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Active RIS-Assisted Multi-User Multi-Stream
Transmit Precoding Relying on
Scalable-Complexity Iterations
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Abstract—This is the first investigation focused on deliver-
ing multi-stream information to multiple multi-antenna users
employing an active reconfigurable intelligent surface (aRIS)-
assisted system. We conceive the joint design of the transmit
precoders and of the aRIS’s power-amplified reconfigurable
elements (APRES) to enhance the log-det rate objective functions
for all users, which poses large-scale mixed discrete continuous
problems. We develop a max-min log-det solver, which iterates
quadratic-solvers of cubic complexity to maximize the nonsmooth
function representing the minimum of the users’ log-det rate
functions. To mitigate the computational burden associated
with cubically escalating complexity in large-scale scenarios, we
introduce a pair of alternative problems aimed at maximizing
the smooth functions representing the sum of the users’ log-det
rate function (sum log-det) and the soft minimum of the users’
log-det rate function (soft min log-det). We develop sum log-
det and soft max-min solvers, leveraging closed-form expressions
of scalable (linear) complexity for efficient computation. This
approach ensures practicality in addressing large-scale scenarios.
Furthermore, the soft min log-det enables us to enhance the log-
det rates for all users and their sum, ultimately improving the
quality of delivering multi-user multi-stream information.

Index Terms—Active reconfigurable intelligent surface (aRIS),
multi-user precoding, active power control, log-det matrix func-
tion optimization, large-scale computation, mixed discrete con-
tinuous optimization, log-det enhancement,

I. INTRODUCTION

At the time of this writing, there is intense interest in uti-
lizing metasurfaces as massive antenna arrays, owing to their
promising potential in next-generation networks and beyond
[1]–[10]. Nonetheless, the majority of existing research has
been predominantly focused on simple scenarios, considering
either a single multi-antenna user or multiple single-antenna
users. Unfortunately, these scenarios still fall short of capturing
the intricacies inherent in real-world communication networks,
where multiple data streams are transmitted to numerous users,
each with multiple antennas is commonplace. Interference
is absent in a single multi-antenna user scenario, which
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significantly simplifies the information theoretic analysis of
the single-user rate function. For scenarios of multiple single-
antenna users, optimizing the users’ rate functions can be
equivalently translated into optimizing the users’ signal-to-
interference-plus-noise ratios (SINRs) for fractional program-
ming. For multiple multi-antenna users, the individual rate
function is defined as the log determinant (log-det) of a
nonlinear matrix expression composed of the covariance ma-
trices of the signal and interference. Optimizing these log-det
rate functions poses significant computational challenges, even
for moderate-dimensional conventional multiple user systems
dispensing with metasurfaces, where fractional programming
or semi-definite relaxation is entirely ineffective [11]–[13]. It
is unsurprising that optimizing the users’ rate functions in
large-scale supporting multiple single-antenna users has been
extensively studied [14]–[21] but its extension to scenarios of
multiple multi-antenna users has remained largely unexplored.

The primary objective of multi-user (MU) networks is to en-
sure a high quality of information delivery (QoD) for all users
(MU QoD) in terms of their individual rates. Metasurfaces
are distinguished by their programable reconfigurable elements
(PREs), which are subject to discrete constraints due to their
low resolution in practical implementations. Consequently, op-
timizing the users’ log-det rate functions in metasurface-aided
MU networks involves tackling large-scale mixed discrete-
continuous problems, which further exacerbates the compu-
tational challenges. The sum rate (SR) maximization problem
proves inadequate since it often prioritizes enhancing rates the
specific users that have the best channel, leaving others with
nearly zero rates. Attempting to overcome this limitation of
SR maximization by imposing constraints on the log-det rate
functions to ensure MU QoD should be avoided since it result-
s in computationally challenging mixed discrete-continuous
constraints that remain unsolved. The most straightforward
approach of enhancing MU QoD without constraining it is
to maximize the minimum of the log-det rate functions,
which, nevertheless, constitutes a nonsmooth mixed discrete-
continuous problem.

Active reconfigurable intelligent surfaces (aRIS) have been
introduced recently [5], [6]. They enable power amplification
to the PREs of a metasurface, compensating for the double
path-loss caused by dual-hop signal propagation from the
source to the destination assisted by the metasurface. In
particular, the authors of [6], [22], [23] have used fractional
programming to demonstrate the enhancement of SR in aRIS-
assisted networks supporting multiple singer-antenna users.
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Again, solely enhancing the SR may not always lead to
equitable MU QoD. This paper presents the first advancement
to ensure high MU QoD in aRIS-assisted multi-antenna multi-
user systems by the joint design of matrices for precoding
information streams (transmit precoders), low-resolution phas-
es, and the power allocation for the vector of aRIS-powered
amplified PREs (APREs). More explicitly, the paper offers
the following contributions to push forward the field of MU
services:
• Large-scale Max-Min Log-Det Optimization: This is

the first attempt to address the challenge of maximizing
the minimum of the users log-det rate functions, leading
to max-min log det optimization. It poses a nonsmooth,
large-scale, mixed-discrete problem due to the significant
dimensions of both the individual transmit precoders (T-
PCs) and of the APREs’ vector, along with their discrete-
valued phases. To tackle this, we introduce a novel uni-
versal penalized optimization framework, which allows
us to utilize cubic complexity (CC) quadratic solvers
(QSs) in the alternating optimization of the TPCs or the
APREs’ vector, while employing closed-form expressions
in alternating optimization either for the APREs’ power
or for their discrete-valued phases;

• Large-scale Sum-Log-Det Maximization: Embedded
within our universal penalized optimization framework,
it takes advantage of the smoothness of the GM-log-
det function to leverage closed-form expressions having
scalable (linear) complexity in alternating optimization
for the TPCs, the APREs’ vector, as well as for the
APREs’ power or their discrete-valued phases;

• Large-scale Soft Max-Min Log-Det Optimization: This
is the first endeavor to enhance the MU QoD. We
introduce a new optimization objective, referred as soft
minimum of log-det rate functions. Maximizing this
function (soft max-min log-det optimization) not only
helps to ensure high MU QoD but also achieves high sum
log-det rates. Its smoothness allows us to utilize scalable-
complexity closed-form expressions in the alternating op-
timization of each of the aforementioned TPCs, APREs’
vector, APREs’ power, and discrete-valued phases with
the aid of the universal penalized optimization framework
mentioned above.

The paper is structured as follows. Sections II, III, and IV
are dedicated to developing algorithms for the optimization
of max-min log-det, sum-log-det, and soft max-min log-
det. Simulations are presented in Section V, and Section VI
concludes the paper. The Appendix provides the mathematical
ingredients for the algorithmic derivations.

Notation.Only decision variables are printed in boldface;1

For a vector a, diag[a] is the diagonal matrix with the entries
of a in its diagonal; 〈X〉 represents the trace of matrix X ,
and ||X||2 is the squared Frobenius norm; [X]2 meansXXH ,

1We would like to emphasize the intentional use of boldface font in our
paper, exclusively employed to highlight decision variables. This deliberate
choice serves to explicitly distinguish between feasible points and variables,
ensuring the prominence of decision variables and thus helping to recognize
the specific structures such as quadratic forms of the functions concerned.
These variables may take the form of scalars, vectors, or matrices.

so [XH ]2 = XHX and ||X||2 = 〈[X]2〉 = 〈[XH ]2〉; X � 0
(X � 0, resp.) means X is positive semi-definite (positive
definite, resp.); For X � 0,

√
X indicates a positive semi-

definite matrix (
√
X � 0) so that [

√
X]2 = X; Naturally,

X � Y suggests X − Y � 0. The reader is referred to [24]
for matrix optimization.

The distribution of a circular Gaussian random variable with
zero means and variance σ is denoted by C(0, σ). Table I
presents a summary of the notations used.

