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Abstract—Semantic communication is increasingly viewed as
a promising solution to improve the transmission efficiency.
However, semantic communications are susceptible not only to
physical channel impairments, but also to semantic impairments,
which degrade semantic understanding at the receiver and
disrupt the associated downstream tasks. Hence, we focus our
attention on the robustness of semantic communications against
semantic impairments. Specifically, we first categorize textual se-
mantic impairments into three categories based on their sources.
Then, we propose a robust deep learning enabled semantic
communication system (R-DeepSC) by introducing a semantic
corrector for robust semantic encoding so as to facilitate semantic
transmission. Moreover, we develop a non-autoregressive version
of R-DeepSC, namely NA-RDeepSC, which offers improved
inference speed by relying on a non-autoregressive architecture
and an adaptive generator embedded into the semantic decoder.
NA-RDeepSC performs semantic decoding in parallel, hence
reducing the decoding complexity from O(n) to O(1) with a
comparable performance to that of R-DeepSC. Our experimental
results demonstrate the superior robustness of the proposed R-
DeepSC and NA-RDeepSC architectures in eliminating semantic
impairments, hence highlighting the significance of this work in
advancing the development of robust semantic communications.

Index Terms—Semantic communication, semantic impair-
ments, calibrated self-attention, non-autoregressive, text trans-
mission.

I. INTRODUCTION

IN contrast to conventional communications, semantic com-
munications are designed and optimized in ‘semantic

space’ for narrowing the semantic discrepancy between the
transmitter and the receiver, rather than minimizing the classic
symbol error rate [2]. Explicitly, the transmitted content typ-
ically represents task-oriented features conveying semantics.
Consequently, the optimization objective of semantic commu-
nications is no longer the classic bit error rate or symbol error
rate, but the fidelity of the semantic information at the receiver.
This optimization objective implies that semantic communica-
tions are most suitable for scenarios involving either human-
to-machine or machine-to-machine communications.

At the time of writing semantic communication systems,
[3]–[15] tend to harness the considerable power of deep neu-
ral networks (DNNs) for retrieving the transmitted semantic
content. DeepSC [3] is a pioneering example of deep learning
aided semantic communications, presenting an efficient joint
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semantic-channel coding architecture conceived for semantic
transmission. Lu et al. [4] introduced a confidence-based
distillation mechanism and a reinforcement learning-powered
semantic communication paradigm. Wang et al. [5] proposed
a knowledge graphs-based semantic communication system,
aiming for reducing data transmission volume and improving
semantic similarity by optimizing the associated resource
allocation strategies.

Apart from text transmission, similar joint semantic com-
munication designs have also been proposed for diverse other
applications. For instance, Weng et al. [6] developed a se-
mantic speech communication system, while Xie et al. [7]
designed a bespoke task-oriented multi-user system. Moreover,
researchers have also developed various architectures for im-
age and video transmission. More particularly, Huang et al. [8]
designed a Generative Adversarial Network-based encoder
for image coding relying on adaptive bandwidth allocation.
Zhang et al. [9] exploited a deep reinforcement learning-
based resource allocation scheme to reduce the transmission
delay. Zhang et al. [10] proposed a semantic communication
system for flexible code rate optimization to achieve band-
width efficiency while maintaining transmission quality. Qin et
al. [11], [12] presented a computing network enbaled semantic
communication system for optimizing the computing resources
and a generalized semantic communication framework for
leveraging the semantics from source and wireless channels.
Jiang et al. [13] developed a semantic communication system
for video conferencing over hostile time-varing channels.
Hanzo et al. [14] conceived a model-based parametric se-
mantic coding enhancement technique to improve subjective
quality and to harness the limited communication resources by
prioritizing semantic regions. Xie et al. [15] devised a semantic
communication system incorporating a memory module for
conducting scenario question answering.

Although the aforementioned contributions have succeeded
in expanding the range of tasks that semantic communications
can perform, the study of their robustness against transmission
impairments is still in its infancy. Specifically, the robust-
ness of semantic communications is affected by a pair of
impairments. On the one hand, the transmitted signals are
corrupted by the inevitable physical channel impairments, such
as pathloss, slow and fast fading, dispersion, as well as the
noise. These impairments can be mitigated by channel equal-
ization [16] and channel coding [17], while relying on channel
estimation [18], which have been extensively investigated.

On the other hand, semantic communications are also
contaminated by semantic impairments causing semantic mis-
match between the transmitter and the receiver [19]. Fig. 1
illustrates the concept of semantic impairments, which degrade
the integrity of semantic communication systems, namely
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adversarial semantic contamination and literal semantic im-
pairments [20]. Adversarial semantic contamination degrades
the integrity of semantic communications through semantic
channels, while a literal semantic impairment is imposed by
corrupted source data. Despite the potentially grave impact
of both types of semantic degradations, they have not been
extensively studied, hence highlighting the pressing need for
further research in this area.

The main focus of this paper is on literal semantic im-
pairments of text transmission, which can arise from various
sources, including typing errors introduced by users or incor-
rect recognition by DNN-based systems, such as automatic
speech recognition (ASR) algorithms. This type of impairment
may result in misspelled or homophonic words that can cause
semantic ambiguity. For instance, consider the sentence “I saw
the sun rise”. If the word ‘sun’ is misspelled as ‘son’ due to
speech recognition error caused by their similar pronunciation,
this imposes semantic impairments by misinterpreting the
sentence, potentially leading to erroneous decisions [21].

Conventional communication systems are typically opti-
mized by minimizing the symbol error rate and lack the ability
to extract semantics, hence they are vulnerable to such errors.
By contrast, semantic communication systems are expected
to eliminate semantic impairments and recover the original
meaning even from corrupted text, which is made possible
by its ability to understand and interpret semantics. However,
existing semantic communication systems primarily focus on
physical channel impairments, while overlooking semantic im-
pairments and leading to unreliable communications between
the transmitter and the receiver [20].

