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Abstract: Many optical applications require accurate control over a beam’s spatial intensity
profile, in particular, achieving uniform irradiance across a target area can be critically important
for nonlinear optical processes such as laser machining. This paper introduces a novel control
algorithm for Digital Micromirror Devices (DMDs) that simultaneously and adaptively modulates
both the intensity and the spatial intensity profile of an incident beam with random and intricate
intensity variations in a single step. The algorithm treats each micromirror within the DMD as
an independent Bernoulli distribution characterized by a learnable parameter. By integrating
reinforcement learning with fully convolutional neural networks, we demonstrate that the control
of 65,536 (256× 256) micromirrors in a DMD can be achieved with modest computational
expense. Furthermore, we implement the Error Diffusion (ED) algorithm as a sampling method
and show that an incident beam with random and intricate intensity variations can be modulated
to a predefined shape with high uniformity in intensity, both in simulated and experimental
environments.
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Further distribution of this work must maintain attribution to the author(s) and the published article’s title,
journal citation, and DOI.

1. Introduction

Digital Micromirror Devices (DMDs) are extensively studied opto-electro-mechanical instruments,
gaining significant interest in various optical applications due to their distinctive capabilities.
DMDs function as programmatically configurable, binary light masks composed of arrays of
micro-scale tilting mirrors [1]. Each individual mirror within the array can be electro-mechanically
tilted to one of two fixed angles. This precise control over the micromirrors’ tilt states allows for
the modulation of light by altering the reflection angles, thereby determining the spatial presence
(referred to as the “on” state henceforth) or absence (referred to as the “off” state henceforth)
of light in the diffraction outputs. DMDs stand out among other light modulation hardware
due to their advantageous characteristics [2], most importantly, rapid update rate (∼30 kHz) [3],
affording a greater control bandwidth.

Recent literature has documented the capability of DMDs to modulate the intensity of an
incident beam [4–15]. In the typical use-case of a digital display, the optical system is designed
so that each DMD micromirror can be individually resolved (as an image pixel) [16,17]. In this
work, however, the DMD is incorporated in an optical system where spatial frequency bandwidth
is limited, i.e., where the diffraction limit exceeds the physical dimensions of the ideal images of
individual micromirrors. In this configuration (which could be termed “optical oversampling”),
the diffraction limit forces light reflected from neighboring micromirrors to overlap at the same
spatial positions. Consequently, altering the tilt states of neighboring micromirrors changes
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the number of overlapping beams in their combined output, thereby affecting the intensities at
corresponding spatial positions.

To simultaneously modulate both the overall intensity level and the spatial intensity profile
of an incident beam using a DMD requires control over a substantial number of micromirrors.
This necessity arises from the requirement for multiple DMD “pixels” to oversample a single
output intensity “pixel” in a spatial frequency bandwidth limited system. Furthermore, the spatial
intensity profile of the incident beam may exhibit random and intricate intensity variations due
to aberrations in the optical system. These intensity variations can degrade the quality of the
output beam if the incident beam is modulated naively. Adaptively correcting these unintended
spatial intensity variations requires that the controlling algorithm observe the incident beam
before determining an appropriate array of micromirror tilt states. In this work, we present a
novel algorithm capable of adaptively determining the tilt states of individual micromirrors in a
single step, enabling control of both the overall intensity and the spatial intensity profile of the
output beam.

2. Method

We begin the introduction to our proposed algorithm with mathematical modeling of a DMD.
As previously mentioned, each micromirror can only be in one of two fixed tilt states. This
characteristic allows us to conveniently represent each micromirror as a Bernoulli distribution
B(p) (i.e., a discrete probability distribution representing the occurrence of events with exactly
two possible outcomes), parameterized by a single parameter p ∈ [0, 1], where p denotes the
probability of setting a micromirror to the “on” state (and naturally 1−p denotes the probability of
setting a micromirror to the “off” state). Consequently, a mosaic comprising m×n (m, n ∈ Z+, i.e.,
positive integers) micromirrors (i.e., a DMD) can be described as an m × n array of independent
Bernoulli distributions B(·)m×n, parameterized by an m × n array of pm×n.

Whilst it may seem at odds with the experimental arrangement, where light from neighboring
micromirrors is combined, treating the individual micromirrors as independent, learnable
probability distributions offers important practical advantages: It greatly simplifies the problem,
and it allows the incorporation of stochasticity which could conceivably improve solution
discovery by improving exploration [18]. The stochastic nature of sampling from probability
distributions allows for the accidental discovery of optimal combinations of micromirror states
through a sufficient number of trials, thereby facilitating a more effective search for solutions.

