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Abstract—We propose a distributed artificial noise-assisted
precoding scheme for secure communications over wiretap multi-
input multi-output (MIMO) interference channels, where K
legitimate transmitter-receiver pairs communicate in the presence
of a sophisticated eavesdropper having more receive-antennas
than the legitimate user. Realistic constraints are considered by
imposing statistical error bounds for the channel state informa-
tion of both the eavesdropping and interference channels. Based
on the asynchronous distributed pricing model, the proposed
scheme maximizes the total utility of all the users, where each
user’s utility function is defined as the secrecy rate minus the
interference cost imposed on other users. Using the weighted
minimum mean square error, Schur complement and sign-
definiteness techniques, the original non-concave optimization
problem is approximated with high accuracy as a quasi-concave
problem, which can be solved by the alternating convex search
method. Simulation results consolidate our theoretical analysis
and show that the proposed scheme outperforms the artificial
noise-assisted interference alignment and minimum total mean-
square error-based schemes.

Index Terms—Physical layer security, robust optimization, ar-
tificial noise, distributed precoding, MIMO, interference channel

I. INTRODUCTION

SECURE communications in information-theoretic interfer-
ence channel (IC) are vital for numerous applications,

e.g., massive device-to-device communications and Internet-
of-Things in the 5G and 6G era [1]. This fact requires the
study of physical layer security (PLS) to evolve from the
simplified scenario that relies on point-to-point channel to the
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realistic scenario that depends on the complex IC [2]–[10].
However, the broadcast nature of wireless communication
leads to challenging interference management issues when
multiuser communications characterized by the IC model are
considered [11].

Interference alignment (IA), which can achieve the optimal
degrees of freedom for various interference-limited networks
under certain conditions [12], [13], is regarded as a promising
approach to interference management in IC. For each receiver
of the traditional IA scheme, the interferences imposed by
multiple individual transmitters are aligned through coopera-
tive precoding into the same interference subspace, which is
orthogonal to the signal subspace. Then, the desired signal
can be recovered at each receiver as in an interference-free
environment [14]. However, there exist a variety of significant
challenges for the practical utilization of IA, such as the
overhead for obtaining the global channel state information
(CSI) [15] and the threat caused by a sophisticated multi-
antenna eavesdropper (Eve)1.

To reduce the overhead of acquiring the global CSI, Abrardo
et al. [4] formulated a distributed weighted secrecy rate
maximization problem that jointly optimizes the minimum
mean-square error (MMSE) based precoder and the successive
interference cancellation (SIC) based receiver in multi-input
multi-output IC (MIMO-IC)2. By considering the sophisticated
multi-antenna Eve, the joint design of transmitter precoding
matrix and receiver filtering matrix based on IA was developed
in [5] for secure communication over wiretap MIMO-IC under
the minimum total mean-square error (MT-MSE) criterion.
However, the authors of [5] approached the MT-MSE based
problem as a non-cooperative game, in which each user
selfishly maximizes their utilities in a distributed fashion,
regardless of its interference imposed on other users. Thus, its
equilibrium may not maximize the sum secrecy rate. Moreover,
perfect CSI was assumed, which is extremely difficult to
achieve in a practical MIMO-IC. Considering imperfect CSI
of the eavesdropping channel (EC), Zhao et al. [6] proposed an
artificial noise (AN) assisted IA (AN-IA) scheme to interrupt
the external passive Eve, where the accurate CSI of IC is
required to eliminate the inter-user interference (IUI) and the
ANs imposed by other transmitters on the individual receivers.
Furthermore, assuming imperfect CSI of both IC and EC,

1A sophisticated multi-antenna Eve is an eavesdropper with a sufficient
number of antennas, who is capable of eliminating the interferences from
other users in the MIMO-IC network and therefore can successfully eavesdrop
on the target user.

2The MIMO-IC is composed of multiple transmitter-receiver pairs commu-
nicating in parallel, where each node is equipped with multiple antennas and
each transmitter imposes interference on its unintended receivers.
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robust coordinated beamforming (CB) and power split scheme
were studied in [7] for maximizing the sum secrecy rate over
the multi-input single-output IC (MISO-IC). In [8], an asyn-
chronous distributed pricing (ADP) algorithm was presented
for distributed cooperative power allocation in the single-
input single-output IC (SISO-IC). In addition, the work [16]
analyzed the secrecy performance of a RIS-assisted multiuser
massive MIMO system with AN and realistic constraints,
including RIS phase noise and imperfect CSI. The authors of
[17] investigated PLS for the RIS-assisted integrated sensing
and communication systems, aiming to maximize the achiev-
able sum secrecy rate by jointly optimizing the active and
passive beamforming vectors. To the best of our knowledge,
the existing contributions fail to ensure secure communications
in the challenging distributed cooperative MIMO-IC when
facing a sophisticated multi-antenna Eve and imperfect CSI.
It is worth emphasizing that the perfect CSI of both the EC
and IC is typically unavailable at each transmitter.

Against the above backdrop, we propose a distributed robust
AN-aided secrecy precoding scheme based on imperfect CSI
for wiretap MIMO-IC. Motivated by [8], to improve the equi-
librium efficiency in the distributed cooperative MIMO-IC, we
design an ADP mechanism, which is proved to satisfy the
Karush-Kuhn-Tucker (KKT) conditions of the global sum se-
crecy rate maximization problem. Different from [8], however,
in the case of imperfect CSI, the robust utility maximization
problem for optimizing AN-aided secrecy precoding becomes
intractable due to the non-concave objective function, the non-
convex constraints, and the channel uncertainties. Facing the
above challenges, we first transform the non-concave objective
function into a quasi-concave one by employing the weighted
MMSE (WMMSE) method [18]. Then, the Schur complement
[19] and sign-definiteness [20] techniques are utilized to
decouple the imperfect CSI constraints and transform these
non-convex constraints into the linear matrix inequality (LMI)
constraints. As a result, an approximate solution with high
accuracy can be found by the alternating convex search (ACS)
method [21]. Numerical results demonstrate the efficiency of
the proposed scheme under imperfect CSI. For better clarity, a
comparison of the main features of our proposed scheme with
those of the existing works is presented in Table I.

