
IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 16, NO. 3, JUNE 2024 947

Continual Robot Learning Using Self-Supervised
Task Inference

Muhammad Burhan Hafez and Stefan Wermter , Member, IEEE

Abstract—Endowing robots with the human ability to learn
a growing set of skills over the course of a lifetime as opposed
to mastering single tasks is an open problem in robot learn-
ing. While multitask learning approaches have been proposed to
address this problem, they pay little attention to task inference.
In order to continually learn new tasks, the robot first needs to
infer the task at hand without requiring predefined task rep-
resentations. In this article, we propose a self-supervised task
inference approach. Our approach learns action and intention
embeddings from self-organization of the observed movement
and effect parts of unlabeled demonstrations and a higher
level behavior embedding from self-organization of the joint
action–intention embeddings. We construct a behavior-matching
self-supervised learning objective to train a novel task infer-
ence network (TINet) to map an unlabeled demonstration to
its nearest behavior embedding, which we use as the task repre-
sentation. A multitask policy is built on top of the TINet and
trained with reinforcement learning to optimize performance
over tasks. We evaluate our approach in the fixed-set and con-
tinual multitask learning settings with a humanoid robot and
compare it to different multitask learning baselines. The results
show that our approach outperforms the other baselines, with the
difference being more pronounced in the challenging continual
learning setting, and can infer tasks from incomplete demonstra-
tions. Our approach is also shown to generalize to unseen tasks
based on a single demonstration in one-shot task generalization
experiments.

Index Terms—Continual multitask learning, robot control,
self-supervised learning, task inference.

I. INTRODUCTION

TEACHING robots to perform tasks with minimal
knowledge about the environment and without manually

programming the desired behavior has always been the driv-
ing motivation for the research on robot learning. The field
has witnessed remarkable progress over the past decade on
a variety of difficult tasks, including manipulation [1], [2],
locomotion [3], and navigation [4]. However, the learning is
more oriented toward solving single tasks. To enable multi-
task learning, approaches based on knowledge distillation [5],
[6], [7], metalearning [8], [9], and language conditioning [10],
[11] have been proposed.

Manuscript received 22 December 2022; revised 13 May 2023 and 24 July
2023; accepted 9 September 2023. Date of publication 14 September 2023;
date of current version 11 June 2024. This work was supported by
the German Research Foundation DFG under Project CML (TRR 169).
(Corresponding author: Muhammad Burhan Hafez.)

The authors are with the Knowledge Technology Group, Department of
Informatics, University of Hamburg, 22527 Hamburg, Germany (e-mail:
burhan.hafez@uni-hamburg.de; stefan.wermter@uni-hamburg.de).

Digital Object Identifier 10.1109/TCDS.2023.3315513

Fig. 1. Given an unlabeled demonstration (left), the robot learns to infer the
task at hand (e.g., Grasp the red glass) by finding the best-matching behavior
in the growing, self-organizing network of behaviors and training the proposed
TINet to map the demonstration to its best-matching behavior, which we use
as the task representation.

While these approaches are becoming widely adopted to
overcome the limitation of task-specific learning, they have
two notable deficiencies. First, they are not compatible with
continual learning as they assume a fixed task distribution and
treat newly introduced tasks as independent learning prob-
lems. Specifically, when a policy to perform a given set of
sensorimotor tasks is learned, a complete retraining is often
required if a new task is introduced. This is in sharp con-
trast to the human ability to learn a growing repertoire of
skills over the course of a lifetime. Second, they lack an effi-
cient task inference mechanism. This issue is either ignored by
using predefined task labels or fixed task representations (e.g.,
pretrained natural language embeddings) as input or poorly
addressed by requiring extensive exploration to gather expe-
rience data sufficient to infer a posterior over a latent task
variable [12], [13]. Humans, on the other hand, only need to
observe a demonstration of the desired behavior to success-
fully infer the task at hand due to their ability to understand
and imitate the goal of the observed behavior, not the precise
actions [14], [15].

Existing multitask learning approaches that incorporate
expert demonstrations can be categorized, according to the
way the demonstrations are used, into three distinct groups:
1) conditioning the policy on a demonstration embedding
[16], [17]; 2) training the policy to match demonstration
actions with behavior cloning [18], [19]; and 3) generating
a reward based on how close the observed image is to the
corresponding one from visual demonstrations [20], [21]. A

c© 2024 The Authors. This work is licensed under a Creative Commons Attribution 4.0 License.
For more information, see https://creativecommons.org/licenses/by/4.0/

https://orcid.org/0000-0003-1670-8962
https://orcid.org/0000-0003-1343-4775

948 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 16, NO. 3, JUNE 2024

common assumption in these groups of approaches is that
the demonstrations are complete. This is a strong assump-
tion in practice for several reasons, such as the misalignment
between the initial state of the demonstration and that of the
robot’s environment, sensory noise, self- and object-occlusion,
and motion blur. Consider the following example as motiva-
tion: if a demonstration of some desired visual manipulation
task has missing or corrupted parts (e.g., irretrievable image
observations) for any of the above-mentioned reasons, then the
control policy can only learn to match the observed actions
of the intact part of the demonstration without the ability
to recover the remaining actions. In the case of using this
demonstration to infer or identify the desired task before solv-
ing it by conditioning the policy on the demonstration, the
policy will be unable to infer the correct task, and much
worse, using this as a training example will impair the learned
policy. A multitask learning approach that enables task infer-
ence from incomplete demonstrations is thus needed to relax
this assumption. Moreover, such an approach would be con-
sistent with a large body of behavioral and neurocognitive
evidence indicating that human children can imitate incom-
plete task demonstrations [22], [23], [24], [25], [26], [27].
Besides assuming complete demonstrations, the above groups
treat each demonstration as one single unit of information,
overlooking the fact that a demonstration is a combination
of action, which is the observed movement, and intention,
which is the observed effect. In contrast, learning movement-
effect associations by observation has been found to play an
essential role in the developmental changes in human goal-
directed imitation, including the ability to imitate behaviors
from incomplete demonstrations [25], [28], [29].

In this article, we propose a multitask robot learn-
ing approach that alleviates the two deficiencies identified
earlier—namely, the incompatibility of the existing approaches
with continual learning of sensorimotor tasks and the lack of
efficient task inference mechanisms. Our approach learns, in an
unsupervised manner, a behavior embedding space from unla-
beled task demonstrations. We construct a behavior-matching
self-supervised learning objective for training a novel task
inference network (TINet) to map a given demonstration to
its nearest behavior embedding, which we use as the task rep-
resentation (see Fig. 1). A multitask policy is built on top of
the TINet and trained with reinforcement learning (RL) to
optimize performance over tasks.

In a previous work [16], incremental self-organization of
visual demonstrations of behaviors was proposed to build
a behavior embedding space for efficient task inference in
continual robot learning. However, a single self-organizing
network was used to learn to map an unlabeled demonstra-
tion to a behavior embedding. This means that the network
will map an incomplete demonstration to a behavior embed-
ding different from the one that best matches the complete
demonstration. Furthermore, a node representing this unde-
sired behavior will be added to the network if the node
insertion criterion is met, which impairs the behavior embed-
ding space. In contrast, using two networks separately learning
actions and intentions and another learning action–intention
associations facilitates finding a correct behavior because from

the intention embedding of an incomplete demonstration it will
be possible to retrieve a behavior that has the same or similar
intention as the one that best matches the complete demonstra-
tion. We improve on [16] by treating the visual demonstration
as a combination of an observed movement and an observed
effect and learning two separate embeddings for each of
these two components of a demonstration, which we call
action and intention embeddings, respectively. The behavior
embedding space is learned by incrementally self-organizing
the combined action and intention embeddings. Unlike [16],
our approach can perform task inference from incomplete
demonstrations. This is achieved by randomly sampling a
subtrajectory from the demonstrated trajectory and training
the proposed TINet to map both trajectories to the behav-
ior embedding that best matches the demonstrated trajectory
with a behavior-matching self-supervised learning objective.
Furthermore, the whole learning architecture, including the
policy network and the TINet, is trained end-to-end which
allows the task representations to capture the structure of the
task at hand.

The primary contributions of our work are summarized as
follows.

1) We develop a hierarchical architecture to learn unsu-
pervised embeddings of actions, intentions, and the
resulting action–intention associations from unlabeled
demonstration data.

2) A behavior-matching self-supervised learning objective
is proposed to train a TINet to map an input demonstra-
tion to the best matching behavior in the unsupervisedly
learned behavior embedding space.

3) We introduce an end-to-end continual robot learning
approach that learns novel tasks over time and can infer
tasks from incomplete visual demonstrations.

4) We evaluate our approach in multitask learning exper-
iments under the continual learning setting with a
humanoid robot and compare it to different multitask
learning baselines.

