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SUMMARY

Distributed acoustic sensing (DAS) is an optoelectronic technology that utilizes fibre optic
cables to detect disturbances caused by seismic waves. Using DAS, seismologists can mon-
itor geophysical phenomena at high spatial and temporal resolutions over long distances in
inhospitable environments. Field experiments using DAS, are typically associated with large
volumes of observations, requiring algorithms for efficient processing and monitoring capabil-
ities. In this study, we present a supervised classifier trained to recognize seismic activity from
other sources of hydroacoustic energy. Our classifier is based on a 2-D convolutional neural
network architecture. The 55-km-long ocean-bottom fibre optic cable, located off Cape Muroto
in southwest of Japan, was interrogated using DAS. Data were collected during two different
monitoring time periods. Optimization of the model’s hyperparameters using Gaussian Pro-
cesses Regression was necessary to prevent issues associated with small sizes of training data.
Using a test set of 100 labeled images, the highest-performing model achieved an average
classification accuracy of 92 per cent, correctly classifying 100 per cent of instances in the
geophysical class, 80 per cent in the non-geophysical class and 96 per cent in ambient noise
class. This performance demonstrates the model’s effectiveness in distinguishing between

geophysical data, various sources of hydroacoustic energy, and ambient noise.
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1 INTRODUCTION

In seismology, there is a growing demand for real-time sensing
and monitoring capabilities over large distances. Certain types of
seismic events, such as teleseismic earthquakes-defined by the U.S.
Geological Survey as seismic events occurring at distances greater
than 1000 km from the sensing instrumentation are of significant
importance to the geophysical community. Consequently, there is an
increasing demand for monitoring systems that are sensitive enough
to capture seismic activity even at such vast distances. Expanding
sensing coverage presents numerous challenges, particularly given
that approximately 71 per cent of the Earth’s surface is covered by
oceans (Grassl 2001).

To date, seismologists have primarily deployed single-point
instrumentation, such as ocean-bottom seismometers and hy-
drophones. The time-domain records from these instruments are
processed into short-time over long-time averages to facilitate the
identification of seismic activity by closely examining the processed
signals. Computing the ratio of ground-motion averages over two
different fixed-time window lengths can effectively discriminate
signals from background noise (Trnkoczy 2009).

Reliable sensing capabilities across remote and harsh environ-
ments not only enable the early detection of natural hazards (Sladen
et al. 2019) but also offer better imaging of the Earth’s subsurface
structure. For these reasons, DAS technology is seen as instrumental
in expanding sensing coverage and, thus, enhancing our understand-
ing of important geological systems. Essentially, DAS transforms a
dark optical fibre cable into a highly dense array of interconnected
and synchronized sensors that measure the strain field over large
distances. This is achieved by using an interrogator unit that sends
laser pulses into the optical fibre and measures the phase shift in
the Rayleigh backscattered light between adjacent points along the
fibre—a technique known as phase-sensitive optical time-domain
interferometry (¢-OTDR).

¢-OTDR is a relatively mature sensing technology that has al-
ready been deployed in the field for a wide range of sensing and
condition monitoring applications. Examples include: (i) subsea ca-
ble damage detection (Masoudi ef al. 2019); (ii) traffic monitoring
and vehicle classification (Corera et al. 2023); (iii) train tracking
and localization (Kowarik et al. 2020), (iv) monitoring changes in
the dynamic behaviour of railway tracks (Milne ef al. 2020) and
(v) leak detection on gas pipelines (Muggleton ez al. 2020). From
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a geophysical perspective, ¢p-OTDR-based distributed optical fibre
sensing technology is particularly attractive because it can measure
subtle changes in the strain field over a wide range of frequencies-
something that cannot be achieved by other DAS technologies, for
example Brillouin-OTDR (Masoudi & Newson 2016).

Using DAS, seismologists can carry out large-aperture exper-
iments, cost-effectively and efficiently, with high sampling rates
both spatially and temporally, by connecting an optoelectronic de-
vice (the interrogator unit) to an already installed dark fibre optic
cable. The acquisition of coherent seismic waves, as they travel
through the Earth’s multilayered structure, can be captured and
studied in greater detail (Biondi et al. 2021). For these reasons,
DAS has recently been explored in a number of research studies to
monitor and characterize geological features. Some of these studies
are discussed in this section.

In Jousset et al. (2018) DAS was used to explore geological
features, like the crustal structure, and in Jousset e al. (2022) the
authors identified volcanic activity. In Agostinetti e al. (2022) the
potential of DAS was investigated for mapping heterogeneities in
shallow subsurface using a 8.9-km fibre optic cable on the Brady
geothermal field. Using DAS, the earthquake fault ruptures were
studied in Cochran (2018), while in Li ez al. (2023a) the high-spatial
sampling of DAS made it possible to determine P-wave polarities
by cross-correlating earthquake pairs. The paper has shown im-
provements in the quality of computed focal mechanisms for each
earthquake event examined. In Li ef al. (2023b), imaged the high-
frequency rupture radiators for megathrust earthquakes using the
100-km Long Valley DAS array. Similarly, in Cheng et al. (2021)
a 20 -km fibre optic cable at Moss Landing Monterey Bay was de-
ployed to examine submarine structural characteristics, including
shallow fault zones while in Lior ef al. (2023) a rigorous magnitude
estimation and shaking intensity prediction methodology was devel-
oped specifically for DAS data. To enable conventional seismologi-
cal analysis with DAS, for example for earthquake magnitude esti-
mation, the strain field measurements were converted into a quantity
called ‘deformation’ in Trabattoni et al. (2023). Additionally, hydro-
logical near-surface characterization and seismic activity detection
have been demonstrated using a 27-km-long fibre optic cable (with
a spatial spacing of 2 m) at West Sacramento, recording 7 months
of continuous data (Ajo-Franklin e al. 2019). In Baba et al. (2023)
the authors detected tectonic tremors (a type of slow earthquake) for
the first time using the same 50-km fibre optic cable as the one used
in this study. These tremors were estimated to be located around a
subducted seamount peak. In several studies, including (Agostinetti
et al. 2022) and (Sladen et al. 2019), seismic activity monitoring
using DAS has been found to be well-correlated with conventional
seismic sensors and arrays of geophones, offering similar broad-
band sensing capability (Matsumoto ef al. 2021). A comprehensive
overview of DAS for seismology from a geophysical perspective can
be found in Lindsey & Eileen (2021) while (Fernandez-Ruiz et al.
2022) offer a similar overview but from a digital signal processing
point-of-view.

The development of new and improved methodologies to anal-
yse seismic records has seen a tremendous rise in recent years
(Mousavi & Beroza 2023). This is especially true in fibre optic
seismology where data are generated in large volumes, for ex-
ample about 1 TB per day as reported in Lellouch et al. (2019).
Given such an immense scale of data, researchers have been ex-
ploring ways to utilize them for seismological applications. To im-
prove the signal-to-noise ratio, self-supervision was used in van
den Ende er al. (2021) to suppress incoherent noise. To remove
different types of noise on images of the strain field, that is as a

function of time and cable distance, studies in Yang et al. (2023a)
and later in Yang et al. (2023b) used 2-D convolutional neural
networks in a U-Net architecture. Similarly, in Li ez al. (2022) a
2-D convolutional neural network in an auto-encoder architecture
was trained with the aid of a synthetic noisy data set (and associ-
ated annotations) to remove six different types of noise on similar
image data.

Convolutional neural networks with 1-D input data were widely
adopted in recent studies to take into account the large-volumes
of seismic waveforms generated from seismological experiments.
In Majstorovic et al. (2021) a binary classifier was trained using
seismometer data over a 30-yr period, where earthquake signals
were discriminated against ambient noise, demonstrating a substan-
tial increase in the number of detected earthquakes. Additionally,
in Majstorovic¢ et al. (2023) the feature maps extracted from con-
volutional neural networks were investigated, reporting major im-
provement (in terms of binary classification) on both the amplitude
and waveform frequency of the seismic signals. Similarly, in Jiang
et al. (2023) a binary classification model was trained to discrim-
inate tectonic tremors and teleseismic earthquakes. Moreover, an
encoder—decoder architecture was used to separate ambient noise
from seismic signals in Yin ef al. (2022) and in Liu et al. (2021) a bi-
nary classifier was trained to discriminate tectonic and non-tectonic
tremor signals. In Hernandez et al. (2021) a 1-D convolutional neu-
ral network was trained using a large database of time-domain seis-
mic waveforms from seismometers, which was then used to detect
earthquakes using a different data set of DAS records. To expand
DAS data synthetically, Shiloh et al. (2019) and Shiloh et al. (2020)
explored generative adversarial networks.

Convolutional neural networks with 2-D input data were also
used in recent years. For instance, in Liu et al. (2022) man-made
microseisms were recognized using the guided wave energy as fea-
tures. In Huot ez al. (2022a,b), a binary classifier with optimized
hyperparameters was trained where microseismic events and back-
ground noise were discriminated using around 7000 DAS records.
Inputs were Wavelet scalograms. In Nakano et al. (2019) the au-
thors trained a classifier to distinguish between tectonic tremors and
local earthquakes with spectral images as inputs. In Mousavi et al.
(2019) an unsupervised classification framework was presented for
discriminating between local and teleseismic events using Short-
Time Fourier Transform spectrograms as inputs.

Other studies that used convolutional neural networks and are
worth mentioning include the ones in Ren et al. (2023a) for pick-
ing dispersion curves using amplitude spectra (inputs) and Scholte
waves (outputs) and in Chen et al. (2023) an analysis of clusters
was presented using techniques such as hierarchical clustering for
a set of similar input data. Hypocentre location using DAS records
was estimated in Mousavi & Beroza (2022), magnitude estimation
in Ren et al. (2023b), velocity model improvement in Muller et al.
(2023) and inversion of teleseismic P-wave receiver function and
surface wave dispersions in Gan et al. (2023).

DAS technology for monitoring seismic activity is still relatively
new and major challenges, including: (i) low signal-to-noise ratio,
(i1) sensing range, (iii) incidence angle sensitivity for incoming
seismic waves and (iv) large-scale data management, have to be
addressed for its widespread adoption. A low signal-to-noise ratio
can be caused due to poor mechanical coupling between Earth and
fibre optic cable. This issue has been investigated in recent years [for
instance, see Matsumoto ez al. (2021) and Harmon ez al. (2022)]. On
the other hand, DAS is mainly sensitive to the axial strain of the fibre
optic cable which limits the sensing capability to 1-D measurement
of the strain field.
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In this study, we explored 2-D convolutional neural networks for
tackling the issue of large-scale data management by constructing
a multi-class classifier that can discriminate between geophysical
and non-geophysical sources of hydroacoustic energy and ambient
noise. The structure of this paper is as follows: in Section 2 the
data set is presented including the signal processing steps used for
data transformation. In Section 3 the classifier’s main characteristics
and architecture are discussed. In Sections 4 and 5 the classifier’s
performance for DAS records is analysed, and in Section 6 the
conclusions of the study are presented.

2 DATA SET DESCRIPTION

2.1 Monitoring seismic activity in the Nankai Trough

The Muroto fibre optic cable is located in the southwestern part of
Japan within the Nankai subduction zone, where the Philippine Sea
Plate is subducting beneath the Amur Plate. Since 1997, the Japan
Agency for Marine-Earth Science and Technology (JAMSTEC),
has been using the Comprehensive Seafloor Monitoring System
offshore Cape Muroto, which now connects a seismic land station
to six single-mode fibre optic cables. The total length of the Muroto
fibre optic cable is 128 km. Between 0.35 and 2.1 km from the land
station, the cable is buried under the seafloor, while from 2.1 km
and onwards it rests on the seafloor. In their study, Karrenbach et al.
(2021) demonstrated the use of DAS for seismic monitoring using
the Muroto fibre optic cable.

The Nankai Trough is a well-known seismogenic zone, where
megathrust earthquakes with moment magnitudes (M) greater than
8 occur every 100-150 yr. The last megathrust earthquake that orig-
inated in the Nankai Trough happened in 1946, and therefore, the
area has been extensively monitored over the last decade. For im-
proving understanding of fault slip events and developing better
monitoring systems for megathrust earthquakes, a dedicated array
of interconnected seismographs, known as the Dense Oceanfloor
Network system for Earthquakes and Tsunamis (DONET) is being
actively used for monitoring and recording continuous measure-
ments.