The rest of this paper is organized as follows. In Section II,
we describe the system model and formulate the correspond-

Fig. 1. A wireless network modeled by the K-user wiretap MIMO-IC.

ing optimization problem. Section III proposes a distributed
artificial noise-assisted precoding scheme for secure commu-
nications using the ADP model. We also characterize both the
convergence and the complexity of our scheme. Numerical
results are provided in Section IV to evaluate the performance
of the proposed algorithm. Finally, our conclusions are drawn
in Section V.

Notation: (·)T, (·)H, and (·)⋆ denote the transpose, con-
jugate transpose, and optimal solution, respectively. vec(·),
rank(·), det(·), tr(·), and ∥ · ∥F represent the vectorization,
rank, determinant, trace, and Frobenius norm of a matrix,
respectively. ln(·) denotes the natural logarithm, and ⊗ repre-
sents the Kronecker product.

II. SYSTEM MODEL AND PROBLEM FORMULATION

Consider a wireless network characterized by the K-user
wiretap MIMO-IC model, as shown in Fig. 1. Each NT-
antenna transmitter (TXi, i ∈ {1, · · · ,K}) intends to send
confidential messages to its corresponding NR-antenna re-
ceiver (RXi) in the presence of a sophisticated Eve (E) having
NE antennas, where NE > NR. In addition to receiving
confidential messages from the corresponding transmitter TXi,
the receiver RXi also receives interference from the other
transmitters TXj (j ̸= i). The sophisticated multi-antenna Eve
E intends to eavesdrop on a particular transmitter, e.g., TXi.

TABLE I
COMPARISON OF OUR PROPOSED SCHEME AGAINST THE EXISTING CONTRIBUTIONS

Scheme

Feature
MIMO-IC distributed processing cooperative game Eve Imperfect CSI of EC Imperfect CSI of IC

Our proposed scheme ✓ ✓ ✓ ✓ ✓ ✓

IA [3] ✓

MMSE-SIC [4] ✓ ✓

MT-MSE [5] ✓ ✓ ✓

AN-IA [6] ✓ ✓ ✓

CB [7] ✓ ✓ ✓

ADP [8] ✓ ✓
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Since NE > NR, Eve is more powerful than any legitimate
receiver of the network in terms of the spatial-domain signal
processing capability. Therefore, even if the legitimate receiver
RXi cannot decode the message sent by its corresponding
transmitter TXi, it is still possible for E to eliminate the inter-
ference generated by the other transmitters TXj and decode
the signal from the transmitter TXi of interest. Our AN-aided
secrecy precoding scheme aims to prevent eavesdropping and
reduce the IUI imposed on legitimate receivers.

Let user i be the desired user considered. The signal
transmitted by TXi can be written as

xi =Qisi +Λizi, (1)

where si ∈ Cds×1 and zi ∈ Cda×1 denote the confidential-
message bearing signal and the AN, respectively, Qi ∈ CNT×ds

is the secrecy precoding matrix for si, and Λi ∈ CNT×da is
the AN precoding matrix for zi. Each transmitted signal must
satisfy the following power constraint:

tr
(
QiQ

H
i +ΛiΛ

H
i

)
≤ Ptot, (2)

where Ptot is the total available power of each transmitter.
In a scheduling time slot, the signal received at RXi can be
expressed as

yi =
√
ωMHi,ixi +

∑
j ̸=i

√
ωIHi,jxj + ni, (3)

where Hi,i ∈ CNR×NT is the true small-scale Rayleigh fading
CSI of the (main) channel from TXi to RXi, Hi,j ∈ CNR×NT

is the true small-scale Rayleigh fading CSI of the IC from
TXJ to RXi, and ni ∈ CNR×1 is the additive white Gaussian
noise (AWGN) vector with zero mean and covariance matrix
σ2
Ri
I [22]. Entries of Hi,i and Hi,j are independent and iden-

tically distributed (i.i.d) complex Gaussian random variables
following the distribution CN (0, 1). Also ωM = κd−τ

M and
ωI = κd−τ

I are the large-scale path-loss coefficients of the
main channel and IC, respectively, where τ = 2.6 is the path-
loss exponent and κ = 10−4 is the path-loss at unit distance
[23], while dM and dI are the distances between transmitters
and receivers of the main channel and IC, respectively.

In practice, we usually do not know about Eve. Hence, we
assume the worst-case scenario where the sophisticated multi-
antenna Eve can eliminate the interference imposed on its
target user, i.e., user i. Therefore, when E wiretaps on user
i, the signal received at the Eve is written as

yEi =
√
ωEHEi

xi + nEi
, (4)

where HEi ∈ CNE×NT is the true small-scale Rayleigh
fading CSI of the EC from TXi to E, whose entries are
i.i.d complex Gaussian random variables following CN (0, 1),
and ωE = κd−τ

E is the large-scale path-loss coefficient of
the EC with dE denoting the distance between TXi and E,
while nEi ∈ CNE×1 is the AWGN vector with zero mean and
covariance matrix σ2

Ei
I.