II. RELATED WORK

A. Task-Agnostic Models and Skills

It has been shown that a world model learned by unsu-
pervised exploration can be used to efficiently solve multiple
tasks [30]. First, a task-agnostic exploration policy is trained
to collect experience that improves the world model by maxi-
mizing expected novelty of future states. A task policy is then
trained by imagination inside the world model. The method
is found to achieve better zero-shot task performance than
other unsupervised methods on continuous control tasks and
few-shot performance comparable to a supervised oracle that
receives task rewards during exploration. However, fast adap-
tation to a downstream task requires the world model to be
trained in parts of the environment relevant to the task, which
cannot be guaranteed with the proposed exploration method.
Similar to [30], Sharma et al. [31] trained an RL agent with-
out reward supervision and use it to solve downstream tasks.
However, the training objective is not to learn a world model,
but rather to learn a set of reusable skills that can be composed

HAFEZ AND WERMTER: CONTINUAL ROBOT LEARNING USING SELF-SUPERVISED TASK INFERENCE 949

when solving a given task. These skills are learned to be
diverse by iteratively sampling a skill from a skill prior and
encouraging a skill-conditioned policy to produce transitions
that are predictable, given the sampled skill, and different from
those produced by the policy conditioned on a different skill.
At test time, model-predictive control is used to find an optimal
sequence of learned skills for solving a target task without any
learning on the task. One issue with the proposed method is
that the learned skill-conditioned transition model is queried
at test time on states generated by the model itself at previous
timesteps, which can be different from the state distribution it
was trained on.

Another approach extracts reusable skills from an experi-
ence data set collected across different tasks and recombines
them to efficiently solve a downstream task [32]. A varia-
tional encoder computes a skill embedding for each trajectory
sampled from the data set and a low-level policy is trained
with behavior cloning to decode the embedding into its cor-
responding actions. State-conditioned skill prior and posterior
are trained to match the pretrained skill encoder on behaviors
from the experience data set and task demonstrations, respec-
tively. To solve a downstream task, a high-level policy over
skill embeddings is trained with RL using an objective that
constrains the policy to be close to the skill posterior if the
environment state comes from the demonstration data, or to
the skill prior otherwise. The approach is shown to outperform
prior works that use either demonstrations or task-agnostic
experience. However, it makes a strong assumption that the
experience data set contains meaningful, short-horizon behav-
iors and requires training a separate high-level policy from
scratch for every new downstream task.

Our approach shares a common objective with this group of
approaches, which is to enable fast adaptation to downstream
tasks. However, it stands out by not relying on a world model
or an experience data set.

B. Learning Task-Conditioned Policies

Lynch et al. [19] proposed a method for learning a contin-
uum of robotic tasks from unlabeled play data. The method
learns a latent plan distribution space from play sequences by
optimizing for reconstruction of play actions while maximiz-
ing the similarity between the latent plan distribution of each
sequence and that of its combined initial and final states. At
test time, a latent plan is sampled given the current and goal
states. It is then fed with the two states to a stochastic pol-
icy trained to reconstruct the actions of a play sequence from
its corresponding latent plan, initial, and final states. While
not requiring expensive expert demonstrations, the proposed
method trains the policy on trajectories of play data col-
lected by curious exploration that aims to sufficiently cover
the state–action space without regard to the quality of the gen-
erated behavior. This leads to a poor policy when the training
trajectories are far from the optimal behavior.

To enable zero-shot generalization to novel tasks,
Jang et al. [17] proposed to condition the policy on information
that describes the task, such as language instruction or video
demonstration. A task embedding is computed from this

information and passed into the policy which is supervised
with behavior cloning to match the actions in the task demon-
strations. The video encoder is constrained to produce an
output that is close to the pretrained embedding of the cor-
responding language description to align the videos more
semantically. While the trained policy is found to generalize
to unseen tasks, the performance of the video-conditioned pol-
icy is lower than the language-conditioned one. The method
also requires a predefined task data set on which the policy is
trained at once, and hence the method is not applicable when
tasks are presented over time.

Sodhani et al. [33] found that learning context-based com-
posable representations is an efficient method for sharing
information across tasks in multitask RL. In their approach,
a natural language task description acts as the context and
a mixture of encoders is used to give multiple representa-
tions to an input observation. The context determines how
to compose the representations by computing soft-attention
weights over representations. The weighted sum of represen-
tations is concatenated with the context vector and fed to the
policy network. Despite improving knowledge transfer, the
approach strongly relies on the language description’s seman-
tics to extract task-relevant object and skill representations
and infer similarity between tasks. It is therefore incompat-
ible with other forms of task description, including visual
demonstration.

While our approach, like this group of approaches, condi-
tions the policy on a task description, it is not limited by the
quality of task demonstrations or language semantics to extract
task-relevant information.

C. Cross-Task Adaptive Regularization

To accelerate learning new tasks while preserving
performance on previously learned tasks, Schwarz et al. [34]
proposed to use two neural networks: an active column and a
knowledge base. The former is used to learn a new task and is
layerwise connected with the latter to utilize past information.
After a task is learned, the active column is distilled into the
knowledge base whose parameters are regularized to be close
to those adapted to older tasks. The approach has two lim-
itations when used to train a multitask policy. First, due to
the regularization constraint, the knowledge base will learn a
policy that tries to achieve average performance on all encoun-
tered tasks instead of optimal performance on each individual
task. Second, the approach does not address task inference
and assumes that changes in task distribution are known to
the learner. Hessel et al. [35] suggested that to improve the
performance of multitask RL, all tasks should influence the
learning updates similarly regardless of the density and scale
of their rewards. They propose an actor–critic method that
learns multiple tasks in parallel by assigning different environ-
ments to different actors. Iteratively, the experience collected
by all actors is used to update both a value network with
multiple outputs, one for each task, and a task-agnostic pol-
icy network used by the actors. The targets in the updates are
adaptively normalized by tracking the statistics of the return
in each task, causing tasks with different return scales to have

950 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 16, NO. 3, JUNE 2024

similar impact on the learning. A limitation to the proposed
method is that the output layer of the value network depends
on a predefined number of tasks, rendering it infeasible for
learning new tasks over time. Furthermore, parallel training is
resource-intensive and impractical for real robots.

Similar to [34] and [35], our approach trains a multitask
policy with RL, but does not require prior knowledge of task
distribution or value network reconfiguration when new tasks
are added.

D. Leveraging Task Relationships

While most approaches to multitask learning give lit-
tle consideration to task relationships beyond learning gen-
eralizable task features from task examples, a few have
shown that exploiting the relationships between tasks leads
to fast adaptation to new tasks [16], [21], [36], [37]. These
approaches mainly differ in how task relationships are learned.
For example, Oh et al. [36] added an analogy-making
objective to encourage the task representation to capture
task similarities when optimizing performance over tasks.
Kalashnikov et al. [21] proposed a distributed multitask RL
method in which off-policy data is collected by multiple robots
and shared between similar tasks to improve the efficiency of
learning each task. This training data is rebalanced between
tasks in every training batch when updating the multitask pol-
icy. Besides requiring a predefined discrete set of tasks, that
does not allow for continual multitask learning, the method
also requires to manually decide which tasks are semantically
similar in order to share data between them. Another approach
is to train a metamapping function that transforms a learned
task representation into another one using a training data set
of task representation pairs, where all paired tasks are sys-
tematically related [37]. This direct exploitation of systematic
relationships has shown better adaptation performance than the
indirect way of generalizing through language alone. Instead
of relying on prior knowledge in terms of pairs of systemati-
cally related tasks [21], [37] or predefined task analogies [36],
a more recent work [16] learns task relationships unsupervised
by continually self-organizing visual demonstrations of tasks
so that behaviorally similar tasks are located close to each
other. However, the proposed method makes a strong assump-
tion that task demonstrations are perfect and complete, which
is restrictive and not often realistic in practice.

The approach described in this article exploits task relations
and learns them in an unsupervised manner from unlabeled
task demonstrations, similar to [16]. The difference is that
our approach does not assume completeness of the demon-
strations, which makes it more robust and applicable in
real-world scenarios where complete demonstrations may not
be available.

III. TECHNICAL APPROACH

In this section, we present our self-supervised task inference
approach for continual multitask robot learning. We start by
describing how action and intention embeddings are learned
in an unsupervised manner from unlabeled task demonstra-
tions and used to learn behavior embeddings. Then, the TINet

is introduced, which is trained with the proposed behavior-
matching self-supervised learning objective. Finally, we show
how a multitask policy can be trained end-to-end with RL on
top of TINet to optimize performance over tasks.

