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QT-TDM: Planning With Transformer Dynamics
Model and Autoregressive Q-Learning

Mostafa Kotb ¥, Cornelius Weber

Abstract—Inspired by the success of the Transformer archi-
tecture in natural language processing and computer vision, we
investigate the use of Transformers in Reinforcement Learning
(RL), specifically in modeling the environment’s dynamics using
Transformer Dynamics Models (TDMs). We evaluate the capabili-
ties of TDMs for continuous control in real-time planning scenarios
with Model Predictive Control (MPC). While Transformers excel in
long-horizon prediction, their tokenization mechanism and autore-
gressive nature lead to costly planning over long horizons, especially
as the environment’s dimensionality increases. To alleviate this
issue, we use a TDM for short-term planning, and learn an autore-
gressive discrete Q-function using a separate Q-Transformer (QT)
model to estimate a long-term return beyond the short-horizon
planning. Our proposed method, QT-TDM, integrates the robust
predictive capabilities of Transformers as dynamics models with
the efficacy of a model-free Q-Transformer to mitigate the compu-
tational burden associated with real-time planning. Experiments
in diverse state-based continuous control tasks show that QT-TDM
is superior in performance and sample efficiency compared to
existing Transformer-based RL models while achieving fast and
computationally efficient inference.

Index Terms—Model learning for control, machine learning for
robot control, deep learning methods.

I. INTRODUCTION

EARNING an accurate predictive model of environment
dynamics [1] is a challenging yet promising technique in
Deep RL to enhance sample efficiency [2], [3], [4] and achieve
generalization [5], [6], [7]. The Transformer architecture [8]
is a strong candidate for dynamics modeling, as it proves
to be an excellent sequence modeler and shows outstanding
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Fig. 1. QT-TDM Inference: The learned TDM model plans for short planning
horizon _H , while the learned QT model estimates an autoregressive terminal
value Q’H fpr each action dimension a’; which guides the planning beyond the
myopic horizon.

performance across various domains, including Natural Lan-
guage Processing [9], Computer Vision [10], and Reinforcement
Learning [11].

Transformer dynamics models (TDMs) [12], [13] have proven
effective in background planning [ 14] scenarios, where an actor-
critic model is trained on the imagined trajectories generated
by the learned dynamics model. During inference, the learned
actor-critic model selects the suitable actions. TDMs show an
outstanding performance in discrete action spaces [13], [15] and
in long-term memory tasks [16].

In real-time planning scenarios, where the learned dynamics
model plans ahead by being unrolled forward from the current
state to select the best action, TDMs encounter hurdles. Specifi-
cally, inference is slow and computationally inefficient [12], [17]
due to the autoregressive token prediction and the per-dimension
tokenization scheme, which increases sequence length as the
environment’s dimensionality increases. This makes planning
for long horizons impractical, especially in the robotics domain,
where fast inference is essential. Therefore, TDMs require more
optimization on the architecture level, and more sample-efficient
planning algorithms are needed to achieve faster real-time infer-
ence.

To this end, we introduce QT-TDM, a model-based algorithm
that combines the strengths of a TDM and a model-free Q-
Transformer (QT) [18]. Inspired by the TD-MPC algorithm [19],
our proposed model achieves fast inference (as shown in Fig. 1)
by combining a short planning horizon with a terminal value that
is estimated by the Q-Transformer model which provides an esti-
mate of a long-term return beyond the myopic planning horizon.
Additionally, the sequence length is reduced by tokenizing the
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high-dimensional state space into a single token using a learned
linear layer [11], as opposed to the conventional per-dimension
tokenization method [12], [17].

The advantages of QT-TDM are twofold. First, the modular
architecture, consisting of two components (TDM and QT) that
can be trained and used individually, facilitates the replacement
and testing of its components. Second, the Transformer-based
architecture, which incorporates GPT-like Transformers [8], al-
lows for scalability through training with diverse offline datasets,
thereby enhancing generalization.