TABLE I: Basic notations

Notation Description
N /N # of BS’s transmit antennas/index set {1, . . . , N}
K/K # of users/index set {1, . . . ,K}
Nr /Nr # of user’s antenna/index set {1, . . . , Nr}
M /M total # of APREs/index set {1, . . . ,M}
b number bit resolution
c penalty parameters

Wk ∈ CN×Nr user k’s precoder
z , (z1, . . . , zM )T design vector of APREs
θθθ , (θθθ1, . . . , θθθM )T design vector of APREs’ phases
ppp , (ppp1, . . . , pppM )T design vector of APREs’ power amplification
W

(κ)
k , z(κ), θ(κ), p(κ) generated values of Wk , z, θθθ, ppp at κ-th iteration

W/W (κ)
[
W1 . . . WK

]
/
[
W

(κ)
1 . . . W

(κ)
K

]
rk(W, z) achievable rate for user k

II. MASTERING ITERATIVE CC LARGE SCALE QUADRATIC
SOLVERS FOR MAX-MIN LOG-DET OPTIMIZATION

We consider the wireless network of Figure 1, consisting of
an aRIS assisting an N -antenna base station (BS) in serving K
Nr-antenna users, which are indexed by k ∈ K , {1, . . . ,K}.
The aRIS is equipped with M power-amplified programable
reconfigurable elements (APREs) zm, m ∈M , {1, . . . ,M}.
For the practical implementation of the aRIS, we make the
assumption that the APREs have phases of low-bit resolu-
tion, resulting in the following mixed discrete continuous
constraints

zm = pppme
θθθm ,m ∈M, (1)

with pppm ∈ R representing the power amplification coefficients,
and

θθθm ∈ B ,

{
β

2π

2b
, β = 0, 1, . . . , 2b − 1

}
,m ∈M, (2)

representing the APREs’ phases of b-bit resolution.2 We thus
define the vector of APREs by

z , (z1, . . . , zM )T ∈ CM . (3)

Let

CNr×M 3 HR,k =

 HR,k,1

. . .
HR,k,Nr

 , HR,k,nr ∈ C1×M , nr ∈ Nr (4)

& GB,R =

GB,R,1. . .
GB,R,M

 ∈ CM×N ,

2In practice, pppm may be subject to quantization. However, for the sake of
focus in this paper, we defer consideration of quantization to future work,
assuming that the resolution of pppm is sufficiently high to treat it as analog.
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Fig. 1: aRIS-assisted system model

represent the channel spanning from the aRIS to user k ∈
K, and that from the BS to the aRIS. GB,R and HR,k are
expressed by

√
βB,RḠB,R and

√
βR,kH̄R,k, where βB,R and

βR,k represent the path-loss and large-scale fading of the link
spanning from the BS to the aRIS and that from the aRIS
to user k. Explicitly, GB,R is the line-of-sight (LoS) channel
matrix between the BS and aRIS, while HR,k is modelled by
Rician fading between the aRIS and the user k [25], [26]. For
RR,k as the spatial correlation matrix of the aRIS elements
with respect to user k, the channel from the aRISs to user k
is represented by

H̃R,k =

 H̃R,k,1

. . .

H̃R,k,Nr

 , HR,k

√
RR,k =

 HR,k,1

√
RR,k

. . .
HR,k,Nr

√
RR,k

 .
Let Hk ∈ CNr×N be the direct channel impinging from the
BS to user k. Hk =

√
βkH̄k with the path-loss and large-

scale fading
√
βk at the distance dk from the BS to user k.

The small-scale fading channel gain H̄k of the BS to user
k obeys the Rayleigh distribution [27]. Then the composite
two-hop channel from the BS to user k is given by

H̃k(z) , Hk +Hk(z), (5)

where Hk(z) is the composite channel spanning from the BS
to user k via the aRIS defined by

CNr×M 3 Hk(z) , H̃R,kdiag[z]GB,R (6)

=

 zT diag[H̃T
R,k,1]

. . .

zT diag[H̃T
R,k,Nr

]

GB,R (7)

= Ξk(z)GB,R (8)

for

CM 3 Dk,nr , diag[H̃T
R,k,nr ], (k, nr) ∈ K×Nr, (9)

and

CNr×M 3 Ξk(z) ,

 zTDk,1
. . .

zTDk,Nr

 . (10)

Let sk ∈ CNr obeying E([sk]2) = INr represent the Nr
number of information streams intended for user k, which is
precoded by the TPC of

Wk =
[
Wk,1 . . . Wk,Nr

]
∈ CN×Nr (11)

prior to its transmission from the BS. The signal received at
user k can be written as

CNr 3 yk = H̃k(z)
∑
k∈K

Wksk + Ξk(z)ν + nk, (12)

where ν ∈ C(0, σνIM ) is the dynamic noise induced by the
aRIS, nk ∈ C(0, σINr ) is the additive white Gaussian noise
(AWGN), which encompasses both the background noise and
the channel impairments caused by imperfect channel state
information (CSI).

For W ,
[
W1 . . . WK

]
, the rate in nats for user k is

expressed as the following log-det function

rk(W, z) = ln
∣∣∣INr + [H̃k(z)Wk]2Φ−1

k (z,W)
∣∣∣ , (13)

with [H̃k(z)Wk]2 representing the covariance of the signal of
interest, and

Φk(W, z) ,
∑

j∈K\{k}

[H̃k(z)Wj ]
2 + σν [Ξk(z)]2 + σINr (14)

representing the covariance of the interference plus noise. We
also use (8) to represent

H̃k(z)Wj = HkWj + Ξk(z)GB,RWj

= HkWj + ∆k(Wj , z), (15)

with

CNr×Nr 3 ∆k(Wj , z)

,

 zTDk,1GB,RWj,1 . . . zTDk,1GB,RWj,Nr

. . . . . . . . .
zTDk,NrGB,RWj,1 . . . zTDk,NrGB,RWj,Nr


=

 ∆k,1,1(Wj)z . . . ∆k,1,Nr (Wj)z
. . . . . . . . .

∆k,Nr,1(Wj)z . . . ∆k,Nr,Nr (Wj)z

 , (16)

where

C1×M 3 ∆k,`,`′(Wj) , WT
j,`′G

T
B,RDk,`, (`, `′) ∈ Nr ×Nr.

(17)
The TPC power given the budget P is constrained by∑

k∈K

||Wk||2 ≤ P, (18)

which is a convex quadratic constraint, while the reflected
power of the aRISs given the budget PA is constrained by∑

k∈K

||diag[zm]m∈MGB,RWk||2 + σν ||z||2 ≤ PA (19)

⇔
∑
k∈K

〈Q1(z)[Wk]2〉 ≤ P1(z) (20)

⇔zHQ2(W)z ≤ PA, (21)

where

Q1(z) , (GB,R)Hdiag[|zm|2]m∈MGB,R
P1(z) , PA − σν ||z||2,

Q2(W) ,
∑
k∈K

∑
nr∈Nr

diag[|GB,R,mWk,nr |2]m∈M

+σνIM .

(22)

By (20) we represent the biconvex constraint (19) as a convex
quadratic constraint in W with z held fixed, while by (21)
we express the biconvex constraint (19) as a convex quadratic
constraint in z with W held fixed. To address the MU QoD
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offered by aRIS-assisted MU communications, we consider
the following problem of max-min log-det optimization:

max
W,z,θθθ,ppp

f(W, z) , min
k∈K

rk(W, z) s.t (1), (2), (18), (19),

(23)
which is a large-scale problem due to the massive number of
its decision variables. For example, under a typical scenarios
of (N,Nr,K,M) = (16, 2, 10, 100) it is KNrN+3M = 620.
This maximization problem is very computationally challeng-
ing, because its objective function (OF) f(W, z) is not only
nonconcave and nonconvex but also nonsmooth, representing
the pointwise minimum of the log-det functions. Furthermore,
the nonlinear equality constraint (1) and the difficult discrete
constraint (2) prohibit exact alternating optimization in either
z, θθθ or ppp. To tackle (23), we adopt the popular penalized
optimization framework [28], [29] and integrate the nonlinear
equality constraint (1) into the optimization OF, leading to the
following penalized optimization problem:

max
W,z,θθθ,ppp

fρ(W, z, ppp,θθθ) , [f(W, z)

−ρ
∑
m∈M

|zm − pppmeθθθm |2
]

s.t (2), (18), (19), (24)

where ρ > 0 is the penalty parameter. Note that any feasible
point for (24) is not feasible for (23), unless we have zm =
pppme

θθθm , m ∈M.
This section introduces an alternating ascent algorith-

m based on cubic-complexity QSs to solve (24). Starting
from an initial point (W (0), z(0), p(0), θ(0)) for (24), let
(W (κ), z(κ), p(κ), θ(κ)) be a feasible point for (24) that is
found from the (κ − 1)-st iteration. We now describe an
alternating ascent in each of W, z, ppp and θθθ to generate
(W (κ+1), z(κ+1), p(κ+1), θ(κ+1)).

