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QT-TDM: Planning With Transformer Dynamics
Model and Autoregressive Q-Learning

Mostafa Kotb1,2,∗, Cornelius Weber1, Muhammad Burhan Hafez3, and Stefan Wermter1

Abstract—Inspired by the success of the Transformer archi-
tecture in natural language processing and computer vision, we
investigate the use of Transformers in Reinforcement Learning
(RL), specifically in modeling the environment’s dynamics using
Transformer Dynamics Models (TDMs). We evaluate the capabil-
ities of TDMs for continuous control in real-time planning scenar-
ios with Model Predictive Control (MPC). While Transformers
excel in long-horizon prediction, their tokenization mechanism
and autoregressive nature lead to costly planning over long hori-
zons, especially as the environment’s dimensionality increases. To
alleviate this issue, we use a TDM for short-term planning, and
learn an autoregressive discrete Q-function using a separate Q-
Transformer (QT) model to estimate a long-term return beyond
the short-horizon planning. Our proposed method, QT-TDM,
integrates the robust predictive capabilities of Transformers as
dynamics models with the efficacy of a model-free Q-Transformer
to mitigate the computational burden associated with real-time
planning. Experiments in diverse state-based continuous control
tasks show that QT-TDM is superior in performance and sample
efficiency compared to existing Transformer-based RL models
while achieving fast and computationally efficient inference.

Index Terms—Model learning for control, machine learning
for robot control, deep learning methods.

I. INTRODUCTION

LEARNING an accurate predictive model of environment
dynamics [1] is a challenging yet promising technique

in Deep RL to enhance sample efficiency [2], [3], [4] and
achieve generalization [5], [6], [7]. The Transformer archi-
tecture [8] is a strong candidate for dynamics modeling, as
it proves to be an excellent sequence modeler and shows
outstanding performance across various domains, including
Natural Language Processing [9], Computer Vision [10], and
Reinforcement Learning [11].

Transformer dynamics models (TDMs) [12], [13] have
proven effective in background planning [14] scenarios, where

Manuscript received: July, 21, 2024; Revised October, 8, 2024; Accepted
November, 4, 2024.

This paper was recommended for publication by Editor Jaydev P. Desai
upon evaluation of the Associate Editor and Reviewers’ comments. This work
was supported by the German Research Foundation DFG under project CML
(TRR 169) and Mostafa Kotb is funded by a scholarship from the Ministry
of Higher Education of the Arab Republic of Egypt.

1Mostafa Kotb, Cornelius Weber and Stefan Wermter are with Knowl-
edge Technology Group, Department of Informatics, Universität Hamburg,
22527 Hamburg, Germany {mostafa.kotb, cornelius.weber,
stefan.wermter}@uni-hamburg.de

∗Corresponding author: Mostafa Kotb
2Mostafa Kotb is with Mathematics Department, Faculty of Science, Aswan

University, 81528 Aswan, Egypt m.kotb@sci.aswu.edu.eg
3Muhammad Burhan Hafez is with School of Electronics and Com-

puter Science, University of Southampton, Southampton SO17 1BJ, UK
burhan.hafez@soton.ac.uk

The code is available at https://github.com/2M-kotb/QT-TDM/tree/main
Digital Object Identifier (DOI): see top of this page.

 

TDM TDM

Predicted action dimensions

QT

Fig. 1. QT-TDM Inference: The learned TDM model plans for short planning
horizon H , while the learned QT model estimates an autoregressive terminal
value Qi

H for each action dimension aiH which guides the planning beyond
the myopic horizon.

an actor-critic model is trained on the imagined trajectories
generated by the learned dynamics model. During inference,
the learned actor-critic model selects the suitable actions.
TDMs show an outstanding performance in discrete action
spaces [13], [15] and in long-term memory tasks [16].

In real-time planning scenarios, where the learned dynamics
model plans ahead by being unrolled forward from the current
state to select the best action, TDMs encounter hurdles.
Specifically, inference is slow and computationally inefficient
[12], [17] due to the autoregressive token prediction and the
per-dimension tokenization scheme, which increases sequence
length as the environment’s dimensionality increases. This
makes planning for long horizons impractical, especially in the
robotics domain, where fast inference is essential. Therefore,
TDMs require more optimization on the architecture level,
and more sample-efficient planning algorithms are needed to
achieve faster real-time inference.