Using a dense network of seismometers, it is possible to iden-
tify and analyse a wide range of slow earthquakes in the Nankai
Trough. Such events include: long-term and short-term slow slip
events (time durations of days to years), very low frequency earth-
quakes (time durations between 10 and 100 s) and tectonic tremors
Yamamoto et al. (2022). In Nakano et al. (2018) the authors used
the vertical components of ocean-bottom seismometers to show
that very low frequency earthquakes are temporally correlated with
tectonic tremors in the Nankai Trough. At the same time, very
low frequency earthquakes were found to have been triggered by
large earthquake events. For instance, the authors in Wallace et al.
(2021) reported swarms of very low frequency earthquakes and
tectonic tremors (due to plate ruptures), just after the main shock
of the M,, 6.0 Mie-ken Nanto-oki earthquake on 01 April 2016.
Additionally, in Takemura et al. (2022) the authors studied very
low frequency earthquakes in the Nankai Trough (using DONET
records between April 2004 and March 2021) and showed that these
type of events occured around the western edge of the subducted
oceanic ridge.

In our study, a total of 571 geophysical events were recorded from
our DAS system. Furthermore, by closely examining the spatial and
temporal characteristics of each record, different earthquake types
were identified:

(1) Local earthquakes: A total of 447 local earthquakes were
recorded between 30 January 2022 and 23 March 2022. Another
16 local earthquakes between 17 August 2021 and 02 October
2021.

(i1) Tectonic tremors: A total of 29 tectonic tremors were recorded
between 30 January 2022 and 02 August 2022.

(iil) Teleseismic earthquakes: A total of 79 teleseismic earth-
quakes were recorded between 30 January 2022 and 02 August
2022.

Note that the above geophysical events were identified by experts
by inspecting the DAS records.

To validate and cross-reference the identified seismic events using
our DAS system, we compared our data set with the official earth-
quake catalogue as provided by the Japan Meteorological Agency
(JMA) for the period between 30 January 2022 and 23 March
2022. During this time-frame, the JMA recorded a total of 38 570
earthquakes across Japan. The JMA catalogue offers comprehen-
sive details for each seismic event-including date, time, geographic
coordinates, depth and magnitude-making it one of the most accu-
rate and informative references for seismic activity in the region.
Fig. 1 shows the topographic map of Japan with the epicentres of
each cross-referenced geophysical event recorded by DAS. As men-
tioned previously, we identified three types of earthquakes: local
earthquakes, tectonic tremors and teleseismic earthquakes, which
are labelled on the map accordingly.

The cross-referencing procedure was performed by first aligning
the date and time stamps of the DAS records with those listed by
the JMA catalogue. Subsequently, a magnitude filter was used to
exclude events below a certain threshold-specifically, earthquakes
with a vertical component magnitude of less than 0.5—as such low-
magnitude events are unlikely to produce strain signals detectable
by DAS. We prioritized events with higher vertical magnitudes to
focus on those most likely to be captured by the DAS system.
Moreover, we used the Haversine formula to calculate the geodesic
distance between the epicentre of each earthquake and every point
along the fibre optic cable. By iteratively applying this calculation
along the entire set of cable coordinates, we identified the mini-
mum possible distance from the cable to each earthquake epicentre.
Based on these computed distances, we labelled earthquakes with
a minimum distance greater than 1000 km from any point along
the fibre optic cable as teleseismic events, in accordance with stan-
dard seismological definitions (e.g. as used by the U.S. Geological
Survey).

The highest magnitude recorded within this period was 4.3, cor-
responding to a teleseismic event located 1643 km from the optical
fibre cable, originating off the coast of Taiwan (visible at the bot-
tom left in Fig. 1). Tectonic tremor events, were generally of low
magnitude ranging from 0.7 to 2.3. In contrast, the magnitude of
local earthquakes varied more widely, from 0.9 to 4.0 in the vertical
component. The median magnitude of the recorded DAS events was
1.4, while the maximum recorded depth was 420.9 km. Note that the
magnitudes listed in the JMA catalogue refer to the vertical com-
ponent of the seismic signal, which is relevant for DAS detection
capability.

Fig. 2, shows a typical DAS signal (amplitude normalized) repre-
senting a local earthquake event as measured at a distance of about
15 km from the fibre optic cable. Figs 2(a) and (b) show the time-
domain strain-rate for about 55 seconds, for the filtered (bandpass
filter applied between 0.005 and 20 Hz) and raw signals, respec-
tively. In Fig. 2(a), the body waves are clearly observed, while in the
raw signal only the P-wave component can be distinguished from
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Figure 1. Topographic map of Japan showing 555 geophysical events recorded using DAS during monitoring period A, that is between the period 30 January
2022 and 23 March 2022. The three geophysical event categories as shown on the map are: ‘Local earthquake’ (in green), ‘Teleseismic earthquake’ (in red)
and ‘Tectonic tremor’ (in yellow). The size of each circle indicates the magnitude of each event: ranging from 0.5 (smallest circle) up to 4.3 (largest circle).
The location of the DAS events recorded were cross-referenced with the earthquakes recorded by the Japan Meteorological Agency (Www.jma.go.jp).

noise. The corresponding power spectrum of the filtered signal,
shown in Fig. 2 (c), indicates that there is significant seismic energy
between about 2.5 and 11 Hz. On the other hand, the Wavelet scalo-
gram in Fig. 2(d) shows that P-wave energy has a broader spectrum,
which ranges from sub-Hz up to about 50 Hz. While, S-wave energy
is mainly concentrated in the lower frequencies, that is about less
than 20 Hz. As also indicated in Fig. 2(d), there is a substantial level
of noise present at frequencies above 25 Hz.

The tectonic non-volcanic tremor observed in the Nankai Trough
was identified as a slow slip event by the JMA (Katsumata & Ka-
maya 2003). This type of geophysical event has a range of features
that are very distinct from local earthquakes. The majority of tec-
tonic tremor signals recorded by either DAS or conventional seis-
mometers indicate significant depletion in P-wave energy. The lack
of impulsivity in the recorded data means that signals represent-
ing tectonic tremors are less broadband in nature, as compared to
local earthquake signals that are highly energetic. In Fig. 3 strain
field measurements representing a single tectonic tremor event are
shown on four different locations along the Muroto fibre optic ca-
ble. More specifically, the first row of subplots, that is Figs 3(a)—(d)
show the bandpass filtered waveforms in units of nanostrain per
second (ns s~!) at four different locations along the cable. In chan-
nels where signal-to-noise ratio was relatively low in comparison to
the rest of the channels, robust z-score standardization was applied
throughout the full data set. As observed, Figs 3(a)—(c) have a much
lower dynamic range of strain-rate values, as compared to Fig. 3(d).

Rescaling all channels within the statistical range is beneficial to
avoid ‘masking’ low signal-to-noise ratio channels. Figs 3(e)—(h)
show the corresponding rescaled signals, while the power spectral
densities are also shown in Figs 3(i)—(1).

As it is evident from these plots, tectonic tremor signals have
significant body wave energy at lower frequencies (about less than
3 Hz). With the exception of low signal-to-noise ratio channels as
the one shown in Figs 3(c), (g) and (k), this statement holds true.
This low signal-to-noise ratio channel is shown to contain energy at
a broader range of frequencies, with no distinct signal components,
as the rest of the channels shown in this example. A low signal-
to-noise ratio in certain channels is a common feature in DAS data
acquisition due to numerous factors including optical fading and/or
poor ground-cable mechanical contact/coupling.

In two different studies, the authors in Baba et al. (2023) and
Shelly et al. (2007) also analysed tectonic tremor signals obtained
in the Nankai Trough, and suggested that most of their energy exists
in the frequency range between about 1 and 8 Hz. In particular,
the tectonic tremor DAS records (29 events in total) used in this
study were previously analysed in Baba er al. (2023) and their
analysis agrees with the previous claims made regarding signal
characteristics.

Using DAS along the first 55 km of the fibre optic cable more
than 9800 signals (equally spaced) were recorded, similar to the
ones that were shown in Fig. 3. Hence, a 2-D representation can
be plotted, showing the strain field both as function of total elapsed
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Figure 2. Local earthquake signal recorded by DAS at a minimum distance of about 15 km from the optical fibre cable: (a) filtered and rescaled signal (using
robust z-score standardization), (b) raw signal, (c) power spectral density of the filtered signal and (d) wavelet scalogram of the raw signal.

time and distance along the cable. Fig. 4 shows an example of
a 2-D representation for the previously presented tectonic tremor
event (occurred on 02 February 2022). As can be seen from this
plot, there are several locations along the fibre optic cable where
signal-to-noise ratio is high enough to reveal the event clearly, while
there are other locations where the signal was poor, for example
compare signals at a distance of 50 km with ones at around 35 km.
This is mainly due to the differences in physical contact between
seabed/ground and fibre optic cable. Also, in the first few kilometres,
ocean waves can be seen very clearly as they are capable of exciting
the cable very effectively due to their broadband energy. Note that
the signals prior to generating the image in Fig. 4 were bandpass
filtered between 1 and 8 Hz prior to assembling them in a 2-D
matrix, which was further processed using median spatial filtering
(3 x 3 window). In Section 2.2 such processing steps are discussed
in greater detail.

All teleseismic earthquakes used in our study were provided after
bandpass filtering in the 2-10 Hz frequency range. This frequency
range differs from the conventional approach in seismological stud-
ies, where teleseismic events are typically analysed within the sub-
Hz range, where most of their energy is concentrated. For instance,
Ajo-Franklin et al. (2019) applied a bandpass filter between 0.01
and 0.1 Hz to analyse signals from teleseismic events.

Therefore, the use of the 2—10 Hz frequency range in this set
of DAS measurements enables us to monitor teleseismic earth-
quakes using the higher-frequency components of the signals, which
are less commonly studied. While the rationale for applying this
specific filter prior to data provision is beyond the scope of our
study, it presents an opportunity to investigate the capabilities
of DAS in detecting and analysing the higher-frequency part of
seismic waves.

In our observations, the seismic phases—including P-phases
and T-phases—lasted several minutes. T-phases, which propagate

through the water column at velocities ranging from 1.4 to 1.5
kms™!, were effectively captured within this frequency range. This
suggests that the DAS system is sensitive to these higher-frequency
components, providing valuable data for our analysis.

DAS records were also obtained from a range of non-geophysical
hydroacoustic energy sources between the same dates, that is be-
tween 30 January 2022 and 23 March 2022. The exact data dis-
tribution for a total of 315 hydroacoustic energy sources of non-
geophysical nature are as follows: 11 ship-based airgun shots, 245
ship vessels sailing near the fibre optic cable and 59 marine mammal
movements. Ship-based airgun shots were used to explore the sens-
ing capability of DAS, as explained in more detail in Matsumoto
et al. (2021). DAS measurements were compared with hydrophone
signals obtained from airgun shots where the majority of wave en-
ergy is within the frequency range of 5 and 10 Hz. In that study, the
authors concluded that DAS offers a similar sensing capability to
hydrophones.

A similar work to the one discussed above, Ide ef al. (2021),
showed that strain measurements across the fibre optic cable were
highly correlated with ocean-bottom conventional seismographs.
However, at certain locations of the Muroto fibre optic cable,
there were no signal records due to poor coupling between the
seabed/ground and cable (as already shown in Fig. 4). In addi-
tion, monitoring very low frequency earthquakes in the ranges of
0.02—0.05 Hz, DAS signals were reported to have a much lower
signal-to-noise ratio than seismographs.

