansell to work again
on this topic. Many others examples are developted by D. Cansell in the EBRP project:
compute the n first prime numbers (many versions), bubbelsort (many versions), Dutch
Flag, Better decomposition of a natural n (it’s a set of natural numbers where the sum
is n and which maximalize the product). A tool to apply JRA’s merging rules was de-
velopted in 2019 in Shangai [17] (Li Qin team) but the tool is not complete (some side
conditions are missing) and require human interaction.

In this study, we present a new automatic tool for automating the merging rules pro-
posed by Abrial under the umbrella of EB2ALL [14, 11, 15] to produce correct sequen-
tial algorithms. EB2ALL is a code generation tool developed by N. K. Singh that auto-
mates the process of generating code in multiple programming languages, including C,
C++, Java, C#, Solidity, and others. EB2Algo tool allows users to generate sequential
algorithms from a verified abstract model and refined models in Event-B, while pre-
serving given invariants. One key feature of the tool is the creation of a complex guard
binary tree structure derived from the Event-B specification, aiding in code generation
and error identification. The tool has been evaluated using standard examples developed
by Abrial and Cansell, demonstrating the importance of automating sequential algo-
rithm derivation without relying on post-verification steps. In addition, the evaluation
of this tool reveals its potential to improve the creation and verification of sequential
algorithms, making it a significant asset for software engineers and academics in the
field.

The famous "Dutch Flag" from Dijkstra [6] is used throughout the paper as an ex-
ample to explain

– how can we develop it correctly using Event-B method
– how can we produce by hand a correct algorithm using JRA’s rules
– how can we generate this algorithm (and others) using the new tool EB2Algo illus-

trated in this paper.

The remainder of this paper is organized as follows. Section 2 provides a brief
overview of the key elements of the Event-B modeling language, including refinement.
Section 3 describes the development of the Dutch Flag example. Section 4 presents the
JRA rules for constructing sequential algorithms and provides side conditions demon-
strated using the Dutch Flag example. Section 5 outlines the core idea of designing
guard binary tree for deriving sequential algorithms based on JRA rules, followed by
the implementation of a Rodin plugin called EB2Algo. Section 6 provides an assess-
ment, and related work is presented in Section 7. Finally, Section 8 concludes the paper
with future work.

2 Event-B modeling language

This section presents the fundamental concepts of the Event-B modeling language [3],
which is based on set theory and first order logic (FOL), as well as it allows to design
a complex system using a correct-by-construction approach. The design process con-
sists of a series of refinements of an abstract model (specification) leading to the final
concrete model.

19

Correct-by-Construction Synthesis of Sequential Algorithms 3

There are two main modeling components: Context and Machine. Context model de-
scribes the static characteristics of a system using carrier sets (s), constants (c), axioms
(A(s, c)) and theorems (T_c(s, c) proved with previous axioms or theorems). Machine
model describes the dynamic behavior of a system using variables (x), invariants (I(x)),
theorems (T_m(x) proved with previous invariants, axioms or theorems) and a set of
events modifying a set of variables (state) represents the core concepts of a machine.
The relationship between Event-B model components is described using terms such as
refines, extends, and sees.

An event is a state transition in a dynamic system an event can be deterministic
(DE), guarded (GE) or non deterministic (NDE). 0n an event we can define a Before-
After predicate (BA(x,x’)) which express the relation between x (value of x before the
event) and x′ (value of x after the event).

DE x := E(x) x′ = E(x)
GE when G(x) then x := E(x) end G(x) ∧ x′ = E(x)

NDE any α where G(α, x) then x := E(α, x) end ∃α ·G(α, x) ∧ x′ = E(α, x)

There are Proof Obligations (PO) to prove the invariant I(x):
A(s, c) ∧ I(x) ∧ BA(x, x′) ⇒ I(x′). We have also a PO for the initialization

using an After Predicate.
The refinement process allows for the introduction of new features or more specific

behavior to a model of a system. This technique allows for the gradual modeling of a
system and the strengthening of invariants to incorporate more detailed behavior. By
modifying the state description, the refinement approach transforms an abstract model
into a more concrete version. This is achieved by refining each abstract event to its
corresponding concrete version or by adding new events. The abstract and concrete state
variables are connected through gluing invariants. The verification process ensures that
each abstract event is correctly refined by its concrete version through the generation
of proof obligations. For example, if the abstract model AM has a state variable x
and an invariant I(x), it is refined by the concrete model CM with a variable y and a
gluing invariant J(x, y) (If there are common variables the abstracts one are renamed
and the equality between both is added to the gluing invariant). For each event we have
an abstract before-after predicate BAA(x, x′) and a concrete one BAC(y, y′). The
following PO prove invariance and refinement of the event:
A(s, c) ∧ I(x) ∧ J(x, y) ∧ BAC(y, y′) ⇒ ∃x′ · J(x′, y′) ∧ BAA(x, x′). We have
also a PO for the initialization using an After Predicate.

For a variant V (y) each convergent event decrease the positive variant:
A(s, c) ∧ I(x) ∧ J(x, y) ∧ BAC(y, y′) ⇒ V (y) ≥ 0 ∧ V (y′) < V (y) .
More details on POs can be found in [3].

Rodin is an open source framework that supports the development, verification and
validation of Event-B models. It offers model checking, animation with ProB, and code
generation features. It also allows for the integration of external provers related to first-
order logic (FOL) and satisfiability modulo theories (SMT), aiding in the proof process
for increasing proof automation. Additionally, Rodin enables the development of plug-
ins extensions to enhance its core functionality as well as to provide interoperability
with other tools.

20

4 Cansell and Singh

3 Correct-by-Construction Modeling of Dutch Flag using Event-B

In this section, the Dutch Flag case study is used as a practical example throughout
the paper to illustrate the concepts and the JRA’s IF and WHILE rules, as well as the
development of the plugin EB2Algo for automation.