A. Cubic-complexity TPC ascent

To seek W (κ+1) such satisfying

fρ(W
(κ+1), z(κ), p(κ), θ(κ)) ≥ fρ(W (κ), z(κ), p(κ), θ(κ))

⇔ f(W (κ+1), z(κ)) >≥ f(W (κ), z(κ)), (25)

we consider the following problem3

max
W

f
(κ)
1 (W) , min

k∈K
r

(κ)
1,k(W) s.t. (18), (26a)∑

k∈K

〈Q(κ)
1 [Wk]2〉 ≤ P (κ)

1 , (26b)

with Q(κ)
1 , Q1(z(κ)) and P (κ)

1 , P1(z(κ)) according to (20)
and (22), while according to (13) and (14) we have:

r
(κ)
1,k(W) , rk(W, z(κ))

= ln
∣∣∣INr + [H

(κ)
1,kWk]2(Φ

(κ)
1,k(W))−1

∣∣∣ ,(27)

for H
(κ)
1,k , H̃k(z(κ)), Φ

(κ)
1,k(W) , Φk(W, z(κ)) =∑

j∈K\{k}[H
(κ)
1,kWj ]

2 + Ω
(κ)
1,k , and Ω

(κ)
1,k , σν [Ξk(z(κ))]2 +

σINr .

3Subscript 1 in (26) and subsequent equations in Subsection II.A, III.A,
and IV.A designates functions associated with TPC ascent.

By applying the inequality (77) in Appendix I
for (V,Y) = (H

(κ)
1,kWk,Φ

(κ)
1,k(W)) and (V̄ , Ȳ ) =

(V
(κ)
1,k , Y

(κ)
1,k ) , (H

(κ)
1,kW

(κ)
k ,Φ

(κ)
1,k(W (κ))), the following

tight concave quadratic minorant of r
(κ)
1,k(W) at W (κ) is

obtained:

r̃
(κ)
1,k(W) , a

(κ)
1,k + 2<{〈(V (κ)

1,k )H(Y
(κ)
1,k )−1H

(κ)
1,kWk〉}

− 〈Ψ(κ)
1,k,

∑
j∈K

[H
(κ)
1,kWj ]

2〉 (28)

= a
(κ)
1,k + 2<{〈B(κ)

1,kWk〉} − 〈C(κ)
1,k ,

∑
j∈K

[Wj ]
2〉

= a
(κ)
1,k + 2<{〈B(κ)

1,kWk〉} −
∑
j∈K

||
√
C(κ)

1,kWj ||2

(29)

with 0 � Ψ
(κ)
1,k , (Y

(κ)
1,k )−1 − (Y

(κ)
1,k + [V

(κ)
1,k ]2)−1, a(κ)

1,k ,

r
(κ)
1,k(W (κ)) − 〈[V (κ)

1,k ]2(Y
(κ)
1,k )−1〉 − 〈Ψ(κ)

1,k,Ω
(κ)
1,k〉, B

(κ)
1,k ,

(V
(κ)
1,k )H(Y

(κ)
1,k )−1H

(κ)
1,k , C(κ)

1,k , (H
(κ)
1,k )HΨ

(κ)
1,kH

(κ)
1,k .

It is plausible that f̃ (κ)
1 (W) , mink∈K r̃

(κ)
1,k(W) is a tight

minorant of f (κ)
1 (W) at W (κ) and moreover it is concave

as the pointwise minimum of the concave functions r̃(κ)
1,k(W)

[30]. We thus generate W (κ+1) verifying (25) by solving
the following large-scale convex quadratic problem (CQP)
with CC order of O(K4N3

rN
3) [31, p.4] for tight minorant

maximization:4

max
W

f̃
(κ)
1 (W) s.t. (18), (26b). (30)

B. Cubic-complexity aRIS ascent

To seek z(κ+1) such that

fρ(W
(κ+1), z(κ+1), p(κ), θ(κ)) ≥

fρ(W
(κ+1), z(κ), p(κ), θ(κ)), (31)

we consider the following problem:5

max
z

f
(κ)
ρ,2 ,

[
f

(κ)
2 (z)− ρ

∑
m∈M

|zm − p(κ)
m eθ

(κ)
m |2

]
(32a)

s.t. zHQ(κ)
2 z ≤ PA, (32b)

with f
(κ)
2 (z) , mink∈K r

(κ)
2,k(z), and Q(κ)

2 , Q2(W (κ+1))
according to (21) and (22), while according to (15)-(17):

r
(κ)
2,k(z) , rk(W (κ+1), z)

= ln
∣∣∣INr + [A

(κ)
k,k + ∆

(κ)
k,k(z)]2(Φ

(κ)
2,k(z))−1

∣∣∣ , (33)

with A
(κ)
k,j , HkW

(κ+1)
j , (k, j) ∈ K × K, Φ

(κ)
2,k(z) ,

Φk(W (κ+1), z) =
∑
j∈K\{k}[A

(κ)
k,j +∆

(κ)
k,j (z)]2 +σν [Ξk(z)]2 +

4The problem (30) is formulated as the standard convex quadratically
constrained problem max

W,t
t s.t. r̃

(κ)
1,k(W) ≥ t, k ∈ K; (18), (26b).

5Subscript 2 in (32) and subsequent equations in Subsections II.B, III.B,
and IV.B designates functions related to aRIS ascent.
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σINr ,

CNr×Nr 3 ∆
(κ)
k,j (z) , ∆k(W

(κ+1)
j , z)

=

 ∆
(κ)
k,j (1, 1)z . . . ∆

(κ)
k,j (1, Nr)z

. . . . . . . . .

∆
(κ)
k,j (Nr, 1)z . . . ∆

(κ)
k,j (Nr, Nr)z


and C1×M 3 ∆

(κ)
k,j (`, `

′) , (W
(κ+1)
j,`′ )TGTB,RDk,`, (`, `′) ∈

Nr ×Nr.
Applying the inequality (77) in Appendix I for (V,Y) ,

(A
(κ)
k,k + ∆

(κ)
k,k(z),Φ

(κ)
2,k(z)) and (V̄ , Ȳ ) = (V

(κ)
2,k , Y

(κ)
2,k ) ,

(A
(κ)
k,k + ∆

(κ)
k,k(z(κ)),Φ

(κ)
2,k(z(κ))), the following tight concave

quadratic minorant of r(κ)
2,k(z) is obtained at z(κ):

r̃
(κ)
2,k(z) , ã

(κ)
2,k + 2<{〈(V (κ)

2,k )H(Y
(κ)
2,k )−1(A

(κ)
k,k + ∆

(κ)
k,k(z))〉}

− 〈Ψ(κ)
2,k,

∑
j∈K

[A
(κ)
k,j + ∆

(κ)
k,j (z)]2 + σν [Ξk(z)]2〉 (34)

= a
(κ)
2,k +

∑
j∈K

||
√

Ψ
(κ)
2,k∆

(κ)
k,j (z)||2 − σν ||

√
Ψ

(κ)
2,kΞk(z)||2

+ 2
∑
j∈K

<{〈B(κ)
2,k,j∆

(κ)
k,j (z)〉}

= a
(κ)
2,k + 2

∑
j∈K

∑
(`,`′)∈Nr×Nr

<{B(κ)
2,k,j(`, `

′)∆
(κ)
k,j (`

′, `)z}

−
∑
j∈K

∑
(`,`′)∈Nr×Nr

|

(
Nr∑
t=1

√
Ψ

(κ)
2,k(`, t)∆

(κ)
k,j (t, `

′)

)
z|2

− σν
∑
`∈Nr

||zT
∑
`′∈Nr

√
Ψ

(κ)
2,k(`, `′)Dk,`′ ||2 (35)

= a
(κ)
2,k + 2<{b(κ)

2,kz} − 〈C
(κ)
2,k , [z]2〉, (36)

with 0 � Ψ
(κ)
2,k , (Y

(κ)
2,k )−1 − (Y

(κ)
2,k + [V

(κ)
2,k ]2)−1, ã(κ)

2,k ,

r
(κ)
2,k(z(κ))− 〈[V (κ)

2,k ]2(Y
(κ)
2,k )−1〉 − σ〈Ψ(κ)

2,k〉, and a(κ)
2,k , ã

(κ)
2,k +

2<{〈(V (κ)
2,k )H(Y

(κ)
2,k )−1A

(κ)
k,k〉} − 〈Ψ

(κ)
2,k,

∑
j∈K\{k}[A

(κ)
k,j ]

2〉,

B(κ)
2,k,j =

{
(V

(κ)
2,k )H(Y

(κ)
2,k )−1 − (A

(κ)
k,k)HΨ

(κ)
2,k for j = k

−(A
(κ)
k,j )

HΨ
(κ)
2,k otherwise

and b
(κ)
2,k ,

∑
j∈K

∑
(`,`′)∈Nr×Nr

B(κ)
2,k,j(`, `

′)∆
(κ)
k,j (`

′, `),

C(κ)
2,k ,

∑
j∈K

∑
(`,`′)∈Nr×Nr

[
(

Nr∑
t=1

√
Ψ

(κ)
2,k(`, t)∆

(κ)
k,j (t, `

′))H

]2

+

σν
∑
`∈Nr

[
(
∑
`′∈Nr

√
Ψ

(κ)
2,k(`, `′)DTk,`′)H

]2

.