Upon establishing the mathematical model of a DMD, the problem of modulating the intensity
and spatial intensity profile using a DMD can be formulated as follows: In a spatial frequency
bandwidth limited system where the reflected beams from multiple neighboring micromirrors
overlap, given an incident beam characterized by a spatial intensity profile Iobs, the objective
is to optimize a function f (·) that maps this intensity observation to an m × n output array of
parameters pm×n = f (Iobs). This output parameter array parameterizes an m× n array of Bernoulli
distributions, from which the state of each individual micromirror can be determined via sampling.
Through sampling from each Bernoulli distribution, an m × n array of binary values MaskDMD
is obtained, where each binary value (0 or 1) determines the state of the micromirror in the
corresponding position (“off” or “on”). Upon displaying the DMD mask design MaskDMD on the
DMD, the incident beam Iobs is modulated, resulting in a beam with a spatial intensity profile
Imod that possesses desired, predetermined characteristics. This adaptive intensity modulation
process is visualized in Fig. 1(b). It should be noted that Iobs represents the intensity distribution
observed when all micromirrors are set to their “on” state. By switching a portion of these
micromirrors to their “off” state to modulate Iobs to Imod, some of the light is redistributed to
other diffraction orders, thereby reducing the total intensity of Imod compared to Iobs.

Our approach leverages the Proximal Policy Optimization (PPO) algorithm [19], derived from
Deep Reinforcement Learning (DRL) [20], to optimize the mapping function f (·). In conjunction
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Fig. 1. (a) Schematic of the experimental setup. (b) Flowchart of the proposed adaptive
DMD intensity modulation process.
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with the PPO algorithm, we employ a fully convolutional neural network [21] to represent the
mapping function f (·), facilitating the control of a substantial number of micromirrors with
modest computational expense.

Reinforcement learning optimizes the mapping function f (·) by maximizing a performance
metric known as a reward. The reward metric numerically evaluates the efficacy of the output
produced by f (·) in achieving a specified objective. In this work, the reward function is defined
as the sum of the negative pixel-wise absolute difference between Imod and Itarget, mathematically
represented as:

R(Imod, Itarget) := −
∑︂

i

∑︂
j
|I(i,j)mod − I(i,j)target |

Here, Itarget denotes the target spatial intensity profile possessing the desired, predetermined
characteristics. Maximizing R(Imod, Itarget) minimizes the discrepancy between Imod and Itarget.
This optimization incentivizes f (·) to produce pm×n, which parameterizes an array of Bernoulli
distributions that, upon sampling, generate DMD mask designs. These DMD mask designs,
when applied to the DMD, in turn, lead to modulated spatial intensity profiles Imod that more
closely resemble the target intensity Itarget.

The mapping function f (·), optimized by the PPO algorithm, is represented by a specialized
Convolutional Neural Network (CNN). Over the past decade, CNNs have emerged as the
dominant paradigm in computer vision [22–26]. A pivotal feature underpinning their efficacy
is “restricted connectivity” [27]. This feature mandates that only a localized receptive field
of spatially contiguous pixels within a given layer contributes inputs to the computation of
a corresponding output in the subsequent layer. This constraint is based on the premise that
salient information within real-world imagery tends to be spatially concentrated. Consequently,
restricting the input region in accordance with spatial locality reduces the computational demands
inherent in processing imagery data. In this work, the DMD is purposefully placed in a spatial
frequency bandwidth limited system, where the diffraction limit causes the reflected beams
from neighboring micromirrors to overlap, creating spatial locality similar to that observed in
real-world imagery data. The fully convolutional neural network employed to represent the
mapping function f (·) consists solely of convolutional layers throughout its architecture, ensuring
that “restricted connectivity” is always enforced. This design allows us to demonstrate individual
control of 65,536 (256× 256) micromirrors in a DMD.

The models were trained on a desktop workstation equipped with an NVIDIA Quadro P6000
GPU for one million steps (i.e., Iobs), which required approximately 48 hours. The model
weights from the final training steps were saved for the DRL models. Inference time is
hardware-dependent; for reference, the mapping f : Iobs → p256×256 takes 0.0133± 0.0011
seconds on a high-performance GPU (NVIDIA RTX A6000) and 0.2489± 0.0001 seconds on
a high-performance CPU (Intel Xeon w5-3423). Currently, the sampling algorithm, which is
discussed later, is implemented to run only on a CPU, with a computation time of 0.1319± 0.0174
seconds on the same high-performance CPU (Intel Xeon w5-3423).

The implementation details for the software are provided in the Supplement 1.