To this end, we introduce QT-TDM, a model-based algo-
rithm that combines the strengths of a TDM and a model-free
Q-Transformer (QT) [18]. Inspired by the TD-MPC algorithm
[19], our proposed model achieves fast inference (as shown in
Fig. 1) by combining a short planning horizon with a terminal
value that is estimated by the Q-Transformer model which
provides an estimate of a long-term return beyond the myopic
planning horizon. Additionally, the sequence length is reduced
by tokenizing the high-dimensional state space into a single
token using a learned linear layer [11], as opposed to the
conventional per-dimension tokenization method [12], [17].

The advantages of QT-TDM are twofold. First, the modular
architecture, consisting of two components (TDM and QT) that
can be trained and used individually, facilitates the replace-
ment and testing of its components. Second, the Transformer-
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based architecture, which incorporates GPT-like Transformers
[8], allows for scalability through training with diverse offline
datasets, thereby enhancing generalization.

In this paper, we evaluate the proposed QT-TDM for
real-time continuous planning with Model Predictive Control
(MPC) using diverse state-based continuous control tasks from
two domains: DeepMind Control Suite [20] and MetaWorld
[21]. The results demonstrate the superior performance and
sample efficiency of the QT-TDM model compared to base-
lines, while also achieving fast and computationally efficient
inference. Our contributions can be summarised as follows:

• We propose QT-TDM, a Transformer-based model-based
algorithm consisting of two modules (QT and TDM) in
a modular architecture.

• QT-TDM addresses the slow and computationally ineffi-
cient inference associated with TDMs, while maintaining
superior performance compared to baselines.

II. RELATED WORK

1) Transformer Dynamics Model: Motivated by the success
of Transformers in sequence modeling tasks, there has been
a lot of recent attention on using Transformers as dynamics
models. One of the earliest attempts is TransDreamer [16]
which as implied by the name is a modification of the Dreamer
model [14]. TransDreamer replaces the Recurrent State-Space
Model (RSSM) [22] with a Transformer State-Space Model
(TSSM), improving TransDreamer’s performance in long-term
memory tasks. IRIS [13] and TWM [15] are two sample-
efficient model-based agents that are trained inside the imag-
ination of a Transformer-based world model. IRIS’ world
model consists of a discrete autoencoder [23] as an observation
model and a GPT-like Transformer [8] as a dynamics model,
while the world model of TWM consists of a variational
autoencoder [24] and a Transformer-XL [9]. Both models
work with discrete action environments and they achieve
impressive results on the Atari 100K benchmark. Generalist
TDM [12] is the first attempt to use a learned TDM for
continuous real-time planning with Model Predictive Control.
Generalist TDM performs well in a single environment (i.e,
specialist setting) and generalizes to unseen environments (i.e.,
generalist setting), in a few-shot and in zero-shot scenarios.
Despite of its capabilities, it has two shortcomings. First, the
training data is collected by an expert agent and not by its own
interactions with the environment. Second, it suffers from slow
inference because of the long-horizon planning and because
of the design choices that are based on the Gato Transformer
model [25] which uses the per-dimension tokenization scheme.

To overcome the above shortcomings, we introduce the
QT-TDM model, which explores the environment to collect
training data and has faster inference speed by shortening the
planning horizon and utilizing the QT model [18] to estimate
a long-term return beyond the short-term planning horizon.

2) Robotics Foundation Models: Inspired by the success of
Vision/Language Foundation Models [26], there remains sig-
nificant potential for the development of specialized Robotics
Foundation Models (RFMs). Foundation Models, primarily

based on Transformer architectures, are pre-trained on large-
scale datasets and exhibit remarkable zero-shot and few-
shot generalization capabilities. Examples of RFMs are RT-2
[27], Q-Transformer [18], Gato [25] and PaLM-E [28]. All
existing RFMs adopt a model-free (model-agnostic) approach.
However, many researchers argue that a model-based approach
based on Foundation World Models (FWMs) is a promising
direction for addressing complex robotics challenges [29].
While Generalist TDM [12] shows the potential of this di-
rection, this work builds on it and further improves real-time
planning capabilities and efficiency. In the future work section,
we propose strategies to further advance QT-TDM toward the
realization of FWMs.

