
Geophysical Journal International Royal

Society
Astronomical

Geophys. J. Int. (2025) 240, 483–501 https://doi.org/10.1093/gji/ggae400 
Advance Access publication 2024 November 9 
GJI Applied and Marine Geophysics 

Classification of images derived from submarine fibre optic sensing: 
detecting broadband seismic activity from hydroacoustic signals 

Ioannis Matthaiou , 1 Ali Masoudi , 1 Eiichiro Araki, 2 Shuichi Kodaira, 2 

Stefano Modafferi 3 and Gilberto Brambilla 

1 

1 Optoelectronics Research Centre, University of Southampton, Southampton SO 17 1 BJ, UK. 
E-mail: I.Matthaiou@soton.ac.uk 
2 Japan Agency for Marine-Earth Science and Technology, Yokosuka, Kanag aw a 237-0061 , Japan 
3 Digital Health and Biomedical Engineering, School of Electronics and Computer Science, University of Southampton, Southampton SO 17 1 BJ, UK 

Accepted 2024 November 4. Received 2024 October 29; in original form 2023 August 21 

S U M M A R Y 

Distributed acoustic sensing (DAS) is an optoelectronic technology that utilizes fibre optic 
cables to detect disturbances caused by seismic waves. Using DAS, seismologists can mon- 
itor geophysical phenomena at high spatial and temporal resolutions over long distances in 

inhospitab le environments. F ield experiments using DAS, are typically associated with large 
volumes of observations, requiring algorithms for efficient processing and monitoring capabil- 
ities. In this study, we present a supervised classifier trained to recognize seismic activity from 

other sources of hydroacoustic energy. Our classifier is based on a 2-D convolutional neural 
network architecture. The 55-km-long ocean-bottom fibre optic cable, located off Cape Muroto 

in southwest of Japan, was interrogated using DAS. Data were collected during two different 
monitoring time periods. Optimization of the model’s hyperparameters using Gaussian Pro- 
cesses Regression was necessary to prevent issues associated with small sizes of training data. 
Using a test set of 100 labeled images, the highest-performing model achieved an average 
classification accuracy of 92 per cent, correctly classifying 100 per cent of instances in the 
geophysical class, 80 per cent in the non-geophysical class and 96 per cent in ambient noise 
class. This performance demonstrates the model’s ef fecti veness in distinguishing between 

geophysical data, various sources of hydroacoustic energy, and ambient noise. 
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 I N T RO D U C T I O N  

n seismology, there is a growing demand for real-time sensing
nd monitoring capabilities over large distances. Certain types of
eismic events, such as teleseismic earthquakes-defined by the U.S.
eological Surv e y as seismic ev ents occurring at distances greater

han 1000 km from the sensing instrumentation are of significant
mportance to the geophysical community . Consequently , there is an
ncreasing demand for monitoring systems that are sensitive enough
o capture seismic acti vity e ven at such vast distances. Expanding
ensing coverage presents numerous challenges, particularly given
hat approximately 71 per cent of the Earth’s surface is covered by
ceans (Grassl 2001 ). 

To date, seismologists have primarily deployed single-point
nstrumentation, such as ocean-bottom seismometers and hy-
rophones. The time-domain records from these instruments are
rocessed into short-time over long-time averages to facilitate the
dentification of seismic activity by closely examining the processed
ignals. Computing the ratio of ground-motion averages over two
ifferent fixed-time window lengths can effectively discriminate
ignals from background noise (Trnkoczy 2009 ). 
C © The Author(s) 2024. Published by Oxford University Press on behalf of The R
article distributed under the terms of the Creative Commons Attribution License (
permits unrestricted reuse, distribution, and reproduction in any medium, provided
Reliable sensing capabilities across remote and harsh environ-
ents not only enable the early detection of natural hazards (Sladen

t al. 2019 ) but also offer better imaging of the Earth’s subsurface
tructure. For these reasons, DAS technology is seen as instrumental
n expanding sensing coverage and, thus, enhancing our understand-
ng of important geological systems. Essentially, DAS transforms a
ark optical fibre cable into a highly dense array of interconnected
nd synchronized sensors that measure the strain field over large
istances. This is achieved by using an interrogator unit that sends
aser pulses into the optical fibre and measures the phase shift in
he Rayleigh backscattered light between adjacent points along the
bre—a technique known as phase-sensitive optical time-domain

nterferometry ( φ-OTDR). 
φ-OTDR is a relati vel y mature sensing technolo gy that has al-

eady been deployed in the field for a wide range of sensing and
ondition monitoring applications. Examples include: (i) subsea ca-
le damage detection (Masoudi et al. 2019 ); (ii) traffic monitoring
nd vehicle classification (Corera et al. 2023 ); (iii) train tracking
nd localization (Kowarik et al. 2020 ), (iv) monitoring changes in
he dynamic behaviour of railway tracks (Milne et al. 2020 ) and
v) leak detection on gas pipelines (Muggleton et al. 2020 ). From
oyal Astronomical Society. This is an Open Access 
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of the strain field. 
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a geophysical perspective, φ-OTDR-based distributed optical fibre 
sensing technology is particularly attractive because it can measure 
subtle changes in the strain field over a wide range of frequencies- 
something that cannot be achie ved b y other DAS technologies, for 
example Brillouin-OTDR (Masoudi & Newson 2016 ). 

Using DAS, seismologists can carry out large-aperture exper- 
iments, cost-ef fecti vel y and ef ficientl y, with high sampling rates 
both spatially and temporally, by connecting an optoelectronic de- 
vice (the interrogator unit) to an already installed dark fibre optic 
cable. The acquisition of coherent seismic waves, as they travel 
through the Earth’s multilayered structure, can be captured and 
studied in greater detail (Biondi et al. 2021 ). For these reasons, 
DAS has recently been explored in a number of research studies to 
monitor and characterize geological features. Some of these studies 
are discussed in this section. 

In Jousset et al. ( 2018 ) DAS was used to explore geological 
features, like the crustal structure, and in Jousset et al. ( 2022 ) the 
authors identified volcanic activity. In Agostinetti et al. ( 2022 ) the 
potential of D AS was in vestigated for mapping heterogeneities in 
shallow subsurface using a 8.9-km fibre optic cable on the Brady 
geothermal field. Using DAS, the earthquake fault ruptures were 
studied in Cochran ( 2018 ), while in Li et al . ( 2023a ) the high-spatial 
sampling of DAS made it possible to determine P -wave polarities 
by cross-correlating earthquake pairs. The paper has shown im- 
provements in the quality of computed focal mechanisms for each 
earthquake ev ent e xamined. In Li et al . ( 2023b ), imaged the high- 
frequency rupture radiators for megathrust earthquakes using the 
100-km Long Valley DAS array . Similarly , in Cheng et al. ( 2021 ) 
a 20 -km fibre optic cable at Moss Landing Monterey Bay was de- 
ployed to examine submarine structural characteristics, including 
shallow fault zones while in Lior et al. ( 2023 ) a rigorous magnitude 
estimation and shaking intensity prediction methodology was devel- 
oped specifically for DAS data. To enable conventional seismologi- 
cal analysis with DAS, for example for earthquake magnitude esti- 
mation, the strain field measurements were converted into a quantity 
called ‘deformation’ in Trabattoni et al. ( 2023 ). Additionally, hydro- 
logical near-surface characterization and seismic activity detection 
have been demonstrated using a 27-km-long fibre optic cable (with 
a spatial spacing of 2 m) at West Sacramento, recording 7 months 
of continuous data (Ajo-Franklin et al. 2019 ). In Baba et al. ( 2023 ) 
the authors detected tectonic tremors (a type of slow earthquake) for 
the first time using the same 50-km fibre optic cable as the one used 
in this study. These tremors were estimated to be located around a 
subducted seamount peak. In several studies, including (Agostinetti 
et al. 2022 ) and (Sladen et al. 2019 ), seismic activity monitoring 
using DAS has been found to be well-correlated with conventional 
seismic sensors and arrays of geophones, offering similar broad- 
band sensing capability (Matsumoto et al. 2021 ). A comprehensive 
overview of DAS for seismology from a geophysical perspective can 
be found in Lindsey & Eileen ( 2021 ) while (Fern ández-Ruiz et al. 
2022 ) offer a similar overview but from a digital signal processing 
point-of-view. 

The development of new and improved methodologies to anal- 
yse seismic records has seen a tremendous rise in recent years 
(Mousavi & Beroza 2023 ). This is especially true in fibre optic 
seismology where data are generated in large volumes, for ex- 
ample about 1 TB per day as reported in Lellouch et al. ( 2019 ). 
Given such an immense scale of data, researchers have been ex- 
ploring ways to utilize them for seismological applications. To im- 
prove the signal-to-noise ratio, self-supervision was used in van 
den Ende et al. ( 2021 ) to suppress incoherent noise. To remove 
different types of noise on images of the strain field, that is as a 
function of time and cable distance, studies in Yang et al. ( 2023a ) 
and later in Yang et al. ( 2023b ) used 2-D convolutional neural 
networks in a U-Net architecture. Similarly, in Li et al. ( 2022 ) a 
2-D convolutional neural network in an auto-encoder architecture 
was trained with the aid of a synthetic noisy data set (and associ- 
ated annotations) to remove six different types of noise on similar 
image data. 

Con volutional neural netw orks with 1-D input data were widely 
adopted in recent studies to take into account the large-volumes 
of seismic waveforms generated from seismological experiments. 
In Majstorovi ́c et al. ( 2021 ) a binary classifier was trained using 
seismometer data over a 30-yr period, where earthquake signals 
were discriminated against ambient noise, demonstrating a substan- 
tial increase in the number of detected earthquakes. Additionally, 
in Majstorovi ́c et al. ( 2023 ) the feature maps extracted from con- 
volutional neural networks were investigated, reporting major im- 
provement (in terms of binary classification) on both the amplitude 
and waveform frequency of the seismic signals. Similarly, in Jiang 
et al. ( 2023 ) a binary classification model was trained to discrim- 
inate tectonic tremors and teleseismic earthquakes. Moreover, an 
encoder–decoder architecture was used to separate ambient noise 
from seismic signals in Yin et al. ( 2022 ) and in Liu et al. ( 2021 ) a bi-
nary classifier was trained to discriminate tectonic and non-tectonic 
tremor signals. In Hern ández et al. ( 2021 ) a 1-D convolutional neu- 
ral network was trained using a large database of time-domain seis- 
mic waveforms from seismometers, which was then used to detect 
earthquakes using a different data set of DAS records. To expand 
DAS data synthetically, Shiloh et al. ( 2019 ) and Shiloh et al. ( 2020 ) 
e xplored generativ e adv ersarial networks. 