In this letter, we evaluate the proposed QT-TDM for real-
time continuous planning with Model Predictive Control (MPC)
using diverse state-based continuous control tasks from two
domains: DeepMind Control Suite [20] and MetaWorld [21].
The results demonstrate the superior performance and sample
efficiency of the QT-TDM model compared to baselines, while
also achieving fast and computationally efficient inference. Our
contributions can be summarised as follows:

® We propose QT-TDM, a Transformer-based model-based

algorithm consisting of two modules (QT and TDM) in a
modular architecture.

e QT-TDM addresses the slow and computationally ineffi-

cient inference associated with TDMs, while maintaining
superior performance compared to baselines.

II. RELATED WORK

1) Transformer Dynamics Model: Motivated by the success
of Transformers in sequence modeling tasks, there has been
a lot of recent attention on using Transformers as dynamics
models. One of the earliest attempts is TransDreamer [16]
which as implied by the name is a modification of the Dreamer
model [14]. TransDreamer replaces the Recurrent State-Space
Model (RSSM) [22] with a Transformer State-Space Model
(TSSM), improving TransDreamer’s performance in long-term
memory tasks. IRIS [13] and TWM [15] are two sample-efficient
model-based agents that are trained inside the imagination of a
Transformer-based world model. IRIS’ world model consists
of a discrete autoencoder [23] as an observation model and a
GPT-like Transformer [8] as a dynamics model, while the world
model of TWM consists of a variational autoencoder [24] and
a Transformer-XL [9]. Both models work with discrete action
environments and they achieve impressive results on the Atari
100K benchmark. Generalist TDM [12] is the first attempt to
use a learned TDM for continuous real-time planning with
Model Predictive Control. Generalist TDM performs well in
a single environment (i.e, specialist setting) and generalizes to
unseen environments (i.e., generalist setting), in a few-shot and
in zero-shot scenarios. Despite of its capabilities, it has two
shortcomings. First, the training data is collected by an expert
agent and not by its own interactions with the environment. Sec-
ond, it suffers from slow inference because of the long-horizon
planning and because of the design choices that are based on
the Gato Transformer model [25] which uses the per-dimension
tokenization scheme.

To overcome the above shortcomings, we introduce the QT-
TDM model, which explores the environment to collect training

data and has faster inference speed by shortening the planning
horizon and utilizing the QT model [18] to estimate a long-term
return beyond the short-term planning horizon.

2) Robotics Foundation Models: Inspired by the success of
Vision/Language Foundation Models [26], there remains sig-
nificant potential for the development of specialized Robotics
Foundation Models (RFMs). Foundation Models, primarily
based on Transformer architectures, are pre-trained on large-
scale datasets and exhibit remarkable zero-shot and few-shot
generalization capabilities. Examples of RFMs are RT-2 [27],
Q-Transformer [18], Gato [25] and PaLM-E [28]. All existing
RFMs adopt a model-free (model-agnostic) approach. However,
many researchers argue that a model-based approach based on
Foundation World Models (FWMs) is a promising direction for
addressing complex robotics challenges [29]. While Generalist
TDM [12] shows the potential of this direction, this work builds
on it and further improves real-time planning capabilities and
efficiency. In the future work section, we propose strategies to
further advance QT-TDM toward the realization of FWMs.

III. BACKGROUND

1) Reinforcement Learning: We formulate the problem of
continuous control as an infinite-horizon Markov Decision Pro-
cess (MDP) that can be formalized by a tuple (S, A, R, T,7),
where S is the state space, A is the continuous action space,
R:S x A~ R is a reward function, 7 : S x A+ S is the
transition function, and v € [0, 1] is a discount factor. The goal
of reinforcement learning is to learn a policy Il : S — A from
interacting with the environment that maximizes the expected
cumulative discounted reward Ep, [Y ;- ,~'r¢]. In this work,
the policy Il is derived from planning with a learned dynamics
model.

2) Model Predictive Control: In control, learning 11, is for-
mulated as a trajectory optimization problem, in which at each
step ¢, optimal actions a4 over a finite horizon H are
estimated to maximize the discounted sum of rewards:

t+H )
> wi] : e

i=t

Iy(st) = arg max E

at:t+H

and the first action a; is executed. This method is known as
Model Predictive Control (MPC). Eq. (1) is not predicting long-
term rewards beyond H. Consequently, incorporating a value
function of the terminal state s, g provides an estimate of the
long-term return, a method referred to as MPC with a terminal
value [19]. An alternative approach, known as MPC with value
summation [4], involves summing value functions over a finite
horizon rather than summing rewards. In this work, we utilize Q-
Transformer to estimate a terminal Q-value in a myopic planning
horizon.