III. BACKGROUND

1) Reinforcement Learning: We formulate the problem
of continuous control as an infinite-horizon Markov De-
cision Process (MDP) that can be formalized by a tuple
(S,A,R, T , γ), where S is the state space,A is the continuous
action space, R : S × A 7→ R is a reward function,
T : S × A 7→ S is the transition function, and γ ∈ [0, 1] is a
discount factor. The goal of reinforcement learning is to learn
a policy Πθ : S 7→ A from interacting with the environment
that maximizes the expected cumulative discounted reward
EΠθ

[
∑∞

t=0 γ
trt]. In this work, the policy Πθ is derived from

planning with a learned dynamics model.
2) Model Predictive Control: In control, learning Πθ is

formulated as a trajectory optimization problem, in which at
each step t, optimal actions at:t+H over a finite horizon H
are estimated to maximize the discounted sum of rewards:

Πθ(st) = arg max
at:t+H

E

[
H∑
i=t

γiri

]
, (1)

and the first action at is executed. This method is known as
Model Predictive Control (MPC). Eq. 1 is not predicting long-
term rewards beyond H . Consequently, incorporating a value
function of the terminal state st+H provides an estimate of the
long-term return, a method referred to as MPC with a terminal
value [19]. An alternative approach, known as MPC with value
summation [4], involves summing value functions over a finite
horizon rather than summing rewards. In this work, we utilize
Q-Transformer to estimate a terminal Q-value in a myopic
planning horizon.

3) Autoregressive Q-Learning: Applying Q-learning with
Transformers is challenging since Transformers require dis-
cretizing the action space into tokens to effectively apply
the attention mechanism. Therefore, the standard Q-learning
needs to be reformulated in order to be applied. In the Q-
Transformer model [18], an autoregressive Q-learning formu-
lation is proposed where each action dimension is treated as
a separate time step. This way, each action dimension can
be discretized individually, rather than discretizing the entire
action space, thus avoiding the exponential growth in the
discrete action space. An autoregressive discrete Q-function
is employed which predicts a separate Q-value for each action
dimension. Let at = (a1t , ..., a

N
t ) be an N -dimensional action
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Fig. 2. QT-TDM Architecture, which consists of two modules: (a) TDM and (b) QT. Both modules have a GPT-like Transformer as a main component and
share the same tokenization scheme. The state st is tokenized into a single token using a learned linear layer. A per-dimension tokenization is performed
for the N -dimensional action by discretizing each dimension independently into K bins, then using an embedding table. The TDM module predicts the next
state ŝt+1 and the reward r̂t and is trained on L sampled time steps (for brevity, we only show two time steps). The QT module predicts a Q-value for each
action dimension q̂i,1:Kt ∀i ∈ [1, ..., N ].

at time step t. The autoregressive Q-function predicts a Q-
value for each action dimension ait that is conditioned on the
state st and the previous action dimensions a1:i−1

t :

Q(st, a
1:i−1
t , ait) ∀i ∈ [1, ..., N ]. (2)

To train the Q-function, a per-dimension Bellman update is
defined as follows:

Q(st, a
1:i−1
t , ait)←


max
ai+1
t

Q(st, a
1:i
t , ai+1

t ) if i < N

rt + γmax
a1
t+1

Q(st+1, a
1
t+1) if i = N.

(3)
The Q-targets of all action dimensions except the last one

are computed by maximizing over the discretized bins of
their subsequent dimension within the same time step. The
Q-target of the last dimension is computed by the discounted
maximization of the first dimension of the next time step plus
the reward. The reward is only applied on the last dimension as
it is observed after executing the whole action. In addition, the
Q-values are only discounted between time steps (i.e., discount
factor γ is only applied for the last dimension), to ensure the
same discounting as in the original MDP. The Q-Transformer
model [18] has been evaluated in an offline RL fashion with
large-scale robotic sparse reward tasks. In this work, we utilize
the Q-Transformer model in an online RL fashion to estimate
a terminal Q-value in a short-horizon real-time planning task,
in order to achieve faster planning.