2.2 Transforming signals into straingrams for
classification

Two different DAS interrogators were installed on the Muroto fi-
bre optic cable to record hydroacoustic signals related to seismic
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Figure 3. Four tectonic tremor signals recorded on the Muroto fibre optic cable using DAS on 02 February 2022: (a)—(d) strain-rate at different locations along
the fibre optic cable, (e)—(h) rescaled strain-rate (robust z-score standardized) and (i)—(1) corresponding normalized power spectral densities.

activity in the region. Both systems used the first 55 km (from the
coast) of the cable as their total effective sensing ranges. The first
DAS system was developed by AP Sensing GmbH, while the sec-
ond one was developed by the Distributed Optical Fibre Sensing
(DOFS) research group at the University of Southampton in the
United Kingdom. The latter system had a higher spatial and tempo-
ral resolution. The main specifications of the two DAS interrogators
used in this study, including their respective monitoring periods, are
given in Table 1.

For monitoring period A (30 January 2022 up to 23 March 2022)
the interrogator recorded about 9800 waveforms of strain-rate or
strain field along the Muroto fibre optic cable. The recorded tem-
poral sampling rate was 500 Hz, while the spatial resolution was
5.1 m. Spatial downsampling (by averaging in-between samples)
was applied to reduce data storage requirements. Also, for that
purpose, temporal resolution was decreased to 100 Hz. Moreover,
a bandpass filter was applied to each of the 980 waveforms indi-
vidually, so that frequencies outside the 2—10 Hz band were at-
tenuated [similar to the work presented in Baba er al. (2023)].
Plots such as the one shown previously in Fig. 4 were constructed
by concatenating all the pre-processed 980 waveforms into a sin-
gle 2-D matrix. A fixed-time window with a total duration of 3
min converted the continuous stream of data into the 2-D matri-
ces (hereafter ‘straingrams’). In this study, the straingram is an
effective transformation of our raw waveform data that allows ef-
ficient characterization and discrimination of the identified events
both qualitatively and quantitatively. Using straingrams one can

visualize the evolution of strain across different parts of the fi-
bre optic cable as a function of time for different hydroacoustic
signals.

On the other hand, the raw data from monitoring period B (17
August 2021-02 October 2021) were subjected to a different digi-
tal signal and image processing treatment due to the availability of
raw signals. Instead of bandpass filtering each waveform between 2
and 10 Hz, each waveform in monitoring period B comprises of a
broader range of frequencies, that is between 0.005 and 20 Hz. This
is to ensure that different types of earthquakes can be effectively
detected and identified by DAS. For instance, in Jiang et al. (2023)
a bandpass filter encompassing the frequency range of 5-25 Hz was
applied on raw DAS waveforms in order to obtain only local micro-
seismic activity. In that way, teleseismic earthquakes that occur in
lower frequency regions were effectively filtered out from their DAS
records. While in Sladen ez al. (2019) the authors applied bandpass
filtering between 1 and 15 Hz to each waveform recorded by DAS. In
our study, using the frequency band of 0.005-20 Hz, the expected
seismic activity in the region can be more effectively monitored.
Broad-band signals due to local earthquakes of 2—20 Hz, teleseisms
0f 0.005-1 Hz and tectonic tremors of 1-8 Hz can all be measured
in monitoring period B. Due to instrumentation limitations, only 16
straingrams representing local earthquakes were constructed in this
monitoring period. Typical seismic waveforms on three locations
along the Muroto cable that represent a local earthquake in moni-
toring period B are shown in Fig. 5. These waveforms are shown
as the robust z-score scaled values of the strain field. Using this
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Figure 4. Strain field measurement as a function of time elapsed and distance along the fibre optic cable for a tectonic tremor that occurred on 02 February
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2022. Pre-processed strain waveforms were assembled in a 2-D matrix and median spatial filtering was applied as part of the processing stage to generate this

image and enhance the visibility of strain variation across the cable.

Table 1. Main specifications of the two DAS interrogators used in this study to monitor hydroacoustic activity in the
Nankai Trough, while being connected to the Muroto fibre optic cable.

MONITORING PERIOD A
Developer
Technology
Spatial resolution
Temporal sampling rate
Resulting number of channels
Monitoring period

MONITORING PERIOD B
Developer
Technology
Spatial resolution
Temporal sampling rate
Resulting number of channels
Monitoring period

AP Sensing GmbH

¢-OTDR

S5.1m

500 Hz

~ 9800

30 January 2022 to 23 March 2022

DOFS research group, University of Southampton
¢-OTDR

I m

1 kHz

~ 55000

17 August 2021 to 02 October 2021

standardization or normalization procedure, we subtract each sam-
ple with the median value of the waveform and divide by the mean
absolute deviation. The advantage of such a normalization proce-
dure is in the identification of extreme values in each waveform,
which corresponds to impulses and other outlying events in the
seismic waves of DAS records. Hence, both P and S waves can be
more easily discriminated than the remaining signal components, as
shown in these plots. Also, the time difference of each strain tran-
sient event, that is the beginning of the P wave, which is related to the

light reaching each channel along the fibre, is also apparent on these
plots. With regard to robust measures of location and scale, many
techniques have been studied in the past and implemented on dif-
ferent problems. For instance, in Matthaiou (2022) robust statistical
outlier analysis on multivariate and high-dimensional input feature
domains was demonstrated on a range of different vibration-based
sensing data sets. While, in Schreurs ez al. (2021) an anomaly detec-
tion method was presented for input spaces that are not constrained
to be elliptical.
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Figure 5. Strain field measured (robust z-score standardized) at three dif-
ferent locations across the DAS fibre optic cable. In these three plots, the
waveform of a local earthquake is captured during monitoring period B. P
and S waves are clearly visible on the three waveforms.

Moreover, the transformation of monitoring period B records
into straingrams, suitable for classification purposes, includes a 2-
D spatial filtering stage that enhances its signal-to-noise ratio value.
In particular, a 2-D zero-mean symmetric Gaussian of the form
gli, j1 = exp(—(i* + j?)/202) [with standard deviation o, ~ [1, 5]
Szeliski (2022)] was applied on the bandpass filtered 2-D matrix.
This filter was chosen since it has many suitable properties for
smoothing these DAS matrices, including relatively low compu-
tational cost (e.g. as compared to the non-local means method).
The enhancement in signal-to-noise ratio for the straingram is im-
portant in the subsequent steps of classifier training since discrim-
inatory image features can be more effectively extracted. Addi-
tionally, learning noise-related features from the straingrams can
be detrimental to classification accuracy. This is due to the fact
that we wish to discriminate events from background noise. Ad-
ditionally, the inclusion of noise in the straingrams is expected to
require a more complex network architecture, necessitating larger
data sets to train on. Note that excessive spatial smoothing is also
expected to impact classification accuracy since important image
features such as object edges and corners will be smoothed out.
Pre-processing data to improve classification accuracy in convolu-
tional neural networks has already been observed in many studies,
for example Jernelv et al. (2020). In Matthaiou et al. 2023, we
previously examined different image pre-processing techniques in
order to improve the images derived from DAS signals in noisy
environments.

A typical example illustrating the effectiveness of enhancing the
signal-to-noise ratio for straingrams, using the above set of meth-
ods, is shown in Fig. 6. Given a relatively large range of strain
values on the raw input 2-D DAS matrix representing this local
earthquake [26 Septe2021 at 17:29 (UTC)], a logarithmic normal-
ization (base 10) was applied (Fig. 6a). The same 2-D DAS matrix
is constructed as shown in Fig. 6(b), after each individual wave-
form is bandpass-filtered between the range of 0.005-20 Hz. In

addition, Fig. 6(c) shows the resultant DAS matrix, after convolv-
ing Fig. 6(b) with the 2-D Gaussian spatial smoothing filter, with
0, = 5. While, Fig. 6(d) shows the final DAS matrix output from
this procedure, that is the straingram, which is a result of applying
robust z-score standardization on each of the pixel values (logarith-
mic normalization to the base 10 is also applied as a final step).
This standardization procedure effectively normalizes the data in
the same range of values, while highlighting extreme values (as dis-
cussed previously) on the DAS records: raising the signal-to-noise
ratio of the DAS matrix. This is especially valuable at larger dis-
tances from the Muroto coast. Since the waveforms from the first
few kilometres where the fibre optic cable was buried and ocean
wave energy was significant in the DAS records were removed
from the DAS matrix. Also, in monitoring period B, given that
only local earthquakes were recorded, a fixed-time window of 50
s was applied on the continuous waveforms to generate the strain-
grams (mainly to decrease computational processing requirements
associated with large DAS matrices). Note that on both DAS inter-
rogators, significant attenuation of laser pulses at higher distances
from the coast was observed for local earthquakes. As seen pre-
viously, in Fig. 5, the strain data at a distance of about 16.9 km
from the coast of Cape Muroto exhibit a lower signal-to-noise ra-
tio compared with the data collected from locations closer to the
shore.

In total, six different types of DAS signals were identified: airgun
shots, sailing ships, the passing of marine mammals, local earth-
quakes, tectonic tremors and teleseismic events. Straingrams for
each of these signals were constructed according to the procedure
that was outlined earlier. An example for each of the identified
events is shown in Figs 7 and 8. Fig. 7 shows three straingrams rep-
resenting three different geophysical events, where the x-axis is time
(3 min in total) and the y-axis is the distance from the coast along
the fibre optic cable (whole 55 km span). In particular, Fig. 7(a)
shows a straingram of a local earthquake, while in Figs 7(b) and
(c) the straingrams represent a teleseismic earthquake and a tec-
tonic tremor, respectively. As it is shown, local earthquakes have
sharper onsets of strain and occur for about less than a minute or
s0. On the other hand, teleseismic earthquakes last for minutes to
hours, and thus can typically occupy all or a larger proportion of
the straingram as they are enriched in lower-frequency energy. The
propagation of seismic wave energy along the fibre optic cable will
typically be much lower than for local earthquakes. This is apparent
in the strain field variation patterns that appear more diagonal than
local earthquakes. While patterns observed with teleseismic events
in the straingrams are largely similar to tectonic tremors, tectonic
tremor straingrams typically contain a single event, occupying a
certain proportion of the image. In Fig. 8(a) a straingram of re-
peated airgun shots is shown, while in Figs 8 (b) and (c) show the
straingram of a ship sailing and marine mammals’ sounds (either
due to crossing it or from other hydroacoustic sound waves emitted
by it), respectively.

The total amount of straingrams constructed for geophysical
and non-geophysical classes of events, were 517 and 315, respec-
tively. Additionally, a truly automated processing capability for DAS
records demanded discrimination of both of these two classes from
background noise, as well. Hence, a third class of events was consid-
ered with 164 straingrams representing background noise (hereafter
‘noise’). In summary, the total number of available (and annotated)
straingram examples was 1050. Stratified random sampling was
employed to split the dataset into 800 training samples, 150 val-
idation samples, and 100 testing samples, ensuring that the class
distribution was preserved across each subset.
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Figure 6. A straingram generated using a set of processing steps: (a) the original raw 2-D DAS matrix, (b) the bandpass filtered (0.005-20 Hz) 2-D DAS
matrix, (c¢) 2-D spatial smoothing filter applied on the image in (b) and (d) robust z-score standardization applied on the image in (c). In each step (a)—(d) the
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Figure 7. Straingrams (x-axis is time, y-axis is distance, z-axis or colour is
strain amplitude), representing geophysical events captured during monitor-
ing period A: (a) local earthquake, (b) teleseismic earthquake and (c¢) tectonic
tremor. Straight horizontal lines are spurious features due to various noise
sources across the fibre optic cable.
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Figure 8. Straingrams (x-axis is time, y-axis is distance, z-axis or colour
is strain amplitude), representing non-geophysical events captured during
monitoring period A: (a) airgun shots, (b) ship vessels and (c) marine mam-
mals. Straight horizontal lines are spurious features due to various noise
sources across the fibre optic cable.