3. Physical and virtual environment

We first present our results derived from a simulated environment, henceforth referred to as
the “gym”, which approximates our real-world experimental setup. This simulation specifically
models the diffraction limit imposed by the aperture of the microscope objective. However, in
our experimental setup, additional factors such as the apertures of input lenses, mirrors, and
beam splitters could also contribute to spatial frequency clipping. We then demonstrate that the
DRL models, trained within the gym, can be effectively and seamlessly applied to the real-world
experimental setup despite these approximations.

https://doi.org/10.6084/m9.figshare.27193692
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In our experimental setup, depicted in Fig. 1(a), a pulsed laser with a duration of 190 fs,
repetition rate of 6 kHz, energy output of up to 1 mJ, and central wavelength of 1030 nm, emitted
from a Light Conversion Pharos SP, was expanded, and collimated via a telescope before being
directed onto a TOPAG GTH-S-5.0-16.0 beam shaper. This beam shaper transformed the spatial
intensity profile of the input beam from a Gaussian circular shape to a nominally top-hat square
shape, however, additional random fringes were also observed. These fringing patterns arose
from aberrations caused by intentionally deviating the incident beam from its ideal optical axis
and from multiple reflections between optical elements. The top-hat, square-shaped beam was
then directed onto a Texas Instruments DLP 7000 DMD via a pair of motorized mirrors. The
DMD modulated the incident beam in accordance with its displayed DMD mask design, which
was controlled by a desktop workstation. The motorized mirrors adjusted the angle and position
of the incident beam relative to the DMD, allowing the incident beam to exhibit varying fringing
patterns on the DMD output. The modulated light exiting the DMD was imaged onto a silicon
mirror target through a lens, a beam splitter, and a 50× microscopic objective (Mitutoyo M
Plan Apo NIR 50×, NA 0.42). The resultant reflected light was then captured in real-time via
the microscope’s tube lens and a Thorlabs CS165MU/M CMOS camera. The experimental
setup was controlled by a proprietary, multi-threaded program running on a desktop workstation,
whilst the DRL models were hosted on a separate workstation. These two workstations were
connected via Ethernet in a server-client architecture. The experimental workstation (i.e., client)
transmitted input data (i.e., observations of the incident beam) to the DRL workstation (i.e.,
server), which then processed the input to generate a DMD mask design and sent the result back to
the experimental workstation. Given the Ethernet-based communication and the multi-threaded
design of the control software, accurately profiling the operational timing of individual steps is
challenging. Nonetheless, the full process of beam profile optimization, including incident beam
observation, data transfer between workstations, model inference, application of the DMD mask,
and optimized beam observation, took approximately one second.

This experimental setup was designed for laser machining and thus was equipped with a
pulsed femtosecond laser source. Ultrashort laser machining is, however, a highly complex
process, where laser-induced material removal can exhibit variations due to non-linearities
[28,29]. Consequently, in this proof-of-concept work we will concentrate on the modulated
intensity profiles as observed on the camera, rather than on laser machining depth and uniformity,
although this is certainly an area that we aim to explore in future research.

The gym approximates the experimental setup by simulating the spatial frequency clipping of
the experimental optical system:

Imod = IFFT(Maskpupil(NA, λ) · FFT(MaskDMD · Iobs))

where NA and λ denote the numerical aperture of the microscopic objective and the central
wavelength of the incident beam, respectively. This mathematical expression can be conceptual-
ized as follows: The pupil mask function (i.e., Maskpupil(·)) represents the restricted aperture
of the optical system, which acts as a low-pass filter that eliminates high spatial frequency
components from the modulated spatial intensity profile of the incident beam exiting the DMD
(i.e., MaskDMD · Iobs). In both the gym and the experimental setup, the pitch size of an individual
micromirror is approximately 13.68 µm, and so the image size of the same micromirror under
ideal 50×magnification would be approximately 0.27 µm. However, the real microscope objective
has a diffraction limit of approximately 1.23 µm, which exceeds the size of the ideal image of the
micromirror. This means each individual micromirror cannot be resolved after imaging via the
real microscope objective. Nevertheless, by adaptively manipulating the states of neighboring
micromirrors it is possible to modulate the intensity of an incident beam with greater control
than would be possible if each binary micromirror exactly matched the diffraction limit. In
this configuration, each output intensity “pixel” is approximately controlled by 16 neighboring
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micromirrors (i.e., 4× 4). In the gym environment, the mapping MaskDMD, Iobs ↦→ Imod does
not include any hyperparameters derived from experimental observations. The calibration
between the gym environment and the experimental setup is performed by optimally aligning the
experimental apparatus to minimize discrepancies between the experimentally observed intensity
profiles and their simulated counterparts, given identical DMD mask designs.