IV. METHODOLOGY

To resolve the trade-off between expressiveness and speed in
TDMs, we introduce QT-TDM, a model-based RL algorithm
that captures the environment’s dynamics by modeling trajec-
tory data using a Transformer Dynamics Model and achieves
fast inference speed by utilizing a terminal Q-value to guide
a short-horizon planning (see Fig. 1). In this section, we
first describe the architecture of our model, then the training
procedure, and finally explain how to apply the Q-Transformer
during planning.

A. Architecture

QT-TDM model shown in Fig. 2 consists of two sepa-
rated modules: Transformer Dynamics Model (TDM) and Q-
Transformer Model (QT) [18].

TDM is implemented as a GPT-like Transformer [8] that
computes a deterministic hidden state ht conditioned on the
states and actions of past steps. We consider only the hidden
state corresponding to the last action dimension, as it attends
to all preceding action dimensions (see Fig. 2a; orange boxes
vs. faded gray boxes). Predictors for the next state and reward
are conditioned on the hidden state which are implemented as
multilayer perceptrons (MLPs). The model components are as
follows:

Hidden state: ht = fθ(s ≤ t, a1:N ≤ t) (4a)
Transition: ŝt+1 = gθ(ht) (4b)
Reward: r̂t ∼ pθ(r̂t|ht), (4c)

the reward model outputs the mean of a normal distribution.
The Q-Transformer model consists of a GPT-like Trans-

former and an autoregressive discrete Q-function that predicts
a Q-value for each action dimension which is implemented as
MLP. The Transformer computes a deterministic hidden state
hi
t for each action dimension ait conditioned on the state st and

previous action dimensions a1:i−1
t . The model components are

as follows:

Hidden state: hi
t = fϕ(st, a

1:i−1
t ) ∀i ∈ [1, ..., N ] (5a)

Q-Value: q̂i,1:Kt = gϕ(h
i
t) ∀i ∈ [1, ..., N ], (5b)

where K is the number of discretized action bins.
Both models, TDM and QT, tokenize the input sequences

in the same way. Let s ∈ S be an M -dimensional state and
a ∈ A is an N -dimensional continuous action. We follow [11]
in tokenizing the state s into a single token obtained with a
learned linear layer, rather than the conventional per-dimension
tokenization [12], [17] which increases the input sequence



4 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED NOVEMBER, 2024

Algorithm 1: QT-TDM (Training)
Require: θ: initialized TDM parameters
ϕ, ϕ̄: initialized QT parameters, EMA parameters
ηd, ηq: learning rates
B, ζ: replay buffer, EMA coefficient
L, N : sampled time steps, action dim.

1 for each training step do
// Collect episode with QT-TDM and add to buffer

2 B ← B ∪ {st, at, rt, st+1}T−1
t=0

3 for num updates per episode do
4 {st, at, rt, st+1}Lt=1 ∼ B; ▷ Sample trajectory

// Update Dynamics Model (TDM)
5 for t = 1...L do
6 ht = fθ(s ≤ t, a1:N ≤ t); ▷ Hidden state
7 ŝt+1 = gθ(ht); ▷ Transition
8 r̂t ∼ pθ(r̂t|ht); ▷ Reward

9 θ ← θ − ηd∇θLDyn
θ ; ▷ Equation 6

// Update Q-Transformer (QT)
10 for i = 1...N do
11 hi

t = fϕ(st, a
1:i−1
t ); ▷ Hidden state

12 q̂i,1:Kt = gϕ(h
i
t); ▷ Q-Values

13 ϕ← ϕ− ηq∇ϕLQ
ϕ ; ▷ Equation 7

// Update Target Network
14 ϕ̄← (1− ζ)ϕ̄+ ζϕ;

length. We perform a per-dimension tokenization for the N -
dimensional continuous action a = (a1, a2, ...., aN ) by dis-
cretizing each dimension independently into K uniformally-
spaced bins, then invoking the token embedding from a learned
embedding table. TDM takes as input a sequence of L×(N+1)
tokens, where L is time steps. QT takes as input a sequence
of N tokens as it ignores the last action dimension.

B. Training

The dynamics model is trained in a self-supervised manner
on segments of L time steps sampled from the replay buffer
B. We minimize the sum of a mean-squared error transition
loss and a negative log-likelihood reward loss:

LDyn
θ =

L∑
t=1

[
β1∥gθ(ht)− st+1∥22 − β2 ln pθ(rt|ht)

]
, (6)

where β1 and β2 are coefficients of the transition loss and the
reward loss respectively.