The well-known "Dutch Flag" from Dijkstra [6] is compared to the quick sort par-
tition operation, but it is also a sorting algorithm based on three ordered colors (blue,
white, and red). If all three colors are present in the array (blue, white, and red), the
array will contain all blue values first, then all white values, and finally all red values.

At the end, g contains all of the values of f , but in order. A sorting algorithm of f
finds a permutation PI of index of f such that PI; f is sorted. We will demonstrate
how to build this program from this property.

3.1 Abstract model of Dutch National Flag

In a Rodin context, there are constants n and f representing a natural number (n ∈ N1)
and a function ((f ∈ 0..n− 1→ 0..2), respectively. n represents a number greater than
or equal to 1, while f contains values to be sorted. The values in f correspond to colors
- 0 is blue, 1 is white, and 2 is red. The algorithm’s result will be stored in the variable
g. An abstract event final will compute the result in a single "magically" shot.

EVENT final
any

PI
where

PI ∈ 0..n− 1 ↣↠ 0..n− 1
∀i, j · i ∈ 0..n− 1 ∧ j ∈ i..n− 1 ⇒ f(PI(i)) ≤ f(PI(j))

then
g := PI; f

end

g ∈ 0..n−1 7→0..2 is the trivial invariant. Each new event (in refinement) holds this
invariant. If final occurs, g will well contain all the values of f in the good order. It’s
clearly a sorting algorithm. This model is very close to the PRE and POST conditions
of an algorithm.

{PRE} Algo {POST}
EVENT Algo

when
POST

end

If Algo is an abstract algorithm we get this event, where constants hold PRE.
Thanks to the refinements which ensure that all refinements of event final hold post-
condition and thanks to variants which ensure that all new events will not take the
control for ever then event final will trigger.

3.2 First refinement: compute permutation

To handle the refinement proof for the event final, we require the following invariants:
we have the permutation variable Pi, as well as the variables b, w, and r.

21

Correct-by-Construction Synthesis of Sequential Algorithms 5

Pi ∈ 0..n− 1↣↠ 0..n− 1
b ∈ 0..n
w ∈ 0..n
r ∈ −1..n− 1

b ≤ w
∀i · i ∈ 0..b− 1⇒ f(Pi(i)) = 0
∀i · i ∈ b..w − 1⇒ f(Pi(i)) = 1
∀i · i ∈ r + 1..n− 1⇒ f(Pi(i)) = 2

The defined variables are initialize as Pi := 0..n−1� id || g := f || b := 0 || w :=
0 || r := n − 1. The event final has been refined in the following ways, and three new
events (swap_wr, swap_bw and progress_w) have been added. In the event final, a
new guard w > r is added, and a witness for the abstract variable PI is defined. This
event’s action is updated with a new witness Pi and becomes g := Pi; f . In the event
swap_wr, we introduce two guards w ≤ r and f(Pi(w)) = 2, as well as three actions
for swapping in Pi, decreasing r by 1, and abstractly computing g.

EVENT final
when

w > r
with

PI = Pi
then

g := Pi; f
end

EVENT swap_wr
when

w ≤ r
f(Pi(w)) = 2

then
Pi := Pi �− {w 7→ Pi(r), r 7→ Pi(w)}
r := r − 1
g :∈ 0..n− 1 7→ 0..2

end

In the next event swap_bw, we introduce two guards w ≤ r and f(Pi(w)) = 0, and
four actions for swapping in Pi, increasing b and w by 1, and abstractly computing g.
Finally, in the event progress_w, we introduce two guards w ≤ r and f(Pi(w)) = 1,
and an action for increasing w by 1.

EVENT swap_bw
when

w ≤ r
f(Pi(w)) = 0

then
Pi := Pi �− {w 7→ Pi(b), b 7→ Pi(w)}
b := b + 1
w := w + 1
g :∈ 0..n− 1 7→ 0..2

end

EVENT progress_w
when

w ≤ r
f(Pi(w)) = 1

then
w := w + 1

end

Additionally, we introduce a variant r − w in this refinement for all the introduced
events. To ensure the correct refinement, all the generated proof obligations (POs) are
discharged using Rodin proving tools.

3.3 Second refinement

In this refinement, we remove the permutation variable Pi that is now hide in variable
g by using the gluing invariant: g = Pi ; f . All events are further refined below.

There is only one guard w > r that must be satisfied for the event final in order to
determine the final results of algorithms computed in g. Because of the gluing invariant,
no action is required in this event. In the refined event swap_wr, we introduce two

22

6 Cansell and Singh

new guards g(w) ̸= 1 ∧ g(w) ̸= 0 by refining the abstract guard f(Pi(w)) = 2
((Pi; f)(w) = g(w). The gluing invariant holds because g�−{w 7→ g(r), r 7→ g(w)} =
(Pi�− {w 7→ Pi(r), r 7→ Pi(w)}); f

EVENT final
when

w > r
then
end

EVENT swap_wr
when

w ≤ r
g(w) ̸= 1
g(w) ̸= 0

then
g := g �− {w 7→ g(r), r 7→ g(w)}
r := r − 1

end

In the next event, swap_bw, the abstract guard f(Pi(w)) = 0 is refined by intro-
ducing two new guards: g(w) = 0 and g(w) ̸= 1 (which can be a guard theorem). In the
actions, the action related to Pi is eliminated, and g is updated with a swapping between
g(b) and g(w). Finally, in the event progress_w, the abstract guard f(Pi(w)) = 1 is
refined to g(w) = 1, while the actions of the event remain the same.

EVENT swap_bw
when
w ≤ r
g(w) = 0
g(w) ̸= 1

then
g := g �− {w 7→ g(b), b 7→ g(w)}
b := b + 1
w := w + 1

end

EVENT progress_w
when

w ≤ r
g(w) = 1

then
w := w + 1

end

4 Construction of Sequential Algorithms

In 2001, J. R. Abrial defined two rules for generating a correct sequential algorithm
(see Chapter 15 in [3]). These two rules, M_IF and M_WHILE, merge two events
(or algorithms). A guarded algorithm can be written as when B then S end,
where S is an algorithm: such as assignment (:=), a conditional, a sequential or a loop.