It is plausible that f̃ (κ)
2 (z) , mink∈K r̃

(κ)
2,k(z) is a tight

minorant of f (κ)
2 (z) at z(κ) and moreover it is concave as the

pointwise minimum of the concave functions r̃(κ)
2,k(z) [30]. We

thus generate z(κ+1) verifying (31) by solving the following
large-scale CQP with CC order of O(M3K) [31, p.4] for tight

minorant maximization at z(κ):6

max
z

[
f̃

(κ)
2 (z)− ρ

∑
m∈M

|zm − p(κ)
m eθ

(κ)
m |2

]
s.t. (32b). (37)

C. Amplifier and PRE ascent

We generate p(κ+1) and θ(κ+1) by

p(κ+1)
m = arg min

pppm
|z(κ+1)
m − pppmeθ

(κ)
m |2

= |z(κ+1)
m | cos(∠z(κ+1) − θ(κ)

m ),m ∈M,(38)

and7

θ(κ+1)
m = arg min

θθθm∈B
|z(κ+1)
m − p(κ+1)

m eθθθm |2 = b∠z(κ+1)
m eb,

(39)
which yield

fρ(W
(κ+1), z(κ+1), p(κ+1), θ(κ+1)) ≥

fρ(W
(κ+1), z(κ+1), p(κ+1), θ(κ)) ≥

fρ(W
(κ+1), z(κ+1), p(κ), θ(κ)). (40)

D. Algorithm and its convergence

Algorithm 1 provides the pseudo code for solving the
problem (24). It follows from (25), (31) and (40) that

fρ(W
(κ+1), z(κ+1), p(κ+1), θ(κ+1)) > fρ(W

(κ), z(κ), p(κ), θ(κ)),
(41)

as far as fρ(W
(κ+1), z(κ+1), p(κ+1), θ(κ+1)) 6=

fρ(W
(κ), z(κ), p(κ), θ(κ)), so the sequence

{(W (κ), z(κ), p(κ), θ(κ))} of improved feasible points
for (24) converges to (W̄ , z̄, p̄, θ̄). Furthermore, by
choosing a sufficiently large ρ > 0, we can ensure that
maxm∈M |z(κ)

m − p(κ)
m eθ

(κ)
m |2 → 0 as κ → ∞, which means

that (z̄, p̄, θ̄) satisfies the nonlinear constraint (1). Therefore,
(W̄ , z̄, p̄, θ̄) is feasible for (23), which turns out to be at least
a local solution [28].

Algorithm 1 CC QS-based algorithm for the large-scale max-
min log-det optimization (24)

1: Initialization: Randomly generate (W (0), z(0), p(0), θ(0))
feasible for (24). Set κ = 0.

2: Repeat until convergence: Generate W (κ+1) by solving
the large-scale CQP (30) of the CC O(K4N3

rN
3), and

z(κ+1) by solving the large-scale CQP (37) of the CC
O(M3K). Generate (p(κ+1), z(κ+1)) by (38)-(39). Reset
κ← κ+ 1.

3: Output (W (κ), z(κ), p(κ), z(κ)) and rk(W (κ), z(κ)), k ∈
K.

6The problem (37) is formulated as the standard convex quadratically

constrained problem max
z,t

t s.t. r̃
(κ)
2,k(z)−ρ

∑
m∈M

|zm− p(κ)m eθ
(κ)
m |2 ≥

t, k ∈ K; (32b).
7b.eb is the b-bit rounding operation
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III. LARGE-SCALE SUM-LOG-DET MAXIMIZATION

The computational complexities O(K3N3
rN

3) and O(M3)
of the large-scale CQPs (30) and (37), invoked in Algorithm
1 are massive because both KN and M typically exceed
100. Consequently, the computational time required is quite
substantial. In this section, we aim for addressing this com-
putational challenge by considering the following large-scale
Sum-Log-Det maximization:

max
W,z,ppp,θθθ

fSR(W, z) ,
∑
k∈K

rk(W, z)

s.t. (1), (2), (18), (19). (42)

Similar to (23), we tackle (42) by formulating the following
penalized optimization problem:

max
W,z,ppp,θθθ

fρ,SR(W, z, ppp,θθθ) , [fSR(W, z)

−ρ
∑
m∈M

|zm − pppmeθθθm |2
]

s.t. (2), (18), (19). (43)

Initialized by a feasible point (W (0), z(0), p(0), θ(0)) for (43),
let (W (κ), z(κ), p(κ), θ(κ)) represent a feasible point for (43)
obtained from the (κ− 1)-st iteration.

A. Scalable-complexity bisection for TPC ascent

To seek W (κ+1) so that

fρ,SR(W (κ+1), z(κ)) ≥ fρ,SR(W (κ), z(κ))

⇔ fSR(W (κ+1), z(κ)) ≥ fSR(W (κ), z(κ)), (44)

we consider the following problem:

max
W

f
(κ)
SR,1(W) ,

∑
k∈K

r
(κ)
1,k(W) s.t. (18), (26b), (45)

with r(κ)
1,k(W) defined in (27). By utilizing (29), we can derive

the following concave quadratic minorant of the OF f (κ)
SR,1(W)

in (45) at W (κ):

f̃
(κ)
SR,1(W) ,

∑
k∈K

[a
(κ)
1,k + 2<{〈B(κ)

1,kWk〉}

−〈C(κ)
1,k ,

∑
j∈K

[Wj ]
2〉]

=
∑
k∈K

a
(κ)
1,k + 2

∑
k∈K

<{〈B(κ)
1,kWk〉}

−〈C(κ)
1 ,

∑
k∈K

[Wj ]
2〉, (46)

with 0 � C(κ)
1 ,

∑
k∈K C

(κ)
1,k . We thus generate W (κ+1)

verifying (44) by solving the following CQP of tight minorant
maximization at W (κ):

max
W

f̃
(κ)
GM,1(W) s.t. (18), (26b). (47)

This matrix optimization problem, which is solvable by a
convex solver with CC order of O(K3N3

rN
3), also falls

under the category defined by (78). Therefore, it is solvable
by the bisection method of scalable complexity order of
O(KNrN log2N) described in Appendix II, bypassing a
convex solver of CC order of O((KNrN)3).

B. Scalable-complex closed-form for aRIS alternating ascent

To seek z(κ+1) so that

fρ,SR(W (κ+1), z(κ+1)) ≥ fρ,SR(W (κ+1), z(κ)) (48)

we consider the following problem:

max
z

f
(κ)
ρ,SR,2(z) ,

[
f

(κ)
SR,2(z)

−ρ
∑
m∈M

|zm − p(κ)
m eθ

(κ)
m |2

]
s.t. (32b), (49)

where f
(κ)
SR,2(z) ,

∑
k∈K r

(κ)
2,k(z) with r

(κ)
2,k(z) defined from

(33).
By utilizing (36), we can derive the following concave

quadratic minorant of f (κ)
SR,2(z) in (49) at z(κ):

f̃
(κ)
SR,2(z) ,

∑
k∈K

[
a

(κ)
2,k + 2<{b(κ)

2,kz} − 〈C
(κ)
2,k , [z]2〉

]
= a

(κ)
2 + 2<{b(κ)

2 z}+ zHC(κ)
2 z, (50)

for a
(κ)
2 ,

∑
k∈K a

(κ)
2,k , b(κ)

2 ,
∑
k∈K b

(κ)
2,k , and C(κ)

2 ,∑
k∈K C

(κ)
2,k .

We thus generate z(κ+1) verifying (48) by solving the
following convex problem of tight minorant maximization:

max
z

[
f̃

(κ)
SR,2(z)− ρ

∑
m∈M

|zm − p(κ)
m eθ

(κ)
m |2

]
s.t. (32b),

(51)
which admits the closed form solution of

z(κ+1) =


(C(κ)

2 + ρIM )−1ξ(κ)

if ||
√
Q(κ)

2 (C(κ)
2 + ρIM )−1ξ(κ)||2 ≤ PA

(C(κ)
2 + ρIM + αQ(κ)

2 )−1ξ(κ) otherwise,

where ξ(κ) , (b
(κ)
2 )H + ρ(p

(κ)
1 eθ

(κ)
1 , . . . , p

(κ)
M eθ

(κ)
M )T and

α > 0 is found by bisection so that ||
√
Q(κ)

2 (C(κ)
2 + ρIM +

αQ(κ)
2 )−1ξ(κ)||2 = PA. The computational complexity of (52)

is O(M log2M).