To establish reliable semantic communications, our efforts
are dedicated to three aspects: developing robust DNNs that
are essential tools for semantic communications, especially in
combating adversarial attacks [22]–[24] and literal errors [25]–
[30]. Hence they are eminently suitable for designing com-
munication systems that are robust against semantic impair-
ments [1], [20], [31].

1) Robustness Against Adversarial Attacks: The first ap-
proach focuses on enhancing the robustness against adversarial
attacks, which are perturbations that are intentionally designed
to mislead DNNs for producing counter-intuitive predictions.
These methods involve designing effective defense strategies.
Szegedy et al. [22] found that adding invisible perturbations to
an image may still deceive a classification model. Goodfellow
et al. [23] developed a protection mechanism based on a
fast gradient method, while Miyato et al. [24] proposed a
semi-supervised method to defend against adversarial attacks.

These methods tend to aim for increasing the resilience of
DNNs by adding adversarial examples to the training data. By
incorporating these defensive strategies, DNN models become
more robust to semantic impairments.

2) Robustness Against Literal Errors: Literal errors may
gravely affect the semantic perception of DNNs [32]. To ad-
dress this issue, designing robust DNNs capable of correcting
literal errors is desired. Literal errors typically arise from the
following pair of distinct scenarios:

Firstly, errors may have accidentally been made by users
during spelling. Numerous studies have focused on eliminating
spelling errors. Zhao et al. [25] investigated the grammatical
error correction capability at the data level by harnessing a
dynamic mask for generating ‘clean-corrupt’ example pairs for
training. Zhao et al. [26] also introduced a copy mechanism
to build a pre-trained model, so as to improve the accuracy
of grammatical error correction. Zhang et al. [27] proposed a
novel detection and correction framework to deal with Chinese
literal errors. By applying error correction methods, DNNs can
better cope with semantic impairments and perform well in
downstream tasks.

Furthermore, literal errors can also be generated due to
the limitations of the DNN-based algorithms. For instance,
automatic speech recognition algorithms may generate literal
errors, due to the limited performance of recognition accuracy,
background noise, and the clarity of speech sources [33].
Compared to spelling errors, ASR errors exhibit significant
differences in terms of their nature. In addition to misspellings,
ASR could also introduce homonym errors, which are caused
by the similar pronunciation of words, such as ‘sun’ and
‘son’. To address these challenges, researchers have developed
various techniques to reduce the probability of ASR errors.
Leng et al. [28] proposed an edit alignment method to generate
edit labels for ‘clean-corrupt’ data pairs, which are utilized for
training. Zhang et al. [29] proposed a dual channel model that
leverages both contextual and phonetic information for ASR
error correction. Li et al. [30] designed the pre-trained BERT-
based model and a copy mechanism to eliminate ASR errors.
By reducing the impact of semantic impairments in ASR
systems, DNNs succeed in reliably interpreting the semantics
of speech sources.

3) Robust Design of Semantic Communications: More re-
cently, these successful defense and correction techniques have
also been adopted for improving the robustness of communica-
tion systems. Peng et al. [1] proposed a robust semantic com-
munication system to combat adversarial semantic contami-
nation and a specific type of literal semantic impairments. Hu
et al. [20] proposed a robust semantic communication system
relying on shared codebooks to tackle both sample-dependent
and sample-independent semantic contamination. Sadeghi et
al. [31] studied the robustness of an end-to-end communication
system to physical adversarial attacks and defined a metric
termed as the perturbation-to-signal ratio for characterizing
the strength of adversarial semantic contamination.

Just like any other communication systems, semantic text
systems are also prone to semantic impairments [34], which
are harder to mitigate than channel impairments. Despite
the progress made in addressing the deleterious effects of
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TABLE I
CONTRASTING OUR CONTRIBUTIONS TO THE LITERATURE

Capability to Withstand [3]–[15] [25]–[27] [28]–[30] [20], [31] [1] Our Work

Physical Channel Impairments ✔ ✔ ✔ ✔

Literal Semantic Impairments by Spelling ✔ ✔ ✔

Literal Semantic Impairments by ASR ✔ ✔

Comprehensive Literal Semantic Impairments ✔

semantic impairments, challenges in enhancing the robustness
of semantic communication systems persist, including the lack
of unified taxonomy and metrics, the absence of semantic
impairments datasets for training, as well as the challenges in
designing effective yet affordable decontamination modules.

In this context, the existing error correction techniques
applied to natural language processing do not consider the
realistic constraints of the communication process, while the
semantic communication studies have not as yet addressed the
grave potential impact of semantic impairments. Therefore,
this paper investigates the mechanisms of literal semantic
impairments and addresses these challenges. Table I boldly
contrasts the contributions of this paper against those reviewed
above. Our new contributions are further detailed as follows
in a point-wise fashion:

• To quantify the semantic impairments that the proposed
system can handle, we categorized semantic impairments
into three distinct types and developed a new metric
termed as semantic impairment intensity. Furthermore,
we established a semantic impairments dataset having
varying semantic impairment intensity.

• We developed a robust semantic communication system,
referred to as R-DeepSC, which employs a semantic
corrector for robust semantic encoding.

• Additionally, we proposed a speedy version, namely NA-
RDeepSC, which utilizes an adaptive generator and non-
autoregressive architecture for significantly improving the
inference speed while maintaining robustness, making it
a cost-effective yet efficient solution for online services.