The gym serves as a “digital twin” to our experimental setup, meaning it closely approximates
the experimental conditions. This allows a model trained within the gym to be directly applied
to the experimental setup without requiring additional training. The simulated “experience”
provided by the gym enables the DRL models to develop two capabilities: (1) modulating the
intensity of an incident beam to a predetermined value, which is discussed in the first part of
the following section, and (2) modulating the spatial intensity profile of an incident beam to a
predefined shape, which is discussed in the second part of the following section.

4. Simulation results and discussion

In each training iteration, the gym generated 16 spatial intensity profiles Iobs with dimensions
512× 512, each exhibiting randomized intensity variations. These intensity variations were
generated by applying Gaussian smoothing to a randomly generated array of values sampled
from a uniform distribution. These spatial intensity profiles were then processed through the
DRL model (i.e., f (·)) to derive 16 corresponding parameter arrays p256×256 with dimensions
256× 256. Next, 16 arrays of Bernoulli distributions B(·)256×256, parameterized by the derived
16 arrays of p256×256, were sampled to generate 16 binary DMD mask designs MaskDMD, each
with dimensions 256× 256. It is important to note that the probability arrays B(·) were unique to
each micromirror and were independent of the states of other neighboring micromirrors. These
binary mask designs were then fed back into the gym to modulate the spatial intensity profiles of
their corresponding incident beams Iobs, resulting in modulated spatial intensity profiles Imod.
The reward function R(·) was employed to evaluate the resemblance between each modulated
spatial intensity profile Imod and a predefined target spatial intensity profile Itarget, which was, in
this case, a uniform intensity profile having the desired value. This process optimized the DRL
model to more accurately map parameter arrays that produce modulated spatial intensity profiles
closely matching the target. Figure 3(a) presents a flowchart visualizing the RL training steps.

Figure 2 illustrates a simulation of DMD intensity modulation facilitated by a trained DRL
model. Figure 2(a) shows the spatial intensity profile of an incident beam with random intensity
variations (i.e., Iobs). Figure 2(d) shows the parameter array (i.e., p256×256) mapped from Fig. 2(a)
by the DRL model (i.e., f (Iobs)). Figure 2(e) shows a binary DMD mask design sampled from
Fig. 2(d) (i.e., MaskDMD). Figure 2(b) shows the spatial intensity profile (i.e., Imod) that results
from modulating the incident beam in Fig. 2(a) with the DMD mask shown in Fig. 2(e). The
target spatial intensity profile Itarget is a square shape, with the intensity uniformly set to 30% of
the maximum normalized intensity across the entire spatial profile.

From Fig. 2(b), it is evident that intensity variations persisted in the modulated intensity
profiles. These variations could be largely attributed to the independence of each Bernoulli
distribution in the previously described B(·)256×256. Let q neighboring micromirrors, which
collectively determine the intensity of an output pixel, be represented by q Bernoulli distributions
B(p)q. Sampling from these independent and identical distributions once is equivalent to
performing q trials on B(p). Given the limited number of these micromirrors (determined by
the experimental configuration, q ∼ 16), the law of large numbers cannot ensure, for q trials
on B(p), the convergence to the summed expectation. Here, the “summed expectation” can
be interpreted as the expected number of neighboring micromirrors set to the “on” state (i.e.,∑︁

q E[B(p)] =
∑︁

q(1 · p + 0 · (1 − p)) = q · p), which in turn determines the intensity of the output
“pixel”, as previously discussed.
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Fig. 2. DMD intensity modulation simulation. (a) The spatial intensity profile of the
incident beam. (b) The spatial intensity profile after DMD modulation using the sampled
DMD mask shown in (e). (c) The spatial intensity profile after DMD modulation using the
Error Diffusion (ED) DMD mask shown in (f). (d) The array of learned probabilities that set
micromirrors to the “on” state. (e) The DMD mask design sampled from (d). (f) The DMD
mask design sampled from (d) using ED.

To address this sampling issue, we adopt an alternative sampling method, Error Diffusion
(ED), for binary quantization of the parameter array [13–15,30–32]. ED sampling determines
the state of a micromirror based on the corresponding parameter in the parameter array, whilst
also considering the states of neighbouring pixels. This approach ensures better adherence to the
learned local statistics, resulting in a more uniform intensity distribution.