Convolutional neural networks with 2-D input data were also 
used in recent years. For instance, in Liu et al. ( 2022 ) man-made 
microseisms were recognized using the guided wave energy as fea- 
tures. In Huot et al. ( 2022a , b ), a binary classifier with optimized 
hyperparameters was trained where microseismic events and back- 
ground noise were discriminated using around 7000 DAS records. 
Inputs w ere Wa velet scalograms. In Nakano et al. ( 2019 ) the au- 
thors trained a classifier to distinguish between tectonic tremors and 
local earthquakes with spectral images as inputs. In Mousavi et al. 
( 2019 ) an unsupervised classification framework was presented for 
discriminating between local and teleseismic events using Short- 
Time Fourier Transform spectrograms as inputs. 

Other studies that used convolutional neural networks and are 
worth mentioning include the ones in Ren et al. ( 2023a ) for pick- 
ing dispersion curves using amplitude spectra (inputs) and Scholte 
waves (outputs) and in Chen et al. ( 2023 ) an analysis of clusters 
was presented using techniques such as hierarchical clustering for 
a set of similar input data. Hypocentre location using DAS records 
was estimated in Mousavi & Beroza ( 2022 ), magnitude estimation 
in Ren et al. ( 2023b ), velocity model improvement in Muller et al. 
( 2023 ) and inversion of teleseismic P -wave receiver function and 
surface wave dispersions in Gan et al. ( 2023 ). 

DAS technology for monitoring seismic activity is still relatively 
new and major challenges, including: (i) low signal-to-noise ratio, 
(ii) sensing range, (iii) incidence angle sensitivity for incoming 
seismic waves and (iv) large-scale data management, have to be 
addressed for its widespread adoption. A low signal-to-noise ratio 
can be caused due to poor mechanical coupling between Earth and 
fibre optic cable. This issue has been investigated in recent years [for 
instance, see Matsumoto et al. ( 2021 ) and Harmon et al. ( 2022 )]. On 
the other hand, DAS is mainly sensitive to the axial strain of the fibre 
optic cable which limits the sensing capability to 1-D measurement 
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In this study, we explored 2-D convolutional neural networks for
ackling the issue of large-scale data management by constructing
 multi-class classifier that can discriminate between geophysical
nd non-geophysical sources of hydroacoustic energy and ambient
oise. The structure of this paper is as follows: in Section 2 the
ata set is presented including the signal processing steps used for
ata transformation. In Section 3 the classifier’s main characteristics
nd architecture are discussed. In Sections 4 and 5 the classifier’s
erformance for DAS records is analysed, and in Section 6 the
onclusions of the study are presented. 

 DATA  S E T  D E S C R I P T I O N  

.1 Monitoring seismic activity in the Nankai Trough 

he Muroto fibre optic cable is located in the southwester n par t of
apan within the Nankai subduction zone, where the Philippine Sea
late is subducting beneath the Amur Plate. Since 1997, the Japan
gency for Marine-Earth Science and Technology (JAMSTEC),
as been using the Comprehensive Seafloor Monitoring System
ffshore Cape Muroto, which now connects a seismic land station
o six single-mode fibre optic cables. The total length of the Muroto
bre optic cable is 128 km. Between 0.35 and 2.1 km from the land
tation, the cable is buried under the seafloor, while from 2.1 km
nd onwards it rests on the seafloor. In their study, Karrenbach et al.
 2021 ) demonstrated the use of DAS for seismic monitoring using
he Muroto fibre optic cable. 

The Nankai Trough is a well-known seismogenic zone, where
egathr ust ear thquakes with moment magnitudes ( M w ) g reater than
 occur every 100–150 yr. The last megathrust earthquake that orig-
nated in the Nankai Trough happened in 1946, and therefore, the
rea has been e xtensiv ely monitored ov er the last decade. For im-
roving understanding of fault slip events and developing better
onitoring systems for megathr ust ear thquakes, a dedicated array

f interconnected seismographs, known as the Dense Oceanfloor
etwork system for Earthquakes and Tsunamis (DONET) is being

cti vel y used for monitoring and recording continuous measure-
ents. 
Using a dense network of seismometers, it is possible to iden-

ify and analyse a wide range of slow earthquakes in the Nankai
rough. Such events include: long-term and short-term slow slip
vents (time durations of days to years), very low frequency earth-
uakes (time durations between 10 and 100 s) and tectonic tremors
amamoto et al. ( 2022 ). In Nakano et al. ( 2018 ) the authors used

he vertical components of ocean-bottom seismometers to show
hat very low frequency earthquakes are temporally correlated with
ectonic tremors in the Nankai Trough. At the same time, very
ow frequency earthquakes were found to have been triggered by
arge earthquake events. For instance, the authors in Wallace et al.
 2021 ) repor ted swar ms of ver y low frequency ear thquakes and
ectonic tremors (due to plate ruptures), just after the main shock
f the M w 6.0 Mie-k en Nanto-oki earthquak e on 01 April 2016.
dditionally, in Takemura et al. ( 2022 ) the authors studied very

ow frequency earthquakes in the Nankai Trough (using DONET
ecords between April 2004 and March 2021) and showed that these
ype of events occured around the western edge of the subducted
ceanic ridge. 

In our study, a total of 571 geophysical events were recorded from
ur DAS system. Fur ther more, b y closel y examining the spatial and
emporal characteristics of each record, different earthquake types

ere identified: r  
(i) Local earthquakes : A total of 447 local earthquakes were
ecorded between 30 January 2022 and 23 March 2022. Another
6 local earthquakes between 17 August 2021 and 02 October
021. 
(ii) Tectonic tremors : A total of 29 tectonic tremors were recorded

etween 30 January 2022 and 02 August 2022. 
(iii) Teleseismic earthquakes : A total of 79 teleseismic earth-

uakes were recorded between 30 January 2022 and 02 August
022. 

Note that the above geophysical events were identified by experts
y inspecting the DAS records. 

To validate and cross-reference the identified seismic events using
ur DAS system, we compared our data set with the official earth-
uake catalogue as provided by the Japan Meteorological Agency
JMA) for the period between 30 January 2022 and 23 March
022. During this time-frame, the JMA recorded a total of 38 570
arthquakes across Japan. The JMA catalogue offers comprehen-
ive details for each seismic e vent-including date, time, geo graphic
oordinates, depth and magnitude-making it one of the most accu-
ate and informative references for seismic activity in the region.
ig. 1 shows the topographic map of Japan with the epicentres of
ach cross-referenced geophysical event recorded by DAS. As men-
ioned pre viousl y, we identified three types of earthquakes: local
arthquakes, tectonic tremors and teleseismic earthquakes, which
re labelled on the map accordingly. 

The cross-referencing procedure was performed by first aligning
he date and time stamps of the DAS records with those listed by
he JMA catalo gue. Subsequentl y, a magnitude filter w as used to
 xclude ev ents below a certain threshold-specifically, earthquakes
ith a vertical component magnitude of less than 0.5—as such low-
agnitude events are unlikely to produce strain signals detectable

y DAS. We prioritized events with higher vertical magnitudes to
ocus on those most likely to be captured by the DAS system.

oreover, we used the Haversine formula to calculate the geodesic
istance between the epicentre of each earthquake and every point
long the fibre optic cable. By iterati vel y appl ying this calculation
long the entire set of cable coordinates, we identified the mini-
um possible distance from the cable to each earthquake epicentre.
ased on these computed distances, we labelled earthquakes with
 minimum distance greater than 1000 km from any point along
he fibre optic cable as teleseismic events, in accordance with stan-
ard seismological definitions (e.g. as used by the U.S. Geological
urv e y). 
The highest magnitude recorded within this period was 4.3, cor-

esponding to a teleseismic event located 1643 km from the optical
bre cable, originating off the coast of Taiwan (visible at the bot-

om left in Fig. 1 ). Tectonic tremor events, were generally of low
agnitude ranging from 0.7 to 2.3. In contrast, the magnitude of

ocal earthquakes varied more widely, from 0.9 to 4.0 in the vertical
omponent. The median magnitude of the recorded DAS events was
.4, while the maximum recorded depth was 420.9 km. Note that the
agnitudes listed in the JMA catalogue refer to the vertical com-

onent of the seismic signal, which is rele v ant for DAS detection
apability. 

Fig. 2 , shows a typical DAS signal (amplitude normalized) repre-
enting a local earthquake event as measured at a distance of about
5 km from the fibre optic cab le. F igs 2 (a) and (b) show the time-
omain strain-rate for about 55 seconds, for the filtered (bandpass
lter applied between 0.005 and 20 Hz) and raw signals, respec-

i vel y. In Fig. 2 (a), the body waves are clearly observed, while in the
aw signal only the P -wave component can be distinguished from
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Figure 1. Topographic map of Japan showing 555 geophysical events recorded using DAS during monitoring period A, that is between the period 30 January 
2022 and 23 March 2022. The three geophysical ev ent cate gories as shown on the map are: ‘Local earthquake’ (in g reen), ‘Teleseismic ear thquake’ (in red) 
and ‘Tectonic tremor’ (in yellow). The size of each circle indicates the magnitude of each event: ranging from 0.5 (smallest circle) up to 4.3 (largest circle). 
The location of the DAS events recorded were cross-referenced with the earthquakes recorded by the Japan Meteorological Agency ( www.jma.go.jp ). 
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noise. The corresponding power spectrum of the filtered signal, 
shown in Fig. 2 (c), indicates that there is significant seismic energy 
between about 2.5 and 11 Hz. On the other hand, the Wavelet scalo- 
gram in Fig. 2 (d) shows that P -wave energy has a broader spectrum, 
which ranges from sub-Hz up to about 50 Hz. While, S -wave energy 
is mainly concentrated in the lower frequencies, that is about less 
than 20 Hz. As also indicated in Fig. 2 (d), there is a substantial level 
of noise present at frequencies above 25 Hz. 