The JRA rules for M_IF, M_WHILE, and M_INIT are shown below. For more in-
formation, please see Chapter 15 of the Abrial book in [3].

when
P
Q

then
S

end

when
P

¬Q
then

T
end

;

when
P

then
if Q then

S
else

T
end

end

M_IF

when
P
Q

then
S

end

when
P

¬Q
then

T
end

;

when
P

then
while Q do

S
end ;
T

end

M_WHILE

Init final_Algo ; Init ;
final_Algo M_INIT

23

Correct-by-Construction Synthesis of Sequential Algorithms 7

4.1 Side conditions

A list of side conditions proposed by Abrial is provided as follows:

– Rule M_IF is applied when both events are defined in the same refinement or when
the rule M_WHILE cannot be applied,

– Rule M_WHILE is applied when the first event is defined in a deeper refinement
and when P is preserved under S when Q holds. When the loop finish ¬Q holds
and T occurs. It’s the second event only is P holds (P must be invariant under S).
In other case we apply rule M_IF,

– Rule M_INIT is apply only when we have a non guarded event FINAL_ALGO (all
events are merged).

J. R. Abrial defined these rules before the notion of anticipated or convergent events.
The order to decide between an IF or a WHILE is slightly different. We assign two
levels for an event evt. To identify a machine we assign to each machine a number: 0
for the abstract machine and i for the ith refinement.

To compute convergent and refinement levels, we define the following two func-
tions: convlvl(evt) is the refinement level where evt is convergent; deflvl(evt
is the refinement level at which evt is defined for the first time.

The level of an event evt is convlvl(evt) 7→ deflvl(evt), and the order to
compare two events is the lexicographic order. The event final is never convergent, but
for convenience convlvl(final) is set to 0. The following are the convergent and
refinement levels for all events:

level(final) = 0 7→ 0, level(swap_bw) = 1 7→ 0, level(swap_wr) = 1 7→
0 and level(progress_w) = 1 7→ 1.

The level of an algorithms is the small level (the more abstract one).

4.2 Construction of the Dutch Flag algorithm

This section details the merging process specifically related to the last concrete model
of the Dutch Flag.

To merge the events swap_bw and swap_wr together, an IF rule can be used since
both events have the same level, which is 1 7→ 0 = 1 7→ 0. The merged event
swap_bwr is shown below.

EVENT swap_bwr
when

w ≤ r
g(w) ̸= 1

then
if g(w) = 0 then

g := g �− {w 7→ g(b), b 7→ g(w)}
b := b + 1
w := w + 1

else
g := g �− {w 7→ g(r), r 7→ g(w)}
r := r − 1

end

EVENT swap_bwr_progress_w
when

w ≤ r
then

if g(w) = 1 then
w := w + 1

else
if g(w) = 0 then

g := g �− {w 7→ g(b), b 7→ g(w)}
b := b + 1
w := w + 1

else
g := g �− {w 7→ g(r), r 7→ g(w)}
r := r − 1

end
end

24

8 Cansell and Singh

Furthermore, we can merge the events swap_bwr (Level: 1 7→ 0) and progress_w
(Level: 1 7→ 1) together. It is not possible to use a WHILE rule since the condition
w ≤ r is not preserved by w := w + 1. Instead, we apply the rule M_IF. Apply the
M_IF rule, the merged event swap_bwr_progress_w is shown above.

Finally, we can merge the events swap_bwr_progress_w (Level:1 7→ 0) and
final (Level: 0 7→ 0) together using the M_WHILE rule since the condition ⊤ true is
always preserved. The merged event swap_bwr_progress_w_final is shown below.

EVENT swap_bwr_progress_w_final
while w ≤ r do

if g(w) = 1 then
w := w + 1

else
if g(w) = 0 then

g := g �− {w 7→ g(b), b 7→ g(w)}
b := b + 1
w := w + 1

else
g := g �− {w 7→ g(r), r 7→ g(w)}
r := r − 1

end
end

od ;

EVENT Algo_Dutch_Flag
g := f || b := 0 || w := 0 || r := n− 1 ;
while w ≤ r do

if g(w) = 1 then
w := w + 1

else
if g(w) = 0 then

g := g �− {w 7→ g(b), b 7→ g(w)}
b := b + 1
w := w + 1

else
g := g �− {w 7→ g(r), r 7→ g(w)}
r := r − 1

end
end

od ;

Finally, we can use the rule M_INIT to merge the events Initialisation and swap_bwr_progress_w_final
together. The final merged event Algo_Dutch _Flag is shown above.

5 Tool Support for Sequential Algorithms

This section describes the core development of the EB2Algo tool, specifically the deriva-
tion of the guard binary tree, determining side conditions for JRA rules, determining
IF and WHILE rules, synthesising sequential algorithms, and Rodin plugin implemen-
tation. Furthermore, each step is illustrated with the Dutch Flag example.

5.1 Derivation of Guard Binary Tree

A guard binary tree is a form of binary tree that uses guards to split a set of events in its
nodes. Each node in the tree has a guard condition and a collection of events. The guard
condition is used to determine how to partition the events into left and right child nodes.
For example, let’s say we have a guard binary tree with a root node containing the guard
condition Q. If an event satisfies Q, it is placed in the left child node; otherwise, it is
placed in the right child node. The partitioning process is applied recursively to assign
each event in the leaf node, creating the entire tree structure. In addition to the guard
condition, a guard binary tree can also include other checks, such as ensuring that the
tree is a full binary tree. A full binary tree is a tree in which every node has either 0 or
2 children. This requirement helps maintain the structural integrity of the tree.