Given the perfect CSI, the real achievable rates of the
legitimate user i and of the Eve for the ith TX-RX pair are

respectively given by

CRi
= log det

(
I+ ZRi

N
−1

Ri

)
, (5)

CEi = log det
(
I+ ZEiN

−1

Ei

)
, (6)

where

ZRi =ωMHi,iQiQ
H
i H

H

i,i, (7)

NRi =ωMHi,iΛiΛ
H
i H

H

i,i + σ2
Ri
I+Υi, (8)

ZEi
=ωEHEi

QiQ
H
i H

H

Ei
, (9)

NEi =ωEHEiΛiΛ
H
i H

H

Ei
+ σ2

Ei
I, (10)

Υi =
∑
j ̸=i

ωIHi,j

(
QjQ

H
j +ΛjΛ

H
j

)
H

H

i,j . (11)

Thus, the infimum of the real achievable secrecy rate of the
ith TX-RX pair can be written as

CSi =CRi − CEi

= log det
(
I+ ZRi

N
−1

Ri

)
− log det

(
NEi

+ ZEi

NEi

)
= log det

(
I+ ZRi

N
−1

Ri

)
−

(
log det

(
NEi

+ ZEi

)
− log det

(
NEi

))
. (12)

Under the deterministic model for characterizing the CSI
uncertainty [24], we assume that the estimated channel H lies
in the spherical zone centered at the true channel H, namely,

H =H+∆H, (13)

where H and ∆H are independent of each other and their
entries are i.i.d complex Gaussian random variables with zero
mean and variances of 1− ζ2 and ζ2, respectively, with ζ2 ∈
[0, 1]. When the CSI is perfectly known at the transmitter,
ζ2 = 0, while ζ2 = 1 if the transmitter does not know the
CSI [25]. E is assumed to be purely passive; hence, the CSI
of wiretap channels is unavailable to the legitimate node. Thus,
we adopt uncertainty model [26], which gives

HEi ∈ SE ≜{HEi = HEi+∆HEi ,∆HEi ∼ CN (0, ζ2Ei
I)},

(14)

Hi,j ∈ SR ≜{Hi,j = Hi,j+∆Hi,j ,∆Hi,j ∼ CN (0, ζ2Ri,j
I)}.
(15)

Due to the uncertainty in the CSI model, an accurate real
channel HEi

and Hi,j cannot be obtained. Instead, it is only
known that the estimated channel HEi

and Hi,j lie within
the spherical zone centered at the true channel. Consequently,
the real achievable secrecy rate cannot be determined, and the
estimated achievable secrecy rate of the ith TX-RX pair can
be written as

CSi
=CRi

− CEi

= log det
(
I+ ZRi

N−1
Ri

)
−
(
log det

(
NEi

+ ZEi

)
− log det

(
NEi

))
, (16)
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Fig. 2. Distributed ADP model for robust AN-aided secure precoding.

where

ZRi
=ωMHi,iQiQ

H
i H

H
i,i, (17)

NRi
=ωMHi,iΛiΛ

H
i H

H
i,i + σ2

Ri
I+Υi, (18)

ZEi =ωEHEiQiQ
H
i H

H
Ei
, (19)

NEi
=ωEHEi

ΛiΛ
H
i H

H
Ei

+ σ2
Ei
I, (20)

Υi =
∑
j ̸=i

ωIHi,j

(
QjQ

H
j +ΛjΛ

H
j

)
HH

i,j . (21)

Therefore, the transmitters are aware of imperfect CSIs for all
receivers, and the centralized sum secrecy rate maximization
problem for the whole system can be formulated as

P1 : max
∀Qi⪰0,Λi⪰0

K∑
i=1

CSi , (22a)

s.t. tr
(
QiQ

H
i +ΛiΛ

H
i

)
≤ Ptot, (22b)

∀Hi,j ∈ SR,∀HEi
∈ SE, i, j ∈ {1, 2, · · · ,K}. (22c)

To calculate
∑K

i=1 CSi
, a central node that can obtain all CSI

Hi,j , i, j ∈ {1, · · · ,K} is needed to calculate the secrecy
precoding matrix, AN precoding matrix and decoding matrices
for each transmitter. Then, the calculated result is transmitted
back to each transmitter. To ensure that the central node can
obtain the global CSI, each TXi −RXi pair needs to send the
channel it can obtain (HEi

and Hi,j) to the central node.

III. DISTRIBUTED ROBUST AN-AIDED SECRECY
PRECODING EMPLOYING THE ADP MODEL

A. ADP Model for Robust AN-Aided Secure Precoding

Based on the centralized interference management strategy,
the authors of [27]–[30] assume a central node can obtain

the global CSI at transmitters. However, it is a challenge to
construct such a central node in practice [31]. In this subsec-
tion, we present an ADP model for robust AN-aided secure
precoding, as shown in Fig. 2. In contrast to the centralized
model, where the global CSI must be made available to all
the transmitters via the central node, under the ADP model,
only the interference prices of individual TX-RX pairs have
to be exchanged between the transmitters. More specifically,
the i-th TX-RX pair optimizes its secrecy precoding matrix,
AN precoding matrix, and decoding matrices based on the
utility function and then calculates the interference price for
this TX-RX pair and broadcasts it to other TX-RX pairs,
while continuously iterating, until the overall utility function
converges. Thus, in our scheme, the limited information the
transmitters exchange is the interference price, which reflects
the marginal change in the utility per unit interference power.

Relying on the following matrix derivative formula:

∂ log det(A+BXC)

∂X
=

(
C(A+BXC)−1B

)
, (23)

the explicit expression of the interference price for the ith
TX-RX pair can be expressed as

Πi =
∂CSi

∂Υi
=

(
ZRi +NRi

)−1 −
(
NRi

)−1
, (24)

where Υi is the total interference received by the ith TX-
RX pair. Here, Πi represents the ith TX-RX pair’s marginal
increase in utility per unit decrease in total interference.