3 CONVOLUTIONAL NEURAL
NETWORKS FOR CLASSIFYING
STRAINGRAMS

As was discussed and observed in Section 2, the constructed strain-
grams representing each of the six events identified (in monitoring
periods A and B) have a range of distinguishing features. From
a computational perspective, these characteristics can be seen as
differences in the edges: boundaries of a particular object in the
straingram and its shape or feature pattern. Also, differences in con-
trast are expected to be an important discriminating factor, which
will be attributed to the absolute value of the strain field with re-
spect to the background noise. For instance, sailing ships, as seen in
Fig. 8(b), have a weaker signal in comparison to a local earthquake
in Fig. 7(a). It is evident from the straingrams that sailing ships are
far less distinguishable from the background noise levels (varies
along the fibre), which is due to a lower dynamic range of their
strain field. Similarly, the teleseismic event recorded in Fig. 7(b) is
also of low dynamic range, where straight horizontal lines (noise
either due to optical fading or poor physical contact of the cable)
are profound in the image. Therefore, other characteristics will also
need to be extracted from these images in order to achieve a robust
discrimination of the classes. Spatial relationships between neigh-
bouring pixels within a given window and pattern regularity will
be different between geophysical and non-geophysical events. As
observed, the local earthquake example can be seen as an abrupt
and straight line pattern while airgun shots contain multiple such
lines but at a smaller gradient value. Generally, it is expected that
patterns from geophysical sources will be of more regular shape,
while non-geophysical events can be less structured. Additionally,
colour distribution and variation can be explored as a potential
feature: teleseisms and tremors seem to cause higher disturbances
on the cable at its far-end from the coast (possibly due to a bet-
ter mechanical coupling between the seabed and cable at those
locations).

As an overview, the diagram in Fig. 9 shows the main processes
involved in earthquake catalogue creation using DAS. As shown, a
DAS system interrogates the fibre optic cable, generating Ny strain
waveforms (i.e. at different locations) each having My number of
samples. A 2-D DAS matrix X is constructed and the straingram
is generated using the signal and image processing steps discussed
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Figure 9. Diagram illustrating the main processing steps undertaken to classify raw DAS signals into one of the three classes: geophysical, non-geophysical

or noise. The classifier also gives a class-conditional probability output.

previously in Section 2. In this study, the classifier is used to infer
the class that each constructed straingram belongs to. The classifier
can therefore replace the human expert’s manual classification pro-
cedure. Additionally, the classifier will produce prediction outputs
with a class-conditional probability associated with each image.
This prediction output (or score) can be combined with a suitable
threshold to provide a more informed classification of the strain-
grams.

3.1 Fundamental aspects of the classifier

The spatial hierarchical features on the straingrams, that is from
edges to patterns, for each of the three classes, were identified us-
ing convolutional neural networks. Generally, the development of
data-driven models using neural network architectures allows one
to be very flexible and versatile in the training phase. Given a suit-
able architecture and hyperparameters or through transfer learning,
neural networks can deal with various challenges including mod-
elling with insufficient training examples (Goodfellow et al. 2016).
Furthermore, neural networks using 2-D convolutional layers (here-
after *convolutional layers’) in order to automatically extract image
features for classification offer several advantages over their prede-
cessors (more details in LeCun ef al. 2015, 1998; Krizhevsky et al.
2017) including:

(1) Weight sharing: the same set of parameters that are subjected
to optimization in the training phase (hereafter ‘free weights’) are
used across the whole image. Whereas, in conventional neural net-
works each layer is connected to its adjacent one using a free weight
that is only used once in the network.

(i1) Hierarchical feature learning: convolutional neural networks
use several layers, whereby its free weights are used to extract
useful image features for a given task. These features are then
used in the next layer to carry on an equivalent operation, thereby
extracting features on features. By using deeper feature hierarchies,
these models are capable of learning whole image objects, starting
from simple edge detection at the higher network levels.

(iii) Translation invariance: in an image a feature (e.g. an edge)
is guaranteed to be identified no matter its spatial location, since
the same kernel is used throughout its full spatial length. For our
study, an event such as a local earthquake in a straingram may
be shifted in both time and distance. In order to discriminate it

from the other two classes, the translation invariance property is
necessary.

In convolutional neural networks for images, each set of parame-
ters will be a 2-D square matrix of relatively small size, for example
3x3 or 7x7. This matrix is convolved with an image by sliding it
both horizontally and vertically in order to extract features suitable
for classification. This matrix is known as the ‘kernel’, while the
corresponding set of features extracted from a single convolution
operation is called a ‘feature map’. In each layer of the network,
different kernels will be used so that multiple feature maps (as the
number of kernels used) can be extracted from a single image. This
feature map will then be used in the next layer to perform the same
convolution operations (hierarchical structure), and so on. A key
difference with other classification techniques, for example support
vector machines, for input image data (or other spatially correlated
data), is that convolutional neural networks compute a set of unique
features relevant to the task. All kernel matrices that are used in
the convolutional layers are optimized in the training phase so that
features are synthesized instead of handcrafted.

For completeness, some of the most important computational
processes involved in convolutional neural networks and their as-
sociated technologies will also be discussed more formally in this
section. At the same time, the diagram in Fig. 10 helps to visual-
ize these processes at the inference (or prediction) stage for each
straingram, as drawn from the test set. In the diagram, a strain-
gram representing a local earthquake of pixel size 256x256 is
convolved with 112 kernels, where each kernel is a different 5x5
matrix (parameter values range from 0 to 100). Therefore, 112 fea-
ture maps are generated after this first layer of the network. Three
feature maps are shown in Fig. 10(c) (out of 112), while the corre-
sponding kernels are seen in Fig. 10(b). Most commonly, there are
three different computational processes involved in the extraction
of feature maps: 2-D linear convolution with a kernel matrix K,
a non-linear activation function f,() of each pixel in the feature
map and 2-D spatial downsampling (although in the example in
Fig. 10 there is no spatial downsampling after the first convolutional
layer).

During a 2-D convolution operation with a p x p kernel matrix
K and an input straingram X € R/*/*! (second-order tensor), a
feature map Z will be computed at various spatial coordinates 7, j
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Figure 10. Diagram illustrating the hierarchical process of generating prediction outputs from straingrams using a trained 2D convolutional neural network.

as follows:
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The operation in eq. (1) will generate a single feature map. In
practice, there will be several such kernel matrices, and as such
the operation will result in sets of feature maps after each con-
volutional layer. Note that all feature maps generated will jointly
contribute to the classification accuracy, and so one cannot con-
sider them as separate features. For instance, corners in one feature
map and contrast levels in another are combined in a feature vec-
tor, which is then used to identify each class. This is the result of
simultaneously optimizing all kernel matrices together to extract
features that may be shared across the feature maps, as well (Zhang
et al. 2021). And, this is one of the reasons that convolutional neu-
ral networks are highly successful in image processing tasks, like
classification. Also, from Fig. 10(d) and onwards, each convolu-
tional layer will comprise C number of channels, which is equal
to the number of feature maps computed in the previous convolu-
tion layer, and so on. Therefore, we will be looking to expand our
single-input and single-output computation in eq. (1) to one that
incorporates multiple inputs and multiple outputs in each convo-
lutional layer. For this example, each one of the 112 channels in
the second convolutional layer will be cross-correlated with each
feature map (equal to 112), and the result at various spatial coor-
dinates 7, j will be summed to generate a single feature map as
follows:

c

Z[i, j] =

112 p—1 p—1
Y[i4+a,j+b,clK

b=0

't

[a, b, c]. (2)

Il
o

c=1 a

Note that in the second convolutional layer, there are 80 kernels
per channel, and so there will be 80 feature maps generated, as

seen in Fig. 10(f). Before generating the second set of feature maps
there are two more computational processes after each convolutional
layer that must be discussed: non-linear activation and 2-D spatial
downsampling, as mentioned previously.

The purpose of applying any type of activation function on the
feature maps, for example f,(Z[i, j] = max{0, Z[i, j1}, Vi, j, is
to induce flexibility during the training phase. This means that
the model can extract features from the straingrams that are not
only complex but also non-linearly correlated (i.e. in the case of
non-linear activation functions). This broad-band capability is not
possible with just linear convolution operations. Rectified Linear
Unit (ReLU) is an example of a non-linear activation function that
has already demonstrated a number of benefits in learning tasks,
for example the introduction of a sparse set of weights (since it sets
values to 0) and avoidance of the vanishing gradient seen in other
activations (e.g. sigmoid, Krizhevsky et al. 2017; Goodfellow et al.
2016; LeCun et al. 2015). On the other hand, using 2-D spatial
downsampling layers one can effectively reduce the size of the in-
put image by sliding a fixed-size spatial window over the image and
extracting suitable information. Following this procedure, coarser
feature maps can be calculated after each convolutional layer, which
will result in the recognition of more global features. This ultimately
yields in recognizing whole objects in the image, for example the
straingram pattern of the local earthquake (Fig. 7a). Due to down-
sampling, small translations and transformations in the input image
will not influence the computation of feature maps. This is another
important consideration in classifying the straingrams, since small
shifts in the pattern for each event will be effectively filtered out.
As an example, in Fig. 10(e) 2-D maximum pooling with a window
size of 2 x 2 is used to obtain the maximum pixel value within
that window. This operation exactly halves each feature map, that
is after the first 2-D maximum pooling: f,(Z) € R/*/ — RI/2x//2,
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and so on. Therefore, in the last extracted feature map (Fig. 101) the
pixel size of each straingram will be decreased by 2*», where N,
is the total number of 2-D maximum pooling layers used. Hence,
no matter the pixel size of each straingram and given sufficient
computational resources, one may use any input image size to train
the convolutional neural network, as the ‘field-of-view’ of the clas-
sifier is taken care of by the downsampling layers. After the fi-
nal convolutional layers, higher-level features (e.g. textures) are
extracted by combining more localized ones in the earlier layers
(e.g. edges).

Given the relatively small set of labelled straingrams at our dis-
posal (i.e. 1050 for training-validation-testing phases), two regular-
ization techniques were investigated. The first involves the addition
of dropout layers after each 2-D maximum pooling layer, which was
inspired by other neural network architectures as seen in Srivastava
etal. (2014), Zeiler & Fergus (2013) and Wu & Gu (2015). The pro-
cess of dropout layers enables each free weight to be self-sufficient
during the training phase of the classifier, such that it prevents ‘co-
adaptation” behaviour (Hinton ef al. 2012). Essentially, a fraction
(or the dropout rate) of free weights is randomly set to zero at the
beginning of each epoch. More formally, an independently sampled
Bernoulli variable associated with one of the free weights is set to
0 with probability p, (8 ~ Bernoulli (p,)). This random variable
is multiplied by one of the free weights so that it eliminates its con-
tribution during the training phase when g = 0. In order to combat
potential overfitting due to small-sized data sets, image augmenta-
tion is another approach that was used (see Shorten ez al. (2019)).
Using that approach, the data set is expanded with the addition of
synthetically generated copies of the straingrams by applying dif-
ferent types of label-preserving affine transformations as shown in
previous studies, for example Krizhevsky et al. (2017) and Perez
& Wang (2017). Both dropout and image augmentation layers do
not have free weights that need to be optimized during the training
phase.

Furthermore, in Fig. 10(n) the convolutional neural network in-
corporates 7 fully connected dense layers. In & layer, each neuron in
that layer is connected to each feature value extracted from the last
convolutional layer (Fig. 101). This is done by first vectorizing the
tensor to 1-D (Fig. 10m). Given that there are a total of 64 feature
maps in the last convolutional layer, each of size 16 x 16, there will
be a total of &y = 16 x 16 x 64 free weights that need to be trained
in the first fully connected dense layer (see LeCun et al. 2015, for
more details).

For training this type of classifier when the number of classes
is greater than 2 the categorical cross-entropy loss function is a
typical choice (Goodfellow ef al. 2016; Zhang et al. 2021). Among
other things, cross-entropy loss avoids issues such as the ‘learn-
ing slowdown’ that characterizes quadratic losses. Given #,, ,, and
Yn,.m, Tepresent the target and predicted classes, respectively, so
that for each n'" training straingram there will be a binary vector
associated with the target nh class. For instance, for the n strain-
gram the true class #,, ,, = [1, 0, 0], which can correspond to the
geophysical class, while ¢,, ,. = [0, 0, 0] for both non-geophysical
and noise classes. Then, the average categorical cross-entropy
loss overall training straingrams N,, and the number of classes
N, is,

N Ne

J==33 (o 10 [ ) )

ny=1n.=0

Note that J — 0 when target and predicted classes are similar,
such that the cross-entropy loss is minimized over all N, in the

data set. For each straingram during inference, an output score
vector is computed ¥ (Fig. 10p), which can be converted into a
class-conditional probability for a more meaningful interpretation
of the results. This is done using a softmax activation function
(Goodfellow et al. 2016), which is used after the last fully connected
dense layer, as in the diagram in Fig. 10(0).