C. Algorithm and its convergence

Algorithm 2 presents the pseudo code for solving the
problem (43) by iteratively evaluating the closed forms (47),
(52), (38), and (39). The algorithm’s convergence follows from
the fact that

fρ,SM (W (κ+1), z(κ+1), p(κ+1), θ(κ+1)) >

fρ,SM (W (κ), z(κ), p(κ), θ(κ)), (52)

as far as fρ,SM (W (κ+1), z(κ+1), p(κ+1), θ(κ+1)) 6=
fρ,SM (W (κ), z(κ), p(κ), θ(κ)), i.e. Algorithm 2 generates
a sequence {W (κ), z(κ), p(κ), θ(κ)} of infeasible points for
(42), which converges to its local solution [28].

Remark. While this large-scale mixed discrete continuous
problem (43) can be solved efficiently, it often exhibits zero or
negligible log-det rates for certain users. In essence, optimiz-
ing the sum log-det rate without taking into account realistic
MU QoD constraints is not meaningful.
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Algorithm 2 Scalable-complex SR algorithm for the large-
scale Sum-Log-Det maximization (43)

1: Initialization: Randomly generate a feasible
(W (0), z(0), p(0), θ(0)) for (43). Set κ = 0.

2: Repeat until convergence of the objective func-
tion in (43): Generate W (κ+1) by solving (47) of
the CC O(KNrN log2N), z(κ+1) by (52) of the CC
O(M log2M). Generate (p(κ+1), θ(κ+1)) by (38)-(39).
Reset κ← κ+ 1.

3: Output (W (κ), z(κ), p(κ), θ(κ)) and rk(W (κ), z(κ)), k ∈
K.

IV. UNLEASHING SCALABLE-COMPLEX ITERATIONS FOR
SOFT MAX-MIN LOG-DET OPTIMIZATION AND ELEVATING

MU QOD

One can see that one of the main reasons for solving
the max-min log-det problem (23) by iterative CC
QSs instead of scalable-complexity closed forms is
the non-smooth nature of its minimum log-det rate OF
f(W, z) , mink∈K rk(W, z), for which there is no tight and
smooth minorant. Now, we embark on exploiting the following
scalable version: fµ(W, z) , mink∈K rµ,k(W, z) ,

mink∈K ln
∣∣∣INr + 1

µ [H̃k(z)Wk]HΦ−1
k (z,W)[H̃k(z)Wk]

∣∣∣,
for small µ > 0. Observe that, fµ(W, z) >
f1(W, z) = f(W, z) for µ < 1. Moreover,
maxW,z f(W, z) ⇔ maxW,z fµ(W, z) for Nr = 1,
and maximizing fµ(W, z) enhances f(W, z) for Nr > 1.
Furthermore, we can readily show the validity of the following
two-sided inequality

fµ(W, z) ≥ −fSM (W, z) ≥ fµ(W, z)− lnK, (53)

where we have

fSM (W, z) , ln |
∑
k∈K

Πk(W, z)| (54)

with Πk(W, z) , (INr +
1
µ [H̃k(z)Wk]HΦ−1

k (z,W)[H̃k(z)Wk])−1 = INr −
[H̃k(z)Wk]H([H̃k(z)Wk]2 + µΦk(z,W))−1[H̃k(z)Wk].

With µ small, the term lnK in (53) is small compared
to other terms. Therefore, the function −fSM (W, z) can
regarded as a soft-min function [32], since it is smooth and
approximates the nonsmooth minimum function fµ(W, z).
Rather than maximizing the nonsmooth minimum function
fµ(W, z) we aim for maximizing its soft-minimum counter-
part −fSM (W, z), or for minimizing fSM (W, z). This leads
us to the following soft max-min log-det problem:

min
W,z,ppp,θθθ

fSM (W, z) s.t (1), (2), (18), (19). (55)

Similarly to (23), the penalized optimization formulation for
(55) is

min
W,z

fρ,SM (W, z, ppp,θθθ) , [fSM (W, z)

+ρ
∑
m∈M

|zm − pppmeθθθm |2
]

s.t (2), (18), (19), (56)

Initialized by a feasible point (W (0), z(0), p(0), θ(0)) for
(56), let (W (κ), z(κ), p(κ), θ(κ)) be a feasible point for (56)
that is found from the (κ−1)-st iteration. We now provide an
alternating descent in each W and z, since it is plausible that
alternating descent in (ppp,θθθ) is still based on the closed forms
(38)-(39).

A. Scalable-complexity bisection for TPC descent

To seek W (κ+1) so that fρ,SM (W (κ+1), z(κ), p(κ), θ(κ)) ≤
fρ,SM (W (κ), z(κ), p(κ), θ(κ)), i.e.

fSM (W (κ+1), z(κ)) ≤ fSM (W (κ), z(κ)), (57)

we consider the following problem:

min
W

f
(κ)
SM,1(W) s.t. (18), (26b), (58)

where in accordance to (27), f (κ)
SM,1(W) , fSM (W, z(κ)) ,

ln |Π(κ)
1 (W)| for Π

(κ)
1 (W) ,

∑
k∈K(INr −

[H
(κ)
1,kWk]H([H

(κ)
1,kWk]2 + µΦ

(κ)
1,k(W))−1[H

(κ)
1,kWk]).

Using the inequality (76) in Appendix I for (Vk,Yk) =

(H
(κ)
1,kWk, [H

(κ)
1,kWk]2 + µΦ

(κ)
1,k(W)), k ∈ K, and (V̄k, Ȳk) =

(V
(κ)
1,k , Y

(κ)
1,k ) , (H

(κ)
1,kW

(κ)
k , [H

(κ)
1,kW

(κ)
k ]2 + µΦ

(κ)
1,k(W (κ))),

yields the following tight majorant of fSM (W, z(κ)) at W (κ):

f
(κ)
1,SM (W) , a

(κ)
1 − 2

∑
k∈K

<{〈B(κ)
1,kWk〉}+

∑
k∈K

〈C̃(κ)
1,k ,

[H
(κ)
1,kWk]2 + µ

∑
j∈K\{k}

[H
(κ)
1,kWj ]

2〉 (59)

= a
(κ)
1 − 2

∑
k∈K

<{〈B(κ)
1,kWk〉}

+
∑
k∈K

〈C(κ)
1,k , [Wk]2〉, (60)

where we have

a
(κ)
1 , f

(κ)
SM,1(W (κ)) +

∑
k∈K〈[Π

(κ)
1 (W (κ))]−1(V

(κ)
1,k )H

(Y
(κ)
1,k )−1V

(κ)
1,k 〉+ µ

∑
k∈K〈C

(κ)
1,k ,Ω

(κ)
1,k〉,

B(κ)
1,k , [Π

(κ)
1 (W (κ))]−1(V

(κ)
1,k )H(Y

(κ)
1,k )−1H

(κ)
1,k ,

C̃(κ)
1,k , (Y

(κ)
1,k )−1V

(κ)
1,k [Π

(κ)
1 (W (κ))]−1(V

(κ)
1,k )H(Y

(κ)
1,k )−1,

and C(κ)
1,k , (H

(κ)
1,k )H C̃(κ)

1,kH
(κ)
1,k +

µ
∑
j∈K\{k}(H

(κ)
1,j )H C̃(κ)

1,jH
(κ)
1,j , k ∈ K.