The aim is to train a multitask policy with RL that can rec-
ognize the desired task from an incomplete demonstration and
successfully execute the task. At the start of every learning
episode, a complete demonstration in the form of a trajec-
tory of n images is randomly sampled and encoded into a
vector hn, as shown in Fig. 2. Similarly, the sequence of the
first n − 1 images is encoded into a vector hn−1 and the last
image is encoded into a vector xn−1. The vectors hn−1 and
xn−1 are used as input to the growing self-organizing networks
Action Net and Intention Net, respectively, and the action
and intention embeddings gact and gint that best match hn−1
and xn−1 are identified before the two networks are updated
(Section III-A). The combined action–intention embedding in
turn is used as input to the growing self-organizing network
Behavior Net, where the behavior embedding gb that best
matches the input is identified and the network is updated.
The encoded demonstration hn is fed to the TINet that out-
puts the task representation zi. The feature vector of the current
environment state s together with zi are fed to the multitask
policy which outputs the action to take. The TINet is trained
with contrastive learning to output the same task representa-
tion for the input demonstration (complete demonstration) and
for a randomly chosen part of the input demonstration (incom-
plete demonstration) (Section III-B). It is also jointly trained
to minimize the distance between its output and the behavior
embedding gb.

A. Hierarchical Self-Organization of Behaviors

Demonstration Encoding: In our approach, a task demon-
stration is defined as a trajectory of image observations
showing the robot performing a particular behavior to com-
plete the desired task. Any behavior can typically be described
by different demonstrations, each being a different trajectory
that shows a successful completion of the same task. The
image observations in a trajectory are encoded by a convo-
lutional neural network (CNN), and the sequence of the CNN
encodings is processed by a recurrent neural network based
on the long short-term memory (LSTM) architecture [38] to
capture the contextual information in the demonstration. We
use the hidden state hn−1 of the LSTM after the last CNN
encoding xn−1 = fx(Tn−1) has been read as the latent repre-
sentation of the entire demonstration, where n is the length of
the demonstration. Together, the observation-encoding CNN
and context-encoding LSTM define a demonstration encoder
fd that takes in a trajectory of observations T0:n−1 and out-
puts a latent representation of the demonstration. Fig. 2(a)
illustrates the demonstration encoding process. Section III-C
describes how the demonstration encoder is trained. Details on
the design choices of the CNN and LSTM networks are given
in Section IV.

Action and Intention Embeddings: Each task demonstra-
tion is a combination of action and intention, which are the
observed movement and effect, respectively. We explicitly

HAFEZ AND WERMTER: CONTINUAL ROBOT LEARNING USING SELF-SUPERVISED TASK INFERENCE 951

Fig. 2. Overview of our proposed task inference architecture for continual multitask learning. (a) Each input demonstration is encoded with a demonstration
encoder fd by passing image observations in the demonstrated trajectory T0:n−1 to a CNN encoder fx and processing the sequence of CNN-encoded image
features x0:n−1 with an LSTM. The hidden state hn after the last feature vector xn−1 has been read is used as a latent representation of the demonstration.
(b) TINet is trained with a behavior-matching self-supervised learning objective to map a complete fd(T0:n−1) and an incomplete fd(Tu:v|0≤u<v≤n−1)

version of an input demonstration to a behavior embedding gb in the self-organizing Behavior Net GB that best matches the input demonstration. The task
representation zi produced by the TINet is used together with the current observation’s feature vector x = fx(s) as input to a multitask policy trained with RL to
optimize performance over tasks. (c) Action and intention embeddings are learned in an unsupervised manner by incrementally self-organizing the movement
fd(T0:n−2) and effect fx(Tn−1) components of input demonstrations using the growing Action Net GACT and Intention Net GINT, respectively. Given an input
demonstration, the action gact and intention gint embeddings that best match the demonstrated movement and effect are combined. The behavior embeddings
are in turn learned by self-organizing the combined action and intention embeddings with the Behavior Net GB.

leverage this fact and learn two mappings: the first maps
from an input space of visually described movements to
an embedding space where similar movements are located
together; the second maps from an input space of visually
described effects to an embedding space where similar effects
are located together. These embeddings are called action and
intention embeddings, respectively. In our approach, both map-
pings are learned in an unsupervised manner by incrementally
self-organizing the respective input space with a growing
self-organizing network. Particularly, we use the grow when
required (GWR) network [39], which grows when it does not
have a close enough match to an input stimulus as opposed
to adding nodes at predefined intervals, a criterion often used
in other growing networks. This allows adding novel actions
and intentions to the respective network once discovered. We
refer to the GWR networks used to learn the action and inten-
tion embeddings by GACT and GINT, respectively. For each
input demonstration, we pass the first n − 1 observations to
the demonstration encoder fd whose output fd(T0:n−2) is used
as input to GACT and use the CNN-encoded feature vector
xn−1 of the last observation as input to GINT [see Fig. 2(c)].

The GWR network is defined by a set of nodes V , where
each node i ∈ V is associated with a weight vectors wi, and
a set of edges between nodes. At the start of learning, the
network has two nodes with weights randomly initialized. In
each learning iteration, a new input stimulus ζ is observed and
the following adaptation steps are performed.

1) Find the best matching node c and second best matching
node c′ w.r.t. ζ

c = arg min
j∈V

‖ζ − wj‖2 (1)

c′ = arg min
j∈V/{c}

‖ζ − wj‖2 (2)

and add an edge between them, if it does not exist, and
set its age to 0.

2) Calculate the activity a of the best matching node based
on the Euclidean distance between its weight vector wc

and the input ζ

a = exp (−‖ζ − wc‖2). (3)

3) If the activity a of node c is below a threshold aT and
its habituation (a measure of the node’s responsiveness
to input stimuli, inversely proportional to the number of
times it has been a best match) is below a threshold hT ,
create a new node v with a weight vector (wc+ζ)/2 and
an edge to both c and c′ and remove the edge between
c and c′.

4) Move the weights of the best matching node c and its
neighbors k, with which it shares edges, toward ζ

�wc = εc × hc × (ζ − wc) (4)

�wk = εn × hk × (ζ − wk) (5)

952 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 16, NO. 3, JUNE 2024

Algorithm 1 BEHAVIOR(T0:n−1)→ gb

Require: Growing self-Organizing networks GACT , GINT, and GB

1: Find the best matching node cact in GACT w.r.t. fd(T0:n−2; θ fd)
2: Compute action embedding gact ← wcact

3: Find the best matching node cint in GINT w.r.t. fx(Tn−1; θ fx)

4: Compute intention embedding gint ← wcint

5: Find the best matching node cb in GB w.r.t. gact ⊕ gint

6: Compute behavior embedding gb ← wcb

7: Return gb

where 0 < εn < εc < 1 and hk is the habituation value
for node k.

5) Decrease the habituation value for the best matching
node c and its neighbors k

hc = h0 −
(

1− e
−αct
τc

)

αc
(6)

hk = h0 −
(

1− e
−αnt
τn

)

αn
(7)

where h0 is the initial habituation value. αc,αn and τc,τn

are constants controlling the habituation curve.
6) Increment the age of all edges emanating from c by 1. If

the age of any edge exceeds a threshold κ , remove that
edge and remove any node with no remaining edges.

An illustration of the GWR networks GACT and GINT is shown
in Fig. 2(c).

Behavior Embeddings: To learn the behavior embeddings,
the combined action–intention embedding space is incremen-
tally self-organized by using a higher level GWR network GB.
During learning, the GB follows the same adaptation steps of
the standard GWR network explained earlier. At each learning
iteration, the weight vectors gact and gint of the best match-
ing nodes in the lower level networks GACT and GINT w.r.t.
an input demonstration are concatenated and fed as input to
GB, as shown is Fig. 2(c). The incremental self-organization
of action–intention embeddings allows learning a growing set
of behaviors, which is necessary for continual multitask learn-
ing. After the learning of the behavior embeddings, the action
GACT, intention GINT, and behavior GB networks can be uti-
lized to map a visual demonstration to the intended behavior
behind the demonstration (Algorithm 1).

The two-level hierarchy of embeddings ensures that the
learned behavior embeddings capture the action–intention
associations and their similarities.

B. Self-Supervised Learning of Task Representations

Given the learned behavior embedding space, we aim to
train a differentiable model that maps an unlabeled demon-
stration to a corresponding task representation. In order to do
so, we transfer knowledge from the behavior self-organization
explained earlier to a task inference neural network, which we
call TINet. We construct a behavior-matching self-supervised
learning objective to perform the knowledge transfer by
training the TINet to map a given demonstration to its
nearest behavior embedding in the unsupervisedly learned

behavior embedding space, which we use as the target task
representation.