Given the fixed interference prices and AN-aided secrecy
precoding matrices from the other TX-RX pairs, the ith TX-
RX pair updates its AN-aided precoding matrix by distribu-
tively solving the following subproblem:

P2 : max
Qi⪰0,Λi⪰0

fi, (25a)

s.t. tr
(
QiQ

H
i +ΛiΛ

H
i

)
≤ Ptot, (25b)

∀Hi,j ∈ SR,∀HEi
∈ SE. (25c)

Since each TX-RX pair’s achievable secrecy rate CSi
is

determined without considering interference with other TX-
RX pairs, when Qj and Λj are fixed, the ith TX-RX pair will
selfishly maximize their own achievable secrecy rate CSi while
causing greater interference with other TX-RX pairs. Thus, we
introduce interference prices and view it as a price charged to
other TX-RX pairs for generating interference to ith TX-RX
pair. The utility function fi of the ith TX-RX pair is defined
as its secrecy rate minus payment to the other TX-RX pairs in
the network due to the interference it generates [8], namely,

fi =CSi
−
∑
j ̸=i

ωItr
(
ΠjHi,j

(
QiQ

H
i +ΛiΛ

H
i

)
HH

i,j

)
. (26)

Unlike P1, which focuses on optimizing the achievable
secrecy sum-rate at the central node, P2 focuses on the utility
function of the ith TX-RX pair. Our proposed ADP model se-
quentially optimizes the utility function fi, i ∈ {1, 2, · · · ,K}
of each TX-RX pair among K TX-RX pairs until they reach
their maximum values. However, it is necessary to ensure that
the ith TX-RX pair can obtain the distribution of CSI (HEi

and Hi,j) related to it.
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The robust AN-aided secrecy precoding problem P2 is diffi-
cult to solve directly due to the non-concave term − log det(·)
with respect to {Qi,Λi} [32], the nonlinear term log det(·)
and the imperfect CSI constraints (25c). In order to transform
P2 into a tractable problem, [32, Proposition 1] is invoked to
reformulate the non-concave term as follows:

− log det
(
ZEi

+NEi

)
=

max
SE-i⪰0

log det(SEi)− tr
(
SE-i

(
ZEi +NEi

))
+NE, (27)

where SE-i ∈ CNE×NE is the auxiliary variable with its optimal
solution expressed in the closed form as:

S⋆
E-i =

(
ZEi

+NEi

)−1

. (28)

To overcome the difficulty imposed by the nonlinearity
log det(·), the idea of the WMMSE method [18] is employed
to transform the achievable rate into its equivalent counterpart
by introducing some auxiliary variables as follows:

CRi = max
SRi⪰0

log det
(
SRi

)
− tr

(
SRiMRi

)
+ ds, (29)

log det
(
NEi

)
= max

SE+i⪰0
log det

(
SE+i

)
−tr

(
SE+iMEi

)
+NE,

(30)

where MRi
and MEi

are the auxiliary mean-square error
(MSE) matrices of RXi and E, respectively, and they are
defined as:

MRi
=
(√

ωMUH
Ri
Hi,iQi − I

)(√
ωMUH

Ri
Hi,iQi − I

)H

+UH
Ri
NRiURi , (31)

MEi =
(√

ωEU
H
Ei
HEiΛi − I

)(√
ωEU

H
Ei
HEiΛi − I

)H

+
ωE

σ2
Ei

UH
Ei
UEi , (32)

in which URi ∈ CNR×ds and UEi ∈ CNE×ds are the decoding
matrices of the well-known linear MMSE receivers for RXi

and E, respectively, and they can be expressed as

URi
=

(
NRi

)−1
Hi,iQi, (33)

UEi
=

√
σ2

Ei

ωE
HEiΛi. (34)

Similar to SE-i of (27), SRi
and SE+i

in (29) and (30) are also
auxiliary variables with their optimal solutions given by

S⋆
Ri

=
(
MRi

)−1

, (35)

S⋆
E+i

=
(
MEi

)−1

. (36)

To decouple the imperfect CSI constraints (25c), the slack
variables αi, βi, γi and θi,j are introduced concerning the
imperfect CSIs modeled by (14) and (15). With the aforemen-

tioned manipulations, we transform P2 into

P3 : max
Qi⪰0,Λi⪰0

gi, (37a)

s.t. tr
(
ΞRi

)
≤ αi, (37b)

tr
(
ΞE+i

)
≤ βi, (37c)

tr
(
ΞE-i

)
≤ γi, (37d)

tr
(
ΞRi,j

)
≤ θi,j , (37e)

tr
(
QiQ

H
i +ΛiΛ

H
i

)
≤ Ptot, (37f)

∀Hi,j ∈ SR,∀HEi
∈ SE, (37g)

where the new utility gi is defined by

gi =2 log det
(
FRi

)
− αi + ds + 2 log det

(
FE-i

)
− γi +NE

+ 2 log det
(
FE+i

)
− βi + da −

∑
j ̸=i

ωIθi,j , (38)

in which FRi = S
1
2

Ri
, FE-i = S

1
2

E-i , FE+i = S
1
2

E+i
, and

ΞRi
=SRi

MRi
, (39)

ΞE+i
=SE+i

MEi
, (40)

ΞE-i =SE-i

(
ZEi

+NEi

)
, (41)

ΞRi,j
=ΠjHi,j

(
QiQ

H
i +ΛiΛ

H
i

)
HH

i,j . (42)

Although the objective function in (37) is convex, the problem
(37) is still intractable due to the semi-definite constraints
(37b)-(37e). We further transform this optimization problem
into a solvable form in the following.