The tectonic non-volcanic tremor observed in the Nankai Trough 
was identified as a slow slip event by the JMA (Katsumata & Ka- 
maya 2003 ). This type of geophysical event has a range of features 
that are very distinct from local earthquakes. The majority of tec- 
tonic tremor signals recorded by either DAS or conventional seis- 
mometers indicate significant depletion in P -wave energy. The lack 
of impulsivity in the recorded data means that signals represent- 
ing tectonic tremors are less broadband in nature, as compared to 
local earthquake signals that are highly energetic. In Fig. 3 strain 
field measurements representing a single tectonic tremor event are 
shown on four different locations along the Muroto fibre optic ca- 
ble. More specifically, the first row of subplots, that is Figs 3 (a)–(d) 
show the bandpass filtered waveforms in units of nanostrain per 
second (ns s −1 ) at four different locations along the cable. In chan- 
nels where signal-to-noise ratio was relatively low in comparison to 
the rest of the channels, robust z -score standardization was applied 
throughout the full data set. As observed, Figs 3 (a)–(c) have a much 
lower dynamic range of strain-rate values, as compared to Fig. 3 (d). 
Rescaling all channels within the statistical range is beneficial to 
avoid ‘masking’ low signal-to-noise ratio channels. Figs 3 (e)–(h) 
show the corresponding rescaled signals, while the power spectral 
densities are also shown in Figs 3 (i)–(l). 

As it is evident from these plots, tectonic tremor signals have 
significant body wave energy at lower frequencies (about less than 
3 Hz). With the exception of low signal-to-noise ratio channels as 
the one shown in Figs 3 (c), (g) and (k), this statement holds true. 
This low signal-to-noise ratio channel is shown to contain energy at 
a broader range of frequencies, with no distinct signal components, 
as the rest of the channels shown in this example. A low signal- 
to-noise ratio in certain channels is a common feature in DAS data 
acquisition due to numerous factors including optical fading and/or 
poor ground-cable mechanical contact/coupling. 

In two different studies, the authors in Baba et al. ( 2023 ) and 
Shelly et al. ( 2007 ) also analysed tectonic tremor signals obtained 
in the Nankai Trough, and suggested that most of their energy exists 
in the frequency range between about 1 and 8 Hz. In particular, 
the tectonic tremor DAS records (29 events in total) used in this 
study were pre viousl y anal ysed in Baba et al. ( 2023 ) and their 
analysis agrees with the previous claims made regarding signal 
characteristics. 

Using DAS along the first 55 km of the fibre optic cable more 
than 9800 signals (equally spaced) were recorded, similar to the 
ones that were shown in Fig. 3 . Hence, a 2-D representation can 
be plotted, showing the strain field both as function of total elapsed 

art/ggae400_f1.eps
file:www.jma.go.jp
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Figure 2. Local earthquake signal recorded by DAS at a minimum distance of about 15 km from the optical fibre cable: (a) filtered and rescaled signal (using 
robust z -score standardization), (b) raw signal, (c) power spectral density of the filtered signal and (d) wavelet scalogram of the raw signal. 
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ime and distance along the cab le. F ig. 4 shows an example of
 2-D representation for the pre viousl y presented tectonic tremor
vent (occurred on 02 Febr uar y 2022). As can be seen from this
lot, there are several locations along the fibre optic cable where
ignal-to-noise ratio is high enough to reveal the event clearly, while
here are other locations where the signal was poor, for example
ompare signals at a distance of 50 km with ones at around 35 km.
his is mainly due to the differences in physical contact between
eabed/ground and fibre optic cable. Also, in the first few kilometres,
cean waves can be seen very clearly as they are capable of exciting
he cable very ef fecti vel y due to their broadband energy. Note that
he signals prior to generating the image in Fig. 4 were bandpass
ltered between 1 and 8 Hz prior to assembling them in a 2-D
atrix, which was further processed using median spatial filtering

3 × 3 window). In Section 2.2 such processing steps are discussed
n greater detail. 

All teleseismic earthquakes used in our study were provided after
andpass filtering in the 2–10 Hz frequency range. This frequency
ange differs from the conventional approach in seismological stud-
es, where teleseismic events are typically analysed within the sub-
z range, where most of their energy is concentrated. For instance,
jo-Franklin et al. ( 2019 ) applied a bandpass filter between 0.01

nd 0.1 Hz to analyse signals from teleseismic events. 
Therefore, the use of the 2–10 Hz frequency range in this set

f DAS measurements enables us to monitor teleseismic earth-
uakes using the higher-frequency components of the signals, which
re less commonly studied. While the rationale for applying this
pecific filter prior to data provision is beyond the scope of our
tudy, it presents an opportunity to investigate the capabilities
f DAS in detecting and analysing the higher-frequency part of
eismic waves. 

In our observations, the seismic phases—including P-phases
nd T-phases—lasted several minutes. T-phases, which propagate
hrough the water column at velocities ranging from 1.4 to 1.5
m s −1 , were ef fecti vel y captured within this frequency range. This
uggests that the DAS system is sensitive to these higher-frequency
omponents, providing valuable data for our analysis. 

DAS records were also obtained from a range of non-geophysical
ydroacoustic energy sources between the same dates, that is be-
ween 30 January 2022 and 23 March 2022. The exact data dis-
ribution for a total of 315 hydroacoustic energy sources of non-
eophysical nature are as follows: 11 ship-based airgun shots, 245
hip vessels sailing near the fibre optic cable and 59 marine mammal
ovements. Ship-based airgun shots were used to explore the sens-

ng capability of DAS, as explained in more detail in Matsumoto
t al. ( 2021 ). DAS measurements were compared with hydrophone
ignals obtained from airgun shots where the majority of wave en-
rgy is within the frequency range of 5 and 10 Hz. In that study, the
uthors concluded that DAS offers a similar sensing capability to
ydrophones. 

A similar work to the one discussed above, Ide et al. ( 2021 ),
howed that strain measurements across the fibre optic cable were
ighly correlated with ocean-bottom conventional seismographs.
o wever , at certain locations of the Muroto fibre optic cable,

here were no signal records due to poor coupling between the
eabed/ground and cable (as already shown in Fig. 4 ). In addi-
ion, monitoring very low frequency earthquakes in the ranges of
.02–0.05 Hz, DAS signals were reported to have a much lower
ignal-to-noise ratio than seismographs. 

.2 Transforming signals into straingrams for 
lassification 

w o different D AS interrogators were installed on the Muroto fi-
re optic cable to record hydroacoustic signals related to seismic
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Figure 3. Four tectonic tremor signals recorded on the Muroto fibre optic cable using DAS on 02 Febr uar y 2022: (a)–(d) strain-rate at different locations along 
the fibre optic cable, (e)–(h) rescaled strain-rate (robust z -score standardized) and (i)–(l) corresponding normalized power spectral densities. 
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activity in the region. Both systems used the first 55 km (from the 
coast) of the cable as their total ef fecti ve sensing ranges. The first 
DAS system w as de veloped b y AP Sensing GmbH, while the sec- 
ond one was developed by the Distributed Optical Fibre Sensing 
(DOFS) research group at the University of Southampton in the 
United Kingdom. The latter system had a higher spatial and tempo- 
ral resolution. The main specifications of the two DAS interrogators 
used in this study, including their respective monitoring periods, are 
given in Table 1 . 

For monitoring period A (30 January 2022 up to 23 March 2022) 
the interrogator recorded about 9800 waveforms of strain-rate or 
strain field along the Muroto fibre optic cable. The recorded tem- 
poral sampling rate was 500 Hz, while the spatial resolution was 
5.1 m. Spatial downsampling (by a veraging in-betw een samples) 
was applied to reduce data storage requirements. Also, for that 
purpose, temporal resolution was decreased to 100 Hz. Moreover, 
a bandpass filter was applied to each of the 980 waveforms indi- 
vidually, so that frequencies outside the 2–10 Hz band were at- 
tenuated [similar to the work presented in Baba et al. ( 2023 )]. 
Plots such as the one shown pre viousl y in Fig. 4 were constructed 
by concatenating all the pre-processed 980 waveforms into a sin- 
gle 2-D matrix. A fixed-time window with a total duration of 3 
min converted the continuous stream of data into the 2-D matri- 
ces (hereafter ‘straingrams’). In this study, the straingram is an 
ef fecti ve transformation of our raw waveform data that allows ef- 
ficient characterization and discrimination of the identified events 
both qualitati vel y and quantitati vel y. Using straingrams one can 
visualize the evolution of strain across different parts of the fi- 
bre optic cable as a function of time for different hydroacoustic 
signals. 

On the other hand, the raw data from monitoring period B (17 
August 2021–02 October 2021) were subjected to a different digi- 
tal signal and image processing treatment due to the availability of 
raw signals. Instead of bandpass filtering each wa veform betw een 2 
and 10 Hz, each waveform in monitoring period B comprises of a 
broader range of frequencies, that is between 0.005 and 20 Hz. This 
is to ensure that different types of earthquakes can be ef fecti vel y 
detected and identified by DAS. For instance, in Jiang et al. ( 2023 ) 
a bandpass filter encompassing the frequency range of 5–25 Hz was 
applied on raw DAS waveforms in order to obtain only local micro- 
seismic activity. In that way, teleseismic earthquakes that occur in 
lower frequenc y re gions were ef fecti vel y filtered out from their DAS 

records. While in Sladen et al. ( 2019 ) the authors applied bandpass 
filtering between 1 and 15 Hz to each waveform recorded by DAS. In 
our study, using the frequency band of 0.005–20 Hz, the expected 
seismic activity in the region can be more ef fecti vel y monitored. 
Broad-band signals due to local earthquakes of 2–20 Hz, teleseisms 
of 0.005–1 Hz and tectonic tremors of 1–8 Hz can all be measured 
in monitoring period B. Due to instrumentation limitations, only 16 
straingrams representing local earthquakes were constructed in this 
monitoring period. Typical seismic waveforms on three locations 
along the Muroto cable that represent a local earthquake in moni- 
toring period B are shown in Fig. 5 . These waveforms are shown 
as the robust z -score scaled values of the strain field. Using this 
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Figure 4. Strain field measurement as a function of time elapsed and distance along the fibre optic cable for a tectonic tremor that occurred on 02 Febr uar y 
2022. Pre-processed strain waveforms were assembled in a 2-D matrix and median spatial filtering was applied as part of the processing stage to generate this 
image and enhance the visibility of strain variation across the cable. 

Table 1. Main specifications of the two DAS interrogators used in this study to monitor hydroacoustic activity in the 
Nankai Trough, while being connected to the Muroto fibre optic cable. 