The input to the TINet is an encoding of a demonstrated tra-
jectory T0:n−1 produced by the demonstration encoder fd and
the target output is the weight vector gb of the best matching
node in the behavior net GB w.r.t. the input demonstration.
The TINet model is formally described by

z = fINF(fd(T0:n−1)) (8)

where fINF is the task inference function and z is the pre-
dicted task representation. We train the TINet to minimize the
following behavior-matching loss

LBM = ‖fINF(fd(T0:n−1))− gb‖22. (9)

To enable task inference from incomplete demonstrations,
the TINet is further trained to produce the same output for
the original version Ti

0:n−1 (the complete demonstration) and

the temporally cropped version Tj
u:v|0≤u<v≤n−1 (the incomplete

demonstration) of an input demonstration [Fig. 2(b)] in a set
of K different demonstrations, where u and v are sampled at
random from [0, n− 1]. This is performed by minimizing the
following contrastive loss:

LC = − log
exp

(
sim

(
zi, zj

)
/τ

)
∑K−1

k=0 1[k
=i] exp(sim(zi, zk)/τ)
(10)

where zi and zj are the task representations of the complete and
incomplete versions of the input demonstration, respectively,
1[k
=i] ∈ {0, 1} is an indicator function, τ is a tempera-
ture hyperparameter, and sim(·, ·) is a similarity function. We
use cosine similarity sim(zi, zj) = z�i zj/(‖zi‖2 ‖zj‖2) between
task representations zi and zj [40]. This process is shown
in Fig. 2(b). The two TINet blocks are the same network
which produces a task representation zi when the input is
the encoded complete demonstration fd(T0:n−1) and a task
representation zj when the input is the encoded incomplete
demonstration fd(Tu:v). The contrastive loss in (10) enforces
that the task representations for the original (“complete”) and
cropped (“incomplete”) demonstrations zi and zj, respectively,
are close to each other while also preventing the TINet from
always producing the same vector on the output by pushing
away the task representations of different demonstrations from
each other. In other words, minimizing LC (10) means that the
complete and incomplete versions of the input demonstration
will have nearly identical task representations. Consequently,
the robot can now infer the correct task representation when
shown only an incomplete demonstration, because the TINet
is trained to produce a task representation for the incomplete
demonstration that is close to the task representation for the
corresponding complete demonstration.

The overall self-supervised learning loss to train a randomly
initialized TINet is

LSSL = LBM + LC. (11)

By jointly optimizing for behavior-matching and contrastive
prediction, as shown in (11), the TINet is trained to infer
the task at hand from complete or incomplete visual demon-
strations without requiring predefined task labels. In addition,

HAFEZ AND WERMTER: CONTINUAL ROBOT LEARNING USING SELF-SUPERVISED TASK INFERENCE 953

distilling the growing behavior net GB into the TINet (9)
allows the TINet to continually learn to infer new tasks.

C. End-to-End Continual Multitask Learning

Given an unlabeled input demonstration, the learning agent
can use the TINet to infer the task it is required to solve. To
enable learning a growing set of tasks, we use the task rep-
resentation z provided by the TINet together with the current
environment state s as input to a multitask policy π which
is trained with RL to optimize performance over tasks. This
is done by finding the policy π that minimizes the following
loss:

LRL = −Eπ

(∞∑
t=0

γ trt

)
(12)

where t is the time step, r is the reward, and γ ∈ [0, 1) is a dis-
count factor. Minimizing LRL corresponds to the standard RL
objective of maximizing the expected cumulative discounted
reward. The RL algorithm used to train the multitask policy
in the presented work is deep deterministic policy gradient
(DDPG) [41], but our approach can be paired with any other
RL algorithm with minimal changes. DDPG updates the policy
by gradient ascent on the action-value (Q-)function

θπ = θπ + μ∇aQ
(

s, a; θQ
)
|a=π(si)∇θπ π

(
s; θπ

)
(13)

where Q(s, a) is the expected value of taking action a in state
s and following policy π thereafter, θπ and θQ are the policy
and Q-function parameters, and μ is the gradient step size. In
our implementation, the state feature vector x = fx(s; θ fx) and
the task representation z are used instead of s as input to Q
and π .

The whole learning architecture (Fig. 2), including the
TINet TINet, is trained end-to-end. This encourages the task
representations from the TINet to capture the task structure.
Gradients from LRL and LSSL are backpropagated through
the TINet, the demonstration encoder fd, and the CNN state
encoder fx, optimizing all the networks end-to-end, as shown
in Fig. 2(b). Hence, the final loss for training the multitask
learning agent with our approach is

Ltotal = LSSL + LRL. (14)

The complete Self-supervised task representation learning
(SSTRL) algorithm for continual multitask RL is given in
Algorithm 2. At the beginning of each learning episode, a
visual demonstration in the form of a trajectory of frames
T0:n−1 is presented to the robot (line 5). We then compute
the behavior embedding gb (line 6) of the best matching node
in the growing behavior net GB w.r.t. T0:n−1, as shown in
Algorithm 1, followed by adjusting the networks GACT, GINT,
and GB [(1)–(7)]. Random temporal cropping is performed on
T0:n−1 to generate a corresponding incomplete demonstration
Tu:v (line 8). The indices u and v are uniformly sampled from
[0, n − 1] such that 0 ≤ u < v ≤ n − 1. We add the com-
plete T0:n−1 and incomplete Tu:v demonstrations along with
the corresponding behavior embedding gb to the training data
set DSSL used for minimizing LSSL (line 9). The encoded
demonstration fd(T0:n−1; θ fd) is passed to the TINet to infer
the task representation z = fINF(fd(T0:n−1; θ fd); θ fINF) (line 10).

Algorithm 2 SSTRL Algorithm for Continual Multitask RL
Require: An RL algorithm A

Require: State encoder fx, demonstration encoder fd , task repre-
sentation encoder fINF, and components of A

1: Initialize growing self-organizing networks: GACT , GINT, GB

2: Initialize datasets DSSL,DRL ← ∅
3: Randomly initialize network parameters: θ fx , θ fd , θ fINF , θA

4: for episode = 1, E do
5: Sample demonstration T0:n−1
6: Compute gb = BEHAVIOR(T0:n−1) using Algorithm 1
7: Adjust GACT , GINT, and GB networks using Eq. (1)–(7) (refer

to Section III-A)
8: Tu:v ← TEMPORALCROP(T0:n−1)

9: Insert (T0:n−1, Tu:v, gb) into DSSL
10: z← fINF(fd(T0:n−1; θ fd); θ fINF)
11: Sample initial state s
12: while not terminal do
13: x← fx(s; θ fx)
14: Sample action a ∼ π(x, z) using A’s behavioral policy
15: Execute a and observe r and s′
16: Insert (s, T0:n−1, a, r, s′) into DRL
17: Update θ fx , θ fd , θ fINF using DSSL and LSSL in Eq. (11)
18: Update θ fx , θ fd , θ fINF , θA with A using DRL and LRL in

Eq. (12)
19: s← s′
20: end while
21: end for
22: Return optimized policy π

Actions are generated by the behavioral policy π of the chosen
RL algorithm A (line 14). The policy takes as input the state
feature vector x = fx(s; θ fx) and the inferred task represen-
tation z and is parameterized by parameters θπ . A can be
a policy-gradient algorithm, in which case θA = {θπ }, or a
value-based algorithm, in which case θA = {θπ , θQ}, where
Q is the action-value function. In our implementation, the RL
algorithm A used is DDPG [41] which is value based and
updates the policy by gradient ascent on the Q-function (13)
using experiences sampled from DRL (line 18). The learning
parameters of our task inference architecture are updated to
minimize the total loss Ltotal (14).

IV. EXPERIMENTAL RESULTS

In this section, we empirically evaluate our proposed
SSTRL algorithm for continual multitask RL on learning a
fixed as well as a growing set of visuomotor tasks with a
humanoid robot and compare it against three multitask learn-
ing baselines: 1) Plan2Explore [30]; 2) Progress&Compress
(P&C) [34]; and 3) behavior-guided policy optimization
(BGPO) [16]. Additionally, we perform ablation experiments
to investigate the effect of the different components of our
approach on its performance. We also perform one-shot gener-
alization experiments to test the performance of our approach
on a set of unseen tasks based on a single visual demonstration.