Furthermore, a great care must be taken to guarantee that all tree nodes include only
events that meet either Q or ¬Q. Each leaf node can only contain one event. There is
an issue with generating the guard binary tree if a leaf node includes more than one

25

Correct-by-Construction Synthesis of Sequential Algorithms 9

Algorithm 1 An algorithm for deriving Guard Binary Tree
1: function GUARDBINARYTREE(treeNode, evtList, grd)
2: evtLeftList← ϕ
3: evtRightList← ϕ
4: for each ei ∈ evtList do
5: if grd ∈ guardsOf(ei) then
6: evtLeftList← evtLeftList ∪ {ei}
7: treeNode.Left← setGrdEvts(grd, evtLeftList)
8: else if ¬grd ∈ guardsOf(ei) then
9: evtRightList← evtRightList ∪ {ei}
10: treeNode.Right← setGrdEvts(¬grd, evtRightList)
11: else
12: return False
13: end if
14: end for
15: if (card(evtLeftList) = 1) ∧ card(evtRightList) = 1) ∧ No guard left in evtLeftList and

evtRightList then
16: return True
17: else
18: return False
19: end if
20: if (evtLeftList > 1) then
21: for each gi ∈ guardsOf(evtLeftList(1)) do
22: if gi is not added in Binary Tree then
23: grdLeft← gi
24: end if
25: end for
26: return GURADBINARYTREE(treeNode.Left, evtLeftList, grdLeft)
27: end if
28: if (evtRightList > 1) then
29: for each gi ∈ guardsOf(evtRightList(1)) do
30: if gi is not added in Binary Tree then
31: grdRight← gi
32: end if
33: end for
34: return GURADBINARYTREE(treeNode.Right, evtRightList, grdRight)
35: end if
36: end function

event, there is no common guard condition between the left and right child nodes, or
there are no events in either the left or right child node. The core algorithmic structure
for recursively deriving a guard binary tree is presented by Algorithm 1. We employ
additional predefined functions in our algorithm. These functions are guardsOf to
extract a list of guards for an event, setGrdEvts to update a tree node with a guard
and a list of events, and selectCommonGuard to determine a common guard for a
group of events.

5.1.1 Guard Binary Tree of Dutch Flag The guard binary tree of the Dutch Flag
is depicted in Fig. 1. Fig. 1(a) is derived from the concrete model of the selected case
study, and this tree is equivalently presented in the implemented tool in Fig. 1(b). This
tree is derived using our implemented Algorithm 1. The root node is initially empty,
indicated as ⊤ and the first guard (r < w) is chosen from the final event to discover
a list of events for the left and right nodes. Because this guard is only in the final
event, the left node has only one event and the right node contains the remaining events
(progress_w; swap_bw; swap_wr). Then a common guard (w ≤ r) is identified from
the list of events on the right node. We do not need to split any more as the left node

26

10 Cansell and Singh

(a) Guard binary tree
layout

(b) Guard binary tree in Rodin

Fig. 1: Guard binary tree of the Dutch Flag

has only one event. However, the right node includes three events, we choose a guard
from the list of events not used in the guard binary tree. This guard (g(w) = 1) is
selected from the event progress_w, which is used to split all three events for the left
and right nodes. The left node has only one event, progress_w, and the right node has
two events, (swap_bw; swap_wr) with the same guard (g(w) ̸= 1). As the right node
has two events, we choose a guard from the list of events not used in the guard binary
tree. This guard (g(w) = 0) is selected from the event swap_bw, and it used to split the
events into the left and right nodes, and a guard is chosen form the right node. Finally,
the left and right nodes have only one event, we do not need to split any more left and
right nodes. Note that the obtained binary is a full binary tree satisfying the required
condition for synthesizing sequential algorithms.

5.2 Determining side conditions

This section presents an overview of additional developed algorithms for establishing
convergence and refinement levels, guard preservation, determining IF and WHILE
rules for merging events, and finally synthesis of sequential algorithms.

5.2.1 Determining convergence and refinement levels. There are two important
elements, convergence and refinement, of Event-B play a crucial role in choosing IF
and WHILE rules on the left and right nodes for synthesizing sequential algorithms.
In Event-B, convergence refers to how a model behave along the refinement hierar-
chy. Convergence happens when a model’s behavior remains constant as refinement
advances, which means that any properties met in the initial model are satisfied in all
successive refinements. Convergence is important because it ensures that the refined
models consistent with the initial model and maintain the required properties are pre-
served. Event-B employs refinement levels to represent various stages of abstraction
and detail in system development. The refinement hierarchy begins with an abstract
model and evolves through refinements to a concrete implementation. Each refinement
level adds additional detail, perfecting previous levels’ behaviors and attributes. The
levels are organized in a hierarchical system, with each level improving on the one be-
fore it. The convergence and refinement level for each event is defined by the first time
an event is labeled as a convergent event, and the concrete event is presented for the first

27

Correct-by-Construction Synthesis of Sequential Algorithms 11

time at any level of the refinement chain, respectively. Note that the leaf nodes contain
only a single event, the convergence level and refinement level may be derived directly,
whereas nodes with many events must identify the convergent level and refinement level
based on lexicography comparison of merging events. The determined convergent and
refinement levels are set for each node of the guard binary tree (see Fig. 2).

Convergent and refinement levels of the Dutch Flag. Fig. 2 depicts a guard binary tree
with convergent and refinement levels. The final event is introduced with the convergent
tag at the abstract level, so it defined as (0, 0). The events swap_bw, swap_wr are
refined events of the abstract event swap and were tagged as convergent in the first
refinement, therefore they have the same convergent and refinement levels (1, 0). The
progress event is introduced in the first refinement and tagged as convergent event, so it
has both convergent and refinement levels (1, 1). The convergent and refinement levels
of the combined events swap_bw; swap_wr is determined through the lexicography
comparison of convergent and refinement levels of each events, so it is determined
as (1, 0). Similarly, for the combined events progress_w; swap_bw; swap_wr the
convergent and refinement levels are determined as (1, 0). The levels computed by the
tool are equivalent to the manually computed levels in Section 4.