The Q-Transformer model is trained by minimizing the
Temporal Difference (TD) error loss defined by the per-
dimension Bellman update [18] in Eq. 3

LQ
ϕ = Qϕ(st, at)−Q∗

ϕ̄(st, at), (7)

where Qϕ(st, at) = {q̂it}Ni=1 consists of the predicted Q-
values of all action dimensions, and Q∗

ϕ̄
are the target Q-values

predicted by a Q-target network whose parameters are an
exponential moving average (EMA) of the Q-network. We use
smooth L1 loss [30] as the TD-error which stabilizes training
by avoiding exploding gradients. We follow [18] in employing

Algorithm 2: QT-TDM (Planning)
Require: θ, ϕ: TDM parameters, QT parameters
µ0, σ0: initial parameters of N
J , JQT : num. of samples, num. of QT samples
st, H , I: current state, len. of horizon, iterations

1 for n = 1...I do
2 Sample J action seq. from N (µn−1, (σn−1)2I)
3 Sample JQT action seq. using QT and TDM

// Rollout trajectories and estimate total return FΓ

4 for all J + JQT action sequences do
5 for t = 0...H − 1 do
6 ht = fθ(s ≤ t, a1:N ≤ t); ▷ Hidden state
7 ŝt+1 = gθ(ht); ▷ Transition
8 FΓ = FΓ + γtpθ(r̂t|ht); ▷ Reward

// Estimate the terminal Q-value using QT and
add the value of last action dim. to FΓ

9 FΓ = FΓ + γH max
aN
H

Qϕ(ŝH , aNH)

10 Update µn and σn; ▷ Equation 9

11 return at ∼ N (µI
t , (σ

I
t )

2I); ▷ First action is executed

n-step return [31] over action dimensions, and utilizing Monte
Carlo return [32] only with sparse reward tasks (e.g., Reacher
Easy), which helps accelerate learning. See Algorithm 1 for
training pseudo code.

C. Planning

We evaluate the proposed QT-TDM model on real-time
planning with MPC, where inference speed needs to be taken
into consideration. The inference time grows with the planning
horizon H , the number of planning samples J , and the
dimensionality of the environment D. While Transformers
serve as large, expressive, and robust dynamics models, they
are not optimized for fast inference [12]. The per-dimension
tokenization and the autoregressive token prediction lead to
a slow inference over long horizons. To solve this issue and
achieve faster inference, we use a short planning horizon and
employ the Q-Transformer model to estimate a terminal Q-
value [19] that provides a long-term return beyond the short-
term horizon. During planning with MPC, we sample J action
sequences of length H from a time-dependent multivariate
diagonal Gaussian distribution initialized by (µ0, σ0)t:t+H .
Then, trajectories are generated using rollouts from the learned
dynamics model (TDM), and the total return FΓ of a trajectory
Γ is computed as follows:

FΓ = EΓ

[
γH max

aN
H

Qϕ(ŝH , aNH) +

H−1∑
t=0

γtpθ(r̂t|ht)

]
, (8)

where Qϕ(ŝH , aNH) is the terminal Q-value of the last action
dimension aNH . The distribution µn and σn at iteration n are
updated to the top-k trajectories with the highest total returns
F⋆

Γ as follows:

µn =

∑k
i=1 ΩiΓ

⋆
i∑k

i=1 Ωi

, σn =

√√√√∑k
i=1 Ωi (Γ ⋆

i − µn)
2∑k

i=1 Ωi

, (9)
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(a) Walker Walk (b) Cheetah Run (c) Reacher Easy

(d) Drawer Open (e) Plate Slide (f) Reach Wall

(g) Hammer (h) Door Unlock (i) Button Press Wall

Fig. 3. Continuous Control Tasks. Two locomotion tasks with high-
dimensional action space (Walker and Cheetah) and one sparse reward task
(Reacher) from DMC [20]. Six robotic manipulation tasks (d)-(i) with various
challenges from MetaWorld [21].