Batch gradient descent is a technique that is used to minimize J
by adjusting all the free weights of the classifier simultaneously by
using the backpropagation algorithm (Murphy 2022). Free weights
include all p x p weights to parametrize each kernel K for feature
map extraction in all convolutional layers and all the weights that
are used to connect each fully connected dense layer to its adjacent
one. For instance, in layer k; a typical number of neurons will be
256 each connected to another 256 neurons in layer k,, and so on.
While in the first convolutional layer with each K being 5 x 5, there
will be 5 x 5 x 112 free weights to optimize. On the other hand, in
the second convolutional layer, there is a 4-D tensor of free weights
with a size of 7 x 7 x 112 x 80.

In dealing with large-sets of data, a mini-batch gradient descent
approach is used. This is because, in batch gradient descent J is
evaluated only once for all N, training data, as seen in eq. (3).
This in turn leads to a single update for each free weight used in
the training phase of the classifier (also known as one ‘epoch’).
However, in mini-batch gradient descent, J is evaluated multiple
times for each epoch, which yields a more efficient estimation of
the loss (is the average of all mini-batches), albeit more noisy. In
Masters & Luschi (2018), it was shown that small mini-batch sizes,
i.e., less than 32 instances, improves generalization performance.
This finding was also supported by the findings in Keskar et al.
(2016), showing that large mini-batches tend to converge to sharp
minimizers.

Note that, in our study each straingram is assigned to each mini-
batch at random, after each mini-batch evaluation (completion of
one epoch). The Adaptive Moment Estimation Algorithm (ADAM,
Kingma & Ba 2014) is a common technique that implements mini-
batch gradient descent in an efficient and robust way. ADAM com-
bines the capabilities of RMSProp (Zhang et al. 2021) and AdaGrad
(Duchi et al. 2011), where in these algorithms a decaying exponen-
tial gradient is used to adapt the learning rate.

3.2 Tuning of classifier’s main hyperparameters and
architecture

Hyperparameters in convolutional neural networks refer to any pa-
rameter that is not part of the gradient descent updating rule, that
is all parameters that are not free weights and need to be specified
prior to training. Table 2 lists the search space of values for 14
different hyperparameters that were considered. In order to identify
a suitable set of hyperparameters, given the relatively large search
space shown in Table 2, Bayesian Optimization is a popular choice.
The objective function g used in Bayesian Optimization is the loss
computed using the validation set of 150 straingrams, and varies
with hyperparameter changes g(h,,). Using Gaussian Processes Re-
gression (GPR, Murphy 2022) one can construct a surrogate model
for g. More importantly, the GPR framework in the context of
Bayesian Optimization, is used to evaluate g(h,) € R by search-
ing for points in this d —dimensional space that provide a trade-off
between exploration and exploitation of the surrogate model’s pos-
terior distribution. This is done using an acquisition function that
balances exploiting regions where the posterior of g(h,,) is high and
exploring regions where the uncertainty in predicting g(h,) is high.
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Table 2. Search space of the main hyperparameters used to optimise the 2D convolutional neural network.

Hyperparameters

Search space

Input image pixel size

Number of convolutional layers

Dimension p x p of convolutional kernel
Activation function /() binary choice

2-D 2 x 2 maximum pooling binary choice
Number of maximum pooling layers

Dropout layer binary choice

Image augmentation layer binary choice
Brightness and contrast rates (0 — 1)

Vertical flip binary choice

Dropout rate (0 — 1)

Number of neurons in fully connected dense layers
Learning rate n

Number of straingrams used in each mini-batch

{128 x 128,224 x 224,256 x 256,312 x 312}
{3.4,5,6,7,8)
{3x3,5%x5,7x7,9x%x9}
{ReLU, Sigmoid}
{True, False}
{1,2,3,4}

{True, False}

{True, False}
{0,0.01, ..., 0.19, 0.2}
{True, False}
{0,0.01, ..., 0.39, 0.4}
20,Vi=16,7,8,9, 10}
27 ¥i=1{6,7,.., 11,12}
21,Vi=1{3,4,56,7)

Table 3. Bayes model architecture, hyperparameters and output tensor shape from each network layer.

Layer type

Value chosen

Tensor output shape

Input layer

2-D convolution | activation
Dropout

2-D convolution | activation
2-D maximum pooling
Dropout

2-D convolution | activation
2-D maximum pooling
Dropout

2-D convolution | activation
2-D maximum pooling
Dropout

2-D convolution | activation
2-D maximum pooling
Dropout

2-D convolution | activation
Dropout

Flatten

256 x 256 x 1

Kernel size = 5 x 5|ReLU
Dropout rate = 0.245
Kernel size =7 x 7|ReLU
Kernel size =2 x 2
Dropout rate = 0.255
Kernel size = 3 x 3 |ReLU
Kernel size =2 x 2
Dropout rate = 0.225
Kernel size = 3 x 3 |ReLU
Kernel size =2 x 2
Dropout rate = 0.02

Kernel size = 5 x 5|ReLU
Kernel size =2 x 2
Dropout rate = 0.255
Kernel size =7 x 7|ReLU
Dropout rate = 0.235
Inherited from previous layer

256 x 256 x 1
256 x 256 x 112
256 x 256 x 112
256 x 256 x 80
128 x 128 x 80
128 x 128 x 80
128 x 128 x 48
64 x 64 x 48
64 x 64 x 48
64 x 64 x 32
32 x 32 x 32
32 x32x32
32 x 32 x 64
16 x 16 x 64
16 x 16 x 64
16 x 16 x 48
16 x 16 x 48
12288 x 1 x 1

Fully connected dense | activation
Fully connected dense | activation

Number of neurons = 256 |ReLU
Number of neurons = 3 |Softmax

256 x 1 x 1
3x1x1

It is therefore a ‘guided’ procedure, and one that minimizes the
requirement for obtaining actual observations of the validation set
loss, which are expensive to obtain for a range of different hyper-
parameters. In this study, the upper confidence bound is used as an
acquisition function. See Snoek et al. (2012), Shahriari ez al. (2015)
and Brochu et al. (2010) for more details on Bayesian Optimization
using Gaussian Processes.

To implement hyperparameter tuning and training-validation-
testing of the classifier Keras (O’Malley ez al. 2015) and TensorFlow
(Abadi et al. 2016) libraries were used, respectively. Python version
3.10 was used on Ubuntu 22.04 on a PC with 32GB of RAM and
an Nvidia V100.

4 RESULTS

An image resizing layer was included as part of the classifier’s
architecture so that each greyscale straingram was resized to a fixed-
size image of 256 x 256. Additionally, a mini-batch of size 32 was
also chosen via the Bayesian Optimization routine used. In order
to further constraint the optimization procedure when tuning the

network architecture, ‘blocks’ of layers (further limiting the total
number of blocks of layers between 3 and 8) were considered in
the following sequence: convolutional, 2-D maximum pooling and
dropout. The optimization procedure was ‘free’ to choose between
using 2-D maximum pooling and/or dropout or just convolutional
layer in every block of layers, while at the same time respecting the
constraints set in Table 2.

In order to visualize the final classifier architecture, Table 3 shows
such an optimal choice of hyperparameters that was derived us-
ing Bayesian Optimization. An important feature of this particu-
lar model architecture (hereafter *Bayes’) is the extensive use of
dropout layers, which are included after every convolutional layer.
In 5 out of 6 ‘blocks’ (2-D convolution-2-D maximum pooling-
dropout), the dropout rate is more than 20 per cent of the total
number of free weights used in each convolutional layer. At the
same time, only ReL U activation functions (no Sigmoid functions)
were selected by the optimization routine. A total of 50 trials was
specified in each optimization run, which yielded 50 classifiers of
varying validation losses, having a range of different hyperparame-
ters and architectures. Many such optimization runs were performed
to further evaluate our results and to ensure robustness in the solu-
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Figure 11. Categorical cross-entropy loss (log-scale) with epoch number for the three classifiers compared in this study. The two overlapping lines correspond

to the loss calculated on the training and validation sets, x; and x,,, respectively.

tions.

The main features of two of the most promising classifiers, as
derived using Bayesian Optimization (chosen as the top classifiers
from two different optimization runs) are as follows:

(i) Bayes: As shown in Table 3, Bayes is comprised of 6 con-
volutional layers with 4 2-D maximum pooling layers after each
convolutional operation (starting from layer 2 to 6). It has a single
fully connected dense layer with 256 neurons, and the total number
of free weights being equal to 3 839 091.

(i1) Bayes-14: This classifier uses two image augmentation layers.
One is a random vertical flip and the other applies random contrast
with a maximum level of 10 per cent. The model is comprised of six
2-D convolution layers with four 2-D maximum pooling operations
being followed by dropout layers in each one (similar blocks of
layers as in Bayes model). This classifier has a fully connected
dense layer with 640 neurons, and the total number of free weights
is equal to 664 53 1. The reason that this model has a smaller number
of free weights, in comparison to the other two models, is due to the
fact that it incorporates fewer kernels in each convolutional layer,
so fewer feature maps are generated and so on.

To facilitate comparison, a baseline classifier (hereafter ‘Base’)
was also trained using hyperparameters and model architecture that
were derived heuristically. The base has only three convolutional
layers and incorporates 2-D maximum pooling after each one. Ad-
ditionally, it has a fully connected dense layer with 128 neurons,
yielding a total number of free weights equal to 4239 267. Hence,
Base has the highest number of free weights of the three classifiers
considered, which is partly attributed to less spatial downsampling
of its feature maps (only three 2-D maximum pooling layers). Fi-
nally, the learning rate of Base was manually chosen to be 0.003,
while for Bayes and Bayes-IA it was selected by the optimization
routine to be equal to, 0.0005 and 0.0002, respectively.

In Fig. 11 the variation in categorical cross-entropy loss as a
function of epoch number is shown for the three classifiers. Note
that the two overlaid lines correspond to the losses computed using
both the training x, and validation x, sets. All images assigned
to training and validation sets were randomly selected (stratified
random sampling) prior to each training phase from the data set of
1050 straingrams. As shown in these plots, all three models were
trained on different numbers of epochs, that is 32 for Bayes, 27 for
Bayes-1A and 25 for Base. This is because an early stopping criterion
was used during the training phase which reduces the chances of
model overfitting. This is done by terminating the training phase
after the loss function on the validation set has seen no particular
decrease (a threshold is typically set at a validation loss of around
0.01) for five consecutive epochs, starting from epoch number 10.

After early stopping the model with the lowest loss function on x, is
selected. Note that the specification for the early stopping criterion
was done empirically, but, was the same for the three models.

The gradients of the losses in Bayes and Bayes-1A on both x, and
X, data sets, increase dramatically starting from epoch number 8 and
onwards. In Bayes-IA, both of the losses decrease at approximately
the same (slow) rate until the training phase is terminated at epoch
number 27 due to the early stopping criterion being satisfied. On
the other hand, in Bayes the loss continues to decrease fast on
X;, while after about epoch number 27, the decrease in loss on X,
is much smaller, resulting in early stopping at epoch number 34.
Note that Bayes shows a large deviation between validation and
training losses after epoch number 20, but, it does not overfit the
model due to the extensive use of dropout layers. Overall, Bayes
obtains a higher decrease in loss on x,, as compared to Bayes-1A.
The addition of image augmentation layers to synthesize a larger
straingram data set for this particular classification task results in a
slower convergence of the loss function. Moreover, the heuristically
tuned hyperparameters and model architecture of the convolutional
neural network, that is the Base model, proved to be insufficient
for this classification task. As can be seen, the loss function on x,
keeps decreasing dramatically (falls below the minimum value of
the y-scale axis) since the beginning of the training phase. At the
same time, the loss on x,, does not decrease, which can be a sign of
model overfitting.