The rest of this paper is organized as follows. Section
II introduces the semantic communication system models
with particular emphasis on semantic impairments. Section III
presents our proposed robust semantic communication system
design, while our experimental results are discussed in Section
IV. Finally, section V concludes this paper.

II. THE ROBUST SEMANTIC COMMUNICATION MODEL

In this section, we present a robust semantic communication
model that is specifically designed for minimizing the effects
of semantic impairments in communication channels and pro-
pose a novel technique for modeling semantic impairments.
Furthermore, we formulate our problem in detail.

A. The Robust Semantic Communication System Model

Fig. 2 portrays the semantic communication system archi-
tecture considered, which can handle both physical channel

effects and semantic impairments. Denote the input text as
S, which is broken into tokens based on the tokenization
rules. For instance, when tokenizing the sentence “this is
predefined”, the resulting tokenized sequence could be [‘this’,
‘is’, ‘predefined’] or [‘this’, ‘is’, ‘pre’, ‘defined’], depending
on the specific tokenization rules used. During the process
of tokenization, the collection of all tokens is referred to as
the dictionary, denoted as ν. This dictionary serves as the
knowledge base in the proposed system, facilitating semantic
encoding and decoding. The tokenized sequence can be rep-
resented as S = {s1, s2, · · · , sL}, where si is the i-th token.

Then, through the One-Hot encoding and the embedding
layer, these tokens can be converted into the embedding vector,
E, which are represented as

E = fγ [fν [S]], (1)

where fν [·] represents the One-Hot encoder’s action associated
with the released knowledge base ν and fγ [·] is the embedding
layer relying on the trainable parameter set γ.

Before tranmission, the robust semantic communication sys-
tem of Fig. 2 must carry out semantic encoding to extract the
pertinent semantic features, followed by semantic correction to
refine the semantics, and deep learning enabled channel encod-
ing to guard against physical channel impairments, including
impairments caused by AWGN and Rician fading channels.
Therefore, the transmitted signal, X, is given by

X = fφ[fλ[fη[E]]], (2)

where fφ[·] represents the channel encoder’s action associated
with the trainable parameter set φ, fλ[·] is the semantic
corrector having the trainable parameter set λ, and fη[·] is
the semantic encoder having the trainable parameter set η.

The transmitted signal, X, may become distorted by the
fading channels and receiver noise. Hence the received signal,
Y, can be represented as

Y = HX+Np, (3)

where H characterizes the fading channel and Np ∼
CN (0, σ2

n).
By utilizing a channel decoder, adaptive generator, and

semantic decoder, the received text, Ŝ, can be represented as

Ŝ = gζ [gµ[gδ[Y]],ν], (4)

where gδ[·] is the channel decoder having the trainable parame-
ter set δ, gµ[·] is the adaptive generator associated with having
the trainable parameter set µ, and gζ [·] is the semantic decoder
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having the trainable parameter set ζ. Specifically, the trainable
parameters of our system, including the channel encoder and
channel decoder, are optimized and obtained by joint training
in an end-to-end manner.

The proposed semantic communication system is designed
to enhance robustness against semantic impairments, which is
alleviated by introducing a semantic corrector at the transmitter
to rectify semantic errors. At the receiver side, an adaptive gen-
erator is used for producing the input sequence of the semantic
decoder to speed up the decoding process. These modules
allow the system to cope with diverse types and degrees of
semantic impairments, thereby improving the reliability and
efficiency of semantic communications.

B. Semantic Impairments
The semantic impairments, Ns, which is considered to be

literal semantic impairments in the source text, S, may pose
challenges for both humans and DNN models. Fig. 3 illustrates
two ways of generating semantic impairments, namely by
spelling errors during typing and recognition errors generated
by deficient DNN models, such as ASR and optical charac-
ter recognition. Semantic impairments may cause semantic
ambiguity and mislead the DNN models. For instance, the
misspelling of the word ‘excited’ in the sentence “we are
exhausted with this movie” may confuse a sentiment analyzer.

Semantic impairments may be introduced by three opera-
tions: replacement, R, deletion, D, and insertion, I . The i-
th word of a sentence corrupted by semantic impairments,
Ns = {N1

s , N
2
s , . . . , N

n
s }, is defined as F(N i

s, e, i), which
is given by

F(N i
s, e, i) =

 si = {N i
s}, e = R,

si = ∅, e = D,
si = {si, N i

s}, e = I,
(5)

where F(·) is a semantic impairment simulation function
that fits the error distribution of users or incomplete DNN-
assisted systems, N i

s is the corresponding corrupted word of
ui, and e is the error type. For instance, the corrupted text
“I saw the son rise” is obtained after applying F(son,R, 4)
function to the uncorrupted sentence “I saw the sun rise”.
After applying the function F(·) to the uncorrupted sentence,
U = {u1, u2, . . . , un}, the corrupted text, S, can be obtained.

The semantic impairment simulation function F(·) , illus-
trates how semantic impairments are generated. The objective

of the proposed robust semantic communication system is to
mitigate these impairments by approximating the inverse func-
tion of the semantic impairment simulation function, denoted
as F−1(·).

C. Problem Formulation

The semantic impairment simulation function has no ex-
plicit formula, since the distribution of its input variables may
vary in different scenarios, it becomes necessary to formulate
the associated problem and devise a solution.

The proposed system takes corrupted text with semantic
impairments as its input and generates text without seman-
tic impairments. Moreover, when transmitting over physical
channels, the transmitted signal will be subject to the effects
of channel noise and fading, as seen in Eq. (3).

The objective of the proposed system is to eliminate se-
mantic impairments in the transmitted text and achieve high-
fidelity end-to-end semantic communications, which can be
represented as

max
D

E(U, Ŝ), (6)

where E(·) quantifies the semantic similarity between the
uncorrupted text and the received text, and D is the semantic
impairment dataset. To address this challenge, we design
robust deep learning enabled semantic communication systems
to tackle the problem at hand.