MONITORING PERIOD A 

Developer AP Sensing GmbH 

Technology φ-OTDR 

Spatial resolution 5.1 m 

Temporal sampling rate 500 Hz 
Resulting number of channels ≈ 9800 
Monitoring period 30 January 2022 to 23 March 2022 

MONITORING PERIOD B 

Developer DOFS research group, University of Southampton 
Technology φ-OTDR 

Spatial resolution 1 m 

Temporal sampling rate 1 kHz 
Resulting number of channels ≈ 55 000 
Monitoring period 17 August 2021 to 02 October 2021 
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tandardization or normalization procedure, we subtract each sam-
le with the median value of the w aveform and di vide b y the mean
bsolute de viation. The adv antage of such a normalization proce-
ure is in the identification of extreme values in each waveform,
hich corresponds to impulses and other outlying events in the

eismic waves of DAS records. Hence, both P and S waves can be
ore easily discriminated than the remaining signal components, as

hown in these plots. Also, the time difference of each strain tran-
ient event, that is the beginning of the P wave, which is related to the
ight reaching each channel along the fibre, is also apparent on these
lots. With regard to robust measures of location and scale, many
echniques have been studied in the past and implemented on dif-
erent problems. For instance, in Matthaiou ( 2022 ) robust statistical
utlier analysis on multivariate and high-dimensional input feature
omains was demonstrated on a range of different vibration-based
ensing data sets. While, in Schreurs et al. ( 2021 ) an anomaly detec-
ion method was presented for input spaces that are not constrained
o be elliptical. 

art/ggae400_f4.eps


490 I. Matthaiou et al . 

20 40 60 80 100

-5

0

5

st
ra

in
 (

-)
Distance  6.6km

20 40 60 80 100

-10

0

10

st
ra

in
 (

-)

Distance  10.3km

20 40 60 80 100
time (s)

-5

0

5

st
ra

in
 (

-)

Distance  16.9km

Figure 5. Strain field measured (robust z -score standardized) at three dif- 
ferent locations across the DAS fibre optic cable. In these three plots, the 
waveform of a local earthquake is captured during monitoring period B. P 

and S waves are clearly visible on the three waveforms. 
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Moreover, the transformation of monitoring period B records 
into straingrams, suitable for classification purposes, includes a 2- 
D spatial filtering stage that enhances its signal-to-noise ratio value. 
In particular, a 2-D zero-mean symmetric Gaussian of the form 

g[ i, j] = exp ( −( i 2 + j 2 ) / 2 σ 2 
u ) [with standard deviation σu ≈ [1 , 5]

Szeliski ( 2022 )] was applied on the bandpass filtered 2-D matrix. 
This filter was chosen since it has many suitable properties for 
smoothing these DAS matrices, including relati vel y low compu- 
tational cost (e.g. as compared to the non-local means method). 
The enhancement in signal-to-noise ratio for the straingram is im- 
portant in the subsequent steps of classifier training since discrim- 
inatory image features can be more ef fecti vel y extracted. Addi- 
tionally, learning noise-related features from the straingrams can 
be detrimental to classification accuracy. This is due to the fact 
that we wish to discriminate events from background noise. Ad- 
ditionally, the inclusion of noise in the straingrams is expected to 
require a more complex network architecture, necessitating larger 
data sets to train on. Note that e xcessiv e spatial smoothing is also 
expected to impact classification accuracy since important image 
features such as object edges and corners will be smoothed out. 
Pre-processing data to improve classification accuracy in convolu- 
tional neural networks has already been observed in many studies, 
for example Jernelv et al. ( 2020 ). In Matthaiou et al. 2023 , we 
pre viousl y examined different image pre-processing techniques in 
order to improve the images derived from DAS signals in noisy 
environments. 

A typical example illustrating the ef fecti veness of enhancing the 
signal-to-noise ratio for straingrams, using the above set of meth- 
ods, is shown in Fig. 6 . Given a relati vel y large range of strain 
values on the raw input 2-D DAS matrix representing this local 
earthquake [26 Septe2021 at 17:29 (UTC)], a logarithmic normal- 
ization (base 10) was applied (Fig. 6 a). The same 2-D DAS matrix 
is constructed as shown in Fig. 6 (b), after each individual wave- 
form is bandpass-filtered between the range of 0.005–20 Hz. In 
addition, Fig. 6 (c) shows the resultant DAS matrix, after convolv- 
ing Fig. 6 (b) with the 2-D Gaussian spatial smoothing filter, with 
σu = 5 . While, Fig. 6 (d) shows the final DAS matrix output from 

this procedure, that is the straingram, which is a result of applying 
robust z -score standardization on each of the pixel values (logarith- 
mic normalization to the base 10 is also applied as a final step). 
This standardization procedure ef fecti vel y normalizes the data in 
the same range of values, while highlighting extreme values (as dis- 
cussed pre viousl y) on the DAS records: raising the signal-to-noise 
ratio of the DAS matrix. This is especially valuable at larger dis- 
tances from the Muroto coast. Since the waveforms from the first 
few kilometres where the fibre optic cable was buried and ocean 
w ave energy w as significant in the DAS records were removed 
from the DAS matrix. Also, in monitoring period B, given that 
only local earthquakes were recorded, a fixed-time window of 50 
s was applied on the continuous waveforms to generate the strain- 
grams (mainly to decrease computational processing requirements 
associated with large DAS matrices). Note that on both DAS inter- 
rogators, significant attenuation of laser pulses at higher distances 
from the coast was observed for local earthquakes. As seen pre- 
viously, in Fig. 5 , the strain data at a distance of about 16.9 km 

from the coast of Cape Muroto exhibit a lower signal-to-noise ra- 
tio compared with the data collected from locations closer to the 
shore. 

In total, six different types of DAS signals were identified: airgun 
shots, sailing ships, the passing of marine mammals, local earth- 
quakes, tectonic tremors and teleseismic events. Straingrams for 
each of these signals were constructed according to the procedure 
that was outlined earlier. An example for each of the identified 
events is shown in Figs 7 and 8 . Fig. 7 shows three straingrams rep- 
resenting three different geophysical events, where the x -axis is time 
(3 min in total) and the y -axis is the distance from the coast along 
the fibre optic cable (whole 55 km span). In particular, Fig. 7 (a) 
shows a straingram of a local earthquake, while in Figs 7 (b) and 
(c) the straingrams represent a teleseismic earthquake and a tec- 
tonic tremor, respecti vel y. As it is shown, local earthquakes have 
sharper onsets of strain and occur for about less than a minute or 
so. On the other hand, teleseismic earthquakes last for minutes to 
hours, and thus can typically occupy all or a larger proportion of 
the straingram as they are enriched in lower-frequency energy. The 
propagation of seismic wave energy along the fibre optic cable will 
typically be much lower than for local earthquakes. This is apparent 
in the strain field variation patterns that appear more diagonal than 
local ear thquakes. While patter ns obser v ed with teleseismic ev ents 
in the straingrams are largely similar to tectonic tremors, tectonic 
tremor straingrams typically contain a single event, occupying a 
cer tain propor tion of the image. In Fig. 8 (a) a straing ram of re- 
peated airgun shots is shown, while in Figs 8 (b) and (c) show the 
straingram of a ship sailing and marine mammals’ sounds (either 
due to crossing it or from other hydroacoustic sound waves emitted 
by it), respectively. 

The total amount of straingrams constructed for geophysical 
and non-geophysical classes of events, were 517 and 315, respec- 
ti vel y. Additionall y, a trul y automated processing capability for DAS 

records demanded discrimination of both of these two classes from 

background noise, as well. Hence, a third class of events was consid- 
ered with 164 straingrams representing background noise (hereafter 
‘noise’). In summary, the total number of available (and annotated) 
straingram examples was 1050. Stratified random sampling was 
employed to split the dataset into 800 training samples, 150 val- 
idation samples, and 100 testing samples, ensuring that the class 
distribution was preserved across each subset. 
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Figure 6. A straingram generated using a set of processing steps: (a) the original ra w 2-D D AS matrix, (b) the bandpass filtered (0.005–20 Hz) 2-D DAS 
matrix, (c) 2-D spatial smoothing filter applied on the image in (b) and (d) robust z -score standardization applied on the image in (c). In each step (a)–(d) the 
strain field is log-normalized. 

Figure 7. Straingrams ( x -axis is time, y -axis is distance, z -axis or colour is 
strain amplitude), representing geophysical events captured during monitor- 
ing period A: (a) local earthquake, (b) teleseismic earthquake and (c) tectonic 
tremor. Straight horizontal lines are spurious features due to various noise 
sources across the fibre optic cable. 

Figure 8. Straingrams ( x -axis is time, y -axis is distance, z -axis or colour 
is strain amplitude), representing non-geophysical events captured during 
monitoring period A: (a) airgun shots, (b) ship vessels and (c) marine mam- 
mals. Straight horizontal lines are spurious features due to various noise 
sources across the fibre optic cable. 
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 C O N V O L  U T I O N  A L  N E U R A L  

E T W O R K S  F O R  C L A S S I F Y I N G  

T R A I N G R A M S  

s was discussed and observed in Section 2 , the constructed strain-
rams representing each of the six events identified (in monitoring
eriods A and B) have a range of distinguishing features. From
 computational perspective, these characteristics can be seen as
ifferences in the edges: boundaries of a particular object in the
traingram and its shape or feature pattern. Also, differences in con-
rast are expected to be an important discriminating factor, which
ill be attributed to the absolute value of the strain field with re-

pect to the background noise. For instance, sailing ships, as seen in
ig. 8 (b), have a weaker signal in comparison to a local earthquake

n Fig. 7 (a). It is evident from the straingrams that sailing ships are
ar less distinguishable from the background noise levels (varies
long the fibre), which is due to a lower dynamic range of their
train field. Similarly, the teleseismic event recorded in Fig. 7 (b) is
lso of low dynamic range, where straight horizontal lines (noise
ither due to optical fading or poor physical contact of the cable)
re profound in the image. Therefore, other characteristics will also
eed to be extracted from these images in order to achieve a robust
iscrimination of the classes. Spatial relationships between neigh-
ouring pixels within a given window and pattern regularity will
e different between geophysical and non-geophysical events. As
bserved, the local earthquake example can be seen as an abrupt
nd straight line pattern while airgun shots contain multiple such
ines but at a smaller gradient v alue. Generall y, it is expected that
atterns from geophysical sources will be of more regular shape,
hile non-geophysical events can be less structured. Additionally,

olour distribution and variation can be explored as a potential
eature: teleseisms and tremors seem to cause higher disturbances
n the cable at its far-end from the coast (possibly due to a bet-
er mechanical coupling between the seabed and cable at those
ocations). 