Sampling from a Bernoulli distribution binarizes a continuous parameter p ∈ [0, 1] into
a binary state x ∈ {0, 1}, where P(x = 1) = p and P(x = 0) = 1 − p. For a parameter
array pm×n, where each parameter p(i,j) belongs to the set {p(i,j)|i, j ∈ Z+, 0<i ≤ m, 0<j ≤ n},
sampling directly from the Bernoulli distribution B(p(i,j)) requires that the expected value B(p(i,j))
matches the probability p(i,j) of the micromirror at position (i, j) being in the “on” state (i.e.,
E[B(p(i,j))] = 1 · p(i,j) + 0 · (1 − p(i,j)) = p(i,j) ∈ [0, 1]). However, since micromirrors can only
be either fully “on” or “off”, this is not physically possible. To overcome this, we consider a
group of neighboring micromirrors that together determine the intensity of an output pixel due
to diffraction effects. The objective then becomes assigning binary states x ∈ {0, 1} to these
micromirrors such that

∑︁
i
∑︁

j x(i,j) ≈
∑︁

i
∑︁

j E[B(p(i,j))] is satisfied, which serves as the basis of
the ED algorithm.
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Consider a one-dimensional parameter array pm×1. The binarization of its first element p(1,1) is
performed by comparing it to a universal threshold variable ϑ ∈ [0, 1], defined as:

ED(p(1,1)) :=
⎧⎪⎪⎨⎪⎪⎩

1, p(1,1) ≥ ϑ

0, p(1,1)<ϑ

This process introduces a residual error ϵ (1,1) given by:

ϵ (1,1) := p(1,1) − ED(p(1,1))

To minimize local discrepancies, this residual error is propagated to the neighboring micromirror
p(2,1), and its binarization is adjusted as:

ED(p(2,1)) :=
⎧⎪⎪⎨⎪⎪⎩

1, p(2,1) + ϵ (1,1) ≥ ϑ

0, p(2,1) + ϵ (1,1)<ϑ

Generalizing this recurrence, the binarization of any subsequent parameter p(i,1) follows:

ED(p(i,1)) :=
⎧⎪⎪⎨⎪⎪⎩

1, p(i,1) + ϵ (i−1,1) ≥ ϑ

0, p(i,1) + ϵ (i−1,1)<ϑ

where the residual error ϵ (i−1,1) is given by:

ϵ (i−1,1) := p(i−1,1) + ϵ (i−2,1) − ED(p(i−1,1))

At the end of each row, the final residual error ϵ (m,1) is discarded. The general residual error is
thus:

ϵ (i,1) := p(i,1) + ϵ (i−1,1) − ED(p(i,1))

or equivalently,
ϵ (i,1) − ϵ (i−1,1) = p(i,1) − ED(p(i,1))

Summing the stepwise residual error difference ϵ (i,1) − ϵ (i−1,1) over the entire sequence with m
steps, starting from ϵ (1,1), yields:∑︂m

i=1
ϵ (i,1) − ϵ (i−1,1) =

∑︂m

i=1
p(i,1) − ED(p(i,1))

which simplifies to:
ϵ (m,1) − ϵ (0,1) =

∑︂m

i=1
p(i,1) −

∑︂m

i=1
ED(p(i,1))

It can be easily noticed that ϵ (i,1) ∈ [−1, 1], and ϵ (0,1) = 0 (i.e., ϵ (1,1) = p(1,1) − ED(p(1,1)) =
p(1,1) + ϵ (0,1) − ED(p(1,1))), thus for sufficiently large

∑︁m
i=1 ED(p(i,1)) ≫ |ϵ (m,1) − ϵ (0,1) | = 1, it

follows that:
∑︁m

i=1 p(i,1) =
∑︁m

i=1 E[B(p
(i,1))] ≈

∑︁m
i=1 ED(p(i,1)). Similarly, summing the stepwise

residual error difference over a local sequence with k steps, starting from ϵ (j,1) (i.e., 2 ≤ j<j + k ≤

m), yields
∑︁k

i=j E[B(p(i,1))] ≈
∑︁k

i=j ED(p(i,1)), provided that
∑︁k

i=j ED(p(i,1)) ≫ |ϵ (j+k,1) − ϵ (j−1,1) | =
2.

The core principle of this ED algorithm is that the residual error arising from the binarization
of a continuous variable p(i,j) ∈ [0, 1] (i.e., a probability) into a binary value of 0 or 1 is not
simply discarded. Instead, it is propagated to the binarization of the neighboring probability
p(i+1,j). This “error diffusion” helps alleviate the accumulation of errors, thereby preventing the
number of neighboring micromirrors set to the “on” state in a local area (which collectively
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∑ 𝔼[𝐵(𝑝)] = ∑ (1 ∙ 𝑝 + 0 ∙ (1 ― 𝑝)) = 𝑞 ∙ 𝑝

Fig. 3. Flowcharts illustrating (a) the reinforcement learning training steps, and (b) the
simplified one-dimensional Error Diffusion (ED) sampling process.

determines the output intensity) from deviating significantly from the summed expectation in the
sampling process. Figure 3(b) presents a flowchart visualizing the one-dimensional recurrent
step function ED(·).