To further evaluate the three classifiers, in terms of accuracy
and robustness in predicting the correct labels for each straingram,
Fig. 12 shows both the cross-entropy loss and classification accuracy
on x,. As seen, Bayes achieves the highest classification accuracy
of around 97 per cent after about epoch number 30. Small discrep-
ancies between loss and accuracy values can be observed, which is
a consequence of computing classification performance using two
slightly different measures. On the one hand, the loss function cal-
culation provides a direct probability measure (between 0 and 1)
regarding the divergence of predictions from the target class distri-
bution (Goodfellow et al. 2016). While classification accuracy on
X, is a simplistic way of examining model performance through an
intuitive ratio: the amount of ‘correct’ predictions (given a suitable
threshold, e.g. 0.5) to the total number of images in the validation
set. An image may be predicted as belonging to one of the three
classes, even if the probability is low (i.e. even when it is close to the
threshold of 0.5). Although this will increase the number of ‘cor-
rect’ predictions, the loss function may see no particular decrease
in its value when the confidence is relatively insignificant.

Nevertheless, looking at both the loss and accuracy plots for
Bayes-IA, one notices that after about epoch number 20 this classi-
fier reaches an overall improved performance (around 95 per cent in

202 4oquiavaq G0 Uo 1sanb Aq y66888./€81/1/01Z/aI01HENIB/WO09"dNO"01WaPED.//:SA)Y WOy papEOjuMOd


art/ggae400_f11.eps

Classification of images derived from submarine fibre optic sensing 497

10”-
>
x
=
=]
Z
=
= Base
_8’ —— Bayes-IA

Bayes
107 e
0 10 20 30

Epoch number

log10 [Accuracy] on X,

9x10" -
§x10" -

7x107" -

6x10 -

0o 10 20 30
Epoch number

Figure 12. Categorical cross-entropy loss function (left-hand panel) and classification accuracy (right-hand panel) as a function of epoch number on the
validation set. The overlapping lines correspond to the three classifiers compared in this study.

Table 4. Confusion matrices of three models: Base, Bayes-IA and Bayes.
Values are presented as percentages (e.g., 95 represents 95 per cent).

Target class Predicted class

Geophysical Noise Non-geophysical

BASE

Geophysical 95 0 5

Noise 0 79 21

Non-geophysical 27 0 73
BAYES-IA

Geophysical 100 0 0

Noise 4 80 16

Non-geophysical 24 6 70
BAYES

Geophysical 100 0 0

Noise 0 96 4

Non-geophysical 17 3 80

Target: Non-geophysical
Predicted: Geophysical

Target: Geophysical
Predicted: Geophysical

Figure 13. Two straingram examples drawn from the test set with target and
predicted class labels as computed by Bayes model.

accuracy). Due to the image augmentation layers, Bayes-1A results
in a more stable minimization of the loss function, since the training
data set is now expanded (essentially increasing the ratio of training
examples to the total number of free weights). On the other hand,
looking at the accuracy of the Base model, its performance can be
seen to be comparable to the other two classifiers. As discussed in
the previous paragraph, accuracy on its own can be a misleading
indicator of performance. In the case of Base, the model could not
achieve a decrease in its loss function on the validation set, start-
ing from epoch number 5 and onwards. Although the Base model
has a high number of ‘correct’ predictions (around 91 per cent) its

confidence remains relatively low, given that the loss is relatively
high. For instance, if the threshold is changed to a higher one (e.g.
80 per cent) to consider greater confidence in the results, then Base
will have a very low classification accuracy. This is a sign that this
model did not ‘learn’ adequately the feature patterns required for
the correct classification of the classes.

The performance of the three classifiers was further evaluated
on a test set of 100 images. This data set was generated as part
of the overall stratified sampling procedure that was followed to
separate the data set into three sets: training, validation and test-
ing. The confusion matrices for the three models are shown in
Table 4, where on each row is the target class and on each column
the predicted one. As can be seen, all three classifiers accurately pre-
dict the labels for the geophysical straingrams, with Base scoring
95 per cent and the other two 100 per cent. Bayes is the most accu-
rate classifier in predicting the correct target class for both noise and
non-geophysical straingrams, with 96 per cent and 80 per cent, re-
spectively. On the other hand, Bayes-IA is marginally more accurate
than Base in these two classes. The overall accuracy (considering
all the classes) of Bayes-IA is 83 per cent, which is just 1 per cent
higher than Base’s overall accuracy. On the other hand, the corre-
sponding classification accuracy for Bayes is about 92 per cent on
this test set. Predicting the correct target class for the straingrams
from the non-geophysical class resulted in the largest number of
errors. The top-performing classifier, that is Bayes, only managed
to predict 80 per cent of the non-geophysical straingrams correctly.

5 DISCUSSION

Besides the relatively low classification score in predicting non-
geophysical straingrams correctly (80 per cent), Bayes is relatively
accurate with 92 per cent overall accuracy on our test set. Most
importantly, Bayes is fairly accurate in discriminating geophysical
straingrams from the other two classes, which means that the respec-
tive features and patterns were ‘learned’ by the model. Although this
is a relatively small-scale test data set, as more straingrams become
available we will be more confident in our model’s generalization
capability.

In terms of model architecture, Bayes is comprised of ‘blocks’,
that is convolution-2-D maximum pooling-dropout sequences, as
seen in Table 3. Such architecture was inspired by previous models,
for example the ‘“VGG-types’ developed by the Virtual Geometry
Group at Oxford (see Simonyan & Zisserman 2014) and others
used in earthquake detection by Huot ef al. (2022b). Note that
‘VGG-type” models have proven very successful in image classi-
fication and can be readily used using TensorFlow. However, such
models require 1000s of training images, since the number of free
weights is greater than 138 million. Given our limited data set
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of 1050 straingrams, this will lead to an overdetermined model.
Instead, the proposed classifier is relatively simple, requiring the
optimization of less than 4 million free weights. As a consequence,
training Bayes is also very computationally inexpensive, and can be
done on a CPU (> 4 cores with >3 GHz in clock-speed) or with
a mid-range consumer GPU with CUDA cores (e.g. Nvidia RTX
30-series).

Bayesian Optimization was critical in designing our Bayes model
architecture and tuning its hyperparameters. As seen, the optimiza-
tion routine chose small values for n on the gradient descent up-
dating rule. Additionally, the use of dropout layers with a relatively
moderate rate, with around 1/5 of free weights zeroed in each con-
volutional layer, offered robustness capability for our small-scale
straingram data set. At the same time, ReLU activations were also
chosen, which supports the fact that they are widely used in cur-
rent state-of-the-art neural network architectures. Although image
augmentation, that is the Bayes-IA model, introduces robustness
during the model training phase (as it reduces the possibility of
overfitting), the slow convergence rate of the loss function is unde-
sirable. Therefore, image transformations such as random vertical
flips and contrast level changes applied to the original straingrams
may not be a particularly successful regularization approach for
our classification task. This is due to the fact that geophysical pat-
terns are relatively regular and well-defined, that is body waves obey
physical laws, and therefore, these patterns should not be artificially
altered.

In Fig. 13, we show an example of predicting the correct tar-
get class and another incorrect prediction by Bayes. In particular,
we see that the geophysical straingram (on the right) was correctly
predicted, while the non-geophysical was not. Given that the latter
is composed of patterns that resemble a local earthquake, span-
ning a large proportion of the straingram, Bayes’s confidence is
around 70 per cent in this example image. A portion of geophysical
straingrams on our data set have such similar patterns, and this can
explain the reason as to why our classifiers wrongly predicted non-
geophysical straingrams as geophysical ones. Local earthquakes are
generally more well-represented in our data set as compared to this
small proportion of non-geophysical straingrams, which results in
better ‘learning’ of the geophysical patterns.

To tackle such issues, one may adopt a higher classification
threshold, for example 80 per cent in order to ensure better
decision-making in a practical context. An important limitation
of our classification framework is the reliance on correctly an-
notated straingrams that are required to train our models. Given
a small fraction of wrongly annotated straingrams, can result in
a significant degradation of classification accuracy. In the litera-
ture, self-supervised learning is a well-known technique to generate
pseudo-labels directly from the structure of straingrams (e.g. Jing
& Tian 2020). Semi-supervision has also been used (e.g. Yalniz
et al. 2019) to improve performance in convolutional neural net-
works, by exploring a much smaller set of well-annotated images.
In fibre optic seismology this is particularly important as there is
an abundance of data sets, but annotations are relatively limited
(Thrastarson et al. 2022).

One of the limitations associated with convolutional neural
network-based architectures is the fact that these models can be
insensitive to very localized patterns. From the non-geophysical
straingram in Fig. 13, angle changes on both of the lines may have
been completely disregarded during the training phase, even though
this could serve as an important discriminating feature between
the two classes (geophysical straingrams do not have such angle
changes). Using spatial downsampling layers a certain degree of

geometric transformation invariance is introduced, since they sum-
marize a window in the image, for example to extract the maximum
or average pixel values. In Sabour ef al. (2017), a new class of mod-
els (known as Capsule Networks) was introduced that can preserve
such localized spatial features.

Finally, another important consideration that needs to be dis-
cussed has to do with how well each geophysical event is represented
by its corresponding straingram. Or in other words, the proportion
of seismic waves being recorded by a geophysical event. Given that
straingrams are constructed from a continuous stream of DAS sig-
nals, there is a high possibility of partially capturing an event, that is
creating an ‘incomplete’ snapshot. In case an event is ‘sufficiently’
represented by the straingram (all other variables considered rel-
atively constant), then the classifier is expected to be as accurate
as the one presented in this study. Other other hand, if an event
is not ‘sufficiently’ represented, for example body waves partially
captured at the beginning of the fibre optic cable, then the classifier
may misclassify this event. This is because the classifier has been
trained with straingrams that fully (or almost fully) captured the
seismic waves of each event. Therefore, any new straingram must
contain a ‘sufficient’ proportion of seismic waves for the feature
maps to be effective in classifying each class.

Having said that, it should also be noted that convolutional neural
networks are invariant to geometric transformations (e.g. rotations)
in the images and translations (e.g. temporal shifts), so that strain-
grams are not restricted to show an event on a certain part of the
image. In other words, no matter the spatial location of an event
on the straingram (top-left, bottom-right, etc.) the relevant feature
maps required for classification will be extracted by convolutional
neural networks (i.e. given the appropriate architecture and hyper-
parameters).

6 CONCLUSIONS

In this paper, we tackled the problem of processing large-scale ob-
servations from ocean-bottom fibre optic cables, being interrogated
by DAS. In particular, we developed a digital signal and image
processing method that converts a highly dense array of DAS strain
data measured on a 55-km fibre optic cable into straingrams (plots of
strain field variation as a function of time and location along the ca-
ble). Using these representations we have trained 2-D convolutional
neural networks to classify straingrams representing seismic obser-
vations from other sources of hydroacoustic energy, for example
sailing boats and marine mammal movements. The non-parametric
Bayesian framework of Gaussian Processes Regression was used
to tune the classifier’s hyperparameters and particular architecture.
We have seen that the optimization routine has systematically se-
lected dropout layers in order to tackle the issue of overfitting,
given our relatively small data set of straingrams. Two classifiers
were compared, one using dropout layers and another using image
augmentation as regularization approaches. These two classifiers
were compared with a baseline model, whose hyperparameters and
architecture were chosen heuristically. On a test set of around 100
straingrams, the classifier with the dropout layers proved to be the
most promising for our classification task, having an overall accu-
racy of 92 per cent. Some limitations of the current classifier were
also discussed, for example invariance to highly localized features,
along with some suggestions/methods for future work.

Overall, we showed that the presented classifier can be used to
significantly assist the seismologist, in analysing large-scale data
sets using DAS technology. Moreover, as more data are generated
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from future experiments, we aim to develop a truly powerful image
classifier, one that can be used to automate the process of discrim-
inating between different types of seismic processes, for example
tectonic tremors from teleseismic events.

DATA AVAILABILITY

We make publicly available the full dataset that was used to train,
validate and test our models in the University of Southampton Ins
titutional Repository (Matthaiou et al. 2023).

REFERENCES

Abadi, M. et al., 2016. Tensorflow: a system for large-scale machine learn-
ing, in Proceedings of the 12th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 16), pp. 265-283.

Agostinetti, N.P,, Villa, A. & Saccorotti, G., 2022. Distributed acoustic
sensing as a tool for subsurface mapping and seismic event monitoring: a
proof of concept, Solid Earth, 13, 449—468.