III. PROPOSED ROBUST SEMANTIC COMMUNICATION
SYSTEMS

In this section, we propose a robust deep learning aided se-
mantic communication system, namely R-DeepSC, relying on
a semantic corrector for robust semantic encoding. Moreover,
we develop a non-autoregressive speedy form of R-DeepSC,
termed as NA-RDeepSC, which adopts an adaptive generator
to perform semantic decoding at an accelerated inference
speed. Additionally, we discuss the model’s implementation
in practical scenarios.

A. Robust Semantic Encoding Relying on the Semantic Cor-
rector

Vaswani et al. [35] calculate attention scores based on the
semantic correlation between tokens, regardless whether they
are corrupted or not. By applying these scores to the semantic
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Fig. 3. Illustration of the effects of semantic impairments on semantic
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effects.

representations of all tokens, the semantics of the sentence may
be obtained. However, if a token is incorrect, its corrupted
semantic representation may interfere with the semantics of
other tokens, leading to corrupted semantic information. For
instance, if an incorrect word is present in the input sequence,
such as ‘son’ instead of ‘sun’ in “I saw the sun rise”,
the self-attention mechanism may calculate its representation
vector and attention score, which can cause a deviation in the
contextual representation of other words and lead to inaccurate
model output.

To cope with this problem, we propose a novel semantic
encoder which utilizes a semantic corrector and a calibrated
self-attention mechanism to eliminate the influence of seman-
tic impairments. For example, in “I saw the son rise”, we can
adjust the attention score of ‘son’ to minimize its impact on
the contextual representation of other words. This process can
help eliminate the interference of corrupted text and improve
the accuracy and performance of the Transformer model.

The architecture of the robust semantic encoder developed is
shown in Fig. 4. The adopted knowledge base is the dictionary
for conducting the Ont-Hot encoding. The extracted semantics,
M, is obtained by

M = fϱ(E), (7)

where fϱ(·) is the semantic encoder having the trainable
parameter set ϱ, and E is the embedding vector obtained with
the knowledge base in Equation (1).

A novel semantic corrector is introduced to rectify the
corrupted semantics obtained by the semantic encoder, which
is the core component of the proposed model, comprising a
Gated Recurrent Unit (GRU) [36], a fully connected layer, and
a sigmoid activation function. The error probability P of the
tokens, may be represented as

P = fϵ(M), (8)

where fϵ(·) is the semantic corrector having the trainable
parameter set ϵ, and M is the output of the semantic encoder.
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Fig. 4. The robust semantic encoder developed, which relies on a semantic
corrector and a calibrated self-attention mechanism.

The calibration matrix, C, is formulated as

C = 1−P ·PT . (9)

The calibration matrix is a weight matrix that adjusts the
attention scores of a model to reduce the impact of corrupted
text. It assigns smaller weights to the corrupted words, which
helps the model better understand the semantic information of
the input sequence and enhances its accuracy and performance.

Then, the attention score is calibrated by C for ensuring that
more attention is devoted to uncorrupted tokens. The calibrated
attention score, Ac, can be expressed as

Ac = softmax(
Q ·KT

√
dk

⊙C), (10)

where ⊙ represents the element-wise product, Q, K, V, dk
are the query, key, value, and the dimension of the encoded
semantics.

The calculation process of calibrated self-attention is sum-
marized in Algorithm 1. The value of C is firstly set as none,
which will be updated after passing through the encoder layer
of Fig. 2. The semantic error corrector has to be activated
N−1 times throughout the semantic encoding process, where
N is the number of layers.

Furthermore, to train the semantic corrector, a novel loss
function, LSC(·), is developed by relying on the binary cross-
entropy loss [37], which is defined as

LSC(P,L) = −
∑
i

li · log(pi) + (1− li) · log(1− pi),

(11)

where L = {l1, l2, . . . , ln} is the label indicating, whether the
token is corrupted or not and li can be

li =

{
0, si = ui,
1, si ̸= ui.

(12)
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Algorithm 1 Algorithm of Calibrated Self-Attention Mecha-
nism
Input:

Q: The query of the input sentence;
K: The key of the input sentence;
V: The value of the input sentence;
N is the number of encoder layers.

Output:
M : The semantic output.

1: C = None

2: for each i ∈ [1, N] do
3: if C = None then
4: M = softmax(Q·KT

√
dk

) ·V.

5: else
6: M = Ac ·V.

7: end if
8: C = fϵ(M) · fϵ(M)T .

9: end for
10: return M

B. Non-Autoregressive Decoder for Inference Acceleration

Although the Transformer of [35] has achieved remarkable
performace, the inference time of this autoregressive form
has increased substantially due to the complete dependence
between tokens. To enhance the inference speed and minimize
the communication delay, we concieve a reduced-complexity
decoder structure of non-autoregressive form. To realize this
goal, the mechanisms of autoregressive and non-autoregressive
architecture are analyzed as follows.

An auto-regressive semantic communication system gener-
ates the i-th token of the received sentence Ŝ as:

ŝi = gζ(O, ŝ1, ŝ2, · · · , ŝi−1,ν), (13)

where O is the output of the channel decoder, gζ(·) is an
autoregressive semantic decoder, and ν is the knowledge base.
Naturally, generating a sequence in an autoregressive manner,
which predicts one token at a time based on the previously
predicted tokens, has to carry out decoding in series. As a
result, the inference time of the autoregressive decoder is on
the order of O(n), which incurs an escalating communication
delay.