A. Experimental Setup

Hyperparameters: The CNN state encoder has three 3×3
convolutions with 32, 64, and 128 channels, respectively.
Each convolution is followed by ReLU activation and 2×2
max-pooling. This is followed by two fully connected layers
each with 128 units and ReLU activations. The demonstration

954 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 16, NO. 3, JUNE 2024

Fig. 3. NICO robot in the simulation environment facing a table with three
objects.

encoder uses a single-layer LSTM with 256 hidden units and
tanh activations. The TINet is a fully connected multilayer per-
ceptron (MLP) of three layers with 512, 512, and 256 units,
respectively. The multitask policy and Q-functions are param-
eterized by a 2-layer MLP each. The hidden layer is 64-D
with ReLU activation. The output layer contains a single unit
with linear activation in the Q-network and d units with tanh
activations in the policy network, where d denotes the dimen-
stionality of the action space. The training data sets DSSL and
DRL are stored in memory buffers of sizes 105 and 106, respec-
tively. All networks are trained using the Adam optimizer [42]
with learning rate 0.001 and batch size 256. The discount fac-
tor γ is set to 0.99. We do not use any hyperparameter for
balancing the behavior-matching loss and the contrastive loss
to simplify the training process. The details on the hyperpa-
rameters of the growing Action Net GACT, Intention Net GINT,
and Behavior Net GB are given in Appendix A. Training is
done with Tensorflow [43] on a desktop with Intel i5-6500
CPU and a single NVIDIA Geforce GTX 1050 Ti GPU.

Robotic Setup: We conduct our experiments on the neuro-
inspired companion (NICO) robot [44] using the CoppeliaSim
(formerly V-REP) robot simulator [45]. Real-world experi-
ments are described in Section IV-F. Fig. 3 shows the simu-
lated NICO sitting in front of a table on top of which different
objects are placed. In all experiments, we consider a motor
action controlling four degrees of freedom in the right arm:
two joints in the shoulder, one joint in the elbow, and one joint
in the hand. The shoulder and elbow joints have an angu-
lar range of motion of ±100◦ and ±85◦, respectively. The
tendon-operated multifingered hand consists of one thumb and
two index fingers with finger joints having an angular range
of motion of 0◦–160◦. The input to the robot learning algo-
rithm is a 64×32 RGB image obtained from a vision sensor.
Examples of the original output of the vision sensor are shown
in Fig. 4.

B. Multitask Learning Evaluation

In our experiments, we consider the following visuomotor
tasks: Grasp the red glass (Task-1), push the green box toward
the red glass (Task-2), push the green box toward the white

Fig. 4. First-person demonstrations of four visuomotor tasks: (a) “Grasp
the red glass,” (b) “Push the green box toward the red glass,” (c) “Push the
green box toward the white box,” (d) “Push the white box toward the green
box.” From bottom to top: RGB frames of initial, intermediate, and terminal
configurations.

box (Task-3), and push the white box toward the green box
(Task-4). We collect 1000 visual demonstrations per task with
random initial robot configuration and object positions (see
Fig. 4). The demonstrations have an average length of 30 steps
(≈ 6 s). Due to the demonstrations having variable lengths,
we apply zero-padding and masking to them when training the
LSTM network of the demonstration encoder. During learning,
a task is randomly sampled at the start of each episode which
terminates when the task is successfully completed or after
a maximum of 50 timesteps. A reward of 1 is given for a
successful task completion and 0 otherwise. At the end of each
episode, the learned policy is tested by randomly sampling a
task and running the policy for 50 timesteps.

All learning algorithms use the environment state as input
to the policy. Plan2Explore and P&C assume that changes
in task identity are known to the agent, while BGPO and
SSTRL perform task inference from unlabeled input demon-
strations and use the inferred task representation as additional
input to the policy. For implementing Plan2Explore, we train
a global world model from task-agnostic experience gathered
during learning by an exploration policy trained to maximize
the expected novelty over future model states. In each test
episode, the policy for the sampled task is trained in imagina-
tion using the model and then executed for 50 timesteps. P&C
has two policy networks with layerwise connections between
them: the active column and the knowledge base. At each
learning episode, the active column is trained on a sampled
task and then distilled into the knowledge base which is then
evaluated. BGPO and SSTRL receive an unlabeled demonstra-
tion from a randomly sampled task at the start of each episode
and use it to infer the task representation. The policy condi-
tioned on the inferred representation and environment state
is trained for one episode and evaluated on a random task.
The implementation details of the baseline algorithms can be
found in Appendix B. We perform our experiments in two set-
tings: 1) fixed-set multitask learning, where the set of tasks the
robot is required to learn is kept fixed throughout the course of
learning and 2) continual multitask learning, where the tasks
are presented sequentially to the robot.

HAFEZ AND WERMTER: CONTINUAL ROBOT LEARNING USING SELF-SUPERVISED TASK INFERENCE 955

Fig. 5. Performance curves of P&C, Plan2Explore, BGPO, and SSTRL
on learning a fixed set of four independent visuomotor control tasks with the
NICO robot. Shaded regions represent one standard deviation over ten random
seeds.

Fig. 5 shows the total reward per test episode for each algo-
rithm in the fixed-set multitask learning setting, averaged over
ten random seeds. As shown in the figure, Plan2Explore per-
forms slightly better than the other algorithms over the first
12K episodes. However, the performance tends to be largely
unstable thereafter, with the average reward staying under 0.5
(i.e., below 50% success rate). This is likely the result of
the world model being trained on parts of the environment
that are not relevant to the task at test time. In contrast, the
performance of P&C continues to improve with more train-
ing but reaches only an average reward of 0.57 by the end
of learning. Since the knowledge base parameters in P&C are
restricted to be close to their previously trained values when
the policy learned by the active column is distilled into the
knowledge base, the multitask policy of the knowledge base
can only generalize slowly. Consequently, its performance on
a given task heavily depends on how similar that task is to
the recently learned one, which may explain the slow increase
in the observed average reward over time. Instead of mitigat-
ing interference among tasks by regularizing the update to the
multitask policy parameters, which still leads to interference
since tasks are learned in a joint parameter space, BGPO and
SSTRL avoid interference in the first place by conditioning
the policy on a task representation which is learned in a space
different than that of the policy parameters. While BGPO and
SSTRL show a better final performance, achieving an average
reward of over 0.75 at the end of learning, SSTRL has a more
stable performance and faster convergence than BGPO.

We also evaluate the performance of the trained policy of
each algorithm on the individual tasks. This includes a com-
parison to a single-task policy optimization, where a separate
policy network is trained with DDPG [41] on each task indi-
vidually (see Appendix B for implementation details). The
trained policy attempts each task 100 times. The success rate
is given in Table I, with SSTRL achieving the highest suc-
cess rate in three out of four tasks. The results suggest that
multitask learning with SSTRL not only allows the policy to
accomplish a number of different tasks but also to improve

TABLE I
PERFORMANCE COMPARISON OF THE ALGORITHMS ON INDIVIDUAL

TASKS. THE REPORTED NUMBERS ARE SUCCESS RATES

OVER 100 TRIALS

Fig. 6. Performance curves of P&C, Plan2Explore, BGPO, and SSTRL in
the continual multitask learning setting. Shaded regions represent one standard
deviation over ten random seeds.

its performance on each individual task via sharing policy and
task representations.

In the continual learning setting, the learning starts with
Task-1. Task-2, Task-3, and Task-4 are presented after 15K,
30K, and 45K episodes, respectively. At test time, each algo-
rithm is evaluated on a task randomly sampled from the
presented tasks. We plot the total reward per test episode, aver-
aged over ten random seeds, in Fig. 6. A drop in performance
can be observed for all algorithms after each new task is intro-
duced. Changing tasks has less direct effect on Plan2Explore
as it follows task-agnostic exploration policy during learning.
However, the policy learned offline at test time relies on a
world model that may have been trained on task-irrelevant
data. Thus, the policy performs poorly on tasks for which the
model is not sufficiently trained, particularly when such tasks
are visited for several episodes before new tasks are presented,
as it is the case in the continual learning setting. Similarly,
when P&C encounters an unseen task, the knowledge base’s
policy typically requires longer training before it adapts to
that task, because the active column’s policy, which is dis-
tilled into the knowledge base after every episode, will likely
fail to quickly solve the unseen task. This leads to a consid-
erably small improvement in performance during the intervals
between the tasks, as shown in Fig. 6.

BGPO and SSTRL, on the other hand, are originally
more robust to learning instability caused by the sequential
presentation of tasks due to their self-organizing networks that
grow when they cannot find a behavior embedding that closely

956 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 16, NO. 3, JUNE 2024

Fig. 7. Performance curves of BGPO and SSTRL on incomplete demon-
strations in two multitask learning settings: (a) fixed-set and (b) continual.
Shaded regions represent one standard deviation over ten random seeds.

matches an input demonstration. By using a task representa-
tion based on a growing behavior network as input to the
policy, they can generalize faster to new tasks and maintain
the performance on old tasks while learning new ones since
different tasks have different representations on which the pol-
icy is conditioned. Compared to BGPO that reached an average
reward of only 0.55 after 60K episodes, SSTRL was able to
converge to an average reward of over 0.8. This empirically
shows the advantage of learning separate action and inten-
tion embeddings and the advantage of the TINet that learns a
generalizable mapping from demonstrations to task represen-
tations end-to-end, which is particularly useful in the continual
learning setting.