3) Autoregressive Q-Learning: Applying Q-learning with
Transformers is challenging since Transformers require dis-
cretizing the action space into tokens to effectively apply the
attention mechanism. Therefore, the standard Q-learning needs
to be reformulated in order to be applied. In the Q-Transformer
model [18], an autoregressive Q-learning formulation is pro-
posed where each action dimension is treated as a separate
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(b) QT. Both modules have a GPT-like Transformer as a main component and

share the same tokenization scheme. The state s; is tokenized into a single token using a learned linear layer. A per-dimension tokenization is performed for the
N-dimensional action by discretizing each dimension independently into K bins, then using an embedding table. The TDM module predicts the next state ;41
and the reward 7 and is trained on L sampled time steps (for brevity, we only show two time steps). The QT module predicts a Q-value for each action dimension

1,1 K

4, Viell,...,N].

time step. This way, each action dimension can be discretized
individually, rather than discretizing the entire action space,
thus avoiding the exponential growth in the discrete action
space. An autoregressive discrete Q-function is employed which
predicts a separate Q-value for each action dimension. Let
a; = (a},...,al) be an N-dimensional action at time step .
The autoregressive Q-function predicts a Q-value for each action
dimension a! that is conditioned on the state s; and the previous
action dimensions a; " !:

Q(st,af "t al)Vie[l,...,N]. )
To train the Q-function, a per-dimension Bellman update is
defined as follows:

max Q(st, af", a;™) ifi <N
Q(st,a " Hal)y ™ o
e rt—l-’yranQ(stH,a,}H) ifi = N.
At
3)

The Q-targets of all action dimensions except the last one
are computed by maximizing over the discretized bins of
their subsequent dimension within the same time step. The
Q-target of the last dimension is computed by the discounted
maximization of the first dimension of the next time step plus
the reward. The reward is only applied on the last dimension as
it is observed after executing the whole action. In addition, the
Q-values are only discounted between time steps (i.e., discount
factor ~y is only applied for the last dimension), to ensure the
same discounting as in the original MDP. The Q-Transformer
model [18] has been evaluated in an offline RL fashion with
large-scale robotic sparse reward tasks. In this work, we utilize
the Q-Transformer model in an online RL fashion to estimate a
terminal Q-value in a short-horizon real-time planning task, in
order to achieve faster planning.

IV. METHODOLOGY

To resolve the trade-off between expressiveness and speed in
TDMs, we introduce QT-TDM, a model-based RL algorithm
that captures the environment’s dynamics by modeling trajec-
tory data using a Transformer Dynamics Model and achieves
fast inference speed by utilizing a terminal Q-value to guide
a short-horizon planning (see Fig. 1). In this section, we first
describe the architecture of our model, then the training proce-
dure, and finally explain how to apply the Q-Transformer during
planning.

A. Architecture

QT-TDM model shown in Fig. 2 consists of two sepa-
rated modules: Transformer Dynamics Model (TDM) and Q-
Transformer Model (QT) [18].

TDM is implemented as a GPT-like Transformer [8] that
computes a deterministic hidden state h; conditioned on the
states and actions of past steps. We consider only the hidden
state corresponding to the last action dimension, as it attends
to all preceding action dimensions (see Fig. 2(a); orange boxes
vs. faded gray boxes). Predictors for the next state and reward
are conditioned on the hidden state which are implemented as
multilayer perceptrons (MLPs). The model components are as
follows:

Hidden state: h, = fy(s <t,a'N <t) (4a)
Transition: St11 = go(hy) (4b)
Reward: 7t~ pp(fi|ht), (4¢)

the reward model outputs the mean of a normal distribution.
The Q-Transformer model consists of a GPT-like Transformer
and an autoregressive discrete Q-function that predicts a Q-value
for each action dimension which is implemented as MLP. The
Transformer computes a deterministic hidden state k! for each



KOTB et al.: QT-TDM: PLANNING WITH TRANSFORMER DYNAMICS MODEL AND AUTOREGRESSIVE Q-LEARNING 115

Algorithm 1: QT-TDM (Training).