By contrast, a non-autoregressive semantic communication
system can transmit data in parallel, because it directly gener-
ates a sequence at once. The received text Ŝ can be represented
as

Ŝ = gπ(O, I,ν), (14)

where gπ(·) is the non-autoregressive decoder, which utilizes
an independent conditional sequence, I, rather than the tokens,
ŝ1, ŝ2, · · · , ŝi−1, generated for conducting semantic decoding.
The non-autoregressive architecture is capable of decoding in
parallel, hence accomplishing decoding at an inference time
order of O(1).

The non-autoregressive architecture is capable of signifi-
cantly reducing the inference time. However, designing the

independent conditional sequence, I, constitutes a critical
challenge when establishing a non-autoregressive model. The
previously proposed non-autoregressive models rely either on
a source-target alignment constraint with fertility [38], or
on duration prediction [28] to regulate I. Although these
solutions achieve excellent performance, their premise is that
the decoder has access to the source text, S, which can then
be utilized to build the independent conditional sequence, I,
for the semantic decoder.

Unfortunately, this assumption is not applicable to realistic
communication scenarios, because as seen in Fig. 2, the
semantic decoder receives its input signal, O, from the channel
decoder and it can only obtain the source text in case of error-
free channel decoding. Therefore, an appropriate conditional
sequence must be designed along with the corresponding loss
function for training.

In this paper, an adaptive generator, which consists of linear
layers, the popular Relu activation function, and the softmax
function, is devised for predicting the target length, T , of the
input text. The process can be represented as

T = gµ(O), (15)

where gµ(·) is the adaptive generator module having the
trainable parameter set µ.

The k-th token of the input sequence, I, is defined as

ik =

{
⟨UNK⟩, 0 ≤ k ≤ T,
⟨PAD⟩, k > T,

(16)

where ⟨UNK⟩ and ⟨PAD⟩ are predefined tokens, indicating
that the token is not in the dictionary and the token is used
for padding, respectively.

The architecture of the proposed semantic decoder is shown
in Fig. 5. Compared to the autoregressive form, the input
sequence is no longer constituted by the generated tokens, but
by the predicted conditional sequence. Furthermore, since the
model predicts in parallel, it is no longer necessary to rely on
a mask mechanism, in contrast to the Transformer of [35].

Moreover, the cross-entropy loss function is utilized to de-
velop an adaptive generator loss function, LAG(·), to regulate
the output of the adaptive generator, which is defined as

LAG(T,G) = −G · log(T ), (17)

where G is the ground truth for the adaptive generator.

C. Loss Function for Robust Semantic Communications

To allow the whole system to function appropriately, a new
loss function is proposed for training the robust semantic
communication systems developed, which is given by

Ltotal = LCE(U, Ŝ)− α · LMI(X,Y)

+ β · LSC(P,L) + γ · LAG(T,G),
(18)

where LCE(·) aims for making the uncorrupted text, U,
and the received text, Ŝ, as similar as possible; Furthermore,
LMI(·) maximizes the capacity or the data transmission rate
by maximizing the mutual information between the transmitted
signal, X, and the received signal, Y; LSC(·) is the predefined
loss used for training the semantic corrector; Finally, LAG(·)

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2024.3381950

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



7

Add & Norm

Feed Forward

Add & Norm

 Self-Attention

FF FFFF

Q K V

Positional 

Encoding

×N

Embedding layer

 Self-Attention

O

Output Layer

AG

I

Ŝ
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Fig. 5. The semantic decoder developed in NA-RDeepSC.

is the loss employed for training the adaptive generator.
The proportions of LMI(·), LSC(·), and LAG(·) in the loss
function can be controlled by the positive parameters α, β,
and γ.

D. Model Implementation

To enhance the accuracy and efficiency of predictions,
we develop a pair of models, namely R-DeepSC and NA-
RDeepSC. Specifically, R-DeepSC focuses on transmitting text
with a high semantic fidelity by utilizing our robust semantic
encoding and autoregressive decoding architecture. Its loss
function is composed of the first three terms of Ltotal in
(18), which helps us to optimize the accuracy of the encoding
process. By contrast, NA-RDeepSC aims for eliminating the
semantic impairments, while maintaining a high inference
speed by relying on both our robust semantic encoding and
non-autoregressive architecture. Its loss function is Ltotal,
which optimizes the overall performance of the model.

The choice between these models depends on the specific
task at hand. R-DeepSC is suitable, when the objective is
to accurately encode text into a structured representation for
transmission. Conversely, NA-RDeepSC is better suited for
efficiently decoding structured representations back into text
at a superior speed, while maintaining high accuracy. By
leveraging the strengths of both R-DeepSC and NA-RDeepSC,
our semantic communication solutions are capable of striking
a flexible inference accuracy versus speed trade-off.

For time-sensitive scenarios, such as the real-time chat,
deploying NA-RDeepSC is advantageous due to its lower in-
ference complexity. Conversely, for the professional document
transmission, the R-DeepSC is recommended to ensure high
accuracy in error correction. The model selection algorithm is
summarized in Algorithm 2.

Algorithm 2 Algorithm of Model Selection
Initialization: Load the pretrained R-DeepSC and NA-

RDeepSC;
Function: Select model for inference.
Input: Business type bt

1: if bt is time-sensitive business then
2: Load the paramters of NA-RDeepSC for transmission.
3: else
4: Load the paramters of R-DeepSC for transmission.
5: end if

IV. NUMERICAL RESULTS

In this section, we construct semantic impairments datasets
for employment in our experiments. Furthermore, we present
our performance metrics, simulation settings, and the exper-
imental results to validate the robustness of the proposed
models.

A. Datasets and Baseline Models

We adopt the Europarl corpus dataset [39], which is based
on the proceedings of the European Parliament in 11 different
languages. The English corpus, which contains 98,751 sen-
tences, is selected as the transmitted data.