where Ωi = eτ(F
⋆
Γ,i), τ is a temperature parameter con-

trolling the sharpness of the weighting and Γ ⋆
i is the ith

top-k trajectory. After a fixed number of iterations I, the
planning procedure terminates and a trajectory is sampled
from the final updated distribution. The first action is only
executed as we plan at each decision step t. In addition to
sampling from the Gaussian distribution, we also sample JQT

action sequences from the learned Q-Transformer model. The
planning procedure is summarized in Algorithm 2 and shown
in Fig. 1

V. EXPERIMENTS

A. Description and Details

1) Benchmarks: We evaluate the performance of QT-TDM
model on diverse state-based continuous control tasks from
two benchmarks: DeepMind Control Suite (DMC) [20] and
MetaWorld [21]. From DMC, we choose two high-dimensional
locomotion tasks (Walker Walk and Cheetah Run) and a
sparse reward task (Reacher Easy). MetaWorld contains 50
different robotic manipulation tasks, and because of time and
computational constraints, we choose six tasks with various
challenges. All tasks are shown in Fig. 3.

2) Baselines: Since the Generalist TDM [12] is the first
Transformer-based model to perform continuous real-time
planning, it serves as an eligible baseline. However, a compar-
ison with it was not possible because its implementation is not
publicly accessible. We compare the performance of QT-TDM
against PlaNet [22], DreamerV3 [33] and its two individual
modules (QT and TDM) to serve as an ablation study as well.

Both, PlaNet and DreamerV3 are model-based algorithms
that use Recurrent State-Space Model (RSSM) as dynamics
model. While PlaNet performs real-time planning with MPC,
DreamerV3 performs background planning. Q-Transformer
[18] is a Transformer-based model-free algorithm that uses an
autoregressive Q-Learning. We provide an extensive evaluation
of QT on diverse tasks in an online RL scenarios. TDM is a
model-based algorithm that performs real-time planning but
without the guidance from a terminal value function.

3) Experimental Setup: We list all the environment details
for the tasks from the two benchmarks in Table I . For a
fair comparison between the two Transformer-based model-
based algorithms (QT-TDM and TDM), we use the same
planning parameters shown in Table II. For the Recurrent-
based model-based algorithm (PlaNet), we use its default
planning parameters. All the compared models are evaluated
after every 10K environment steps averaging over 10 episodes,
except for DreamerV3, for which we use the final performance
after convergence that we obtained from [34].

4) Computational Resources: For each task, we trained our
method and the baselines with 3 different random seeds. We
ran our experiments with 6 Nvidia Quadro 6000 GPUs (24GB)
using one GPU for one seed. For one DMC task, the total
training and evaluation of our method takes on average 2
days while TDM takes 1.5 days. For one MetaWorld task,
our method takes on average 4 days while TDM takes 3.5
days. The model-free QT takes 2 and 6 hours for training one
DMC task and one MetaWorld task respectively.

B. Results

Results for all 9 tasks from the two benchmarks are shown
in Fig. 4. We summarize our findings as follows:

TABLE I
ENVIRONMENT DETAILS USED ACROSS ALL METHODS FOR THE TWO

DOMAINS. WE USE ACTION REPEAT OF 4 FOR DMC TASKS EXCEPT FOR
WALKER, WHERE ACTION REPEAT OF 2 IS USED.

DMC MetaWorld

Episode length 1000 200
Action repeat 2 / 4 2
Effective length 500 / 250 100
Environment steps 500K 1M
Performance metric Reward Success

Observation dim. (M)
6 (Reacher)
17 (Cheetah) 39 (all tasks)
24 (Walker)

Action dim. (N)
6 (Walker, Cheetah) 4 (all tasks)

2 (Reacher)

TABLE II
MPC PLANNING PARAMETERS USED FOR ALL TASKS.

Parameter QT-TDM (ours) / TDM PlaNet [22]

Initial parameters (µ0, σ0) (0, 2) (0, 1)
Planning horizon H 3 12
Num. of samples J 512 1000
Num. of iterations I 6 10
Num. of top-k trajectories 64 100
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Fig. 4. Learning curves. Three tasks from DMC (top row), episode return as performance metric. Six tasks from MetaWorld (middle and bottom rows),
success rate (%) as performance metric. Mean over 3 seeds; shaded areas are standard deviations. For DreamerV3, we report the final performance from [34].