C. Performance Evaluation on Incomplete Demonstrations

In this experiment, we aim to compare the performance of
the multitask policy trained with BGPO and SSTRL when
incomplete demonstrations are used as input. We make two
comparisons in the fixed-set and continual learning settings.
At each test episode, we randomly sample ten unlabeled
demonstrations and apply random temporal cropping to each
demonstration. We then run the trained policy ten times each
using a different temporally cropped demonstration as input.
The results are shown in Fig. 7. In the fixed-set setting, BGPO
reaches an average reward of around 0.25, while SSTRL
appears to achieve three times more average reward by the end
of learning. The difference in performance between the two
algorithms is more pronounced in the continual learning set-
ting. As opposed to BGPO which fails to make any progress in
maximizing the obtained reward over the entire learning pro-
cess, SSTRL is able to continue to improve its performance
after every new task is presented. This demonstrates the effec-
tiveness of training the TINet to learn a joint representation of
original and cropped versions of unlabeled demonstrations in
SSTRL, enabling task inference from incomplete demonstra-
tions and improving the performance of the multitask policy
on tasks inferred form such demonstrations.

D. Ablation Study

We perform an ablation study to investigate the contri-
bution of each component of our proposed approach to the
overall performance in the continual learning setting and
plot the results in Fig. 8. When the action and intention
networks are removed (“no-GACT,INT”), the behavior network

Fig. 8. Performance curves of SSTRL with all of its components and after
removing different components in the continual multitask learning setting.
Shaded regions represent one standard deviation over ten random seeds.

TABLE II
SUCCESS RATE PER TASK FOR EACH ABLATION CONFIGURATION

OVER THE TEST EPISODES

GB is forced to learn the behavior embeddings directly from
demonstrations. This slows convergence as the robot lacks the
information the action–intention associations offer to facilitate
task inference. Removing the hierarchical self-organization
architecture altogether and keeping the TINet (“TINet only”)
causes the multitask policy to converge to a lower average
reward than when self-organization of behaviors is enabled.
Since, in this case, the TINet cannot be trained to map demon-
strations to best matching behaviors, the algorithm will likely
fail to infer the intended behavior behind each demonstration,
thus preventing the policy from achieving high performance
across all tasks. If the TINet is removed (“no-TINet”), the pol-
icy exhibits poor performance, with the average reward staying
under 0.25 until the end of learning. The success rate per task
for each of the considered Configurations is given in Table II.

These results suggest that behavior self-organization is
essential for task inference in SSTRL and that, without the
behavior-matching loss, the TINet can only reach an aver-
age performance, indicating that training the TINet with the
contrastive loss is sufficient for improving the performance
compared to the case when the TINet is removed. Additionally,
unsupervised learning of action and intention embeddings with
GACT and GINT networks and using the combined action–
intention embeddings as input to the GB network allow
behavior self-organization to significantly improve learning
speed and final performance compared to directly using the
encoded demonstrations as input to GB.

HAFEZ AND WERMTER: CONTINUAL ROBOT LEARNING USING SELF-SUPERVISED TASK INFERENCE 957

Fig. 9. Example demonstrations of three held-out visuomotor tasks:
(a) “Grasp the green box,” (b) “Grasp the can,” (c) “Push the can toward
the green box.” From bottom to top: RGB frames of initial, intermediate, and
terminal configurations.

TABLE III
ONE-SHOT GENERALIZATION PERFORMANCE ON HELD-OUT TASKS. THE

REPORTED NUMBERS ARE SUCCESS RATES OVER 100 TRIALS

E. One-Shot Task Generalization

We evaluate the multitask policy trained in the continual
learning setting with BGPO and SSTRL (the best-performing
policy out of ten training runs) on a held-out set of three
unseen tasks: Grasp the green box (Task-5), grasp the can
(Task-6), and push the can toward the green box (Task-7). For
each unseen task, we provide the trained policy with one visual
demonstration of successful task execution as input. Fig. 9
shows an example demonstration for each task. We perform
100 test trials with 100 different demonstrations per unseen
task. The success rate for the unseen tasks is given in Table III.

The held-out tasks are chosen such that they include com-
binations of action–object pairs (Task-5, Task-6) and object-
object pairs (Task-7) that were not seen during training. As
shown in Table III, SSTRL achieves a nonzero success rate
in all the held-out tasks. We find that Task-6 is particularly
challenging. We believe this is because it not only involves
a novel object (the can) but also because the policy has
learned to grasp only a single object (the red glass) dur-
ing training whereas it has learned to push different objects.
Nevertheless, the multitask policy trained with SSTRL appears
to capture the intention of the observed demonstration despite
having never seen any demonstration of the related task. We
demonstrate the one-shot generalization performance of our
approach on the held-out tasks in the accompanying video
(https://youtu.be/77cP8ciHcII). Analyzing the trajectories gen-
erated by the policy, we observe that while the robot does not
exactly complete the task in the unsuccessful trials, it moves
toward the target object, and in many cases the robot does
come fairly close to the target object but fails only to close
the fingers correctly on the object or to place the pushed object
right next to the target object. This clearly indicates that the
inferred task representation is informative of the task at hand.

Fig. 10. Exocentric and egocentric (inset) views of the real-world exper-
imental setup for multitask learning from the perspective of the NICO
robot.

TABLE IV
PERFORMANCE EVALUATION IN THE REAL WORLD. THE REPORTED

NUMBERS ARE SUCCESS RATES OVER 20 TEST EPISODES

F. Performance Evaluation in the Real World

We compare the performance of the multitask policy trained
under the continual learning setting in simulation on the real
NICO robot. For each algorithm, we take the best-performing
policy out of 10 simulation-based training runs and perform
20 test episodes per task on the real robot, each with different
object positions and initial robot configuration. For BGPO and
SSTRL, we use a random simulation-based demonstration as
input to the policy.

The simulation uses a URDF model of the NICO robot
and, thus, there is no difference between the real NICO and
the simulated NICO. The height and color of the table and
of the robot’s seat are identical in the simulation and the real
environment, which facilitates a direct transfer of the robot’s
arm pose and the trained policy. The objects on the table are
slightly different in geometry to enable more stable manip-
ulation but have the same colors as in simulation. Fig. 10
shows the experimental setup with the real NICO robot. We
do not perform any additional training or fine-tuning of the
learning architecture and deploy it directly on the real NICO.
We report the success rate per task for each algorithm in
Table IV. Example runs of the multitask policy learned using
SSTRL on the real robot are shown in the accompanying video
(https://youtu.be/77cP8ciHcII).

V. CONCLUSION

In this article, we presented a novel self-supervised task
inference approach for continual robot learning. Our approach
uses a two-level hierarchical self-organization architecture to
learn task-descriptive behavior embeddings from unlabeled

958 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 16, NO. 3, JUNE 2024

vision-based demonstrations. In the lower level, action and
intention embeddings are incrementally learned from self-
organization of the observed movement and effect parts of
each demonstration. The self-organization of the combined
action–intention embeddings constructs a higher level behavior
embedding space. A novel behavior-matching self-supervised
learning objective is used to train a TINet, which we call
TINet, to map complete and incomplete versions of an unla-
beled demonstration to a best matching behavior in the learned
behavior embedding space, which we use as the target task
representation. A multitask policy is built on top of the
TINet and trained with RL to optimize performance over
tasks. The whole learning architecture, including the TINet,
is trained end-to-end, encouraging the inferred task repre-
sentation to capture the structure of the task at hand. We
evaluate our approach in the fixed-set and continual multi-
task learning settings and compare it to different multitask
learning baselines. The results show that our approach out-
performs the other baselines, with the difference being more
pronounced in the challenging continual learning setting. Our
approach also achieves higher task performance than the
compared demonstration-based baseline on incomplete input
demonstrations. Additionally, the results from one-shot task
generalization experiments clearly demonstrate the ability of
our approach to read the intention behind a task demonstra-
tion and generate a meaningful action trajectory to complete
the task without any learning on the task.

In contrast to previous multitask learning approaches, our
approach is constant in the number of policy parameters,
makes no assumptions about task distribution, and while main-
taining performance on previously learned tasks, avoids learn-
ing interference among tasks as it accelerates learning progress
on new tasks. The ability to infer the intended behavior behind
a visual demonstration rather than copying and memoriz-
ing the observed actions allows our approach to complete
the tasks more efficiently than the provided demonstrations,
especially when the input demonstration is imperfect or incom-
plete. It is also worth mentioning that the policy trained with
our approach performs the desired task even when the initial
environment state, including robot configuration, is different
between the demonstration and test-time settings, as shown in
the accompanying video (https://youtu.be/77cP8ciHcII).