Then, a pair of semantic impairments datasets are harvested
based on the Europarl dataset. The first dataset is termed
as the induced spelling error dataset, which is obtained by
randomly sampling the words in the corpus and performing
operations based on the predefined transformations of [40]
to introduce semantic impairments. The transformation types
include substitution, insertion, deletion errors, and verb re-
placements. We simulate literal errors that may occur in
typing by imposing these operations on the corpus, which
are determined by sampling a Multinoulli distribution defined
in [41]. By adjusting the probability of the above errors and the
sampled word index, induced spelling error datasets associated
with different levels of semantic impairment intensity were
collected. The second dataset is referred to as the spontaneous
spelling error dataset, which is also based on the Europarl
dataset constructed by leveraging the released spelling errror
replacement rules [42] relying on the same method.

Moreover, we use the speech-recognition and synthesis
based semantic communication system of [43] to transmit
elements of the Librispeech [44] dataset over AWGN channels.
Briefly, Librispeech is a dataset, which has about 1,000 hours
of English speech excerpts, used for conducting ASR tasks. By
varying the signal-to-noise ratio (SNR), we obtained an ASR
error dataset having different levels of semantic impairment
intensity.

The proposed models and baseline models are evaluated
by relying on these datasets. Details of these datasets are
presented in Table II. There are different types of errors in
these datasets, which are suitable for comprehensively testing
the performance and for yielding reproducible results.

Our proposed system is compared to a range of baseline
models. The first one is DeepSC [3], which is a semantic com-
munication system based on deep learning. The second one
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TABLE II
DETAILS OF PROPOSED DATASETS

DataSet Sample
Number Error Types

Spontaneous Spelling Error 93, 809 ReplaceError

Induced Spelling Error 93, 809

InsertError,
DeleteError,

RepalceError,
VerbError

ASR Error 104, 014

WordBoundaryError,
SpellingError,

GrammaticalError,
HomophoneRepalcement

harnesses the SoftMaskedBERT of [27] along with the BERT
tokenizer [45] as the semantic codec. The remaining systems
use Huffman and low-density parity-check (LDPC) codes with
a 0.5 code rate for channel coding, and adaptive modula-
tion [46] techniques for transmission. In AWGN channels, the
SNR is stable, but in Rayleigh and Rician fading channels, it
can fluctuate significantly. To ensure efficient communication,
we use adaptive modulation (AM), which dynamically adjusts
the modulation scheme based on the channel conditions to
maximize the data rate, while maintaining a low bit error rate.
Specifically, we utilize 8-QAM modulation for unfavorable
channel conditions, while we employ 16-QAM modulation for
good channel conditions. To ensure a fair comparison, DeepSC
utilizes the same parameters for training as the proposed R-
DeepSC.

B. Simulation Settings

In this experiment, we set the number of layers to 3 and
the number of heads to 4. The semantic corrector is set to
a gated recurrent unit associated with 128 units and a linear
layer, activated by the sigmoid activation. The channel encoder
is a dense net having 2 layers, whose hidden dimension is
256 and output dimension of 16. The channel decoder has
three layers, with a hidden dimension of 512. The adaptive
generator consists of two linear layers and a normalization
layer. After passing through the triple-layer semantic decoders,
the predicted sequence is generated by the head layer. The
details of these settings can be found in Table III.

C. Performance Metrics

Again, in contrast to conventional communication systems,
classic metrics, such as the bit-error rate and symbol-error rate,
are unable to adequately quantify the performance of semantic
communication systems. Instead, we have to consider whether
there is a semantic gap between the transmitted and the re-
ceived text. Hence, we take advantage of the BLEU score [47]
and the BERTScore [48] for characterizing the communication
performance, while utilizing the semantic impairment intensity
for quantifying semantic impairments.

1) BLEU Score: The BLEU score utilizes the n-gram
matching criterion for evaluating the integrity or intensity of
the received text. For example, if we take the sentence “I saw

TABLE III
SIMULATION SETTINGS

Layer Name Module Units Activation

Transmitter

Embeding Layer Linear 128 None

Semantic Encoder

(× 3)

Transformer

Encoder

128

(4 heads)
None

Semantic Corrector

(× 3)

GRU
32

(1 layer)
None

Linear 1 Sigmoid

Channel Encoder
Linear 256 ReLU

Linear 16 None

Receiver

Channel Decoder

Linear 128 ReLU

Linear 512 ReLU

Linear 128 None

LayerNorm None None

Adaptive Generator

Linear 256 ReLU

LayerNorm None None

Linear 128 Softmax

Semantic Decoder

(× 3)

Transformer

Decoder

128

(4 heads)
None

Head Layer Linear
Dictionary

Size
Softmax

the sun rise”, the 1-grams would be ‘I’, ‘saw’, ‘the’, ‘sun’,
and ‘rise’, while the 2-grams would be ‘I saw’, ‘saw the’, ‘the
sun’, and ‘sun rise’. We denote the number of the k-th word
for the n-gram text by Ck, while the weight of the n-gram
precision, and the penalty index by Wn and BP. The BLEU
score is formulated as follows

BLEU = BP× exp(

N∑
n=1

Wn

∑
i

∑
k min [Ck(Ri)), Ck(Ti)]∑

i

∑
k Ck(Ri)

).

(19)

More particularly, BP is defined as

BP =

{
1, lR > lT ,

e
1− lR

lT , lR < lT ,
(20)

where lR corresponds to the length of the received text, and lT
corresponds to the length of the transmitted text. The value of
the BLEU score is between 0 and 1, and a higher score implies
having a more similar sentence. The BLEU score is efficient,
but it only estimates the literal, rather than the semantic
difference. As a result, we also harness the BERTScore as
the metric of quantifying the semantic similarity between two
sentences.