Upon exploiting the trace properties

tr
(
AAH

)
= ∥vec(A)∥2, (43)

vec(ABC) =
(
CT ⊗A

)
vec(B), (44)

and neglecting higher-order uncertainty terms, the semi-
definite constraint (37b) can be rewritten as

tr
(
ΞRi

)
=
∥∥ΞRi +∆ΞRi

∥∥2≤ αi, (45)

where

ΞRi =


vec

(
FRi

(√
ωMUH

Ri
Hi,iQi − I

))
vec

(√
ωMFRiU

H
Ri
Hi,iΛi

)
vec

(
FRi

Υ
1
2
i

)
σRivec

(
FRi

)

 , (46)

∆ΞRi =

JRi︷ ︸︸ ︷
QT

i ⊗
(√

ωMFRi
UH

Ri

)
ΛT

i ⊗
(√

ωMFRi
UH

Ri

)
0
0

 vec
(
∆Hi,i

)
. (47)

To eliminate the uncertainty ∆ΞRi
, the Schur complement

lemma [19] are applied to define a hermitian matrix Φ that
satisfy:

Φ =

[
αi

(
ΞRi +∆ΞRi

)H
ΞRi

+∆ΞRi
I

]
⪰ 0. (48)
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Thus, we have[
αi Ξ

H

Ri

ΞRi
I

]
⪰

[
0 −∆ΞH

Ri

−∆ΞRi
0

]
. (49)

Furthermore, in consideration of sign-definiteness lemma [20,
Lemma 1], define matrices A, then, (49) can be transformed
as

A ⪰ PHXQ+QHXHP, (50)

where

A =

[
αi Ξ

H

Ri
,

ΞRi I

]
, (51)

P =
[
0H JH

Ri,i

]
, (52)

Q =
[
−1 0

]
, (53)

X =vec (∆Hi,i) . (54)

According to the sign-definiteness lemma, (50) holds if and
only if there exist nonnegative real numbers λαi

such that
[

αi − λαi

ΞRi

Ξ
H

Ri

I

]
−ζRi,i

[
0T

JRi,i

]
−ζRi,i

[
0 JH

Ri,i

]
λαi

I

 ⪰ 0, (55)

where

JRi,j
=

[
QT

i ⊗Πj

ΛT
i ⊗Πj

]
. (56)

Until now, (37b) has been transformed into a linear matrix
inequality (LMI) (55).

Similarly, in the presence of nonnegative real numbers λβi
,

λγi
and λθi,j , the constraints (37c)-(37e) are rewritten as the

following corresponding LMIs:
[

βi − λβi

ΞE+i

Ξ
H

E+i

I

]
−ζEi

[
0T

JE+i

]
−ζEi

[
0 JH

E+i

]
λβi

I

 ⪰ 0, (57)


[

γi − λγi

ΞE-i

Ξ
H

E-i
I

]
−ζEi

[
0T

JE-i

]
−ζEi

[
0 JH

E-i

]
λγi

I

 ⪰ 0, (58)


[

θi,j − λθi,j

ΞRi,j

Ξ
H

Ri,j

I

]
−ζRi,j

[
0T

JRi,j

]
−ζRi,j

[
0 JH

Ri,j

]
λθi,jI

⪰0, (59)

in which

ΞE+i =

[
vec

(
FE+i

(√
ωEU

H
Ei
HEiΛi − I

))
σEi√
ωE

vec
(
FE+i

UH
Ei

) ]
, (60)

JE+i
=

[
ΛT

i ⊗
(√

ωEFE+i
UH

Ei

)
0

]
, (61)

ΞE-i =

 vec
(
FE-iHEi

Qi

)
vec

(
FE-iHEi

Λi

)
σEivec

(
FE-i

)
 , (62)

JE-i =

 QTi ⊗ FE-i
ΛT

i ⊗ FE-i
0

 , (63)

ΞRi,j
=

[
vec

(
Hi,jQi

)
vec

(
Hi,jΛi

) ]
. (64)

As a result, the robust design of AN-aided secrecy pre-
coding and decoding matrices at each TXi-RXi pair can be
reformulated as

P4 : max
Qi,Λi,URi

,UEi
,FRi

,FE+i
,FE-i

⪰0

αi,βi,γi,θi,j>0

gi, (65a)

s.t. (55), (57)− (59), (37f). (65b)

Algorithm 1: Proposed ADP algorithm based on
WMMSE
Initialization: Give maximum number of iterations
Lmax and termination threshold ϵ;

Each transmitter i, i ∈ {1, 2, · · · ,K}, chooses feasible
AN-aided secrecy precoding Qi and Λi, interference
price, and auxiliary variables FRi

, FE+i
, FE-i and

UEi
;

Set l = 0;
while ∆gi ≥ ϵ and l ≤ Lmax do

1. for i = 1 : K do
1) Solve P4 to update URi with other
parameters fixed at receiver RXi;

2) Solve P4 to update FRi
for fixed URi

found
in the previous step at receiver RXi;

3) Solve P4 to update FRi
for fixed URi

found
in the previous step at receiver RXi;

4) Calculate interference price Πi based on
(24) at TXi and then broadcast it through a
beacon;

5) Fixing FRi
and URi

found in the previous
steps, TXi updates its AN-aided secrecy
precoding {Qi,Λi} by solving P4;

6) Solve P4 to update UEi for fixed Λi found
in the previous step at TXi;

7) Solve P4 to update FEi
for fixed UEi

found
in the previous step at TXi;

end
2. l=l+1;

end
Output: Output results Q⋆

i , Λ⋆
i , U⋆

Ri
.