One limitation of our approach is that it requires addi-
tional computational time for constructing and adapting the
growing self-organizing networks necessary for task inference.
However, this happens only once every learning episode and
never at test time, where only the TINet is queried for a
task representation without any search in the graph of the
growing networks. Besides, this computational complexity
scales only linearly with the number of demonstrations. In
its current form, our approach uses first-person demonstra-
tions. One exciting direction for future work is to adapt our
approach to address task inference when the morphology of
the demonstrator and the robot are different, which is the case
when using third-person demonstrations from a human teacher.
Another direction for future work is to train the approach
on multimodal demonstrations using vision-and-language task
descriptions.

TABLE V
HYPERPARAMETERS OF GACT NET USED IN OUR EXPERIMENTS

TABLE VI
HYPERPARAMETERS OF GINT NET USED IN OUR EXPERIMENTS

TABLE VII
HYPERPARAMETERS OF GB NET USED IN OUR EXPERIMENTS

APPENDIX A
HYPERPARAMTERS OF THE GROWING SELF-ORGANIZING

NETWORKS

Here, we give details on the hyperparameters of the growing
Action Net GACT, Intention Net GINT, and Behavior Net GB

in Tables V–VII, respectively.

APPENDIX B
BASELINE DETAILS

Plan2Explore: The convolutional image encoder and
decoder networks are the same from [46]. We use an ensem-
ble of five transition models whose prediction disagreement is
used to derive the intrinsic reward for the task-agnostic explo-
ration, with each model implemented as a two hidden-layer
MLP which takes the recurrent state of the recurrent state
space model (RSSM) [47] and the action as input and pre-
dicts 1024-D image encoder features. The reward prediction,
state-value, and policy functions are parameterized by a three
hidden-layer MLP each, with 200 ReLU units in each layer,
and trained using Adam [42] with a learning rate of 10−5. The
imagination horizon is 15.

P&C: The policy and value function of the active column
and knowledge base share a convolutional encoder of two
Conv layers with 16 6×6 and 32 3×3 filters and ReLU activa-
tions, followed by a fully connected layer with 256 units and
ReLU activations. A separate, fully connected output layer
with linear activation is used for each of the policy and value
function. The networks are trained using Adam [42] and with

HAFEZ AND WERMTER: CONTINUAL ROBOT LEARNING USING SELF-SUPERVISED TASK INFERENCE 959

a learning rate of 0.003. The forgetting coefficient and Fischer
regularization strength are set to 0.95 and 25, respectively.

BGPO: A variational autoencoder (VAE) [48] is used to
learn the state representation. The VAE encoder consists of
three Conv layers with 32, 64, and 128 3×3 filters, each fol-
lowed by ReLU activation and 2×2 max-pooling, and two
fully connected layers of 128 linear units outputting the mean
and standard deviation of a diagonal Gaussian from which
state representations are sampled. The decoder mirrors the
encoder, but uses a sigmoid activation in the output layer. The
inverse model used is a 1-layer MLP with tanh activation.
Each demonstration is a sequence of VAE-encoded states. An
LSTM autoencoder with 64 hidden units in the encoder and
decoder LSTMs is used to encode the demonstrations. We use
the same hyperparameters that were used in [16] for the GWR-
B model. DDPG is used as the base RL algorithm. The policy
and action-value function are parameterized by an MLP with
a hidden layer of 64 ReLU units and output layer of one lin-
ear unit in the action-value function and 4 tanh units in the
policy. The VAE, inverse model and LSTM autoencoder are
pretrained on 4000 task demonstrations and then fixed during
policy learning. The networks are trained using Adam [42]
with learning rate 0.001.

Single-Task Policy Optimization: In both the single-task
Q- and policy networks, a CNN state encoder (described in
Section IV-A) is used, followed by one fully connected hid-
den layer with 64 ReLU units. The output layer in the policy
network is a tanh layer and in the Q-network is a linear layer.
The actions are included after the CNN encoder in the Q-
network. The networks are trained with DDPG [41] using
Adam [42] with a learning rate of 0.001 and a batch size
of 256.

ACKNOWLEDGMENT

The authors thank Erik Strahl for his technical support with
the real-world experimental setup.

REFERENCES

[1] S. Levine, C. Finn, T. Darrell, and P. Abbeel, “End-to-end training
of deep visuomotor policies,” J. Mach. Learn. Res., vol. 17, no. 1,
pp. 1334–1373, 2016.

[2] I. Akkaya et al., “Solving rubik’s cube with a robot hand,” 2019,
arXiv:1910.07113.

[3] T. Haarnoja, S. Ha, A. Zhou, J. Tan, G. Tucker, and S. Levine, “Learning
to walk via deep reinforcement learning,” in Proc. Robot. Sci. Syst.
(RSS), Jun. 2019, pp. 1–10.

[4] Y. Zhu et al., “Target-driven visual navigation in indoor scenes using
deep reinforcement learning,” in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), 2017, pp. 3357–3364.

[5] A. A. Rusu et al., “Policy distillation,” in Proc. ICLR, 2016, pp. 1–13.
[6] Y. W. Teh et al., “Distral: Robust multitask reinforcement learning,” in

Proc. Conf. Neural Inf. Process. Syst. (NeurIPS), 2017, pp. 4499–4509.
[7] O. Watkins, A. Gupta, T. Darrell, P. Abbeel, and J. Andreas, “Teachable

reinforcement learning via advice distillation,” in Proc. Conf. Neural Inf.
Process. Syst. (NeurIPS), 2021, pp. 6920–6933.

[8] R. Mendonca, A. Gupta, R. Kralev, P. Abbeel, S. Levine, and C. Finn,
“Guided meta-policy search,” in Proc. Adv. Neural Inf. Process. Syst.
(NeurIPS), 2019, pp. 9653–9664.

[9] A. Zhou et al., “Watch, try, learn: Meta-learning from demonstrations
and reward,” in Proc. Int. Conf. Learning Represent. (ICLR), 2020,
pp. 1–13.

[10] C. Lynch and P. Sermanet, “Language conditioned imitation learning
over unstructured data,” in Proc. Robot. Sci. Syst. (RSS), 2021.

[11] A. Silva, N. Moorman, W. Silva, Z. Zaidi, N. Gopalan, and
M. Gombolay, “LanCon-learn: Learning with language to enable gener-
alization in multi-task manipulation,” IEEE Robot. Autom. Lett., vol. 7,
no. 2, pp. 1635–1642, Apr. 2022.

[12] K. Rakelly, A. Zhou, C. Finn, S. Levine, and D. Quillen, “Efficient off-
policy meta-reinforcement learning via probabilistic context variables,”
in Proc. Int. Conf. Mach. Learn. (ICML), 2019, pp. 5331–5340.

[13] J. Zhang et al., “MetaCURE: Meta reinforcement learning with
empowerment-driven exploration,” in Proc. Int. Conf. Mach. Learn.
(ICML), 2021, pp. 12600–12610.

[14] R. A. Williamson and E. M. Markman, “Precision of imitation as a func-
tion of preschoolers’ understanding of the goal of the demonstration,”
Develop. Psychol., vol. 42, no. 4, pp. 723–731, 2006.

[15] G. Rizzolatti and C. Sinigaglia, “The functional role of the parieto-
frontal mirror circuit: interpretations and misinterpretations,” Nat. Rev.
Neurosci., vol. 11, no. 4, pp. 264–274, 2010.

[16] M. B. Hafez and S. Wermter, “Behavior self-organization supports task
inference for continual robot learning,” in Proc. IEEE/RSJ Int. Conf.
Intell. Robots Syst. (IROS), 2021, pp. 6739–6746.

[17] E. Jang et al., “BC-Z: Zero-shot task generalization with robotic imita-
tion learning,” in Proc. Conf. Robot Learn. (CoRL), 2022, pp. 991–1002.

[18] R. Rahmatizadeh, P. Abolghasemi, L. Bölöni, and S. Levine, “Vision-
based multi-task manipulation for inexpensive robots using end-to-end
learning from demonstration,” in Proc. IEEE Int. Conf. Robot. Autom.
(ICRA), 2018, pp. 3758–3765.

[19] C. Lynch et al., “Learning latent plans from play,” in Proc. Conf. Robot
Learn. (CoRL), 2020, pp. 1113–1132.

[20] Y. Liu, A. Gupta, P. Abbeel, and S. Levine, “Imitation from observation:
Learning to imitate behaviors from raw video via context translation,”
in Proc. IEEE Int. Conf. Robot. Autom. (ICRA), 2018, pp. 1118–1125.

[21] D. Kalashnikov et al., “MT-Opt: Continuous multi-task robotic rein-
forcement learning at scale,” 2021, arXiv:2104.08212.