In this work, the Floyd–Steinberg dithering (F-S dithering) algorithm [33] is employed as
the ED algorithm. This method exhibits a slight deviation from the recurrent step function
previously discussed. The key difference lies in the diffusion of the residual error from p(i,j),
which is diffused both horizontally to p(i+1,j) and vertically to p(i−1,j+1), p(i,j+1) and p(i+1,j+1), with
additional weighting terms incorporated. The previously discussed recurrent step function ED(·),
with its simplified diffusion process, serves only to illustrate the general concept of error diffusion.
Our empirical findings suggest that the choice of threshold ϑ does not significantly influence the
quality of the modulated spatial intensity profiles. Consequently, a convenient threshold value of
0.5 for ϑ is chosen, which is also applied in subsequent experimental results. Subfigure (f) in
Fig. 2 presents the DMD mask design (i.e., MaskDMD with ED), derived by applying the F-S
dithering to the parameter array illustrated in Fig. 2(d). Figure 2(c) shows the simulated spatial
intensity profile (i.e., Imod with ED) that results from modulating the incident beam shown in
Fig. 2(a) with the ED DMD mask shown in Fig. 2(f).

Figure 4 provides a more comprehensive comparison in the form of histograms. The blue
curve represents the histogram of the spatial intensity profile of the incident beam, as illustrated
in Fig. 2(a) (i.e., Iobs), with a mean of 0.666 and standard deviation of 0.092. The green curve
represents the histogram of the modulated spatial intensity profile using the sampled DMD mask
design illustrated in Fig. 2(e), with a mean of 0.299 and standard deviation of 0.083. The red
curve represents the histogram of the modulated spatial intensity profile using the ED DMD mask
design illustrated in Fig. 2(f), with a mean and standard deviation of 0.294 and 0.008, respectively.
The greatly reduced standard deviation in the case of the ED DMD mask demonstrates that the
resultant intensity values are more tightly grouped at the target value.

A second DRL model (denoted as the “UoS” model) was trained similarly to the previously
discussed DRL model (denoted as the “flat” model). The only difference between the two models
is the target spatial intensity profile Itarget (and consequently an additional color channel in the
input depicting the shape of the target intensity profile). In the previously discussed model, the
target spatial intensity profile Itarget is a square shape with a uniform intensity distribution. In
contrast, the target spatial intensity profile Itarget for the second model is the upper-left portion of
the University of Southampton (UoS) emblem, as illustrated in Fig. 5(a). For this target spatial
intensity distribution, the intensity is set to 30% of the peak normalized intensity, whilst the
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𝐸𝐷( ∙ )

Fig. 4. The histograms of the distributions of intensity values for the simulated spatial
intensity profile of the incident beam (blue line), the simulated spatial intensity profile
modulated using the sampled DMD mask design (green line), and the simulated spatial
intensity profile modulated using the ED DMD mask design (red line). The target intensity
value is indicated by the cyan dashed line.

intensity for the background is set to 0%. The same spatial intensity profile of the incident beam,
illustrated in Fig. 2(a), is applied to the trained “UoS” model, and the resultant probability array
is illustrated in Fig. 5(e). Similarly, a DMD mask design can be sampled from this learned
probability array via ED sampling, which is presented in Fig. 5(f). Lastly, the spatial intensity
profile produced when the incident beam is modulated using the ED sampled DMD mask design
is illustrated in Fig. 5(b).