Algorithm 2: QT-TDM (Planning).

Require: 6: initialized TDM parameters

o, gZ: initialized QT parameters, EMA parameters
7d, Nq: learning rates

B, (: replay buffer, EMA coefficient

L, N: sampled time steps, action dim.

1 for each training step do

// Collect episode with QT-TDM and add to buffer
2 B+ BU {St, Aty Tty 5t+1}Z:Bl
3 for num updates per episode do
4 {3t7 A, Tt, 3t+1}tL=1 ~ B; > Sample trajectory
// Update Dynamics Model (TDM)
5 fort=1...L do
6 he = fo(s < t, atV < t); > Hidden state
7 §t+1 = ga(ht); > Transition
8 Pt ~ Do (ft|ht); > Reward
9 0« 60— ndV9£g)yn; > Equation 6
// Update Q-Transformer (QT)
10 for : = 1...N do
n h%‘ = fo(st, a%:iil); > Hidden state
12 (j?hK = 9¢(hi); > Q-Values
13 ¢ ¢— 77qV¢£§§ > Equation 7
// Update Target Network
14 | ¢ (1=Q)¢+ (s

action dimension a! conditioned on the state s; and previ-
ous action dimensions a;*~!. The model components are as

follows:

Hidden state:  h, = fs(s¢,af" ") Vie[1,...,N] (5a)

Q-Value: Gt =gs(hd) Vie[l,...,N],  (5b)

where K is the number of discretized action bins.

Both models, TDM and QT, tokenize the input sequences
in the same way. Let s € S be an M-dimensional state and
a € Aisan N-dimensional continuous action. We follow [11]in
tokenizing the state s into a single token obtained with a learned
linear layer, rather than the conventional per-dimension tok-
enization [12], [17] which increases the input sequence length.
We perform a per-dimension tokenization for the N-dimensional
continuous action a = (a',a?,....,a’V) by discretizing each
dimension independently into K uniformally-spaced bins, then
invoking the token embedding from a learned embedding table.
TDM takes as input a sequence of L x (N + 1) tokens, where
L is time steps. QT takes as input a sequence of N tokens as it
ignores the last action dimension.

B. Training

The dynamics model is trained in a self-supervised manner
on segments of L time steps sampled from the replay buffer B.
We minimize the sum of a mean-squared error transition loss
and a negative log-likelihood reward loss:

L
5 =3 [Bullgo(he) = sl = Bampa(rel)], (6)

t=1

Require: 0, ¢: TDM parameters, QT parameters
19, o0: initial parameters of A/
J, Jor: num. of samples, num. of QT samples
s¢, H, ZI: current state, len. of horizon, iterations
1 for n =1...7 do
Sample J action seq. from A (p"~1, (67 1)21)
Sample Jgr action seq. using QT and TDM
// Rollout trajectories and estimate total return Fp
for all J + Jgr action sequences do
for t=0..H —1do
he = fo(s < t,a"N < t);
141 = go(he);
Fr = Fr +~'po(felhe);
// Estimate the terminal Q-value using QT and
add the value of last action dim. to Fr
9 .FFI}—F—F’YHIH%XQd,(@H,aZ)
AH

w N

> Hidden state
> Transition

® N & n B

> Reward

10 | Update ™ and o

u return a; ~ N (uf, (of)%1);

> Equation 9

> First action is executed

where 5, and [3; are coefficients of the transition loss and the
reward loss respectively.

The Q-Transformer model is trained by minimizing the Tem-
poral Difference (TD) error loss defined by the per-dimension
Bellman update [18] in Eq. (3)

L = Qylsi,ar) — Q5(s1, 1), @)

where Q4 (s, a;) = {Gi} Y, consists of the predicted Q-values
of all action dimensions, and Q’é are the target Q-values pre-
dicted by a Q-target network whose parameters are an ex-
ponential moving average (EMA) of the Q-network. We use
smooth L1 loss [30] as the TD-error which stabilizes training
by avoiding exploding gradients. We follow [18] in employing
n-step return [31] over action dimensions, and utilizing Monte
Carlo return [32] only with sparse reward tasks (e.g., Reacher
Easy), which helps accelerate learning. See Algorithm 1 for
training pseudo code.