2) BERTScore: The BERTScore quantifies the semantic
similarity and applies different weights to words according to
their corresponding semantic importance. It was shown in [48]
that the semantic similarity assessed by the BERTScore is
closely related to human judgements.

We denote the corresponding vector representation of the
transmitted text S by ⟨T1,T2, . . . ,Tn⟩, and the vector rep-
resentation of the received text Ŝ by ⟨R1,R2, . . . ,Rm⟩.
All these vetors are calculated by the BERT model. The
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importance weight function idf(·) can be formulated as

idf (x) = − log
1

M

M∑
1

I(x ∈ Ri), (21)

where R0,R1, . . . ,RM is the test corpus.
The BERTScore between the transmitted and the received

text can be obtained as

PBERT =

∑
ri∈Ŝ idf(ri)maxti∈S TT

i Ri∑
ri∈Ŝ idf(ri)

. (22)

Next, the BERTScore is stretched to an expanded range
using the following transformation

P̂BERT =
PBERT − b

1− b
, (23)

where b is a scaling factor. The rescaled BERTScore ranges
from -1 to 1, and a higher score implies a higher similarity
between the pair of input sentences.

3) Semantic Impairment Intensity: Moreover, to quantita-
tively characterize the semantic impairments, we devise a
new metric namely the semantic impairment intensity (SII)
to quantify the intensity of semantic impairments, which is
given by

SII = 1− BLEU(S,U), (24)

where BLEU(·) is the function quantifying the so-called
bilingual evaluation understudy (BLEU) score between the
corrupted sentence, S, and the uncorrupted sentence, U. The
higher the SII, the stronger the semantic impairments in the
source text.

D. System Performance

We conducted comprehensive experiments to validate the
performance of the proposed semantic communication systems
relying on our semantic impairments datasets.

1) System Performance Versus SNR: Fig. 6 illustrates the
performance of our systems for transmission over AWGN
channels at various signal-to-noise ratios, in the face of dif-
ferent types of semantic impairments. Specifically, Fig. 6(a),
Fig. 6(b), and Fig. 6(c) show the BLEU score of our systems
versus the ASR error, spontaneous spelling error, and induced
spelling error, respectively. These test datasets have a semantic
impairment intensity of 0.4, and the models are trained by a
combination of three kinds of semantic impairments.

Observe by comparing Figs. 6(a) to 6(c) that our semantic
communication systems exhibit lower BLEU scores when
tested on ASR error datasets compared to other types of
semantic impairments. This result indicates that correcting
ASR errors presents the most grave challenge for semantic
communication systems. A plausible reason for this is that
ASR errors are more complex and have a wider variety of
types, making them more difficult to correct. Nonetheless, our
solutions still achieve significant improvements in correcting
ASR errors, hence they are eminently suitable for practical
real-world applications, such as speech recognition.

Furthermore, the results of Fig. 6 suggest that DeepSC
struggles to eliminate the semantic impairments inflicted by

ASR error datasets, as evidenced by the BLEU scores seen to
be lower than 0.6 at high SNRs. This indicates that DeepSC
lacks the capability of eliminating semantic impairments with-
out dedicated designs.

By contrast, R-DeepSC efficiently mitigates the semantic
impairments imposed by all three datasets, as evidenced by its
superior BLEU scores in Fig. 6. This is because R-DeepSC
is specifically designed for correcting semantic errors through
robust semantic encoding by relying on the semantic corrector
and the calibrated self-attention mechanism of Fig. 2.

Similarly, observe in Fig. 6 that the NA-RDeepSC is also
capable of mitigating both spontaneous and induced spelling
errors. However, it also struggles to correct ASR errors, as
evidenced by its lower BLEU scores compared to R-DeepSC.
This is because NA-RDeepSC utilizes non-autoregressive de-
coding, which limits its ability to handle the complex errors
inflicted by the ASR datasets.

In addition to AWGN channels, we also conducted exper-
iments under Rician fading channels (k = 1) associated with
various literal errors. The results shown in Fig. 7 exhibit
similar trends to those under AWGN channels. Explicitly,
the error correction capability quantified in the face of these
datasets follows the order of ASR error < induced spelling
error < spontaneous spelling error, in line with the gravity of
the afflictions experienced.

Furthermore, the performance gap between NA-RDeepSC
and R-DeepSC becomes narrower under Rician fading chan-
nels compared to AWGN channels. This could be attributed to
the fact that Rician fading channels often impose more grave
channel impairments at a given SNR. However, the proposed
NA-RDeepSC beneficially leverages both the calibrated self-
attention mechanism and the non-autoregressive decoding ar-
chitectures, which allow it to handle the complex errors arising
in Rician fading channels more effectively. As a result, NA-
RDeepSC achieves more similar transmission performance to
that of R-DeepSC under Rician fading channels, despite the
complexity of the propagation environment.

2) System Performance Versus SII: To further evaluate the
performance of these communication systems, we conducted
experiments under various semantic impairments intensities,
including 0, 0.2, 0.4, 0.6, and 0.8. Fig. 8 shows the perfor-
mance versus SII at 18 dB for an AWGN channel. The test
set is composed of three types of semantic impairments.

The results indicate that both R-DeepSC and NA-RDeepSC
outperform the other systems, especially when the SII is
greater than 0.2. This demonstrates that R-DeepSC and NA-
RDeepSC are capable of supporting robust text transmission.