We thus solve the following convex problem of majorant
minimization of (58) to generate W (κ+1) verifying (57):

min
W

f
(κ)
1,SM (W) s.t. (18), (26b). (61)

This matrix optimization problem still belongs to the class
of problems defined by (78), so it can be computed by
the bisection procedure of scalable complexity order of
O(KNrN log2N) described in Appendix II, avoiding using
a convex solver of CC order of O((KNrN)3).
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B. Scalable-complexity closed form for aRIS descent

To seek z(κ+1) so that

fρ,SM (W (κ+1), z(κ+1), p(κ), θ(κ))

≤ fρ,SM (W (κ+1), z(κ), p(κ), θ(κ)), (62)

we consider the following problem:

min
z

fρ,SM,3 ,

[
f

(κ)
SM,2(z) + ρ

∑
m∈M

|zm − p(κ)
m eθ

(κ)
m |2

]
s.t. (32b), (63)

where in accordance to (33), f (κ)
SM,2(z) , fSM (W (κ+1), z) =

ln |Π(κ)
2 (z)|, with

Π
(κ)
2 (z) ,

∑
k∈K

(INr − [A
(κ)
k,k + ∆

(κ)
k,k(z)]H([A

(κ)
k,k + ∆

(κ)
k,k(z)]2

+ µΦ
(κ)
2,k(z))−1[A

(κ)
k,k + ∆

(κ)
k,k(z)]). (64)

Using the inequality (76) in Appendix I for
(Vk,Yk) = (A

(κ)
k,k+∆

(κ)
k,k(z), [A

(κ)
k,k + ∆

(κ)
k,k(z)]2 + µΦ

(κ)
2,k(z)),

and (V̄k, Ȳk) = (V
(κ)
2,k , Y

(κ)
2,k ) , (A

(κ)
k,k +

∆
(κ)
k,k(z(κ)), [A

(κ)
k,k + ∆

(κ)
k,k(z(κ))]2 + µΦ

(κ)
2,k(z(κ))), yields

the following tight majorant of f (κ)
SM,2(z) at z(κ):

f̃
(κ)
2,SM (z) , ã

(κ)
2 − 2

∑
k∈K

<{〈B̃(κ)
2,k(A

(κ)
k,k + ∆

(κ)
k,k(z))〉}

+
∑
k∈K

〈Ψ(κ)
2,k, [A

(κ)
k,k + ∆

(κ)
k,k(z)]2 + µ

 ∑
j∈K\{k}

[A
(κ)
k,j + ∆

(κ)
k,j (z)]2 + σν [Ξk(z)]2

)
〉 (65)

= a
(κ)
2 − 2

∑
k∈K

∑
j∈K

<{〈B(κ)
2,k,j∆

(κ)
k,j (z)〉}+

∑
k∈K||√Ψ

(κ)
2,k∆

(κ)
k,k(z)||2 + µ

∑
j∈K\{k}

||
√

Ψ
(κ)
2,k

∆
(κ)
k,j (z)||2 + µσν ||

√
Ψ

(κ)
2,kΞk(z)||2

)
(66)

= a
(κ)
2 − 2

∑
k∈K

<{b(κ)
2,kz}+

∑
k∈K

〈C(κ)
2,k , [z]2〉 (67)

= a
(κ)
2 − 2<{b(κ)

2 z}+ 〈C(κ)
2 , [z]2〉, (68)

where

ã
(κ)
2 , f

(κ)
SM,z(z

(κ)) +
∑
k∈K〈[Π

(κ)
2 (z(κ))]−1(V

(κ)
2,k )H

(Y
(κ)
2,k )−1V

(κ)
2,k 〉+ µσ

∑
k∈K〈Ψ

(κ)
2,k〉,

B(κ)
2,k , [Π

(κ)
2 (z(κ))]−1(V

(κ)
2,k )H(Y

(κ)
2,k )−1,

Ψ
(κ)
2,k , (Y

(κ)
2,k )−1V

(κ)
2,k [Π

(κ)
2 (z(κ))]−1(V

(κ)
2,k )H(Y

(κ)
2,k )−1,

in (65), and

a
(κ)
2 , ã

(κ)
2 − 2

∑
k∈K<{〈B̃

(κ)
2,kA

(κ)
k,k〉}

+
∑
k∈K〈Ψ

(κ)
2,k, [A

(κ)
k,k]2 + µ

∑
j∈K\{k}[A

(κ)
k,j ]

2〉,

B(κ)
2,k,j =

{
(B̃(κ)

2,k − (A
(κ)
k,k)HΨ

(κ)
2,k for j = k

−µ(A
(κ)
k,j )

HΨ
(κ)
2,k otherwise

in (66), and b(κ)
2,k ,

∑
j∈K

∑
(`,`′)∈Nr×Nr

B(κ)
2,k,j(`, `

′)∆
(κ)
k,j (`

′, `),

C(κ)
2,k ,

∑
(`,`′)∈Nr×Nr

( Nr∑
t=1

√
Ψ

(κ)
2,k(`, t)∆

(κ)
k,k(t, `′)

)H2

+µ
∑

j∈K\{k}

∑
(`,`′)∈Nr×Nr

( Nr∑
t=1

√
Ψ

(κ)
2,k(`, t)∆

(κ)
k,j (t, `

′)

)H2

+µσν
∑
`∈Nr

[(∑
`′∈Nr

√
Ψ

(κ)
2,k(`, `′)DTk,`′

)H]2

in (67), and b(κ)
2 ,

∑
k∈K b

(κ)
2,k , C(κ)

2 ,
∑
k∈K C

(κ)
2,k in (68).

We thus solve the following convex problem of majorant
minimization of (63) to generate z(κ+1) verifying (62):

min
z

[
f̃

(κ)
2,SM (z) + ρ

∑
m∈M

|zm − p(κ)
m eθ

(κ)
m |2

]
s.t. (32b),

(69)
which admits the closed-form solution of

z(κ+1) =


(C(κ)

2 + ρIM )−1ξ
(κ)
2

if ||
√
Q(κ)

2 (C(κ)
2 + ρIM )−1ξ

(κ)
2 ||2 ≤ PA

(C(κ)
2 + ρIM + αQ(κ)

2 )−1ξ
(κ)
2 otherwise,

where ξ
(κ)
2 , (b

(κ)
2 )H + ρ(p

(κ)
1 eθ

(κ)
1 , . . . , p

(κ)
M eθ

(κ)
M )T , and

α > 0 is found by bisection so that ||
√
Q(κ)

2 (C(κ)
2 + ρIM +

αQ(κ)
2 )−1ξ

(κ)
2 ||2 = PA. The computational complexity of (70)

is O(M log2M).

C. Convergence and computational efficiency

Algorithm 3 provides the pseudo code for solving the soft
max-min log-det problem (56). It follows from (57), (62) and
(40) that

fρ,SM (W (κ+1), z(κ+1), p(κ+1), θ(κ+1)) <

fρ,SM (W (κ), z(κ), p(κ), θ(κ)), (70)

as far as fρ,SM (W (κ+1), z(κ+1), p(κ+1), θ(κ+1)) 6=
fρ,SM (W (κ), z(κ), p(κ), θ(κ)), so the sequence
{(W (κ), z(κ), p(κ), θ(κ))} of improved feasible points
for (56) converges to (w̄, z̄, p̄, θ̄), which is a feasible point
for (55).

Given the cubic-time computational complexity of each
iteration in the quadratic-solver-based Algorithm 1, it’s note-
worthy that each iteration in both Algorithm 2 and Algorithm
3 exhibits scalable complexities, rendering them computation-
ally efficient.

V. SIMULATIONS

The various components and parameters in (4) are set
following [25]–[27]. The large scale fading coefficients, βB,R
and βB,R in (4), βk in (5), are modeled as [26], [27]

βB,R = GBS +GRIS − 35.9− 22 log10(dB,R), (71)

βR,k = GRIS − 33.05− 30 log10(dR,k), (72)
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Algorithm 3 Scalable-complex soft max-min log-det algorith-
m

1: Initialization: Randomly generate a feasible
(W (0), z(0), p(0), θ(0)) for (56). Set κ = 0.

2: Repeat until convergence: Generate W (κ+1) by solving
(61) of the CC O(KNrN log2N), and z(κ+1) by (70) of
the CC O(M log2M). Generate (p(κ+1), θ(κ+1)) by (38)-
(39). Reset κ← κ+ 1.

3: Output (W (κ), z(κ), p(κ), θ(κ)) and rk(W (κ), z(κ)), k ∈
K.

βk = GBS − 33.05− 36.7 log10(dk), (73)

where the antenna gains are GRIS = GBS = 5
dBi. Furthermore, ḠB,R with ḠB,R(m,n) =

eπ((m1−1) sin θ̄m sin ψ̄m+(n−1) sin eθm sinψm) represents
the small-scale Rician fading, where θ̄m = π − θm
and φ̄m = π + φm with eθm and ψm following a
uniform distribution within (0, π) and (0, 2π) Lastly,
H̄R,k =

√
L
L+1Ĥ

LoS
R,k +

√
1

L+1Ĥ
NLoS
R,k , where ĤLoS

R,k and

ĤNLoS
R,k are the LoS and non-LoS (NLoS) components, while

L = 4.7 dB is the Rician factor.
3-D coordinates of the BS and aRIS in Fig. 1 are set to

(0, 0, 25) m and (50, 80, 40) m, respectively. A total of K =
10 users are distributed randomly in a (200m 100m) area right
of the BS and aRIS.

Recalling that N is the number of BS antennas, Nr is the
number of each user’s antennas, P is the transmit power,
and M is the number of APREs, we set (N,Nr,M, P ) =
(16, 2, 100, 20dBm) unless specified otherwise. Furthermore,
the power split between the BS and aRIS is 0.99P and 0.01P .