[22] A. N. Meltzoff, “Understanding the intentions of others: re-enactment
of intended acts by 18-month-old children,” Develop. Psychol., vol. 31,
no. 5, pp. 838–850, 1995.

[23] M. Tomasello, M. Carpenter, J. Call, T. Behne, and H. Moll,
“Understanding and sharing intentions: The origins of cultural cogni-
tion,” Behav. Brain Sci., vol. 28, no. 5, pp. 675–691, 2005.

[24] C.-T. Huang, C. Heyes, and T. Charman, “Infants’ behavioral reen-
actment of “failed attempts”: Exploring the roles of emulation learn-
ing, stimulus enhancement, and understanding of intentions,” Develop.
Psychol., vol. 38, no. 5, pp. 840–855, 2002.

[25] B. Elsner, “Infants’ imitation of goal-directed actions: The role of
movements and action effects,” Acta psychologica, vol. 124, no. 1,
pp. 44–59, 2007.

[26] M. Schönebeck and B. Elsner, “ERPs reveal perceptual and conceptual
processing in 14-month-olds’ observation of complete and incomplete
action end-states,” Neuropsychologia, vol. 126, pp. 102–112, Mar. 2019.

[27] M. Nielsen, “12-month-olds produce others’ intended but unfulfilled
acts,” Infancy, vol. 14, no. 3, pp. 377–389, 2009.

[28] M. Paulus, S. Hunnius, and H. Bekkering, “Neurocognitive mechanisms
underlying social learning in infancy: Infants’ neural processing of the
effects of others’ actions,” Soc. Cogn. Affect. Neurosci., vol. 8, no. 7,
pp. 774–779, 2013.

[29] R. P. Cooper, R. Cook, A. Dickinson, and C. M. Heyes, “Associative
(not hebbian) learning and the mirror neuron system,” Neurosci. Lett.,
vol. 540, pp. 28–36, Apr. 2013.

[30] R. Sekar, O. Rybkin, K. Daniilidis, P. Abbeel, D. Hafner, and D. Pathak,
“Planning to explore via self-supervised world models,” in Proc. Int.
Conf. Mach. Learn. (ICML), 2020, pp. 8583–8592.

[31] A. Sharma, M. Ahn, S. Levine, V. Kumar, K. Hausman, and S. Gu,
“Emergent real-world robotic skills via unsupervised off-policy rein-
forcement learning,” in Proc. Robot. Sci. Syst. (RSS), Jul. 2020,
pp. 1–10.

[32] K. Pertsch, Y. Lee, Y. Wu, and J. J. Lim, “Demonstration-guided rein-
forcement learning with learned skills,” in Proc. Conf. Robot Learn.
(CoRL), 2022, pp. 729–739.

[33] S. Sodhani, A. Zhang, and J. Pineau, “Multi-task reinforcement learning
with context-based representations,” in Proc. Int. Conf. Mach. Learn.
(ICML), 2021, pp. 9767–9779.

[34] J. Schwarz et al., “Progress & compress: A scalable framework for
continual learning,” in Proc. Int. Conf. Mach. Learn. (ICML), 2018,
pp. 4528–4537.

960 IEEE TRANSACTIONS ON COGNITIVE AND DEVELOPMENTAL SYSTEMS, VOL. 16, NO. 3, JUNE 2024

[35] M. Hessel, H. Soyer, L. Espeholt, W. Czarnecki, S. Schmitt,
and H. van Hasselt, “Multi-task deep reinforcement learning
with popart,” in Proc. AAAI Conf. Artif. Intell., vol. 33, 2019,
pp. 3796–3803.

[36] J. Oh, S. Singh, H. Lee, and P. Kohli, “Zero-shot task generalization
with multi-task deep reinforcement learning,” in Proc. Int. Conf. Mach.
Learn. (ICML), 2017, pp. 2661–2670.

[37] A. K. Lampinen and J. L. McClelland, “Transforming task representa-
tions to perform novel tasks,” Proc. Nat. Acad. Sci., vol. 117, no. 52,
pp. 32970–32981, 2020.

[38] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural
Comput., vol. 9, no. 8, pp. 1735–1780, 1997.

[39] S. Marsland, J. Shapiro, and U. Nehmzow, “A self-organising
network that grows when required,” Neural Netw., vol. 15, nos. 8–9,
pp. 1041–1058, 2002.

[40] T. Chen, S. Kornblith, M. Norouzi, and G. Hinton, “A simple framework
for contrastive learning of visual representations,” in Proc. Int. Conf.
Mach. Learn. (ICML), 2020, pp. 1597–1607.

[41] T. P. Lillicrap et al., “Continuous control with deep reinforcement
learning,” in Proc. Int. Conf. Learn. Represent. (ICLR), 2016.

[42] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
in Proc. ICLR, 2015, p. 13.

[43] M. Abadi et al., “Tensorflow: A system for large-scale machine learn-
ing,” in Proc. OSDI, 2016, pp. 265–283.

[44] M. Kerzel, E. Strahl, S. Magg, N. Navarro-Guerrero, S. Heinrich,
and S. Wermter, “NICO–neuro-inspired companion: A developmen-
tal humanoid robot platform for multimodal interaction,” in Proc.
IEEE Int. Symp. Robot Human Interact. Commun. (RO-MAN), 2017,
pp. 113–120.

[45] E. Rohmer, S. P. N. Singh, and M. Freese, “Coppeliasim (formerly V-
REP): A versatile and scalable robot simulation framework,” in Proc.
IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), 2013, pp. 1321–1326.
[Online]. Available: www.coppeliarobotics.com

[46] D. Ha and J. Schmidhuber, “World models,” 2018, arXiv:1803.10122.
[47] D. Hafner et al., “Learning latent dynamics for planning

from pixels,” in Proc. Int. Conf. Mach. Learn. (ICML), 2019,
pp. 2555–2565.

[48] D. P. Kingma and M. Welling, “Auto-encoding variational bayes,” in
Proc. Int. Conf. Learn. Represent. (ICLR), 2014, pp. 1–14.

Muhammad Burhan Hafez received the M.Sc.
degree in computer science from the University
of Malaya, Kuala Lumpur, Malaysia, in 2015, and
the Ph.D. degree in computer science from the
University of Hamburg, Hamburg, Germany, in
2020.

He is currently a Postdoctoral Research Associate
with the Knowledge Technology Group, University
of Hamburg. His current research interests include
machine learning and cognitive robotics, with a
focus on robot skill learning.

Stefan Wermter (Member, IEEE) received the
M.Sc. degree in computer science from the
University of Massachusetts, Amherst, MA, USA,
and the Ph.D. (Habilitation) degree in computer sci-
ence from the University of Hamburg, Hamburg,
Germany.

He is a Full Professor with the University of
Hamburg, Hamburg, Germany, and the Director of
the Knowledge Technology Institute, Department of
Informatics. He has previously held positions at
the University of Dortmund, Dortmund, Germany;

University of Massachusetts Amherst, Amherst, MA, USA; the International
Computer Science Institute, Berkeley, CA, USA; and the University of
Sunderland, Sunderland, U.K. His main research interests are in neural
networks, hybrid knowledge technology, neuroscience-inspired computing,
cognitive robotics, natural language processing, and human–robot interaction.

Prof. Wermter is the Coordinator of the International Doctoral Training
Network TRAIL, the Co-Coordinator of the International Collaborative
Research Centre on Crossmodal Learning (TRR-169) and currently serves
as the President for the European Neural Network Society. He has been an
Associate Editor of the IEEE TRANSACTIONS ON NEURAL NETWORKS AND

LEARNING SYSTEMS and is on the advisory board of Connection Science and
International Journal for Hybrid Intelligent Systems and the editorial board of
the Cognitive Computation, Neurosymbolic Artificial Intelligence, and Journal
of Computational Intelligence.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Helvetica-Condensed-Bold
 /Helvetica-LightOblique
 /HelveticaNeue-Bold
 /HelveticaNeue-BoldItalic
 /HelveticaNeue-Condensed
 /HelveticaNeue-CondensedObl
 /HelveticaNeue-Italic
 /HelveticaNeueLightcon-LightCond
 /HelveticaNeue-MediumCond
 /HelveticaNeue-MediumCondObl
 /HelveticaNeue-Roman
 /HelveticaNeue-ThinCond
 /Helvetica-Oblique
 /HelvetisADF-Bold
 /HelvetisADF-BoldItalic
 /HelvetisADFCd-Bold
 /HelvetisADFCd-BoldItalic
 /HelvetisADFCd-Italic
 /HelvetisADFCd-Regular
 /HelvetisADFEx-Bold
 /HelvetisADFEx-BoldItalic
 /HelvetisADFEx-Italic
 /HelvetisADFEx-Regular
 /HelvetisADF-Italic
 /HelvetisADF-Regular
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