5.2.2 Guard Preservation. Guard preservation is an important property to determine
side conditions, particularly when selecting the WHILE rule. If this property holds then
the WHILE rule is used; otherwise the IF rule is used. Guard preservation in the same
node and all upper level guard binary tree nodes refers to the property that if a guard
predicate is true at the current node, it remains true as we move up the tree towards the
root. In order to demonstrate guard preservation, we need to show that all the events
for the current node and other upper level binary tree nodes do not modify the free
variables used for defining the upper level guards. This ensures that the guard predicate
is preserved throughout the tree. Note that if we do not modify free variables, the guard
is retained; however, if we modify free variables, we must check it using another method
(which is beyond the scope of this study). POs are an alternate method for ensuring
guard property preservation. In the future, we will incorporate such a method within
our tool. The guard binary tree contains preserved guards at each node, which can be
used to determine the necessary condition for the WHILE rule (refer to Fig. 2).

Guard preservation of the Dutch Flag. Fig. 2 depicts a guard binary tree with a list of
guards visited in upper level nodes. For example, in the node [progress_w; swap_bw;
swap_wr], both the left and right nodes do not have the same convergence and refine-
ment levels, so we can use the WHILE rule if only if the the guard (w ≤ r) is preserved.
But, it is not preserved by left or right node, because, the free variables (w and r) of the
guard (w ≤ r) are modified by the events progress_w; swap_bw; swap_wr, so the
WHILE rule is not applicable for merging the events, thus based on side conditions (for
more detail see Section 4), we select the IF rule for merging these events. Similarly,
in the root node, both the left and right nodes do not have the same convergence and
refinement levels, but guard is preserved (GP:(⊤)) as shown in Fig. 2, thus the WHILE
rule is determined to merge all the root node’s events [final; progress_w; swap_bw;
swap_wr].

28

12 Cansell and Singh

Fig. 2: Final guard binary tree with side conditions

5.2.3 Determining IF and WHILE Rules Section 3 describes the IF and WHILE
rules, proposed by J. R. Abrial, for synthesizing sequential algorithms. These rules are
encoded in the developed tool for defining IF and WHILE rules whenever there is a need
to merge two nodes. However, it is important to note that these rules are not applicable
to the leaf nodes of the guard binary tree. To ensure correct node merging and condition
preservation at multiple refinement levels, we calculate the convergent and refinement
levels, compare the nodes, verify for upper level guard preservation, and define merging
procedures. It is important to note that IF and WHILE condition correspond to the
guard predicate Q, while the negation condition of the IF and WHILE corresponds to
the guard predicate ¬Q. This selection process is explained in more detail in Section 4.

IF and WHILE rules of the Dutch Flag. Fig. 2 depicts a guard binary tree with non-
leaf node IF and WHILE rules based on the JRA side conditions by determining con-
vergent and refinement levels as well as guard preservation. For example, the non-leaf
node [swap_bw; swap_wr] has an IF rule because the both child nodes have same
convergent and refinement level. Similarly, the other intermediate node [progress_w;
swap_bw; swap_wr] has also an IF rule, because guard is not preserved, and fi-
nally in the root node, we have WHILE rule to merge all the root node events [final;
progress_w; swap_bw; swap_wr] because the child nodes have different convergent
and refinement levels and guard is preserved (GP:(⊤)).

5.3 Synthesizing sequential algorithm

This section describes synthesizing sequential algorithm using the built guard binary
tree. Once the tree is constructed, the algorithm can be synthesized by traversing the tree
in a depth-first manner. Furthermore, the current node is utilised to build the required
algorithm based on the left and right nodes, the guard chosen based on IF and WHILE
rules, and the choice of IF or WHILE rule.

5.3.1 Synthesizing sequential algorithm of Dutch Flag Listings.1.1 shows the gen-
erated algorithm from the Dutch flag example. Lines 8-14 are generated by the node,
which consists of two events (swap_bw, swap_wr) that use IF rules (see Fig. 2). Simi-
larly, another intermediate node of the guard binary tree with three events (progress_w,
swap_bw, swap_wr) using the IF rule with the condition (guard) of the left node in
lines 6-8. Finally, Lines 5 and 15 are generated from the root node applying the WHILE
rule. Lines 1-4 are used to set the initial value of each variable extracted from the Ini-
tialisation event.

29

Correct-by-Construction Synthesis of Sequential Algorithms 13

1 g := f ||
2 b := 0 ||
3 w := 0 ||
4 r := n - 1
5 while w ≤ r do
6 if g(w)=1 then
7 w := w+1
8 else if g(w)=0 then
9 g := g �− {w 7→ g(b),b 7→ g(w)} ||

10 w := w+1 ||
11 b := b+1
12 else
13 g := g �− {w 7→ g(r),r 7→ g(w)} ||
14 r := r - 1
15 od;

Listing 1.1: Generated Algorithm of Dutch Flag

5.4 Implementation as Rodin plugin

In this section, we introduce our newly developed plugin tool EB2Algo1, which is
designed to generate sequential algorithms from Event-B models in the Rodin plat-
form using the Eclipse development environment. The EB2Algo plugin is part of the
EB2ALL [14, 11] project, which focuses on code generation tools and methodologies
for Event-B to different programming languages. The plugin utilizes the core architec-
ture of EB2ALL to parse Rodin projects and includes new algorithms for designing
guard binary trees, side conditions, guard preservation, and algorithm generation. The
plugin allows users to create algorithmic models within the Rodin platform using the
user-friendly interface provided by Eclipse. Users can select a Rodin project and the
tool will automatically generate a sequential algorithm, which is then stored in a file.
The tool also generates a guard binary tree and logs details related to the algorithmic
generation, which are stored in a log file. The log file is primarily used to identify any
bugs or issues that may have occurred during the algorithm generation process. A dialog
box is also displayed to notify users whether the algorithm was generated successfully
or if there are any bugs that need to be addressed. With the ability to extend the tool to
generate algorithms in different programming languages, EB2Algo provides a conve-
nient and efficient way to automatically generate sequential algorithms from Event-B
models within the Rodin platform.
Fig. 3 depicts a screen capture of the EB2Algo within the Rodin environment. Once
the plug-in is installed successfully, the Translator/EB2Algo menu along with a tool
button will become visible. To create a sequential algorithm for a formal model, the
user can select it from either the EB2Algo menu or the tool button, which will bring up
a dialog box. This dialog box presents a list of currently active projects, and the user
can choose any project to generate the sequential algorithm. The generated algorithm
will be accompanied by a log file containing information about the algorithm generation
process in the Rodin project folder.