Fig. 9 shows the performance of semantic communication
systems versus the SII under Rician fading channels. The
results demonstrate that the semantic fidelity of conventional
communication system is significantly degraded in the face
of Rician fading channels, while our semantic communication
systems achieve superior robustness, as evidenced by both the
BLEU score and BERTScore. This is because the proposed
NA-RDeepSC and R-DeepSC leverage joint semantic-channel
coding methods, allowing them to handle the complex impair-
ments inflicted by Rician fading channels more effectively.
Additionally, the models proposed achieve higher semantic

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2024.3381950

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



10

�������� ��������� ������ 
 ����������������� �����������	������

��
 �� � � 
 � �� �	 ��
�������

���

���

���

��


���

���

�
�
��
��

�
�
�

(a) ASR error

��
 �� � � 
 � �� �	 ��
�������

���

���

���

��


���

���

�
�
��
��

�
�
�

(b) Spontaneous spelling error

��
 �� � � 
 � �� �	 ��
�������

���

���

���

��


���

���

�
�
��
��

�
�
�

(c) Induced spelling error

Fig. 6. System performance in AWGN channels versus the SNR with various types of semantic impairments.
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Fig. 7. System performance in Rician fading channels for k = 1 versus the SNR with various types of semantic impairments.
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Fig. 8. System performance versus SII under AWGN channels.
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Fig. 9. System performance versus SII under Rician fading channels.

Fig. 10. Loss evolution for NA-RDeepSC for learning rate= 0.0001.

fidelity than DeepSC, even in the face of violently fluctuating
SII.

The BLEU score and BERTScore metrics used in this study
quantify the text similarity differently, with BLEU evaluating
character-level similarity, while the BERTScore measuring se-
mantic similarity. Although they may show a similar tendency
in most cases, this is not always the case. For example,
in Fig. 8, NA-RDeepSC achieves a similar BLEU score to
conventional communication systems using LDPC coding and
adaptive modulation associated with SII = 0.2, while NA-
RDeepSC achieves higher semantic fidelity, as evidenced by
its BERTScore. This highlights the importance of considering
both metrics for confidently quantifying the performance of
semantic communication systems, since they provide different
insights in terms of character-level and semantic-level fidelity.

Fig. 10 demonstrates the loss evolution of the proposed
NA-RDeepSC. It can be observed that the MI loss keeps on
increasing while the other components of the loss function
gradually decrease and eventually converge, demonstrating the
effectiveness of the system. Table IV shows the transmission
results of samples containing different kinds of semantic
impairments for SII = 0.4, which further demonstrate the
effectiveness of our proposed models.

E. Computational Complexity Analysis
The proposed NA-RDeepSC exhibits higher inference speed

than DeepSC and R-DeepSC as a benefit of its non-
autoregressive architecture, which allows for parallel compu-
tation and O(1) time complexity. By contrast, DeepSC and R-
DeepSC rely on sequential decoding, resulting in a decoding
time complexity of O(n). Owing to its novel decoding archi-
tecture, NA-RDeepSC maintains a comparable performance,
while offering superior inference speed.

Table V offers a comparison of the inference time of the
different semantic communication systems. While the infer-
ence times of R-DeepSC and DeepSC are comparable due to
their autoregressive structures, NA-RDeepSC is significantly
faster. Specifically, NA-RDeepSC requires only about 22% of
the inference time required by R-DeepSC. This substantial
acceleration improves the efficiency of NA-RDeepSC for
semantic communications, making it a practical solution for
online services.

V. CONCLUSION

We commenced by categorizing semantic impairments into
ASR, spontaneous, and induced spelling errors. To investigate
their impact, we have generated semantic impairments datasets
and devised the SII metric for our further analysis. We have
then conceived the R-DeepSC and NA-RDeepSC schemes. R-
DeepSC employs the novel semantic corrector of Fig. 2 to per-
form robust semantic encoding and an autoregressive scheme
for semantic decoding. NA-RDeepSC, which incorporates the
R-DeepSC into a non-autoregressive scheme by adopting an
adaptive generator to accelerate the inference speed attained.
The experimental results demonstrate that both the R-DeepSC
and NA-RDeepSC are more robust than the benchmarks, as
evidenced by their BLEU score and BERTScore. By applying
R-DeepSC and NA-RDeepSC, robust semantic communica-
tions can be supported, which could pave the way for their
application in real-world scenarios.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China (NSFC 61925105, 62293484) and Shang-

This article has been accepted for publication in IEEE Transactions on Wireless Communications. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TWC.2024.3381950

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



12

TABLE IV
TRANSMISSION RESULTS FOR SAMPLES WITH SII = 0.4

Text with ASR errors Though voted same take place at noon todays.

Uncorrupted text The vote will take place at noon today.

Transmitted by NA-RDeepSC The vote will take place at noon today.

Transmitted by R-DeepSC The vote will take place at noon today.

Transmitted by DeepSC The vote will take place at noon.

Text with spontaneous spelling errors We shall now priceld to te vite.

Uncorrupted text We shall now proceed to the vote.

Transmitted by NA-RDeepSC We shall now proceed to the vote.

Transmitted by R-DeepSC We shall now proceed to the vote.

Transmitted by DeepSC We shall now see to the vote.

Text with induced spelling errors Ut you may uppose I paid no heed.

Correct text But you may suppose I paid no heed.

Transmitted by NA-RDeepSC But you may suppose I paid no heed.

Transmitted by R-DeepSC But you may suppose I paid no heed.

Transmitted by DeepSC But you may suppose I paid no.

TABLE V
DETAILS OF INFERENCE TIME

Method
Avarge Time
(ms / sample) Total Time (s)

DeepSC 3.321 290.610

R-DeepSC 3.334 291.744

NA-RDeepSC 0.743 65.054

hai Municipal Science and Technology Major Project (Grant
No.2018SHZDZX04).
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