Ajo-Franklin, J.B. et al., 2019. Distributed acoustic sensing using dark fiber
for near-surface characterization and broadband seismic event detection,
Sci. Rep., 9, 1328, doi:10.1038/s41598-018-36675-8.

Baba, S., Araki, E., Yamamoto, Y., Hori, T., Fujie, G., Nakamura, Y., Yoko-
biki, T. & Matsumoto, H., 2023. Observation of shallow slow earth-
quakes by distributed acoustic sensing using offshore fiber-optic ca-
ble in the Nankai Trough, Southwest Japan, Geophys. Res. Lett., 50,
€2022GL102678, doi:10.1029/2022GL102678.

Biondi, B.L., Yuan, S., Martin, E.R., Huot, F. & Clapp, R.G., 2021. Us-
ing telecommunication fiber infrastructure for earthquake monitoring
and near-surface characterization, Distributed Acoustic Sensing in Geo-
physics: Methods and Applications, Vol. 268, pp. 131-148, Li, Y., Kar-
renbach, M. & Ajo-Franklin, J. B., John Wiley & Sons.

Brochu, E., Cora, VM. & De Freitas, N., 2010. A Tutorial on Bayesian Op-
timization of Expensive Cost Functions, with Application to Active User
Modeling and Hierarchical Reinforcement Learning, arXiv:1012.2599.

Chen, S., Han, J.,, Sui, Q., Zhu, K., Lu, C. & Li, Z., 2023. Advanced signal
processing in distributed acoustic sensors based on submarine cables for
seismology applications, J. Lightwave Technol., 41, 4164—4175.

Cheng, E, Chi, B., Lindsey, N.J., Dawe, T.C. & Ajo-Franklin, J.B., 2021.
Utilizing distributed acoustic sensing and ocean bottom fiber optic
cables for submarine structural characterization, Sci. Rep., 11, 5613,
doi:10.1038/s41467-018-04790-9.

Cochran, E.S., 2018. To catch a quake, Nat. Commun., 9, 2508,
doi:10.1038/s41467-018-04790-9.

Corera, ., Pifeiro, E., Navallas, J., Sagues, M. & Loayssa, A., 2023. Long-
range traffic monitoring based on pulse-compression distributed acous-
tic sensing and advanced vehicle tracking and classification algorithm,
Sensors, 23,3127, doi:10.3390/s23063127.

Duchi, J., Hazan, E. & Singer, Y., 2011. Adaptive subgradient methods for
online learning and stochastic optimization, J. Mach. Learn. Res., 12,
2121-2159.

Fernandez-Ruiz, M.R. et al., 2022. Seismic monitoring with distributed
acoustic sensing from the near-surface to the deep oceans, J. Lightwave
Technol., 40, 1453—1463.

Gan, L., Wu, Q., Huang, Q. & Tang, R., 2023. Quality classification and
inversion of receiver functions using convolutional neural network, ./
geophys. Int., 232, 1833—1848.

Goodfellow, 1., Bengio, Y. & Courville, A., 2016. Deep Learning, MIT
Press.

Grassl, H., 2001. Climate and oceans, in International Geophysics, Vol. 77,
pp- 3-9, Academic Press.

Harmon, N. et al., 2022. Surface deployment of DAS systems: coupling
strategies and comparisons to geophone data, Near Surf. Geophys., 20,
465-477.

Hernandez, PD., Ramirez, J.A. & Soto, M.A., 2021. Deep-learning-based
earthquake detection for fiber-optic distributed acoustic sensing, J. Light-
wave Technol., 40, 2639-2650.

Hinton, G.E., Srivastava, N., Krizhevsky, A., Sutskever, I. & Salakhutdinov,
R.R., 2012. Improving neural networks by preventing co-adaptation of
feature detectors, preprint, arXiv:1207.0580.

Huot, F, Ariel, L., Paige, G., Bin, L., Robert, G. C., Tamas, N., Kurt, T. N.
& Biondo, L. B., 2022a. Detection and characterization of microseismic
events from fiber-optic DAS data using deep learning, Seismol. Soc. Am.,
93, 2543-2553.

Huot, F.,, Biondi, B.L. & Clapp, R.G., 2024. Detecting local earthquakes via
fiber-optic cables in telecommunication conduits under Stanford Univer-
sity campus using deep learning, Computers & Geosciences, 190, 105625,
doi:10.1016/j.cageo.2024.105625.

Ide, S., Araki, E. & Matsumoto, H., 2021. Very broadband strain-rate mea-
surements along a submarine fibre-optic cable off Cape Muroto, Nankai
subduction zone, Japan, Earth, Planets Space, 13, 1-10.

Jernelv, LL., Hjelme, D.R., Matsuura, Y. & Aksnes, A., 2020. Convolu-
tional neural networks for classification and regression analysis of one-
dimensional spectral data, arXiv:2005.07530.

Jiang, F.,, Dai, F, Zhou, J. & Jiang, R., 2023. Al-powered automatic detec-
tion of dynamic triggering of earthquake based on microseismic monitor-
ing, Soil Dyn. Earthq. Eng., 165, 107723, doi:10.1016/j.s0ildyn.2022.1
07723.

Jing, L. & Tian, Y., 2020. Self-supervised visual feature learning with deep
neural networks: a survey, /EEE Trans. Pattern Anal. Mach. Intell., 43,
4037-4058.

Jousset, P. et al., 2018. Dynamic strain determination using fibre-optic cables
allows imaging of seismological and structural features, Nar. Commun.,
9, 2509, doi:10.1038/s41467-018-04860-y.

Jousset, P. et al., 2022. Fibre optic distributed acoustic sensing of volcanic
events, Nat. Commun., 13, 1753, doi:10.1038/s41467-022-29184-w.

Karrenbach, M., Ellwood, R., Yartsev, V., Cole, S., Araki, E., Kimura, T. &
Matsumoto, H., 2021. Turning the Muroto seafloor cable into a long DAS
sensing array, in Proceedings of the 14th SEGJ International Symposium,
Tokyo, Japan.

Katsumata, A. & Kamaya, N., 2003. Low-frequency continuous tremor
around the Moho discontinuity away from volcanoes in the southwest
Japan, Geophys. Res. Lett., 30,20-1.

Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M. & Tang, PT.P,,
2016. On large-batch training for deep learning: Generalization gap and
sharp minima, arXiv:1609.04836.

Kingma, D.P. & Ba, J., 2014. Adam: a method for stochastic optimization,
preprint, arXiv:1412.6980.

Kowarik, S., Hussels, M.T., Chruscicki, S., Miinzenberger, S., Limmerhirt,
A., Pohl, P. & Schubert, M., 2020. Fiber optic train monitoring with dis-
tributed acoustic sensing: conventional and neural network data analysis,
Sensors, 20,450, doi:10.3390/520020450.

Krizhevsky, A., Sutskever, I. & Hinton, G.E., 2017. Imagenet classifi-
cation with deep convolutional neural networks, Commun. ACM, 60,
84-90.

LeCun, Y., Bengio, Y. & Hinton, G., 2015. Deep learning, Narure, 521,
436-444.

LeCun, Y., Bottou, L., Bengio, Y. & Haffner, P,, 1998. Gradient-based learn-
ing applied to document recognition, Proc. [EEE, 86, 2278-2324.

Lellouch, A., Yuan, S., Ellsworth, W.L. & Biondi, B., 2019. Velocity-based
earthquake detection using downhole distributed acoustic sensing—
examples from the San Andreas Fault Observatory at Depth, Bull. seism.
Soc. Am., 109, 2491-2500.

Li, J., Kim, T., Lapusta, N., Biondi, E. & Zhan, Z., 2023b. The break of
earthquake asperities imaged by distributed acoustic sensing, Nature,
620, 800-806.

Li, J.,, Zhu, W.,, Biondi, E. & Zhan, Z., 2023a. Earthquake focal mech-
anisms with distributed acoustic sensing, Nat. Commun., 14, 4181,
doi:10.1038/541467-023-39639-3.

Li, Y., Zhang, M., Zhao, Y. & Wu, N., 2022. Distributed Acoustic Sensing
Vertical Seismic Profile Data Denoising Based on Multistage Denoising
Network, /EEE Trans. Geosci. Rem. Sens., 60, 1-17.

20z Joquieoaq G0 uo 1sanb Aq y66888./€8Y/1/0vZ/aI01ENIB/WOS"dNO"d1Wapeo.//:Sd)Y WOy papeojumod


http://dx.doi.org/10.5258/SOTON/D2841
http://dx.doi.org/10.5194/se-13-449-2022
http://dx.doi.org/10.1038/s41598-018-36675-8
http://dx.doi.org/10.1029/2022GL102678
http://dx.doi.org/10.1109/JLT.2023.3273268
http://dx.doi.org/10.1038/s41598-021-84845-y
http://dx.doi.org/10.1038/s41467-018-04790-9
http://dx.doi.org/10.3390/s23063127
http://dx.doi.org/10.1109/JLT.2021.3128138
http://dx.doi.org/10.1093/gji/ggac417
http://dx.doi.org/10.1002/nsg.12232
http://dx.doi.org/0.1785/0220220037
http://dx.doi.org/10.1186/s40623-021-01385-5
http://dx.doi.org/10.1016/j.soildyn.2022.107723
http://dx.doi.org/10.1109/TPAMI.2020.2992393
http://dx.doi.org/10.1038/s41467-018-04860-y
http://dx.doi.org/10.1038/s41467-022-29184-w
http://dx.doi.org/10.1029/2002GL015981
http://dx.doi.org/10.3390/s20020450
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1785/0120190176
http://dx.doi.org/10.1038/s41586-023-06227-w
http://dx.doi.org/10.1038/s41467-023-39639-3
http://dx.doi.org/10.1109/TGRS.2022.3194635

500 1. Matthaiou et al.

Lindsey, N. J. & Eileen, R. M., 2021. Fiber-optic seismology, Annu. Rev.
Earth planet. Sci., 49, 309-336.

Lior, 1., Rivet, D., Ampuero, J.P, Sladen, A., Barrientos, S., Sanchez-
Olavarria, R., Villarroel Opazo, G.A. & Bustamante Prado, J.A., 2023.
Magnitude estimation and ground motion prediction to harness fiber optic
distributed acoustic sensing for earthquake early warning, Sci. Rep., 13,
424, doi:10.1038/s41598-023-27444-3.

Liu, X., Ren, T., Chen, H. & Chen, Y., 2021. Classification of tectonic
and non-tectonic seismicity based on convolutional neural network, .J.
geophys. Int., 224, 191-198.

Liu, Y., Huff, O., Luo, B., Jin, G. & Simmons, J., 2022. Convolutional
neural network-based classification of microseismic events originating in
a stimulated reservoir from distributed acoustic sensing data, Geophys.
Prospect., 70, 904-920.

Majstorovic, J., Giffard-Roisin, S. & Poli, P, 2023. Interpreting convolu-
tional neural network decision for earthquake detection with feature map
visualization, backward optimization and layer-wise relevance propaga-
tion methods, J. geophys. Int., 232, 923-939.

Majstorovic, J., Giffard-Roisin, S. & Poli, P, 2021. Designing convolutional
neural network pipeline for near-fault earthquake catalog extension using
single-station waveforms, J. geophys. Res., 126, 1-20.

Masoudi, A. & Newson, T.P,, 2016. Contributed review: distributed op-
tical fibre dynamic strain sensing, Rev. Sci. Instrum., 87, 011501,
doi:10.1063/1.4939482.

Masoudi, A., Pilgrim, J.A., Newson, T.P. & Brambilla, G., 2019. Subsea
cable condition monitoring with distributed optical fiber vibration sensor,
J. Lightwave Technol., 37, 1352—1358.

Masters, D. & Luschi, C., 2018. Revisiting small batch training for deep
neural networks, arXiv:1804.07612.

Matsumoto, H. ef al., 2021. Detection of hydroacoustic signals on a fiber-
optic submarine cable, Sci. Rep., 11, 2797, doi:10.1038/s41598-021-
82093-8.