As an overview, the diagram in Fig. 9 shows the main processes
nvolved in earthquake catalogue creation using DAS. As shown, a
AS system interrogates the fibre optic cable, generating N f strain
aveforms (i.e. at different locations) each having M f number of

amples. A 2-D DAS matrix X is constructed and the straingram
s generated using the signal and image processing steps discussed
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Figure 9. Diagram illustrating the main processing steps undertaken to classify raw DAS signals into one of the three classes: geoph ysical, non-geoph ysical 
or noise. The classifier also gives a class-conditional probability output. 
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pre viousl y in Section 2 . In this study, the classifier is used to infer 
the class that each constructed straingram belongs to. The classifier 
can therefore replace the human expert’s manual classification pro- 
cedure. Additionally, the classifier will produce prediction outputs 
with a class-conditional probability associated with each image. 
This prediction output (or score) can be combined with a suitable 
threshold to provide a more informed classification of the strain- 
grams. 

3.1 Fundamental aspects of the classifier 

The spatial hierarchical features on the straingrams, that is from 

edges to patterns, for each of the three classes, were identified us- 
ing convolutional neural networks. Generall y, the de velopment of 
data-driven models using neural network architectures allows one 
to be very flexible and versatile in the training phase. Given a suit- 
able architecture and hyperparameters or through transfer learning, 
neural networks can deal with various challenges including mod- 
elling with insufficient training examples (Goodfellow et al. 2016 ). 
Fur ther more, neural networks using 2-D convolutional layers (here- 
after ’convolutional layers’) in order to automatically extract image 
features for classification of fer se veral adv antages over their prede- 
cessors (more details in LeCun et al. 2015 , 1998 ; Krizhevsky et al. 
2017 ) including: 

(i) Weight sharing : the same set of parameters that are subjected 
to optimization in the training phase (hereafter ‘free weights’) are 
used across the whole image. Whereas, in conventional neural net- 
works each layer is connected to its adjacent one using a free weight 
that is only used once in the network. 

(ii) Hierar chical featur e learning : con volutional neural netw orks 
use several lay ers, w hereby its free weights are used to extract 
useful image features for a given task. These features are then 
used in the next layer to carry on an equi v alent operation, thereb y 
extracting features on features. By using deeper feature hierarchies, 
these models are capable of learning whole image objects, starting 
from simple edge detection at the higher network levels. 

(iii) Translation invariance : in an image a feature (e.g. an edge) 
is guaranteed to be identified no matter its spatial location, since 
the same kernel is used throughout its full spatial length. For our 
study, an event such as a local earthquake in a straingram may 

be shifted in both time and distance. In order to discriminate it 
from the other two classes, the translation invariance property is 
necessary. 

In convolutional neural networks for images, each set of parame- 
ters will be a 2-D square matrix of relati vel y small size, for example 
3 ×3 or 7 ×7. This matrix is convolved with an image by sliding it 
both horizontally and vertically in order to extract features suitable 
for classification. This matrix is known as the ‘kernel’, while the 
corresponding set of features extracted from a single convolution 
operation is called a ‘feature map’. In each layer of the network, 
different kernels will be used so that multiple feature maps (as the 
number of kernels used) can be extracted from a single image. This 
feature map will then be used in the next layer to perform the same 
convolution operations (hierarchical structure), and so on. A key 
difference with other classification techniques, for example support 
vector machines, for input image data (or other spatially correlated 
data), is that convolutional neural networks compute a set of unique 
features rele v ant to the task. All kernel matrices that are used in 
the conv olutional lay ers are optimized in the training phase so that 
features are synthesized instead of handcrafted. 

For completeness, some of the most important computational 
processes involved in convolutional neural networks and their as- 
sociated technologies will also be discussed more formally in this 
section. At the same time, the diagram in Fig. 10 helps to visual- 
ize these processes at the inference (or prediction) stage for each 
straingram, as drawn from the test set. In the diagram, a strain- 
gram representing a local earthquake of pixel size 256 ×256 is 
convolved with 112 kernels, where each kernel is a different 5 ×5 
matrix (parameter values range from 0 to 100). Therefore, 112 fea- 
ture maps are generated after this first layer of the network. Three 
feature maps are shown in Fig. 10 (c) (out of 112), while the corre- 
sponding kernels are seen in Fig. 10 (b). Most commonly, there are 
three different computational processes involved in the extraction 
of feature maps: 2-D linear convolution with a kernel matrix K , 
a non-linear acti v ation function f a () of each pixel in the feature 
map and 2-D spatial downsampling (although in the example in 
Fig. 10 there is no spatial downsampling after the first convolutional 
layer). 

During a 2-D convolution operation with a p × p kernel matrix 
K and an input straingram X ∈ R 

I×J×1 (second-order tensor), a 
feature map Z will be computed at various spatial coordinates i, j
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Figure 10. Diagram illustrating the hierarchical process of generating prediction outputs from straingrams using a trained 2D convolutional neural network. 
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s follows: 

Z [ i, j] = 

p−1 ∑ 

a= 0 

p−1 ∑ 

b= 0 
X [ i + a, j + b ] K [ a, b ] . (1) 

he operation in eq. ( 1 ) will generate a single feature map. In
ractice, there will be several such kernel matrices, and as such
he operation will result in sets of feature maps after each con-
 olutional lay er. Note that all feature maps generated will jointly
ontribute to the classification accuracy, and so one cannot con-
ider them as separate features. For instance, corners in one feature
ap and contrast levels in another are combined in a feature vec-

or, which is then used to identify each class. This is the result of
imultaneously optimizing all kernel matrices together to extract
eatures that may be shared across the feature maps, as well (Zhang
t al. 2021 ). And, this is one of the reasons that convolutional neu-
al networks are highly successful in image processing tasks, like
lassification. Also, from Fig. 10 (d) and onwards, each convolu-
ional layer will comprise C number of channels, which is equal
o the number of feature maps computed in the previous convolu-
ion layer, and so on. Therefore, we will be looking to expand our
ingle-input and single-output computation in eq. ( 1 ) to one that
ncorporates multiple inputs and multiple outputs in each convo-
utional layer. For this example, each one of the 112 channels in
he second conv olutional lay er will be cross-correlated with each
eature map (equal to 112), and the result at various spatial coor-
inates i, j will be summed to generate a single feature map as
ollows: 

Z [ i, j] = 

C= 112 ∑ 

c= 1 

p−1 ∑ 

a= 0 

p−1 ∑ 

b= 0 
Y [ i + a, j + b , c ] K [ a, b , c ] . (2) 

ote that in the second convolutional layer, there are 80 kernels
er channel, and so there will be 80 feature maps generated, as
een in Fig. 10 (f). Before generating the second set of feature maps
here are two more computational processes after each convolutional
ayer that must be discussed: non-linear acti v ation and 2-D spatial
ownsampling, as mentioned pre viousl y. 

The purpose of applying any type of activation function on the
eature maps, for example f a ( Z [ i, j] = max { 0 , Z [ i , j] } , ∀ i , j , is
o induce flexibility during the training phase. This means that
he model can extract features from the straingrams that are not
nly complex but also non-linearly correlated (i.e. in the case of
on-linear acti v ation functions). This broad-band capability is not
ossible with just linear convolution operations. Rectified Linear
nit (ReLU) is an example of a non-linear acti v ation function that
as already demonstrated a number of benefits in learning tasks,
or example the introduction of a sparse set of weights (since it sets
alues to 0) and avoidance of the vanishing gradient seen in other
cti v ations (e.g. sigmoid, Krizhe vsky et al. 2017 ; Goodfellow et al.
016 ; LeCun et al. 2015 ). On the other hand, using 2-D spatial
ownsampling layers one can ef fecti vel y reduce the size of the in-
ut image by sliding a fixed-size spatial window over the image and
xtracting suitable information. Following this procedure, coarser
eature maps can be calculated after each convolutional layer, which
ill result in the recognition of more global features. This ultimately
ields in recognizing whole objects in the image, for example the
traing ram patter n of the local earthquake (Fig. 7 a). Due to down-
ampling, small translations and transformations in the input image
ill not influence the computation of feature maps. This is another

mportant consideration in classifying the straingrams, since small
hifts in the pattern for each event will be ef fecti vel y filtered out.
s an example, in Fig. 10 (e) 2-D maximum pooling with a window

ize of 2 × 2 is used to obtain the maximum pixel value within
hat window. This operation e xactly halv es each feature map, that
s after the first 2-D maximum pooling: f a ( Z ) ∈ R 

I×J → R 

I/ 2 ×J/ 2 ,
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and so on. Therefore, in the last extracted feature map (Fig. 10 l) the 
pixel size of each straingram will be decreased by 2 N p , where N p 

is the total number of 2-D maximum pooling layers used. Hence, 
no matter the pixel size of each straingram and given sufficient 
computational resources, one may use any input image size to train 
the convolutional neural network, as the ‘field-of-view’ of the clas- 
sifier is taken care of by the downsampling layers. After the fi- 
nal convolutional layers, higher-level features (e.g. textures) are 
extracted by combining more localized ones in the earlier layers 
(e.g. edges). 

Gi ven the relati vel y small set of labelled straingrams at our dis- 
posal (i.e. 1050 for training-validation-testing phases), two regular- 
ization techniques were investigated. The first involves the addition 
of dropout layers after each 2-D maximum pooling lay er, w hich was 
inspired by other neural network architectures as seen in Sri v astav a 
et al. ( 2014 ), Zeiler & Fergus ( 2013 ) and Wu & Gu ( 2015 ). The pro-
cess of dropout lay ers enab les each free weight to be self-sufficient 
during the training phase of the classifier, such that it prevents ‘co- 
adaptation’ behaviour (Hinton et al. 2012 ). Essentially, a fraction 
(or the dropout rate) of free weights is randomly set to zero at the 
beginning of each epoch. More formally, an independently sampled 
Bernoulli variable associated with one of the free weights is set to 
0 with probability p d ( β ∼ Bernoulli ( p d ) ). This random variable β
is multiplied by one of the free weights so that it eliminates its con- 
tribution during the training phase when β = 0 . In order to combat 
potential overfitting due to small-sized data sets, image augmenta- 
tion is another approach that was used (see Shorten et al. ( 2019 )). 
Using that approach, the data set is expanded with the addition of 
synthetically generated copies of the straingrams by applying dif- 
ferent types of label-preserving affine transformations as shown in 
previous studies, for example Krizhevsky et al. ( 2017 ) and Perez 
& Wang ( 2017 ). Both dropout and image augmentation layers do 
not have free weights that need to be optimized during the training 
phase. 