The following legends are used to describe the proposed
implementations: (i) Min-LD denotes the performance of the
CC QS-based Algorithm 1, designed to solve the max-min log-
det problem (24); (ii) Sum-LD (Sum-LD w/o, resp.) represent
the performance of the scalable-complexity closed form-based
Algorithm 2, designed to solve the Sum-Log-Det problem (43)
(without aRIS, resp.); (iii) soft Min-LD (soft Min-LD w/o,
resp.) indicates the performance of the scalable-complexity
closed form-based Algorithm 3, designed for solving the soft
max-min log-det problem (55) (without aRIS, resp.).

A. Algorithmic convergence and efficiency

To guarantee the convergence of the proposed algorithms
and usher the penalty terms in (24), (43), and (56) towards
zero, the penalty parameter ρ starts at ρ = 10−4 and it is
incrementally increased by a factor of 1.2 in each iteration.
Fig. 2 plots the typical convergence of the OFs and penalty
terms. To illustrate the convergence behaviors of the proposed
algorithms, we utilize the mean log-det rate value within
the objective function for the sum log-det rate problem, as
depicted in Fig. 2(a). According to Fig. 2(a), the OFs of the
Min-LD and Sum-LD (soft Min-LD, resp.) increase (decrease,
resp.) rapidly within 35-45 iterations, confirming (41) and
(52) ((70), resp.), and then gradually converge. Furthermore,

0 5 10 15 20 25 30 35 40 45
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(a)
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10
1

10
2

10
3

(b)

Fig. 2: The convergence of the proposed algorithms

Fig. 2(b) clearly shows that the penalty terms practically
converge to zero within 30-45 iterations.

Table II presents the average computational time of the
proposed algorithms, measured using a CPU with a 3.7 GHz
Intel Core i9 and 32 GB RAM. Alg. 2 and Alg. 3, which are
based on our scalable-complexity iterations, run more than 20
times faster than Alg. 1, which is based on cubic-complexity
iterations, confirming the superiority of scalable-complexity
iterations.

Selecting a smaller value of µ in the soft max-min log-det
problem (56) does not always result in improved minimum
log-det performance, as demonstrated by the data seen in Table
III, which provides the achieved minimum log-det values for
various µ ∈ {1, 0.5, 0.1}. For N = 8, soft max-min log-
det optimization with µ = 1 yields the lowest minimum
rate. The performance of soft max-min log-det problem with
µ = 0.5 is better than that with µ = 0.1. In the case of
N ∈ {16, 24, 32, 40}, soft max-min log-det problem with
µ = 1 demonstrates the minimum rate is quite similar to
that with µ = 0.5. It is evident that µ = 0.5 consistently
delivers better performance and it is therefore our choice for
subsequent simulations.
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TABLE II: The average computational time of the proposed algorithms.

N = 8 N = 16 N = 24 N = 32 N = 40
Algorithm 1 11.41 min. 15.46 min. 17.37 min. 22.63 min. 31.37min.
Algorithm 2 0.47 min. 0.74 min. 1.03 min. 1.45 min. 1.79 min.
Algorithm 3 0.35 min. 0.56 min. 0.69 min. 1.10 min. 1.42 min.

TABLE III: The minimum log-det versus µ for different numbers of BS antennas N achieved by soft max-min log-det
optimization.

N = 8 N = 16 N = 24 N = 32 N = 40
µ = 0.1 1.4398 6.3335 11.7243 12.5828 13.1305
µ = 0.5 1.9508 7.6659 12.3407 14.3264 15.7510
µ = 1 1.0443 7.3683 11.7848 14.4856 15.9516

We compare the performance of our Sum-LD algorithm
and [6, Algorithm 1], referred to as Zhang et al., which is
designed to solve the sum-rate problem (43) with Nr = 1 and
unquantized PREs. Fig. 3 plots the sum rate versus transmit
power budget P , with (N,M) = (8, 100) (8 BS antennas and
100 aRIS elements). It can be observed from Fig. 3 that the
performance of Sum-LD is better than that of Zhang et al.

14 16 18 20 22

45

50

55

60

65

70

Fig. 3: The sum rate versus the transmit power P under the
power split of 0.99P and 0.01P between the BS and aRIS.

B. MU QoD performance

Fig. 4(a) and Fig. 4(b) plot the minimum rate and sum
rate achieved versus the number of BS antennas N , respec-
tively. Fig. 4 clearly illustrates the performance advantage of
the proposed algorithms attained by more BS antennas. As
depicted in Fig. 4(a), illustrating the minimum rate perfor-
mances, Min-LD exhibits the best performance, while Sum-
LD surpasses its Sum-LD w/o counterpart. Soft Min-LD and
Min-LD outperform Sum-LD, with Sum-LD w/o showing the
poorest performance. Furthermore, both soft Min-LD and Min-
LD benefit more substantially from increasing the number of
BS antennas compared to their soft Min-LD w/o and Min-
LD w/o counterparts. Regarding the sum rate performance
shown in Fig. 4(b), Sum-LD is the top performer, but for
N ≥ 16, soft Min-LD catches up. For N ∈ {32, 40}, soft min-
LD w/o provides the lowest sum-rate. Additionally, Fig. 4(b)

highlights the significant performance enhancement achieved
by soft Min-LD compared to its soft Min-LD w/o counterparts.

8 16 24 32 40
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(a)
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40

80

120

160

200

(b)

Fig. 4: The min-rate and sum rate achieved versus the
number of BS antennas N .

Figures 5(a) and 5(b) illustrate the log-det rate distributions
produced by the proposed algorithms. Notably, the log-det
rates generated by the soft Min-LD and Min-LD exhibit a
commendable uniformity across all users, highlighting their
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ability to ensure equitable performance. By contrast, both
Sum-LD and Sum-LD w/o allocate zero rates to specific users
(UE 10 and UE 7, respectively), underscoring their limitations
in achieving fair MU QoD.
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Fig. 5: Rate distribution versus user index.

Fig. 6(a) and Fig. 6(b) show the minimum rate and sum
rate achieved upon varying the transmit power budget P ,
respectively. In terms of the minimum rate attained, Fig. 6(a)
indicates that Min-LD is the best performer, followed by soft
Min-LD, while Min-LD w/o performs better than soft Min-LD
w/o. Sum-LD w/o exhibits the worst performance. In terms of
the sum rate achieved, Fig. 6(b) shows that both soft Min-LD
and Sum-LD perform similarly. The sum-rate of soft Min-LD
and Sum-LD is better than that of soft Min-LD w/o and Sum-
LD w/o. Min-LD w/o exhibits the lowest sum rate.

Furthermore, Fig.7 shows that the minimum rate achieved of
soft Min-LD, Sum-LD and Min-LD improves with an increase
in the number of APREs. As expected, Min-LD achieves the
best minimum rate. The performance of soft Min-LD and Min-
LD is better than that of soft Min-LD w/o and Min-LD w/o.

Fig. 8 demonstrates that soft Min-LD, Sum-LD and Min-
LD achieve the highest minimum log det rate, when the power
split PB is set to 0.99P . It can be observed from Fig. 8 that
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Fig. 6: The min-rate and sum rate achieved versus the
transmit power P .

the minimum log det rate of soft Min-LD w/o, Sum-LD w/o
and Min-LD w/o remains constant.

Lastly, Fig. 9(a) and Fig. 9(b) illustrate the advantage of
increasing the resolution b. In Fig. 9, it is evident that with the
increase in b, there is a slightly rise in both the minimum rate
and the sum-rate. However, when the phase of aRIS achieves
infinite resolution, a substantial performance improvement is
observed.

VI. CONCLUSIONS

The paper has considered the join design of the TPCs
and of the aRIS’s power-amplified reconfigurable elements
(APRES) for enhancing the quality of delivering multi-stream
information to multiple multi-antenna users. Users’ rates
have been characterized in terms of their complex log-det
functions, leading to challenging large-scale mixed discrete-
continuous optimization problems. We have initially shown
that the maximization of the minimum of the users’ log-det
rate functions can be solved based on quadratic problems
of cubically increasing complexity. To circumvent this com-
plexity escalation, which is certainly excessive in large-scale
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Fig. 7: The achieved minimum rate versus the number of
RIS elements M .
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Fig. 8: The min-rate of different power splits, PB .

scenarios, we have developed a pair of alternative algorithms,
which rely on closed-form expressions of scalable (linear)
complexity in maximizing the sum of the users’ log-det rate
functions (sum log-det) and of the soft minimum of the users’
log-det rate functions (soft min log-det). These algorithms
mitigate the computational burden typically associated with
large-scale computations. Furthermore, the soft min log-det
optimization not only ensures fair and effective log-det rate
enhancements for all users but also achieves a high sum log-
det, hence improving the delivery quality of multi-user multi-
stream information.