An interesting feature observable from the learned probability array illustrated in Fig. 5(e) is
that around the boundaries between the background and the target shape, the “UoS” model tends
to increase the probabilities of setting the micromirrors to the “on” state (red). Conversely, just
inside the boundary of the target shape the probabilities of setting the micromirrors to the “on”
state are decreased (white). A comparison is presented in Fig. 5(g) and (h), where subfigure (g)
shows a magnified upper-left portion of the ED DMD mask design from the “UoS” model shown
in subfigure (f), and subfigure (h) shows a magnified view of the upper-left portion of the ED
mask design from the “flat” model, shown in Fig. 2(e), masked by the shape of the UoS emblem.
Figure 5(c) and (d) then show contour maps of the modulated spatial intensity distributions
produced from the mask designs shown in Fig. 5(g) and (h), respectively. Comparing these
contour maps reveals that the UoS model compensates for distortions in transferred mask shape
induced by the diffraction limit and produces a smoother spatial intensity profile around the
boundaries [34,35].
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Fig. 5. DMD spatial intensity profile modulation simulation for University of Southampton
(UoS) emblem target. (a) The upper-left portion of the UoS emblem used as the target
spatial intensity profile. (b) The spatial intensity profile after DMD modulation using the ED
DMD mask shown in (f). (c) The upper-left portion of (b) in contour plot, overlaid with the
outlines of the target shape colorcoded in pink. (d) The upper-left portion of the modulated
spatial intensity profile in contour plot, using the ED DMD mask shown in (h), overlaid with
the outlines of the target shape colorcoded in pink. (e) The array of learned probabilities
that set micromirrors to the “on” state. (f) The DMD mask design sampled from (e) using
ED. (g) The upper-left portion of (f), which produces (c). (h) The upper-left portion of the
DMD mask design illustrated in Fig. 2(f) masked by the shape of the UoS emblem, which
produces (d).

5. Experimental results and discussion

The two trained DRL models, namely the “flat” and the “UoS” models, were employed in the
experiments without necessitating further training. The experimental procedure mirrored the
training steps described earlier, starting with the DRL model mapping the observed spatial
intensity profile of an incident beam with random and intricate intensity variations to a parameter
array. Subsequently, a binary DMD mask design was obtained by applying ED sampling to this
parameter array and this mask design was applied to the DMD to modulate the incident beam. It
is noteworthy that the experimental DMD mask design differed slightly from the simulation DMD
mask design. The experimental DMD mask comprised two sections: An inner section consisting
of 256× 256 micromirrors, whose tilt states were controlled by the DMD mask design. And an
outer section, which served as a “frame” with identification codes and where the micromirrors
were always in the “on” state.

Figure 6(a) illustrates the spatial intensity profile of an incident beam with random and intricate
spatial intensity variations observed by the camera. Various random intensity patterns could
be achieved by controlling the motorized mirrors that moved the beam relative to the DMD as
previous detailed. This camera observation was captured by setting all 256× 256 controllable
micromirrors to the “on” state, effectively turning the DMD into a mirror (shown in Fig. 6(f)).
The spatial intensity profile of the incident beam, modulated by the 256× 256 controllable
micromirrors in the inner section of the DMD, illuminated an area of approximately 815× 815
pixels in the camera observation. This illuminated area was cropped and then downscaled and
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normalized to a 512× 512 input image, which was subsequently mapped to two parameter arrays
by the two trained DRL models. Two DMD mask designs were generated by performing ED
sampling on the obtained parameter arrays, shown in Fig. 6(g) and Fig. 6(i), targeting the square
shape and the UoS emblem shape, respectively. The resultant modulated spatial intensity profiles
captured by the camera whilst displaying these DMD masks are presented in Fig. 6, with subfigure
(b) showcasing the square shape and subfigure (d) showcasing the UoS emblem shape.

Fig. 6. Camera observations of the spatial intensity distributions are presented in the first
row, and their corresponding displayed DMD masks are shown in the second row. (a) The
observed spatial intensity profile of the incident beam. (b) The spatial intensity profile
modulated with the “flat” model via ED sampling, targeting a uniformly distributed square
shape. (c) The spatial intensity profile modulated with the naively designed periodic grating
pattern shown in (h), targeting a uniformly distributed square shape. (d) The spatial intensity
profile modulated with the “UoS” model via ED sampling, targeting a uniformly distributed
UoS emblem shape. (e) The spatial intensity profile modulated with the naively designed
periodic grating pattern shown in (j), targeting a uniformly distributed UoS emblem shape.

To address the concerns that the improved uniformity in intensity distributions shown in
Fig. 6(b) and Fig. 6(d) might simply be due to the decreases in their mean intensities, two
additional DMD mask designs were tested, as illustrated in Fig. 6(h) and Fig. 6(j) for the square
shape and the UoS emblem shape, respectively. These DMD mask designs comprised periodic
checkerboard patterns to equally reduce the intensity across the spatial intensity profile of the
incident beam. Figure 6(c) and Fig. 6(e) illustrate the modulated spatial intensity profiles using
these naively designed DMD masks for the square shape and the UoS shapes, respectively.