Fur ther more, in Fig. 10 (n) the convolutional neural network in- 
corporates r fully connected dense layers. In k 1 layer, each neuron in 
that layer is connected to each feature value extracted from the last 
conv olutional lay er (F ig. 10 l). This is done by first vectorizing the 
tensor to 1-D (Fig. 10 m). Given that there are a total of 64 feature 
maps in the last conv olutional lay er, each of size 16 × 16, there will 
be a total of k 1 = 16 × 16 × 64 free weights that need to be trained 
in the first fully connected dense layer (see LeCun et al. 2015 , for 
more details). 

For training this type of classifier when the number of classes 
is greater than 2 the categorical cross-entropy loss function is a 
typical choice (Goodfellow et al. 2016 ; Zhang et al. 2021 ). Among 
other things, cross-entropy loss avoids issues such as the ‘learn- 
ing slo wdo wn’ that characterizes quadratic losses. Given t n t ,n c and 
ˆ y n t ,n c represent the target and predicted classes, respecti vel y, so 
that for each n 

th 
t training straingram there will be a binary vector 

associated with the target n 

th 
c class. For instance, for the n 

th 
t strain- 

gram the true class t n t ,n c = [1 , 0 , 0] , which can correspond to the 
geophysical class, while t n t ,n c = [0 , 0 , 0] for both non-geophysical 
and noise classes. Then, the av erage cate gorical cross-entropy 
loss overall training straingrams N t , and the number of classes 
N c is, 

J = −
N t ∑ 

n t = 1 

N c ∑ 

n c = 0 

(
t n t ,n c ln 

[
ˆ y n t ,n c 

])
. (3) 

Note that J → 0 when target and predicted classes are similar, 
such that the cross-entropy loss is minimized over all N t in the 
data set. For each straingram during inference, an output score 
vector is computed ˆ y (F ig. 10 p), w hich can be converted into a 
class-conditional probability for a more meaningful interpretation 
of the results. This is done using a softmax acti v ation function 
(Goodfellow et al. 2016 ), which is used after the last fully connected 
dense layer, as in the diagram in Fig. 10 (o). 

Batch gradient descent is a technique that is used to minimize J 
by adjusting all the free weights of the classifier simultaneously by 
using the backpropagation algorithm (Murphy 2022 ). Free weights 
include all p × p weights to parametrize each kernel K for feature 
map extraction in all convolutional layers and all the weights that 
are used to connect each fully connected dense layer to its adjacent 
one. For instance, in layer k 1 a typical number of neurons will be 
256 each connected to another 256 neurons in layer k 2 , and so on. 
While in the first convolutional layer with each K being 5 × 5 , there 
will be 5 × 5 × 112 free weights to optimize. On the other hand, in 
the second convolutional layer, there is a 4-D tensor of free weights 
with a size of 7 × 7 × 112 × 80 . 

In dealing with large-sets of data, a mini-batch gradient descent 
approach is used. This is because, in batch gradient descent J is 
e v aluated onl y once for all N t training data, as seen in eq. ( 3 ).
This in turn leads to a single update for each free weight used in 
the training phase of the classifier (also known as one ‘epoch’). 
Ho wever , in mini-batch gradient descent, J is e v aluated multiple 
times for each epoch, which yields a more efficient estimation of 
the loss (is the average of all mini-batches), albeit more noisy. In 
Masters & Luschi ( 2018 ), it was shown that small mini-batch sizes, 
i.e., less than 32 instances, improves generalization performance. 
This finding was also supported by the findings in Keskar et al. 
( 2016 ), showing that large mini-batches tend to converge to sharp 
minimizers. 

Note that, in our study each straingram is assigned to each mini- 
batch at random, after each mini-batch e v aluation (completion of 
one epoch). The Adaptive Moment Estimation Algorithm (ADAM, 
Kingma & Ba 2014 ) is a common technique that implements mini- 
batch gradient descent in an efficient and robust way. ADAM com- 
bines the capabilities of RMSProp (Zhang et al. 2021 ) and AdaGrad 
(Duchi et al. 2011 ), where in these algorithms a decaying exponen- 
tial gradient is used to adapt the learning rate. 

3.2 Tuning of classifier’s main hyperparameters and 

ar chitectur e 

Hyperparameters in convolutional neural networks refer to any pa- 
rameter that is not part of the gradient descent updating rule, that 
is all parameters that are not free weights and need to be specified 
prior to training. Table 2 lists the search space of values for 14 
different hyperparameters that were considered. In order to identify 
a suitable set of hyperparameters, given the relati vel y large search 
space shown in Tab le 2 , Bay esian Optimization is a popular choice. 
The objective function g used in Bayesian Optimization is the loss 
computed using the validation set of 150 straingrams, and varies 
with hyperparameter changes g( h p ) . Using Gaussian Processes Re- 
gression (GPR, Murphy 2022 ) one can construct a surrogate model 
for g. More importantl y, the GPR frame work in the context of 
Bayesian Optimization, is used to e v aluate g( h p ) ∈ R 

d by search- 
ing for points in this d−dimensional space that provide a trade-off 
between exploration and exploitation of the surrogate model’s pos- 
terior distribution. This is done using an acquisition function that 
balances e xploiting re gions where the posterior of g( h p ) is high and 
e xploring re gions where the uncertainty in predicting g( h p ) is high. 
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Table 2. Search space of the main hyperparameters used to optimise the 2D convolutional neural network. 

Hyperparameters Search space 

Input image pixel size { 128 × 128 , 224 × 224 , 256 × 256 , 312 × 312 } 
Number of convolutional layers { 3 , 4 , 5 , 6 , 7 , 8 } 
Dimension p × p of convolutional kernel { 3 × 3 , 5 × 5 , 7 × 7 , 9 × 9 } 
Acti v ation function f () binary choice { ReLU, Sigmoid } 
2-D 2 × 2 maximum pooling binary choice { True, False } 
Number of maximum pooling layers { 1 , 2 , 3 , 4 } 
Dropout layer binary choice { True, False } 
Image augmentation layer binary choice { True, False } 
Brightness and contrast rates ( 0 − 1 ) { 0 , 0 . 01 , ..., 0 . 19 , 0 . 2 } 
Vertical flip binary choice { True, False } 
Dropout rate ( 0 − 1 ) { 0 , 0 . 01 , ..., 0 . 39 , 0 . 4 } 
Number of neurons in fully connected dense layers 2 i , ∀ i = { 6 , 7 , 8 , 9 , 10 } 
Learning rate η 2 −i , ∀ i = { 6 , 7 , ..., 11 , 12 } 
Number of straingrams used in each mini-batch 2 i , ∀ i = { 3 , 4 , 5 , 6 , 7 } 

Tab le 3. Bay es model architecture, hyperparameters and output tensor shape from each network lay er. 

Layer type Value chosen Tensor output shape 

Input layer 256 × 256 × 1 256 × 256 × 1 
2-D convolution | acti v ation Kernel size = 5 × 5 | ReLU 256 × 256 × 112 
Dropout Dropout rate = 0 . 245 256 × 256 × 112 
2-D convolution | acti v ation Kernel size = 7 × 7 | ReLU 256 × 256 × 80 
2-D maximum pooling Kernel size = 2 × 2 128 × 128 × 80 
Dropout Dropout rate = 0 . 255 128 × 128 × 80 
2-D convolution | acti v ation Kernel size = 3 × 3 | ReLU 128 × 128 × 48 
2-D maximum pooling Kernel size = 2 × 2 64 × 64 × 48 
Dropout Dropout rate = 0 . 225 64 × 64 × 48 
2-D convolution | acti v ation Kernel size = 3 × 3 | ReLU 64 × 64 × 32 
2-D maximum pooling Kernel size = 2 × 2 32 × 32 × 32 
Dropout Dropout rate = 0 . 02 32 × 32 × 32 
2-D convolution | acti v ation Kernel size = 5 × 5 | ReLU 32 × 32 × 64 
2-D maximum pooling Kernel size = 2 × 2 16 × 16 × 64 
Dropout Dropout rate = 0 . 255 16 × 16 × 64 
2-D convolution | acti v ation Kernel size = 7 × 7 | ReLU 16 × 16 × 48 
Dropout Dropout rate = 0 . 235 16 × 16 × 48 
Flatten Inherited from previous layer 12288 × 1 × 1 
Fully connected dense | activation Number of neurons = 256 | ReLU 256 × 1 × 1 
Fully connected dense | activation Number of neurons = 3 | S of tmax 3 × 1 × 1 
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t is therefore a ‘guided’ procedure, and one that minimizes the
equirement for obtaining actual observations of the validation set
oss, which are e xpensiv e to obtain for a range of different hyper-
arameters. In this study, the upper confidence bound is used as an
cquisition function. See Snoek et al. ( 2012 ), Shahriari et al. ( 2015 )
nd Brochu et al. ( 2010 ) for more details on Bayesian Optimization
sing Gaussian Processes. 

To implement hyperparameter tuning and training-validation-
esting of the classifier Keras (O’Malley et al. 2015 ) and TensorFlow
Abadi et al. 2016 ) libraries were used, respecti vel y. Python version
.10 was used on Ubuntu 22.04 on a PC with 32GB of RAM and
n Nvidia V100. 

 R E S U LT S  

n image resizing layer was included as part of the classifier’s
rchitecture so that each greyscale straingram was resized to a fixed-
ize image of 256 × 256 . Additionally, a mini-batch of size 32 was
lso chosen via the Bayesian Optimization routine used. In order
o further constraint the optimization procedure when tuning the
etwork architecture, ‘blocks’ of layers (further limiting the total
umber of blocks of layers between 3 and 8) were considered in
he following sequence: convolutional, 2-D maximum pooling and
ropout. The optimization procedure was ‘free’ to choose between
sing 2-D maximum pooling and/or dropout or just convolutional
ayer in every block of layers, while at the same time respecting the
onstraints set in Table 2 . 