Matthaiou, I., 2022. On robust statistical outlier analysis for damage identi-
fication, Doctoral dissertation, University of Sheffield.

Matthaiou,, I., Araki,, E., Kodaira,, S., Masoudi,, A., Modafferi,, S. & Bram-
billa,, G., Distributed acoustic sensing spatiotemporal maps from Cape
Muroto, 2023. Southampton ePrints, doi:10.5258/SOTON/D2841.

Matthaiou,, 1., Masoudi,, A. & Brambilla,, G., 2023. Processing strain data
generated from distributed acoustic sensing for monitoring tasks, in 28th
International Conference on Optical Fibre Sensors, Hamamatsu, Japan.

Milne, D., Masoudi, A., Ferro, E., Watson, G. & Le Pen, L., 2020.
An analysis of railway track behaviour based on distributed opti-
cal fibre acoustic sensing, Mech. Syst. Sig. Process., 142, 106769,
doi:10.1016/j.ymssp.2020.106769.

Mousavi, S.M. & Beroza, G.C., 2022. Deep-learning seismology, Science,
377. 1-11.

Mousavi, S.M. & Beroza, G.C., 2023. Machine learning in earthquake seis-
mology, Annu. Rev. Earth planet. Sci., 51. 105-129

Mousavi, S.M., Zhu, W., Ellsworth, W. & Beroza, G., 2019. Unsupervised
clustering of seismic signals using deep convolutional autoencoders, /EEE
Geosci. Rem. Sens. Lett., 16, 1693—1697.

Muggleton, J.M., Hunt, R., Rustighi, E., Lees, G. & Pearce, A,
2020. Gas pipeline leak noise measurements using optical fibre
distributed acoustic sensing, J. Nat. Gas Sci. Eng, 78, 103293,
doi:10.1016/j.jngse.2020.103293.

Muller, A.P, Costa, J.C., Bom, C.R., Klatt, M., Faria, E.L., de Albuquerque,
M.P. & de Albuquerque, M.P,, 2023. Deep pre-trained FWI: where super-
vised learning meets the physics-informed neural networks, /. geophys.
Int., 235, 119-134.

Murphy, K.P., 2022. Probabilistic Machine Learning: Advanced Topics,
MIT Press.

Nakano, M., Hori, T., Araki, E., Kodaira, S. & Ide, S., 2018. Shallow very-
low-frequency earthquakes accompany slow slip events in the Nankai
subduction zone, Nat. Commun., 9,984, doi:10.1038/s41467-018-03431-
5.

Nakano, M., Sugiyama, D., Hori, T., Kuwatani, T. & Tsuboi, S., 2019.
Discrimination of seismic signals from earthquakes and tectonic tremor

by applying a convolutional neural network to running spectral images,
Seismol. Res. Lett., 90, 530-538.

O’Malley, T. et al, 2019. Available online: github.com/keras-
team/kerastuner. Date accessed: 7 June 2023.

Perez, L. & Wang, J., 2017. The effectiveness of data augmentation in image
classification using deep learning, arXiv:1712.04621.

Ren, L., Gao, F, Wu, Y., Williamson, P, McMechan, G.A. & Wang,
W., 2023a. Automated dispersion curve picking using multi-attribute
convolutional-neural-network based machine learning, J. geophys. Int.,
232, 1173-1208.

Ren, T., Liu, X., Chen, H., Dimirovski, G.M., Meng, F., Wang, P., Zhong,
Z. & Ma, Y., 2023b. Seismic severity estimation using convolutional
neural network for earthquake early warning, J. geophys. Int., 234,
1355-1362.

Sabour, S., Frosst, N. & Hinton, G.E., 2017. Dynamic routing between
capsules, Adv. Neural Inform. Process. Syst., 30, 3859-3869.

Schreurs, J., Vranckx, 1., Hubert, M., Suykens, J.A. & Rousseeuw, PJ., 2021.
Outlier detection in non-elliptical data by kernel MRCD, Star. Comput.,
31, 66, doi:10.1007/s11222-021-10041-7.

Shahriari, B., Swersky, K., Wang, Z., Adams, R.P. & De Freitas, N., 2015.
Taking the human out of the loop: a review of Bayesian optimization,
Proc. IEEE, 104, 148-175.

Shelly, D.R., Beroza, G.C. & Ide, S., 2007. Non-volcanic tremor and low-
frequency earthquake swarms, Nature, 446, 305-307.

Shiloh, L., Eyal, A. & Giryes, R., 2019. Efficient processing of distributed
acoustic sensing data using a deep learning approach, J. Lightwave Tech-
nol., 37, 4755-4762.

Shiloh, L., Lellouch, A., Giryes, R. & Eyal, A., 2020. Fiber-optic distributed
seismic sensing data generator and its application for training classifica-
tion nets, Opt. Lett., 45, 1834-1837.

Shorten, C. & Khoshgoftaar, T.M., 2019. A survey on image data augmen-
tation for deep learning, J. Big Data, 6, 1-48.

Simonyan, K. & Zisserman, A., 2014. Very deep convolutional networks for
large-scale image recognition, arXiv:1409.1556.

Sladen, A., Rivet, D., Ampuero, J.P., De Barros, L., Hello, Y., Calbris, G.
& Lamare, P, 2019. Distributed sensing of earthquakes and ocean-solid
Earth interactions on seafloor telecom cables, Nat. Commun., 10, 5777,
doi:10.1038/541467-019-13793-z.

Snoek, J., Larochelle, H. & Adams, R.P,, 2012. Practical Bayesian optimiza-
tion of machine learning algorithms, Adv. Neural Inform. Process. Syst.,
25, 2951-2959.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I. & Salakhutdinov, R.,
2014. Dropout: a simple way to prevent neural networks from overfitting,
J. Mach. Learn. Res., 15, 1929-1958.

Szeliski, R., 2022. Computer Vision: Algorithms and Applications, Springer
Nature.

Takemura, S., Obara, K., Shiomi, K. & Baba, S., 2022. Spatiotemporal
variations of shallow very low frequency earthquake activity southeast
off the Kii Peninsula, along the Nankai Trough, Japan, J. geophys. Res.,
127, 1-15.

Thrastarson, S., Torfason, R., Klaasen, S., Paitz, P, Sabuncu, Y.C.,
Jonsdottir, K. & Fichtner, A., 2021. Detecting seismic events with com-
puter vision: Applications for fiber-optic sensing, preprint, ESS Open
Archive, doi:10.1002/essoar.10509693.1.

Trabattoni, A., Biagioli, F., Strumia, C., van den Ende, M., Scotto di Uc-
cio, F, Festa, G., Rivet, D., Sladen, A., Ampuero, J.P., Métaxian, J.P. &
Stutzmann, E., 2023. From strain to displacement: using deformation to
enhance distributed acoustic sensing applications, J. geophys. Int., 235,
2372-2384.

Trnkoczy, A., 2009. Understanding and parameter setting of STA/LTA trig-
ger algorithm, in New Manual of Seismological Observatory Practice, pp.
1-20, Deutsches GeoForschungsZentrum GFZ.

van den Ende, M., Lior, 1., Ampuero, JP, Sladen, A., Ferrari, A.
& Richard, C., 2021. A self-supervised deep learning approach for
blind denoising and waveform coherence enhancement in distributed
acoustic sensing data, /EEE Trans. Neural Networks Learn. Syst., 34,
3371-3384.

20z Joquieoaq G0 uo 1sanb Aq y66888./€8Y/1/0vZ/aI01ENIB/WOS"dNO"d1Wapeo.//:Sd)Y WOy papeojumod


http://dx.doi.org/10.1146/annurev-earth-072420-065213
http://dx.doi.org/10.1038/s41598-023-27444-3
http://dx.doi.org/10.1093/gji/ggaa444
http://dx.doi.org/10.1111/1365-2478.13199
http://dx.doi.org/10.1093/gji/ggac369
http://dx.doi.org/10.1029/2020JB021566
http://dx.doi.org/10.1063/1.4939482
http://dx.doi.org/10.1109/JLT.2019.2893038
http://dx.doi.org/10.1038/s41598-021-82093-8
http://eprints.soton.ac.uk/id/eprint/483409
http://dx.doi.org/10.1016/j.ymssp.2020.106769
http://dx.doi.org/10.1126/science.abm4470
http://dx.doi.org/10.1146/annurev-earth-071822-100323
http://dx.doi.org/10.1109/LGRS.2019.2909218
http://dx.doi.org/10.1016/j.jngse.2020.103293
http://dx.doi.org/10.1093/gji/ggad215
http://dx.doi.org/10.1038/s41467-018-03431-5
http://dx.doi.org/10.1785/0220180279
http://dx.doi.org/10.1093/gji/ggac383
http://dx.doi.org/10.1093/gji/ggad137
http://dx.doi.org/10.1007/s11222-021-10041-7
http://dx.doi.org/10.1109/JPROC.2015.2494218
http://dx.doi.org/10.1038/nature05666
http://dx.doi.org/10.1109/JLT.2019.2919713
http://dx.doi.org/10.1364/OL.386352
http://dx.doi.org/10.1186/s40537-019-0197-0
http://dx.doi.org/10.1038/s41467-019-13793-z
http://dx.doi.org/10.1029/2021JB023073
http://dx.doi.org/10.1093/gji/ggad365

Classification of images derived from submarine fibre optic sensing 501

Wallace, L.M. et al., 2016. Near-field observations of an offshore Mw
6.0 earthquake from an integrated seafloor and subseafloor monitoring
network at the Nankai Trough, southwest Japan, J. geophys. Res., 121,
8338-8351.

Wu, H. & Gu, X., 2015. Towards dropout training for convolutional neural
networks, Neural Networks, 71, 1-10.

Yalniz, 1.Z., Jegou, H., Chen, K., Paluri, M. & Mahajan, D.,
2019. Billion-scale semi-supervised learning for image classification,
arXiv:1905.00546.

Yamamoto, Y., Yada, S., Ariyoshi, K., Hori, T. & Takahashi, N., 2022.
Seismicity distribution in the Tonankai and Nankai seismogenic zones
and its spatiotemporal relationship with interplate coupling and slow
earthquakes, Prog. Earth planet. Sci., 9, 1-20.

Yang, L., Fomel, S., Wang, S., Chen, X. & Chen, Y., 2023b. Denoising
distributed acoustic sensing (DAS) data using unsupervised deep learning,
Geophysics, 88, 1-12.

Yang, L., Fomel, S., Wang, S., Chen, X., Chen, W., Saad, O.M. & Chen, Y.,
2023a. Denoising of distributed acoustic sensing data using supervised
deep learning, Geophysics, 88, 91-104.

Yin, J., Denolle, M.A. & He, B., 2022. A multitask encoder—decoder to
separate earthquake and ambient noise signal in seismograms, J. geop/iys.
Int., 231, 1806-1822.

Zeiler, M.D. & Fergus, R., 2013. Stochastic pooling for regularization of
deep convolutional neural networks, arXiv:1301.3557.

Zhang, A., Lipton, Z.C., Li, M. & Smola, A.J., 2021. Dive into deep learning,
preprint, arXiv:2106.11342.

© The Author(s) 2024. Published by Oxford University Press on behalf of The Royal Astronomical Society. This is an Open Access
article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

20z Joquieoaq G0 uo 1sanb Aq y66888./€8Y/1/0vZ/aI01ENIB/WOS"dNO"d1Wapeo.//:Sd)Y WOy papeojumod


http://dx.doi.org/10.1002/2016JB013417
http://dx.doi.org/10.1016/j.neunet.2015.07.007
http://dx.doi.org/10.1186/s40645-021-00461-4
http://dx.doi.org/10.1190/geo2023-1017-tiogeo.1
http://dx.doi.org/10.1190/geo2022-0138.1
http://dx.doi.org/10.1093/gji/ggac290
https://creativecommons.org/licenses/by/4.0/

	1 INTRODUCTION
	2 DATA SET DESCRIPTION
	3 CONVOLUTIONAL NEURAL NETWORKS FOR CLASSIFYING STRAINGRAMS
	4 RESULTS
	5 DISCUSSION
	6 CONCLUSIONS
	DATA AVAILABILITY
	REFERENCES