1) Planning Efficiency: The two compared Transformer-
based model-based algorithms (QT-TDM and TDM) perform
real-time planning with a myopic planning horizon (H = 3).
However, QT-TDM relies on a learned terminal Q-value to
guide the short-horizon planning. In DMC tasks, TDM fails to
solve the Walker task, its learning stagnates at approximately
200 returns after 100K environment steps for the Cheetah
task, and it relatively solves the sparse reward Reacher task at
approximately 600 returns. In contrast, our proposed QT-TDM
model successfully solves all tasks, except for the Cheetah task
where it struggles a bit achieving approximately 400 returns.
We achieved improved results with planning horizons H = 5
and H = 9 as shown in Fig. 5 but with the cost of higher
inference time. In MetaWorld tasks, while TDM struggles to
solve hard tasks such as Hammer, Door Unlock, and Button
Press Wall, QT-TDM successfully solves all six tasks. QT-
TDM outperforms TDM with only a 1.3× increase in running
time (e.g., from 1.5 days to 2 days for DMC tasks). This
is more efficient than the over 2× increase in running time
required when extending the planning horizon (H ≥ 6). This
demonstrates that our proposed QT-TDM achieves efficient
real-time planning in terms of both performance and compu-
tational demands.

2) Transformer vs. Recurrent: Comparing our Transformer-
based model against two Recurrent-based models highlights
the superiority of TDMs in modeling dynamics. QT-TDM
consistently outperforms PlaNet across all tasks, even though

PlaNet utilizes a longer planning horizon (see table II). When
compared to the state-of-the-art DreamerV3 which performs
background planning, QT-TDM surpasses it in all MetaWorld
tasks, while DreamerV3 achieves better performance in two
DMC tasks (in Reacher Easy and Cheetah Run).

3) Planning vs. Policy: The compared model-free Q-
Transformer selects actions with a value-based policy by
maximizing Q-values over the discretized bins for all action
dimensions. The QT model successfully solves all tasks from
MetaWorld, but with less sample efficiency than our QT-TDM
model. In DMC tasks with high-dimensional action spaces
(Walker and Cheetah), QT was extremely sample-inefficient
compared to QT-TDM. In the Walker task, QT achieves
approximately 150 returns at 100K environment steps and
600 returns at 500K environment steps, compared with our
proposed QT-TDM that achieves approximately 600 returns
at 100K environment steps and 900 returns at 500K envi-
ronment steps. It is expected that the model-based algorithm
is more sample-efficient than its model-free counterpart [3],
[4]. Nevertheless, the results demonstrate that QT [18] is a
capable model-free algorithm that can perform effectively in
both online and offline RL scenarios with sparse and dense
rewards.

C. Implementation
Our GPT-like Transformer in both models (TDM and QT) is

based on the implementation of minGPT [35]. See Table III for
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Fig. 5. QT-TDM with different planning horizon (H) on Cheetah Run task.

the Transformer hyperparameters. The reward and next state
predictors in TDM are implemented as 3-layer MLPs with
dimension 512, Leaky ReLU activation, and 0.01 dropout. We
implement 2 Q-functions in QT model as 2-layer MLPs with
dimension 128 and ReLU activation. TD-targets are computed
as the minimum of these 2 Q-functions. Both models use
Adam optimizer and Table IV shows the optimization hyper-
parameters for TDM and QT.

TABLE III
TRANSFORMER HYPERPARAMETERS.

Hyperparameter TDM QT

Input sequence L× (N + 1) tokens N tokens
Time steps (L) 20 1
Discretize action bins (K) 256 256
Embedding dim. 256 128
attention heads 4 8
Num. of layers 5 2
Embedding dropout 0.1 0.1
Attention dropout 0.1 0.1
Residual dropout 0.1 0.1

TABLE IV
OPTIMIZATION HYPERPARAMETERS.