APPENDIX I: FUNDAMENTAL TIGHT MINORANTS AND
MAJORANTS OF LOG-DET RATE FUNCTIONS

Recall from [30, p. 366] that a function f̄ is considered a
tight minorant of a function f at x̄ over the domain dom(f) if
f(x) ≥ f̄(x) ∀ x ∈ dom(f) and f(x̄) = f̄(x̄). Then it can be
readily shown that f(x̄max) > f(x̄) as far as f̄(x̄max) 6= f̄(x̄)
for x̄max = arg maxx∈dom(f) f̄(x), i.e. maximizing a tight
minorant at the point x̄ helps to obtain a better point.
Analogously, a function f̄ is considered a tight majorant
of a function f at x̄ over the domain dom(f) if f(x) ≤
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Fig. 9: The minimum rate and sum rate achieved versus the
resolution b.

f̄(x) ∀ x ∈ dom(f) and f(x̄) = f̄(x̄). Then it can be
readily shown that f(x̄min) < f(x̄) as far as f̄(x̄min) 6= f̄(x̄)
for x̄min = arg minx∈dom(f) f̄(x), i.e. minimizing a tight
majorant at the point x̄ helps to obtain a better point.

For the matrix variables V , (V1, . . . ,VK) and Y ,
(Y1, . . . ,YK) with Vk ∈ CN×M , and 0 ≺ Y ∈ CN×N ,
k ∈ K, consider the following matrix-valued mapping:

CM×M 3 Π(V,Y) ,
∑
k∈K

(IM −VH
k Y−1

k Vk), (74)

in the domain

domΠ =
{

(V,Y) : [Vk]2 ≺ Yk, k ∈ K
}
. (75)

By using the Shur’s complement [24], we can show that
Πk(Vk,Yk) , IM−VH

k Y−1
k Vk � 0, k ∈ K, so Π(V,Y) �

0, and moreover it satisfies the following concavity matrix
inequality [33, Appendix A]: Π(λ(V̄ , Ȳ ) + (1− λ)(Ṽ , Ỹ )) �
λΠ(V̄ , Ȳ ) + (1 − λ)Π(Ṽ , Ỹ )), (V̄ , Ȳ ) ∈ domΠ, (Ṽ , Ỹ ) ∈
domΠ, λ ∈ [0, 1], making the composite function ln

∣∣∣Π(V,Y)
∣∣∣

concave. Consequently, the following inequality holds for all
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(V,Y) ∈ domΠ and (V̄ , Ȳ ) ∈ domΠ:

ln
∣∣∣Π(V,Y)

∣∣∣ ≤ ln
∣∣∣Π(V̄ , Ȳ )

∣∣∣+
∑
k∈K

〈Π−1(V̄ , Ȳ )V̄ Hk Ȳ −1
k V̄k〉

−2
∑
k∈K

<{〈Π−1(V̄ , Ȳ )V̄ Hk Ȳ −1
k Vk〉}

+
∑
k∈K

〈Ȳ −1
k V̄kΠ−1(V̄ , Ȳ )V̄ Hk Ȳ −1

k Yk〉. (76)

In fact, the right-hand-side (RHS) of (76) represents the
linearized function of the concave function ln

∣∣∣Π(V,Y)
∣∣∣ on

the left-hand-side (LHS), so the former serves a tight majorant
of the latter at (V̄ , Ȳ ) ∈ domΠ [30].

The following inequality has been established in [11], [13]
for all matrices V and V̄ of size n×m and matrices Y � 0
and Ȳ � 0 of size N ×N :

ln
∣∣IN + [V]2Y−1

∣∣ ≥ ln
∣∣IN + [V̄ ]2Ȳ −1

∣∣− 〈[V̄ ]2Ȳ −1〉+

2<{〈V̄ H Ȳ −1V〉} −
〈
Ȳ −1 − (Ȳ +

[V̄ ]2)−1, [V]2 + Y
〉
, (77)

i.e. the function on the RHS, which is a concave quadratic
function because (Ȳ )−1 − (Ȳ + [V̄ ]2)−1 � 0, serves as a
tight minorant of the log-det function on the LHS at the point
(V̄ , Ȳ ).

APPENDIX II: BISECTION OF SCALABLE COMPLEXITY FOR
QUADRATIC CONSTRAINED MATRIX OPTIMIZATION

We consider the following quadratic constrained problem of
multi-variable matrix optimization:

min
Vk∈CN×M ,k∈K

−2
∑
k∈K

<{〈BHk Vk〉}+
∑
k∈K

||
√
Q1,kVk||2

s.t.
∑
k∈K

||Vk||2 ≤ P1,
∑
k∈K

||
√
Q2,kVk||2 ≤ P2, (78)

with given CN×N 3 Q1,k � 0 and CN×N 3 Q2,k � 0 and
Bk ∈ CN×M , k ∈ K, and P1 > 0 and P2 > 0.

Using the matrix least squares approach, the solution
of the unconstrained problem −2

∑
k∈K <{〈BHk Vk〉} +∑

k∈K ||
√
Q1,kVk||2 → min is given by

V optk = Q−1
1,kBk, k ∈ K (79)

which is still the solution of (78), provided that it satisfies
both constraints in (78), i.e.∑

k∈K

||Q−1
1,kB||

2 ≤ P1 (80)

and ∑
k∈K

||
√
Q2,kQ−1

1,kBk||
2 ≤ P2. (81)

When (81) is not met, we use bisection to find λ̃2 > 0, so that∑
k∈K

||
√
Q2,k(Q1,k + λ̃2Q2,k)−1Bk||2 = P2. (82)

The solution of (78) is

V optk = (Q1,k + λ̃2Q2,k)−1Bk, k ∈ K, (83)

whenever ∑
k∈K

||(Q1,k + λ̃2Q2,k)−1Bk||2 ≤ P1. (84)

If (80) is not met, we use bisection to find λ̃1 > 0 so that∑
k∈K

||(Q1,k + λ̃1IN )−1Bk||2 = P1. (85)

The solution of (78) is

V optk = (Q1,k + λ̃1IN )−1Bk, k ∈ K (86)

whenever∑
k∈K

||
√
Q2,k(Q1,k + λ1IN )−1Bk||2 ≤ P2. (87)

In the remaining case, the optimal solution is represent-
ed as V optk = (Q1,k + λ̄1IN + λ̄2Q2,k)−1Bk, k ∈ K,
where λ̄1 > 0 and λ̄2 > 0 are Lagrangian multipliers so
that

∑
k∈K ||(Q1,k + λ̄1IN + λ̄2Q2,k)−1Bk||2 = P1, and∑

k∈K ||
√
Q2,k(Q1,k + λ̄1IN + λ̄2Q2,k)−1Bk||2 = P2, which

constitute nonlinear equations in two unknown and thus are
computationally intractable. We now avoid solving them by
employing the partial Lagrangian multiplier method, which
finds λ2 > such that the solution V optk of the following
problem satisfies

∑
k∈K

∑
k∈K ||

√
Q2,kV

opt
k ||2 = P2:

min
Vk

−2
∑
k∈K

<{〈BHk Vk〉}+
∑
k∈K

||
√
Qk,1Vk||2

+λ2

(∑
k∈K

||
√
Q2,kVk||2 − P2

)
s.t.

∑
k∈K

||Vk||2 ≤ P1. (88)

For a fixed λ2, the solution of (88) is given by

Vk(λ2) =


(Q1,k + λ2Q2,k)−1B

if
∑
k∈K ||(Q1,k + λ2Q2,k)−1Bk||2 ≤ P1∑

k∈K(Q1,k + λ2Q2,k + λ̂1IN )−1Bk otherwise,

where λ̂1 is found by bisection such that
∑
k∈K ||(Q1,k +

λ2Q2,k + λ̂1IN )−1Bk||2 = P1. It follows from (87) that∑
k∈K ||

√
Q2,kVk(0)||2 > P2, while for λ2 sufficient large

we have
∑
k∈K ||

√
Q2,kVk(λ2)||2 < P2. We thus start from

λl = 0 and λu is chosen to satisfy
∑
k∈K ||

√
Q2,kVk(λu)||2 <

P2 and do the following bisection.
Bisection procedure. Set λ2 = (λu + λl)/2 and

compute Vk(λ2) using (88). Terminate the procedure if∑
k∈K ||

√
Q2,kVk(λ2)||2 ≈ P2. Otherwise, update λl ←

λ2 if
∑
k∈K ||

√
Q2,kVk(λ2)||2 > P2 or λu ← λ2 if∑

k∈K ||
√
Q2,kVk(λ2)||2 < P2.
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