The semi-definite program (SDP) problem P4 remains non-
convex since some of the optimization variables are coupled
with each other by multiplications, e.g., FRi , URi , Qi and Λi

in (55), and similar observations are obtained from (57) and
(59). Fixing some optimization variables can make P4 into
a convex optimization problem. In other words, with proper
manipulations, its sub-problems become convex, readily solv-
able with the alternating convex search (ACS) method [21].
Algorithm 1 summarizes this proposed algorithm for solving
the nonlinear nonconvex problem P4.
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B. Convergence and Optimality Analysis

1) Convergence Analysis: The convergence of Algorithm 1
is guaranteed because the objective utility function is
monotonously increasing at each iteration and is bounded by
power constraint and the interference price constraint (37e).
Specifically, we have

gn+1
i = g

(
Fn+1

E−i
,Fn+1

E+i
,Un+1

Ei
,Qn+1

i ,Λn+1
i ,Fn+1

Ri
,Un+1

Ri

)
≥ g

(
Fn+1

E−i
,Fn+1

E+i
,Un+1

Ei
,Qn+1

i ,Λn+1
i ,Fn

Ri
,Un

Ri

)
≥ g

(
Fn+1

E−i
,Fn+1

E+i
,Un+1

Ei
,Qn

i ,Λ
n
i ,F

n
Ri
,Un

Ri

)
≥ g

(
Fn+1

E−i
,Fn

E+i
,Un

Ei
,Qn

i ,Λ
n
i ,F

n
Ri
,Un

Ri

)
≥ g

(
Fn

E−i
,Fn

E+i
,Un

Ei
,Qn

i ,Λ
n
i ,F

n
Ri
,Un

Ri

)
= gni ,

(66)

which indicates that the objective function of P4 is non-
decreasing during the optimization process. The utility func-
tion of each TX-RX pair incorporates the penalty for inter-
ference caused to other transmitters, and the constraint (37e)s
limits the interference price. Therefore, when optimizing gi at
TXi-RXi pair, it can ensure that the utility function, gi+1,
of the TXi+1-RXi+1 pair does not decline. Due to power
constraints, the utility function of each TX-RX pair is upper-
bounded to ensure convergence of Algorithm 1.

2) Optimality Analysis: The KKT optimality conditions of
the problem P1 (22) can be expressed as

∂CSi

∂Q⋆
i

+
∑
j ̸=i

∂CSj

∂Q⋆
i

+ λQi
=2λiQ

⋆
i , (67)

∂CSi

∂Λ⋆
i

+
∑
j ̸=i

∂CSj

∂Λ⋆
i

+ λΛi
=2λiΛ

⋆
i , (68)

where λi, λQi , λΛi ≥ 0 are Lagrange multipliers of (22b),
Qi ⪰ 0 and Λi ⪰ 0. On the other hand, fixing Πj for j ̸= i,
the KKT optimality conditions of the problem P2 (25) can be
formulated as

∂CSi

∂Q⋆
i

− 2
∑
j ̸=i

HH
i,jΠjHi,jQ

⋆
i + λQi =2λiQ

⋆
i , (69)

∂CSi

∂Λ⋆
i

− 2
∑
j ̸=i

HH
i,jΠjHi,jΛ

⋆
i + λΛi

=2λiΛ
⋆
i . (70)

Substituting Πj (24) into (69) and (70), it can be seen that
the KKT conditions (67) and (68) of the problem P1 is the
same as the KKT conditions (69) and (70) of the problem
P2. This means that a local optimum of the problem (22)
is also a local optimum of the problem (25). Furthermore,
employing the MMSE receiver, the problem P2 is equivalent
to the problem P3 (37), as proved in [4]. Additionally, the
proposed algorithm for solving the problem P4 (65) converges
to at least a local optimum solution of the problem P3, as
shown in [20]. Thus, the proposed algorithm for the problem
P4 converges to a local optimum of the problem P1.

C. Complexity Analysis

The computational complexity of Algorithm 1 is mainly
from solving the problem P4, which can be solved using
the interior-point method [33] implemented by the CVX
toolbox usable in Matlab with a computational complexity of
O
(
log

(
1
ϵ

)
n3.5
tot

)
, where ntot is the total number of real-valued

optimization variables and ϵ is a given solution accuracy. Thus,
by adding up the total number of optimization variables in
the proposed optimization, the computational complexity of
Algorithm 1 is expressed as

Cpro−ADP =O
(
K log

(1
ϵ

)(
NT

(
ds + da

)
+ ds

(
NR + ds

)
+ 3N2

E + 6 + 2K − 2
)3.5

)
. (71)

The computational complexity of MT-MSE scheme [5] is
mainly from matrices multiplication, matrices inversion and
solving polynomial equation of high degree. It is expressed as
CMT−MSE , where the complexity cMT−MSE1, cMT−MSE1,
and cMT−MSE3 arises from matrix multiplication and matrix
inversion while solving the high-degree polynomial equation
results in the complexity cMT−MSE4. I denotes the total
number of iteration steps, while h represents the number
of steps required to solve the polynomial equation in each
iteration step. In comparison, when 18 < NT , NR < 38
while keeping other parameters fixed, we can obtain that
CMT−MSE > Cpro−ADP . However, it shows disadvantage
when NE grows.

cMT−MSE1 =KNRNT ds +N3
R (72)

cMT−MSE2 =KNENT ds +N3
E (73)

cMT−MSE3 =KNTNRds +N3
T (74)

cMT−MSE4 =h(2NT )
2
log (2NT ) log log (2NT ) (75)