In order to visualize the final classifier architecture, Table 3 shows
uch an optimal choice of hyperparameters that w as deri ved us-
ng Bayesian Optimization. An important feature of this particu-
ar model architecture (hereafter ’Bayes’) is the e xtensiv e use of
ropout lay ers, w hich are included after every conv olutional lay er.
n 5 out of 6 ‘blocks’ (2-D convolution-2-D maximum pooling-
ropout), the dropout rate is more than 20 per cent of the total
umber of free weights used in each convolutional layer. At the
ame time, only ReLU activation functions (no Sigmoid functions)
ere selected by the optimization routine. A total of 50 trials was

pecified in each optimization run, which yielded 50 classifiers of
 arying v alidation losses, having a range of different hyperparame-
ers and architectures. Many such optimization runs were performed

https://keras.io/
file:www.tensorflow.org
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Figure 11. Categorical cross-entropy loss (log-scale) with epoch number for the three classifiers compared in this study. The two overlapping lines correspond 
to the loss calculated on the training and validation sets, x t and x v , respectively. 
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tions. 
The main features of two of the most promising classifiers, as 

derived using Bayesian Optimization (chosen as the top classifiers 
from two different optimization runs) are as follows: 

(i) Bayes : As shown in Tab le 3 , Bay es is comprised of 6 con- 
v olutional lay ers with 4 2-D maximum pooling layers after each 
convolutional operation (starting from layer 2 to 6). It has a single 
fully connected dense layer with 256 neurons, and the total number 
of free weights being equal to 3 839 091. 

(ii) Bayes-IA : This classifier uses two image augmentation layers. 
One is a random vertical flip and the other applies random contrast 
with a maximum level of 10 per cent. The model is comprised of six 
2-D conv olution lay ers with four 2-D maximum pooling operations 
being followed by dropout layers in each one (similar blocks of 
layers as in Bayes model). This classifier has a fully connected 
dense layer with 640 neurons, and the total number of free weights 
is equal to 664 531. The reason that this model has a smaller number 
of free weights, in comparison to the other two models, is due to the 
fact that it incorporates fewer kernels in each convolutional layer, 
so fewer feature maps are generated and so on. 

To facilitate comparison, a baseline classifier (hereafter ‘Base’) 
was also trained using hyperparameters and model architecture that 
were derived heuristically. The base has only three convolutional 
layers and incorporates 2-D maximum pooling after each one. Ad- 
ditionally, it has a fully connected dense layer with 128 neurons, 
yielding a total number of free weights equal to 4 239 267. Hence, 
Base has the highest number of free weights of the three classifiers 
considered, which is partly attributed to less spatial downsampling 
of its feature maps (only three 2-D maximum pooling lay ers). F i- 
nally, the learning rate of Base was manually chosen to be 0.003, 
w hile for Bay es and Bay es-IA it w as selected b y the optimization 
routine to be equal to, 0.0005 and 0.0002, respecti vel y. 

In Fig. 11 the variation in categorical cross-entropy loss as a 
function of epoch number is shown for the three classifiers. Note 
that the two overlaid lines correspond to the losses computed using 
both the training x t and validation x v sets. All images assigned 
to training and validation sets were randomly selected (stratified 
random sampling) prior to each training phase from the data set of 
1050 straingrams. As shown in these plots, all three models were 
trained on different numbers of epochs, that is 32 for Bayes, 27 for 
Bayes-IA and 25 for Base. This is because an early stopping criterion 
was used during the training phase which reduces the chances of 
model overfitting. This is done by terminating the training phase 
after the loss function on the validation set has seen no particular 
decrease (a threshold is typically set at a validation loss of around 
0.01) for five consecutive epochs, starting from epoch number 10. 
After early stopping the model with the lowest loss function on x v is 
selected. Note that the specification for the early stopping criterion 
was done empirically, but, was the same for the three models. 

The gradients of the losses in Bayes and Bayes-IA on both x t and 
x v data sets, increase dramatically starting from epoch number 8 and 
onwards. In Bayes-IA, both of the losses decrease at approximately 
the same (slow) rate until the training phase is terminated at epoch 
number 27 due to the early stopping criterion being satisfied. On 
the other hand, in Bayes the loss continues to decrease fast on 
x t , while after about epoch number 27, the decrease in loss on x v 
is much smaller, resulting in early stopping at epoch number 34. 
Note that Bayes shows a large deviation between validation and 
training losses after epoch number 20, but, it does not overfit the 
model due to the e xtensiv e use of dropout la yers. Overall, Ba yes 
obtains a higher decrease in loss on x v , as compared to Bayes-IA. 
The addition of image augmentation layers to synthesize a larger 
straingram data set for this particular classification task results in a 
slo wer con v ergence of the loss function. Moreov er, the heuristically 
tuned hyperparameters and model architecture of the convolutional 
neural network, that is the Base model, proved to be insufficient 
for this classification task. As can be seen, the loss function on x t 
keeps decreasing dramatically (falls below the minimum value of 
the y -scale axis) since the beginning of the training phase. At the 
same time, the loss on x v does not decrease, which can be a sign of 
model overfitting. 

To further e v aluate the three classifiers, in terms of accuracy 
and robustness in predicting the correct labels for each straingram, 
Fig. 12 shows both the cross-entropy loss and classification accuracy 
on x v . As seen, Bayes achieves the highest classification accuracy 
of around 97 per cent after about epoch number 30. Small discrep- 
ancies between loss and accuracy values can be observed, which is 
a consequence of computing classification performance using two 
slightl y dif ferent measures. On the one hand, the loss function cal- 
culation provides a direct probability measure (between 0 and 1) 
regarding the divergence of predictions from the target class distri- 
bution (Goodfellow et al. 2016 ). While classification accuracy on 
x v is a simplistic way of examining model performance through an 
intuitive ratio: the amount of ‘correct’ predictions (given a suitable 
threshold, e.g. 0.5) to the total number of images in the validation 
set. An image may be predicted as belonging to one of the three 
classes, even if the probability is low (i.e. even when it is close to the 
threshold of 0.5). Although this will increase the number of ‘cor- 
rect’ predictions, the loss function may see no particular decrease 
in its value when the confidence is relatively insignificant. 

Nevertheless, looking at both the loss and accuracy plots for 
Bayes-IA, one notices that after about epoch number 20 this classi- 
fier reaches an overall improved performance (around 95 per cent in 

art/ggae400_f11.eps


Classification of images derived from submarine fibre optic sensing 497 

Figur e 12. Categorical cross-entrop y loss function (left-hand panel) and classification accuracy (right-hand panel) as a function of epoch number on the 
validation set. The overlapping lines correspond to the three classifiers compared in this study. 

Table 4. Confusion matrices of three models: Base, Bayes-IA and Bayes. 
Values are presented as percentages (e.g., 95 represents 95 per cent). 

Target class Predicted class 
Geophysical Noise Non-geophysical 

BASE 

Geophysical 95 0 5 
Noise 0 79 21 
Non-geophysical 27 0 73 

BAYES -IA 

Geophysical 100 0 0 
Noise 4 80 16 
Non-geophysical 24 6 70 

BAYES 

Geophysical 100 0 0 
Noise 0 96 4 
Non-geophysical 17 3 80 

Figure 13. Two straingram examples drawn from the test set with target and 
predicted class labels as computed by Bayes model. 
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ccuracy). Due to the image augmentation la yers, Ba yes-IA results
n a more stable minimization of the loss function, since the training
ata set is now expanded (essentially increasing the ratio of training
xamples to the total number of free weights). On the other hand,
ooking at the accuracy of the Base model, its performance can be
een to be comparable to the other two classifiers. As discussed in
he previous paragraph, accuracy on its own can be a misleading
ndicator of performance. In the case of Base, the model could not
chieve a decrease in its loss function on the validation set, start-
ng from epoch number 5 and onwards. Although the Base model
as a high number of ‘correct’ predictions (around 91 per cent) its
onfidence remains relati vel y low, gi ven that the loss is relati vel y
igh. For instance, if the threshold is changed to a higher one (e.g.
0 per cent) to consider greater confidence in the results, then Base
ill have a very low classification accuracy. This is a sign that this
odel did not ‘learn’ adequately the feature patterns required for

he correct classification of the classes. 
The performance of the three classifiers was further e v aluated

n a test set of 100 images. This data set was generated as part
f the overall stratified sampling procedure that was followed to
eparate the data set into three sets: training, validation and test-
ng. The confusion matrices for the three models are shown in
ab le 4 , w here on each row is the target class and on each column

he predicted one. As can be seen, all three classifiers accurately pre-
ict the labels for the geophysical straingrams, with Base scoring
5 per cent and the other two 100 per cent. Bayes is the most accu-
ate classifier in predicting the correct target class for both noise and
on-geophysical straingrams, with 96 per cent and 80 per cent, re-
pecti vel y. On the other hand, Bayes-IA is marginally more accurate
han Base in these two classes. The overall accuracy (considering
ll the classes) of Bayes-IA is 83 per cent, which is just 1 per cent
igher than Base’s overall accuracy. On the other hand, the corre-
ponding classification accuracy for Bayes is about 92 per cent on
his test set. Predicting the correct target class for the straingrams
rom the non-geophysical class resulted in the largest number of
rrors. The top-performing classifier, that is Bayes, only managed
o predict 80 per cent of the non-geophysical straingrams correctly.

 D I S C U S S I O N  

esides the relati vel y low classification score in predicting non-
eophysical straingrams correctly (80 per cent), Bayes is relatively
ccurate with 92 per cent overall accuracy on our test set. Most
mportantl y, Bayes is fairl y accurate in discriminating geophysical
traingrams from the other two classes, which means that the respec-
ive features and patterns were ‘learned’ by the model. Although this
s a relati vel y small-scale test data set, as more straingrams become
 vailable w e will be more confident in our model’s generalization
apability. 