1Download: https://sites.google.com/site/singhnne/eb2algo

30

14 Cansell and Singh

Fig. 3: Screenshot of the EB2Algo plugin in Rodin

6 Evaluation

The developed tool, EB2Algo1, facilitates the sequential algorithm generation from
classic Event-B models using JRA’s IF and WHILE rules. These models are designed to
support correct-by-construction approaches. We analyze our source model in the Rodin
tool and generate sequential algorithms while preserving the given properties. To meet
the required side conditions and preserve guards, we derive a guard binary tree from the
Event-B models. Our tool, EB2Algo, has successfully generated sequential algorithms
for a total of 25 Rodin projects2. These projects can be categorized into two sets, with
17 projects initially developed by J. R. Abrial and 8 projects developed by D. Cansell.
The 17 projects developed by J. R. Abrial consist of various algorithms, including:
2 algorithms for performing division using the Euclidean method, 2 algorithms for cal-
culating the square root of an integer, 2 algorithms for searching a specific value within
an array or a matrix, 2 algorithms for finding the maximum value in an array, 2 algo-
rithms for finding the minimum value in an array, 1 algorithm for reversing the elements
of an array, 1 algorithm for partitioning an array, 1 algorithm for inverting a natural
function (an abstract version of the square root), 1 algorithm for sorting elements in an
array using the selection sort, method, 2 algorithms for reversing pointers, 1 algorithm
for calculating the greatest common divisor (gcd).
On the other hand, the 8 projects developed by D. Cansell consist of different algo-
rithms, including: 7 algorithms for sorting elements in an array using the bubble sort
method, 2 algorithms for sorting elements in an array using the quicksort method, 1
algorithm for sorting elements in an array using the selection sort method (a new ver-
sion using permutation), 1 algorithm for the Dutch flag, 8 algorithms for generating the
nth first prime numbers, 1 algorithm for calculating the greatest common divisor (gcd)
using the modulus operator, 1 algorithm for better decomposition of natural number.
Overall, our tool has successfully generated sequential algorithms for a diverse range
of projects, covering various computational problems and algorithms used in Rodin

2Download: https://www.irit.fr/EBRP/software

31

Correct-by-Construction Synthesis of Sequential Algorithms 15

projects. Note that some of the projects consist of multiple models, resulting in differ-
ent sets of algorithms. We first verify these examples in Rodin and then use our tool
to produce sequential algorithms. Additionally, we manually check each algorithm to
ensure their correct generation.
Some of the Event-B projects have only two or three refinements, while others have a
maximum of 8 to 10 refinements. Some models are complex and contain the required
axioms and theorems. Despite this complexity, the verification of the algorithms and
the generation of sequential algorithms occur without any problems. In each gener-
ated algorithm, a guard binary tree is successfully created, preserving the guards and
producing the required algorithm. Through lexicographic analyses of convergence and
refinement structure, the IF and WHILE conditions are correctly identified. During the
construction of a guard binary tree, if any element (i.e., guard) is not found in the gener-
ated tree, the tool raises an exception with precise details. Rodin tool may not determine
that the missing element is an error in the model, but it is a new condition that needs to
be fulfilled based on JRA’s rules.
Our tool, EB2Algo, contains over 5000 lines of code and is user-friendly. It is easily
extendable to generate code in various target programming languages. The generated
algorithms are stored in a file, and the code generation process is logged in another file.
Users can choose to manually evaluate the guard binary tree by selecting the appropriate
option. Furthermore, if any issues arise during the generation of the guard binary tree,
an exception can be generated along with the guard binary tree in construction: a guard
is perhaps missing or too many (theorem).
The developed tool, EB2Algo, and the generated sequential algorithms are available for
download from1.

7 Related Work

Only [17] produces an algorithm uisng JRA’s merging rules, but side conditions on
guard preservation are not verified. We regret that no other work uses them. Singh et
al. [14, 11, 15] propose the EB2ALL tool set as a Rodin plugin for generating code in
several programming languages. The fundamental concept of generating source code
is quite similar to the structure of Event-B events. Each event is generated as a func-
tion with the arguments provided. Finally, all of these functions can be called from
the main program via scheduling or employed in the development of complex soft-
ware systems. A simple plugin B2C is presented in [16] to generate code in C language
from Event-B concrete model. In [13], the authors present a code generation tool called
EventB2Java for Event-B models. This tool is designed to convert Event-B models into
JML-annotated Java programs, with support for a subset of Event-B operations. In [12],
the authors present a method for producing VHDL code from Event-B formal mod-
els. They use structural similarities between the formal model and hardware description
language statements to create an automatic translation algorithm. This algorithm is im-
plemented as a Rodin tool plug-in. In [9], the authors propose an approach to ensure
that program code generated from Event-B models is correct. It achieves this by using
refinement and well-definedness restrictions, preventing runtime errors caused by se-
mantic differences and addressing issues with different interpretations of integer values.