CMT−MSE =O (IK (c1 + c2 + c3 + c4)) (76)

Similarly, the computational complexity of AN-IA scheme
[6] is expressed as CAN−IA. When NT , NR < 20, we can
obtain CAN−IA > Cpro−ADP . Besides, there are constraints
on the number of transmitter, receiver, and eavesdropper
antennas in the AN-IA scheme [6, Eq. (9)]. Otherwise, a
closed-form solution does not exist.

cAN−IA1 = dsNTNR + d2s (77)
cAN−IA2 =K (NTNRda +NT da) (78)
cAN−IA3 =K (NTNRds +NT ds) (79)

cAN−IA4 = I
(
dsN

3
R + daN

3
E

)
(80)

cAN−IA5 = IK (NRNT ds +NENT ds) (81)
CAN−IA =O(cAN−IA1 + cAN−IA2 + cAN−IA3

+ cAN−IA4 + cAN−IA5) (82)

IV. SIMULATIONS AND DISCUSSIONS

We consider a multiuser MIMO-IC network with K = 3.
Unless otherwise specifically stated, the default parameters
of the simulated network are NT = NR = 4, ds = 2,
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da = 1,3 NE = 8, dM = dI = 10m, dE = 10m,
Ptot = 20 dB, and the noise variances σ2

Ri
= σ2

Ei
= −110 dB

[23]. For convenience, we denote ζEi = ζRi,j = ζ. Numerical
simulations are carried out to evaluate the performance of our
proposed AN-aided secrecy precoding design. Specifically, the
convergence of the proposed algorithm is first verified through
simulations. Next, we compare our proposed algorithm with
the MT-MSE algorithm [5] and the AN-IA algorithm [6] in the
simulations under both perfect and imperfect CSI conditions.
Then, the impact of the imperfect CSI and eavesdropper on the
achievable average secrecy rate of the proposed algorithm is
further investigated to evaluate the robustness of our scheme.

Fig. 3. Average secrecy rate versus number of iterations for Algorithm 1
under different transmitted power Ptot and CSI error bounds ζ, where K = 3,
NT = NR = 4 and NE = 8.

A. Convergence Performance of Proposed Algorithm

Fig. 3 investigates the convergence performance of Algo-
rithm 1 by showing the average secrecy rate versus the number
of iterations under different transmitted power and CSI error
bounds ζ, where ζ is the squared root of the variance ζ2 of
the channel uncertainty defined in (13). It can be seen from
Fig. 3 that Algorithm 1 achieves the fast convergence for all
the four cases. As expected, the convergence speed and the
attainable average secrecy rate depend on the CSI error bound
ζ, and the total available transmit power Ptot.

Specifically, under the same Ptot, the smaller the CSI error
bound, the faster the convergence, and the higher the achiev-
able average secrecy rate. Observe that the influence of ζ on
the convergence speed and the attainable average secrecy rate
is particularly significant. In particular, Algorithm 1 converges
within 10 iterations for ζ = 0.1, and it converges within
15 iterations for ζ = 0.5. Furthermore, given Ptot = 10 dB,
the achievable average secrecy rates are 1.35 [bit/s/Hz] and
0.55 [bit/s/Hz] under ζ = 0.1 and ζ = 0.5, respectively,
while given Ptot = 20 dB, the achievable average secrecy
rates are 1.85 [bit/s/Hz] and 0.82 [bit/s/Hz] under ζ=0.1 and
ζ=0.5, respectively. From both engineering and mathematical
perspectives, when the CSI error bound is reduced, the feasible
solution set of P4 is reduced, and Algorithm 1 can allocate

3Usually, one stream of IA is enough to degrade Eve [6]. Thus we set
da = 1.

an optimal solution quicker, that is, the artificial noise can be
more promptly and accurately aligned with the direction of
the eavesdropper and secure precoding can also quickly find
the optimal transmission direction. Increasing the CSI error
bound has the opposite effect.

Similarly, the total available transmit power Ptot has some
influence on the convergence speed. This is because as Ptot

is reduced, the search space for the power constraints (37f)
is shrunk, and hence the number of iterations required to
achieve the optimal result decreases. Fig. 3 also shows that
increased available transmit power improves the average se-
crecy rate. Although an increase in the transmitted power
will simultaneously increase both the IUI and the strength
of the confidential message signal at the legitimate receiver,
as a benefit of the secure precoding based on interference
management, the enhancement of the confidential message
signal at the legitimate receiver will be more substantial than
that of the IUI. Therefore, increasing the transmit power will
improve the average secrecy rate.

B. Performance Comparison with Benchmarks

The comparison of the average secrecy rate of our scheme
with those of the MT-MSE scheme [5] and the AN-IA scheme
[6] is shown in Fig. 4 under both the perfect CSI case of
ζ = 0 and the imperfect CSI case of ζ = 0.1, respectively,
where Eve is equipped with NE = 8 antennas. The AN-IA
scheme [6] imposes stringent constraints on the number of
antennas at the transmitter, receiver, and eavesdropper. Failure
to meet these constraints results in the scheme’s inability to
determine a closed solution for variables during the iterative
process. Moreover, both the AN-IA and MT-MSE schemes [5]
necessitate a central node capable of accessing global channel
information and executing iterative calculations, which is often
impractical. In contrast, our proposed scheme is adaptable
to any number of antennas at transmitters, receivers, and
eavesdroppers. Unlike the conventional approach, where the
achievable secrecy sum-rate of the system forms the objective
function, our distributed scheme calculates the utility function
independently for each TX-RX pair. Consequently, it is only
essential for the ith TX-RX pair to access the CSI distribution
(HEi

and Hi,j) pertinent to it.
In the perfect CSI case with ζ = 0, it can be seen

that our proposed scheme outperforms the MT-MSE. This is
because our scheme employs a direct and effective criterion
that maximizes the utility function defined as the secrecy
rate minus the interference cost imposed on other receivers4,
instead of the MT-MSE criterion that minimizes the total
MSE of the recovered signals. The MT-MSE criterion only
approximates the direct security performance metric, i.e., the
sum secrecy rate, thus resulting in some loss. It can also be
seen that in the perfect CSI case, the performance gain of
our scheme over the MT-MSE decreases with the increase
of the transmit power. This is because the loss incurred by
using the MT-MSE criterion decreases with the rise of the
transmission power, as pointed out in [34]. It can also be seen