In terms of model architecture, Bayes is comprised of ‘blocks’,
hat is convolution-2-D maximum pooling-dropout sequences, as
een in Table 3 . Such architecture was inspired by previous models,
or example the ‘VGG-types’ developed by the Virtual Geometry
roup at Oxford (see Simonyan & Zisserman 2014 ) and others
sed in earthquake detection by Huot et al. ( 2022b ). Note that
VGG-type’ models hav e prov en v ery successful in image classi-
cation and can be readily used using TensorFlo w. Ho wever , such
odels require 1000s of training images, since the number of free
eights is greater than 138 million. Given our limited data set
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of 1050 straingrams, this will lead to an overdetermined model. 
Instead, the proposed classifier is relati vel y simple, requiring the 
optimization of less than 4 million free weights. As a consequence, 
training Bayes is also very computationally inexpensive, and can be 
done on a CPU ( ≥ 4 cores with > 3 GHz in clock-speed) or with 
a mid-range consumer GPU with CUDA cores (e.g. Nvidia RTX 

30-series). 
Bayesian Optimization was critical in designing our Bayes model 

architecture and tuning its hyperparameters. As seen, the optimiza- 
tion routine chose small values for η on the gradient descent up- 
dating rule. Additionally, the use of dropout layers with a relatively 
moderate rate, with around 1/5 of free weights zeroed in each con- 
v olutional lay er, offered robustness capability for our small-scale 
straingram data set. At the same time, ReLU acti v ations were also 
chosen, which supports the fact that they are widely used in cur- 
rent state-of-the-art neural network architectures. Although image 
augmentation, that is the Bayes-IA model, introduces robustness 
during the model training phase (as it reduces the possibility of 
overfitting), the slow convergence rate of the loss function is unde- 
sirable. Therefore, image transformations such as random vertical 
flips and contrast level changes applied to the original straingrams 
may not be a particularly successful regularization approach for 
our classification task. This is due to the fact that geophysical pat- 
terns are relati vel y regular and well-defined, that is body waves obey 
physical laws, and therefore, these patterns should not be artificially 
altered. 

In Fig. 13 , we show an example of predicting the correct tar- 
get class and another incorrect prediction by Bayes. In particular, 
we see that the geophysical straingram (on the right) was correctly 
predicted, while the non-geophysical was not. Given that the latter 
is composed of patterns that resemble a local earthquake, span- 
ning a large proportion of the straingram, Bayes’s confidence is 
around 70 per cent in this example image. A portion of geophysical 
straingrams on our data set have such similar patterns, and this can 
explain the reason as to why our classifiers wrongly predicted non- 
geophysical straingrams as geophysical ones. Local earthquakes are 
generally more well-represented in our data set as compared to this 
small proportion of non-geophysical straingrams, which results in 
better ‘learning’ of the geophysical patterns. 

To tackle such issues, one may adopt a higher classification 
threshold, for example 80 per cent in order to ensure better 
decision-making in a practical context. An important limitation 
of our classification framework is the reliance on correctly an- 
notated straingrams that are required to train our models. Given 
a small fraction of wrongly annotated straingrams, can result in 
a significant degradation of classification accuracy. In the litera- 
ture, self-super vised lear ning is a well-known technique to generate 
pseudo-labels directly from the structure of straingrams (e.g. Jing 
& Tian 2020 ). Semi-supervision has also been used (e.g. Yalniz 
et al. 2019 ) to improve performance in convolutional neural net- 
works, by exploring a much smaller set of well-annotated images. 
In fibre optic seismology this is particularly important as there is 
an abundance of data sets, but annotations are relati vel y limited 
(Thrastarson et al. 2022 ). 

One of the limitations associated with convolutional neural 
network-based architectures is the fact that these models can be 
insensitiv e to v er y localized patter ns. From the non-geophysical 
straingram in Fig. 13 , angle changes on both of the lines may have 
been completely disregarded during the training phase, even though 
this could serve as an important discriminating feature between 
the two classes (geophysical straingrams do not have such angle 
changes). Using spatial downsampling layers a certain degree of 
geometric transformation invariance is introduced, since they sum- 
marize a window in the image, for example to extract the maximum 

or average pixel values. In Sabour et al. ( 2017 ), a new class of mod- 
els (known as Capsule Networks) was introduced that can preserve 
such localized spatial features. 

Finally, another important consideration that needs to be dis- 
cussed has to do with how well each geophysical event is represented 
by its corresponding straingram. Or in other words, the proportion 
of seismic waves being recorded by a geophysical e vent. Gi ven that 
straingrams are constructed from a continuous stream of DAS sig- 
nals, there is a high possibility of partially capturing an event, that is 
creating an ‘incomplete’ snapshot. In case an event is ‘sufficiently’ 
represented by the straingram (all other variables considered rel- 
ati vel y constant), then the classifier is expected to be as accurate 
as the one presented in this study. Other other hand, if an event 
is not ‘suf ficientl y’ represented, for example body w aves partiall y 
captured at the beginning of the fibre optic cable, then the classifier 
may misclassify this event. This is because the classifier has been 
trained with straingrams that fully (or almost fully) captured the 
seismic waves of each event. Therefore, any new straingram must 
contain a ‘sufficient’ proportion of seismic waves for the feature 
maps to be ef fecti ve in classifying each class. 

Having said that, it should also be noted that convolutional neural 
networks are invariant to geometric transformations (e.g. rotations) 
in the images and translations (e.g. temporal shifts), so that strain- 
grams are not restricted to show an event on a certain part of the 
image. In other words, no matter the spatial location of an event 
on the straingram (top-left, bottom-right, etc.) the rele v ant feature 
maps required for classification will be extracted by convolutional 
neural networks (i.e. given the appropriate architecture and hyper- 
parameters). 

6  C O N C LU S I O N S  

In this paper, we tackled the problem of processing large-scale ob- 
servations from ocean-bottom fibre optic cables, being interrogated 
by DAS. In particular, we developed a digital signal and image 
processing method that converts a highly dense array of DAS strain 
data measured on a 55-km fibre optic cable into straingrams (plots of 
strain field variation as a function of time and location along the ca- 
ble). Using these representations we have trained 2-D convolutional 
neural networks to classify straingrams representing seismic obser- 
vations from other sources of hydroacoustic energy, for example 
sailing boats and marine mammal movements. The non-parametric 
Bayesian framework of Gaussian Processes Regression was used 
to tune the classifier’ s h yperparameters and particular architecture. 
We have seen that the optimization routine has systematically se- 
lected dropout layers in order to tackle the issue of overfitting, 
gi ven our relati vel y small data set of straingrams. Two classifiers 
were compared, one using dropout layers and another using image 
augmentation as regularization approaches. These two classifiers 
were compared with a baseline model, whose hyperparameters and 
architecture were chosen heuristically. On a test set of around 100 
straingrams, the classifier with the dropout layers proved to be the 
most promising for our classification task, having an overall accu- 
racy of 92 per cent. Some limitations of the current classifier were 
also discussed, for example invariance to highly localized features, 
along with some suggestions/methods for future work. 

Overall, w e show ed that the presented classifier can be used to 
significantly assist the seismologist, in analysing large-scale data 
sets using D AS technology. Moreover , as more data are generated 
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rom future experiments, we aim to develop a truly powerful image
lassifier, one that can be used to automate the process of discrim-
nating between different types of seismic processes, for example
ectonic tremors from teleseismic events. 

ATA  AVA I L A B I L I T Y  

e make publicly available the full dataset that was used to train,
alidate and test our models in the University of Southampton Ins
itutional Repository (Matthaiou et al. 2023 ). 
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A., Pohl, P. & Schubert, M., 2020. Fiber optic train monitoring with dis-
tributed acoustic sensing: conventional and neural network data analysis,
Sensors, 20, 450, doi:10.3390/s20020450. 

rizhe vsky , A. , Sutske ver, I. & Hinton, G.E., 2017. Imagenet classifi-
cation with deep convolutional neural networks, Commun. ACM, 60,
84–90. 

eCun , Y. , Bengio, Y. & Hinton, G., 2015. Deep learning, Nature, 521,
436–444. 

eCun , Y. , Bottou, L., Bengio, Y. & Haffner, P., 1998. Gradient-based learn-
ing applied to document recognition, Proc. IEEE, 86, 2278–2324. 

ellouch , A. , Yuan, S., Ellsworth, W.L. & Biondi, B., 2019. Velocity-based
earthquake detection using downhole distributed acoustic sensing—
examples from the San Andreas Fault Obser vator y at Depth, Bull. seism.
Soc. Am., 109, 2491–2500. 

i , J. , Kim, T., Lapusta, N., Biondi, E. & Zhan, Z., 2023b. The break of
earthquake asperities imaged by distributed acoustic sensing, Nature,
620, 800–806. 

i , J. , Zhu, W., Biondi, E. & Zhan, Z., 2023a. Earthquake focal mech-
anisms with distributed acoustic sensing, Nat. Commun., 14, 4181,
doi:10.1038/s41467-023-39639-3. 

i , Y. , Zhang, M., Zhao, Y. & Wu, N., 2022. Distributed Acoustic Sensing
Vertical Seismic Profile Data Denoising Based on Multistage Denoising
Network, IEEE Trans. Geosci. Rem. Sens., 60, 1–17. 

http://dx.doi.org/10.5258/SOTON/D2841
http://dx.doi.org/10.5194/se-13-449-2022
http://dx.doi.org/10.1038/s41598-018-36675-8
http://dx.doi.org/10.1029/2022GL102678
http://dx.doi.org/10.1109/JLT.2023.3273268
http://dx.doi.org/10.1038/s41598-021-84845-y
http://dx.doi.org/10.1038/s41467-018-04790-9
http://dx.doi.org/10.3390/s23063127
http://dx.doi.org/10.1109/JLT.2021.3128138
http://dx.doi.org/10.1093/gji/ggac417
http://dx.doi.org/10.1002/nsg.12232
http://dx.doi.org/0.1785/0220220037
http://dx.doi.org/10.1186/s40623-021-01385-5
http://dx.doi.org/10.1016/j.soildyn.2022.107723
http://dx.doi.org/10.1109/TPAMI.2020.2992393
http://dx.doi.org/10.1038/s41467-018-04860-y
http://dx.doi.org/10.1038/s41467-022-29184-w
http://dx.doi.org/10.1029/2002GL015981
http://dx.doi.org/10.3390/s20020450
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1109/5.726791
http://dx.doi.org/10.1785/0120190176
http://dx.doi.org/10.1038/s41586-023-06227-w
http://dx.doi.org/10.1038/s41467-023-39639-3
http://dx.doi.org/10.1109/TGRS.2022.3194635


500 I. Matthaiou et al . 

3371–3384. 

D
ow

nloaded from
 https://academ

ic.oup.com
/gji/article/240/1/483/7888994 by guest on 05 D

ecem
ber 2024
Lindsey , N. J. & Eileen, R. M., 2021. F iber -optic seismology, Annu. Rev. 
Earth planet. Sci., 49, 309–336. 

Lior , I. , Rivet, D ., Ampuero, J .P., Sladen, A., Barrientos, S., S ánchez- 
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