32

16 Cansell and Singh

Refinement techniques are used to show that the generated code correctly implements
the original model. A user-friendly scheduling language is also proposed for specifying
event execution sequences, including the assertions properties. Note that there is no tool
has been implemented with this approach. In [7], the authors describe a new method
for building concurrent programs in Ada in Event-B by utilizing Tasking and Shared
Machines. A tasking extension structures projects for generating code for multitasking
implementations by using refinement, decomposition, and the extension. Further this
approach is explored for generating Ada programs in [8]. In [5], the authors describes
a code generation approach to produce efficient code from B formal methods [1]. They
describe a new translation process architecture that translates the B0 language to a target
programming language in sequential code. A case study on Java Card Virtual Machine
development demonstrates the approach’s effectiveness in generating efficient code.
It should be noted that there is no treatment for developing any sequential algorithm
in above mentioned tools (except in [17], which is incomplete) particularly for Event-
B modeling language. This is the first study, as far as we know, to propose a tool for
synthesizing sequential algorithms for Event-B models. The developed sequential algo-
rithms can be used to create source code in any programming language.

8 Conclusion and Future Work

This paper presented a new automatic tool, EB2Algo, that automates the merging rules
proposed by Abrial. The tool generates sequential algorithms from verified abstract
and refined Event-B models that preserve the required invariants. A significant feature
of the tool is the creation of a complex guard binary tree structure derived from the
Event-B specification, which assists in code generation and error identification. The
tool is developed in the Eclipse framework under the EB2ALL umbrella and tested
using standard 25 Event-B projects, in which 17 projects developed by J. R. Abrial,
and 8 projects (contain 21 algorithms) developed by D. Cansell. The developed tool,
EB2Algo, and the generated codes can be downloaded from1. This is a key step in
automatically deriving sequential algorithms from the Event-B model without relying
on post-verification.
This work leads to several new perspectives. First, to derive a concurrent algorithm
from the sequential version actions, where the derived algorithm can be implemented
for concurrent systems. Another key aspect in our work involves generating sequen-
tial algorithms in the preferred programming language. The next challenge is to derive
more merging rules by expressing the sequential order of events using control variables.
Finally, the last goal is for generating proof obligations that ensure the correct preserva-
tion of conditions (guards) associated with control flow statements or constructs during
program execution. This ensures that the desired behavior specified by the guards is
maintained and prevents inconsistencies in the program’s logic.

Acknowledgements. Thank you so much, J. R. Abrial, for your merging rules and
all. Thanks to Li Qin for many discussions on this topic and interesting feedback on
our proposition. The authors also acknowledge the ANR-19-CE25-0010 EBRP:EventB-
Rodin-Plus project.

33

Correct-by-Construction Synthesis of Sequential Algorithms 17

References

1. Abrial, J.: The B-book - assigning programs to meanings. Cambridge University Press (1996)
2. Abrial, J.R.: Formal methods: Theory becoming practice. JUCS - Journal of Universal Com-

puter Science 13(5), 619–628 (2007)
3. Abrial, J.: Modeling in Event-B - System and Software Engineering. Cambridge University

Press (2010)
4. Behm, P., Benoit, P., Faivre, A., Meynadier, J.M.: Météor: A successful application of b in a

large project. In: Wing, J.M., Woodcock, J., Davies, J. (eds.) FM’99 — Formal Methods. pp.
369–387. Springer Berlin Heidelberg, Berlin, Heidelberg (1999)

5. Bert, D., Boulmé, S., Potet, M.L., Requet, A., Voisin, L.: Adaptable translator of b specifi-
cations to embedded c programs. In: Araki, K., Gnesi, S., Mandrioli, D. (eds.) FME 2003:
Formal Methods. pp. 94–113. Springer Berlin Heidelberg, Berlin, Heidelberg (2003)

6. Dijkstra, E.W.: A Discipline of Programming. Prentice-Hall (1976), https://www.
worldcat.org/oclc/01958445

7. Edmunds, A., Butler, M.: Tasking Event-B: An extension to Event-B for generating concur-
rent code. In: PLACES 2011 (02/04/11) (February 2011), https://eprints.soton.
ac.uk/272006/, event Dates: 2nd April 2011

8. Edmunds, A., Rezazadeh, A., Butler, M.: Formal modelling for ada implementations: Task-
ing Event-B. In: Brorsson, M., Pinho, L.M. (eds.) Reliable Software Technologies – Ada-
Europe 2012. pp. 119–132. Springer Berlin Heidelberg, Berlin, Heidelberg (2012)

9. Fürst, A., Hoang, T.S., Basin, D., Desai, K., Sato, N., Miyazaki, K.: Code generation for
Event-B. In: Albert, E., Sekerinski, E. (eds.) Integrated Formal Methods. pp. 323–338.
Springer International Publishing, Cham (2014)

10. Lecomte, T., Déharbe, D., Prun, É., Mottin, E.: Applying a formal method in industry: A
25-year trajectory. In: da Costa Cavalheiro, S.A., Fiadeiro, J.L. (eds.) Proceedings of Formal
Methods: Foundations and Applications - 20th Brazilian Symposium, SBMF 2017, Brazil.
Lecture Notes in Computer Science, vol. 10623, pp. 70–87. Springer (2017)

11. Méry, D., Singh, N.K.: Automatic code generation from Event-B models. In: Thang, H.Q.,
Tran, D.K. (eds.) Proceedings of the 2011 Symposium on Information and Communication
Technology, SoICT 2011, Hanoi, Viet Nam, October 13-14, 2011. pp. 179–188. ACM (2011)

12. Ostroumov, S., Tsiopoulos, L.: Vhdl code generation from formal Event-B models. In: 2011
14th Euromicro Conference on Digital System Design. pp. 127–134 (2011)

13. Rivera, V., Cataño, N., Wahls, T., Rueda, C.: Code generation for Event-B. International
Journal on Software Tools for Technology Transfer 19(1), 31–52 (2017)

14. Singh, N.K.: Using Event-B for Critical Device Software Systems. Springer (2013).
https://doi.org/10.1007/978-1-4471-5260-6

15. Singh, N.K., Fajge, A.M., Halder, R., Alam, M.I.: Chapter 8 - formal verification and code
generation for solidity smart contracts. In: Pandey, R., Goundar, S., Fatima, S. (eds.) Dis-
tributed Computing to Blockchain, pp. 125–144. Academic Press