Comparatively, the intensity uniformities for the spatial intensity profiles modulated by the ED
DMD masks are superior to those of the naively designed DMD masks. The difference in intensity
uniformity is further illustrated in the intensity distribution histograms shown in Fig. 7. The blue
curve represents the experimentally observed intensity histogram of the spatial intensity profile of
the incident beam, as shown in Fig. 6(a), with a mean of 0.722 and a standard deviation of 0.101.
The green curve represents the intensity histogram of the naively modulated spatial intensity
profile whose intensities are naively and equally reduced across the spatial intensity profile, as
shown in Fig. 6(c), with a mean of 0.287 and a standard deviation of 0.039. Lastly, the red
curve represents the intensity histogram of the ED modulated spatial intensity profile, targeting a
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uniformly distributed square shape, as shown in Fig. 6(b), with a mean and standard deviation
of 0.295 and 0.016, respectively. In terms of the Root-Mean-Square (RMS) measurement of
flatness, our single-step approach achieves approximately 1.29% after modulation and 9.00%
before modulation in the ‘flat’ case, as shown in Fig. 6(b). To the best of our knowledge, the
previously reported best performance is 1.11% after 17 iterative modulation steps and 1.50%
before modulation, measured at a wavelength of 1064 nm with an array of 230× 230 micromirrors
[14]. It is important to note that factors such as diffraction-limits-to-micromirror-pitch-size ratio
(introducing inherent bit depth errors), camera configuration (affecting imaging errors), and target
intensity level (determining the skewness of the modulated intensity distribution) contribute to
the differences between these reported values. Therefore, these values are provided for reference
only.

Fig. 7. Histograms of the distributions of intensity values for the experimental observed
spatial intensity profile of the incident beam (blue line), the experimental observed spatial
intensity profile modulated by the naively designed DMD mask (green line), targeting the
uniform square shape, and the experimental observed spatial intensity profile modulated by
the “flat” model and sampled via ED (red line), targeting the uniform square shape. The
target intensity value is indicated by the cyan dashed line.

By comparing the experimental intensity distributions shown in Fig. 7 with the simulated
intensity distribution shown in Fig. 4, it is evident that the experimentally observed ED modulated
beam exhibits slightly less uniform intensity compared to the simulated ED modulated beam. This
decrease in performance may stem from the discrepancies between the simulated environment,
where the two DRL models were trained, and the experimental setup, to which the two DRL
models were applied. Firstly, the intensity variations generated from the Gaussian-smoothed
random values during training might not adequately generalize to the experimentally observed
intensity variations. The differences in intensity variations can be observed by comparing
the intensity distributions of the simulated and experimental incident beams, shown as the
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blue curves in Fig. 4 and Fig. 7, respectively. The intensity distribution of the experimentally
observed incident beam exhibits periodic spikes, likely resulting from interferences between
optical elements, which are not presented in the intensity distribution of the simulated incident
beam. Secondly, the gym environment used in simulations only accounts for spatial frequency
clipping by the microscope objective, whilst in the experimental setup, other optical elements
might also contribute to spatial frequency clipping. Lastly, the simulated environment implicitly
assumes that the observed intensity profiles, both before and after modulation, are aberration-free
and represented in single-precision floating-point format. However, in the experimental setup,
slight misalignments of optical instruments, after the DMD, can introduce aberrations, potentially
distorting camera observations and causing artifacts which cannot be corrected by the DMD
(as these distortions and artifacts occur after DMD modulation). Furthermore, the camera used
to capture the intensity profile has a bit depth of 10 (i.e., 1024 grayscale levels), which may
introduce quantization errors when representing the continuous intensity profiles.

Although the use of a gym environment facilitates the training of DRL models without
requiring time-consuming data collection in the experimental setup, it also introduces different
complexities owing to the discrepancies between the simulated and experimental environments.
The data-driven nature of the proposed algorithm necessitates a substantial number of high-quality
data to be effective. Therefore, our future work will focus on large-scale automated collection
of experimental data and methods of efficiently transferring learned experience from gym to
real-world environments.

6. Conclusion

This paper introduces a novel control algorithm for DMD that can, in a single step, simultaneously
and adaptively modulate both the overall intensity and the spatial intensity profile of an incident
beam that has been aberrated with random and intricate spatial intensity variations. The paper
begins with a unique perspective of treating each micromirror in a DMD as an independent
Bernoulli distribution, characterized by a learnable parameter. This unique perspective leads to
the development of a computationally efficient learning paradigm, enabling individual control of
each micromirror. Critically, we apply error diffusion sampling to the learned parameter array
which results in DMD mask designs that precisely and accurately modulate the intensity and
spatial intensity profile to predefined targets. The effectiveness of our proposed control algorithm
is demonstrated in both simulated and experimental environments.
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