4This is fully equivalent to maximizing the sum secrecy rate, as proven in
Subsection III-B.
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Fig. 4. Average secrecy rate versus available transmit power Ptot comparison
of the proposed AN aided secrecy precoding scheme, MT-MSE scheme [5]
and AN-IA scheme [6], where K = 3, NT = NR = 4 and dE = 10m.

that for the perfect CSI case, our scheme outperforms the AN-
IA scheme considerably. The AN-IA scheme requires that the
signal transmitted by each transmitter lies in the null space
of the ICs at other non-paired receivers. However, when there
is a strong correlation between the main channel and the IC,
such constraints significantly reduce the communication rate
of the main channel, thus decreasing the security rate.

In the imperfect CSI case with ζ = 0.1, it is evident that
our proposed scheme also outperforms both the MT-MSE and
AN-IA. In particular, our scheme significantly outperforms the
AN-IA scheme. Furthermore, unlike the perfect CSI case, the
performance gain of our scheme over the MT-MS increases
with the transmit power. This is indeed expected. The secrecy
precoding in the MT-MSE scheme heavily relies on the perfect
CSI of IC and EC to impose the IUI on Eve, not on the
other legitimate receiver. Thus, with higher transmit power,
the growth of the secrecy rate in the MT-MSE is more limited
due to more leakage of IUI being injected into the legitimate
receiver. By contrast, our method considers the CSI error
bound of IC and EC, and enhancing the confidential message
signal at the legitimate receiver is more substantial than that
of the IUI with higher transmit power.

Fig. 5. Average secrecy rate versus CSI error bound ζ under two different
positions of Eve, where K = 3, NT = NR = 4 and NE = 8.

C. Impact of Imperfect CSI and Eavesdropper’s Capability

We investigate the impact of imperfect CSI and eavesdrop-
per’s capability on our proposed scheme’s achievable average
secrecy rate.

First, Fig. 5 depicts our proposed scheme’s achievable
average secrecy rate as the function of the CSI error bound
ζ under two different positions of Eve. As expected, the
uncertainty in the main channel and ICs Hi,j as well as the
EC HEi

has a significant impact on the achievable average
secrecy rate. The average secrecy rate decreases significantly
as the CSI error bound ζ increases. This is because a larger
CSI error bound has a bigger negative impact on the secrecy
precoding and the AN, which causes an increase in the IUI
and leakage of confidential messages. As a result, the secrecy
rate of each transmitter decreases. Furthermore, the distance
between Eve and its targeted transmitter dE greatly impacts the
achievable average secrecy rate. Specifically, reducing dE from
10 m to 1 m causes a significant drop in the average secrecy
rate. This is because a smaller dE than dM makes the CSI of
the EC better than that of the legitimate transceiver channel.
Observe that in the case of dE = 1m with Ptot = 10 dB, the
average secrecy rate is practically zero for ζ > 0.4.

Not surprisingly, Eve’s capability significantly impacts the
achievable average secrecy rate. The ability of Eve depends
on its number of antennas NE and its distance to the targeted
transmitter dE. Fig. 6 portrays the impact of the eavesdropper’s
capability on the average secrecy rate of the proposed scheme.
Specifically, when the number of Eve’s antennas NE increases,
Eve can process signals from more spatial dimensions. Hence,
its eavesdropping capability increases, and the average secrecy
rate decreases. As the distance dE between the transmitter
and Eve decreases, Eve’s channel gain increases. Hence, Eve’s
capability becomes stronger, and the security rate decreases.
In addition, it can be seen from Fig. 6 that when dE is
very large, the influence of the number of Eve’s antennas
on the average secrecy rate decreases. This is because as
dE becomes large, the signal strength at the eavesdropper is

Fig. 6. Average secrecy rate versus Eve’s number of antennas NE and distance
dE, where K = 3, ζ = 0.1, dE = (10, 50, 100, 150, 200) and NT = NR =
4.
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reduced. Even if Eve can glean signals from more spatial
dimensions, the total signal strength remains relatively low,
and Eve’s eavesdropping performance improvement remains
relatively insignificant. Hence, the resultant reduction of the
security rate remains relatively modest.

V. CONCLUSIONS

A distributed robust AN-aided secrecy precoding scheme
has been proposed to secure communications over the wire-
tap MIMO-IC. Our scheme maximizes the sum secrecy rate
by maximizing each user’s utility while considering its in-
terference cost imposed on the other users. Based on the
ADP, WMMSE, Schur complement, and sign-definiteness
techniques, the original non-convex optimization problem is
transformed into a tractable approximate SDP problem subject
to LMI constraints. This approximation problem is solved
by the alternating convex search method. Our simulation
study has demonstrated the efficiency of the proposed scheme.
Specifically, the simulation results have confirmed the fast
convergence of our proposed scheme. The results also show
the superior performance of our scheme over the two well-
known distributed secrecy precoding schemes for secure com-
munications over the wiretap MIMO-IC.
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