16. Steve, W.: Automatic generation of C from Event-B. In: Workshop on Inte-
gration of Model-based Formal Methods and Tools. http://www.lina.sciences.univ-
nantes.fr/apcb/IM_FMT2009/im_fmt2009_proceedings.html (2009)

17. Zhang, X.: Design and implementation of event-b code generation software based on com-
bination rule, East China Normal University Shanghai (2019)

34

Schemata of Recursive Functions and Iterative Algorithms

Dominique Cansell (Lessy, EBRP)

1 Description

In [2] we presented the new JRA’s instantiation context to define closure, fixpoint (Tarski), well-founded
(Noether) and recursion. A new instantiation plugin [4] was developed in the EBRP project [5]. In this paper
we describe an instantiation of an eventB development using JRA’s instantiation context. We use terminal
(as well non-terminal) recursive function and we recall some theorems on closure and recursion. Rodin [6]
is used to develop and prove all models describe in this paper.

2 Theorems between Closure an Well-founded Relation

Let r be a relation (r ∈ S ↔ S) then its transitive closure is defined by a fixpoint and

– if r is well-founded then closure(r) is also well-founded and ∀x · x ∈ S⇒ x /∈ closure(r−1)[{x}]
– if r is well-founded and r−1 ∈ S 7→ S then finite(closure(r−1)[{x}])

3 Well-founded Relation and Fixpoint: Recursion

Recursive functions are defined with a well-founded relation and the fixpoint theorem.
- Let r be a well-founded relation on S: r ∈ S↔ S
- Let g be a a function such that: g ∈ (S × (S 7→ T))→ T
- There is a unique total function fr: fr ∈ S→ T

such that we have: ∀x · x ∈ S ⇒ fr(x) = g(x 7→ r−1[{x}]� fr)
- The value of fr at x depends on its value on the set r−1[{x}], FrSB is a function (an operator) which

gives the recursive fonction fr: fr = FrSB(r 7→ g)
Many recursive functions have only one recursive call then r−1[{x}] is empty (base case) or a singleton

then r−1 is a function. In this case we define the function (operator) FrsB1 where FrSB1(r 7→ f0 7→
f) = FrSB(r 7→ g) and g = {x, h, b · x ∈ S ∧ h ∈ S 7→ B ∧ r−1[{x}] ⊆ dom(h) ∧ (x /∈ ran(r)⇒ b =
f0(x)) ∧ (x ∈ ran(r)⇒ b = f(x 7→ h(r−1(x)))) | x 7→ h 7→ b} in this case we have ∀x · x ∈ S ∧ x /∈
ran(r) ⇒ fr(x) = f0(x) and ∀x · x ∈ S ∧ x ∈ ran(r) ⇒ fr(x) = f(x 7→ fr(r−1(x)))

4 Terminal recursion

A function fr is terminal recursive if fr = FrSB1(r 7→ f0 7→ f) and f(x 7→ y) = y then we have
∀x · x ∈ S ∧ x ∈ ran(r) ⇒ fr(x) = fr(r−1(x)). The function (operator) FrsB1Ter gives the function :
fr = FrSB1Ter(r 7→ f0) .

35

4.1 An abstract machine

Let fr equals FrSB1Ter(r 7→ f0) and x ∈ S, a variable R , an event which computes fr(x) in one shot

final = then R := fr(x) end

4.2 A refinement

Let y be a variable initialised to x with the invariant fr(x) = fr(y)

final = when y /∈ ran(r) then R := f0(y) end

progress = when y ∈ ran(r) then y := r−1(y) end

The variant is trivially closure(r−1)[{y}] then progress cannot take the control forever.

4.3 An algorithm

Using JRA’s merging rules [1] we obtain the following algorithm:

y := x; while y ∈ ran(r) do y := r−1(y) od; R := f0(y)

4.4 An example: gcd with mod

Xavier Leroy uses this gcd example in [3] and explains how well-founded relations are important in order to
define recursive function. We can define gcdmod with the following definition:
gcdmod = FrSB1Ter({a, b·b > 0∧a > b|(b 7→ a mod b) 7→ (a 7→ b)} 7→ (λx 7→ y ·x > y∧y ≥ 0 | x))

After proving that the relation is well-founded we got for free: ∀a · a > 0 ⇒ gcdmod(a 7→ 0) = a and
∀a, b · a > b ∧ b > 0 ⇒ gcdmod(a 7→ b) = gcdmod(b 7→ (a mod b))

5 Conclusion

If we correctly instantiate S, r and f0 in the corresponding context and if we prove the instantiation PO (r
is well-founded and its inverse is a function) the instantiation of the algorithm gives for free the instantiated
and correct algorithm.

We have similar schemata for non-terminal recursion (with or without stack) and sorted algorithms.

References
1. J.-R. Abrial. Modeling in Event-B: System and Software Engineering. Cambridge University Press, 2010
2. D. Cansell, J.-R. Abrial: Examples of using the Instantiation Plug-in”, Rodin Workshop 2021
3. Xavier Leroy. Well-founded recursion done right. CoqPL 2024
4. G. Verdier and L. Voisin Context instantiation plug-in: a new approach to genericity in Rodin., Rodin Workshop

2021
5. EBRP Enhancing EventB and Rodin. https://irit.fr/EBRP
6. Rodin Platform. http://www.event-b.org

2

36

	Table of Contents
	I Summary
	Executive Summary
	Workshop Programme

	II Contributions
	What’s new in Rodin 3.9 and the Theory plug-in
	Semantics formalisation: Some experience with the Theory Plug-in
	Validation of Domain and Meta Models: From Event-B Theories to Practice
	Developing the UML-B modelling tools
	Correct-by-Construction Synthesis of Sequential Algorithms
	Schemata of Recursive Functions and Iterative Algorithms