Hyperparameter Value

TDM

Batch size 512
Learning rate (ηd) 1× 10−4

Weight decay 1× 10−6

Max gradient norm 30
Transition loss coef (β1). 1.0
Reward loss coef. (β2) 2.0

QT

Batch size 512

Learning rate (ηq)
3× 10−4 (fixed) (DMC)

3× 10−4 (decay) (MetaWorld)
Weight decay 1× 10−6

Max gradient norm 20
EMA coef. (ζ) 0.005
Target (ϕ̄) update freq. 5 (DMC), 10 (MetaWorld)
n-step return 3
Monte Carlo return sparse reward tasks (Reacher)
Discount (γ) 0.98

D. Complexity Analysis

We compare the complexity of our QT-TDM model against
the Generalist TDM model [12] in terms of model size
(i.e., number of parameters) and inference speed. Since the
implementation of Generalist TDM is not available, we do
not use quantitative measures for inference speed such as wall-
time or FLOPs. Instead, we measure inference speed based on
planning horizon H , terminal value QH , number of planning
samples J and number of tokens per timestep T (see Table V).
Due to the per-dimension tokenization, Generalist TDM re-
quires (M +N + 1) tokens per timestep: M state tokens, N
action tokens, and one reward token. In contrast, QT-TDM
requires only (1 + N) tokens per timestep by reducing the
state tokens to a single token using a learned linear layer and
by not using the reward token. Additionally, our model utilizes
an 85% shorter planning horizon compared to the Generalist
TDM model. However, our model leverages a terminal Q-value
N times, with one value for each action dimension. Despite
the additional steps, the total planning steps required by our
model (3+N steps) remain fewer than those required by the
Generalist TDM (at least 20 steps). Consequently, QT-TDM
achieves faster inference speed with 92% fewer parameters
than Generalist TDM. The computational demands of handling
a high number of samples J can be mitigated by increasing
parallelization (using multiple cores) [12].

TABLE V
COMPLEXITY RELATED PARAMETERS.

Parameter QT-TDM Generalist TDM
(ours) [12]

Num. of parameters 6M 77M
Planning horizon(H) 3 20 – 100
Terminal value (QH) N Not used
Num. of samples (J) 512 64 – 128
Num. of per timestep tokens (T ) 1 +N M +N + 1

VI. CONCLUSION AND FUTURE WORK

In this paper, we propose QT-TDM, a Transformer-based
model-based algorithm that overcomes the slow and compu-
tationally inefficient inference associated with TDMs.
Model size. Although the QT-TDM model comprises two
separate GPT-like Transformers, it has a relatively small num-
ber of parameters (6M) compared to other Transformer-based
models such as Generalist TDM (77M). This helps mitigate
the overfitting issue commonly encountered with high-capacity
Transformers.
Inference speed. The proposed QT-TDM achieves fast real-
time inference by reducing the number of per timestep tokens
and combining short-horizon planning with a learned terminal
Q-value to guide the planning process. In addition to sampling
random trajectories from a Gaussian distribution, we sample
a small number of trajectories (only 24) from the learned Q-
Transformer. Further improvements to inference speed could
be achieved by reducing the number of random trajectories
and incorporating more policy-sampled trajectories. We plan
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to investigate this strategy in future work. Another straightfor-
ward approach to increase inference speed is to train the Q-
Transformer model using the imagined trajectories generated
by TDM. The learned QT model can then be used to select
actions during inference. This technique is referred to as
learning inside imagination [14].
Limitations. First, QT-TDM relies heavily on the learned
Q-values to guide the myopic planning horizon. However,
learning a value function to approximate future returns is
known to be unstable and prone to overestimation. We observe
that the Q-Transformer model struggles to solve complex and
hard-to-explore environments such as pick Place and Shelf
Place from MetaWorld benchmark. As part of our future work,
we plan to explore the use of an ensemble of Q-functions
instead of just two Q-functions [34] which helps mitigate
the overestimation issue. Additionally, we intend to employ
a categorical cross-entropy loss as the TD-error rather than
the traditional MSE regression loss, as it has been shown to
be more effective and can accelerate the learning process [36].
Second, the use of per-dimension tokenization for the action
space makes it difficult to scale to high-dimensional action
spaces (e.g., humanoid robots) because it increases both the
sequence length and the inference time.
Generalization. In this work, we evaluate QT-TDM in online
RL scenarios to solve single tasks (i.e., specialist agent). For
future work, we plan to assess the generalization capabilities
of the QT-TDM model (i.e., generalist agent) by training it
with large, diverse offline datasets and evaluating its perfor-
mance in unseen environments through few-shot and zero-shot
scenarios.
Pixel observations. In this work, we experiment exclusively
with state-based environments. We plan to extend our approach
to pixel-based environments in future work by developing an
observation model such as ViT [10] or discrete autoencoder
[23].
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