C. Planning

We evaluate the proposed QT-TDM model on real-time plan-
ning with MPC, where inference speed needs to be taken into
consideration. The inference time grows with the planning hori-
zon H, the number of planning samples .J, and the dimension-
ality of the environment D. While Transformers serve as large,
expressive, and robust dynamics models, they are not optimized
for fast inference [12]. The per-dimension tokenization and the
autoregressive token prediction lead to a slow inference over
long horizons. To solve this issue and achieve faster inference,
we use a short planning horizon and employ the Q-Transformer
model to estimate a terminal Q-value [19] that provides a long-
term return beyond the short-term horizon. During planning
with MPC, we sample J action sequences of length H from
a time-dependent multivariate diagonal Gaussian distribution
initialized by (u°,0°)s.1 . Then, trajectories are generated
using rollouts from the learned dynamics model (TDM), and
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the total return F of a trajectory I" is computed as follows:

H-1

Fr=Er|v maXQ¢(5HaaH +ZVP9 Pelhe) |, (8)
=0

where Q4 (3, aly) is the terminal Q-value of the last action

dimension a®. The distribution ™ and o™ at iteration n are

updated to the top-k trajectories with the highest total returns
Z’L 1 Q

Fr as follows:
2
— n
\/ZZ 1Z Q 1% ) ; (9)
=1
where Q; = ™"

ri) risa temperature parameter controlling
the sharpness of the weighting and I is the ith top-k trajectory.
After a fixed number of iterations Z, the planning procedure
terminates and a trajectory is sampled from the final updated
distribution. The first action is only executed as we plan at each
decision step ¢. In addition to sampling from the Gaussian distri-
bution, we also sample Jr action sequences from the learned
Q-Transformer model. The planning procedure is summarized
in Algorithm 2 and shown in Fig. 1

S Iy
pt = ;

V. EXPERIMENTS

A. Description and Details

1) Benchmarks: We evaluate the performance of QT-TDM
model on diverse state-based continuous control tasks from
two benchmarks: DeepMind Control Suite (DMC) [20] and
MetaWorld [21]. From DMC, we choose two high-dimensional
locomotion tasks (Walker Walk and Cheetah Run) and a sparse
reward task (Reacher Easy). MetaWorld contains 50 different
robotic manipulation tasks, and because of time and computa-
tional constraints, we choose six tasks with various challenges.
All tasks are shown in Fig. 3.

2) Baselines: Since the Generalist TDM [12] is the first
Transformer-based model to perform continuous real-time plan-
ning, it serves as an eligible baseline. However, a comparison
with it was not possible because its implementation is not
publicly accessible. We compare the performance of QT-TDM
against PlaNet [22], DreamerV3 [6] and its two individual
modules (QT and TDM) to serve as an ablation study as well.
Both, PlaNet and DreamerV3 are model-based algorithms that
use Recurrent State-Space Model (RSSM) as dynamics model.
While PlaNet performs real-time planning with MPC, Dream-
erV3 performs background planning. Q-Transformer [18] is a
Transformer-based model-free algorithm that uses an autore-
gressive Q-Learning. We provide an extensive evaluation of QT
on diverse tasks in an online RL scenarios. TDM is a model-
based algorithm that performs real-time planning but without
the guidance from a terminal value function.

3) Experimental Setup: We list all the environment details
for the tasks from the two benchmarks in Table I. For a fair com-
parison between the two Transformer-based model-based algo-
rithms (QT-TDM and TDM), we use the same planning param-
eters shown in Table II. For the Recurrent-based model-based
algorithm (PlaNet), we use its default planning parameters. All

IEEE ROBOTICS AND AUTOMATION LETTERS, VOL. 10, NO. 1, JANUARY 2025

(a) Walker Walk (b) Cheetah Run (c) Reacher Easy

(d) Drawer Open (e) Plate Slide (f) Reach Wall

it

(9) Hammer

(h) Door Unlock (i) Button Press Wall

Fig. 3. Continuous Control Tasks. Two locomotion tasks with high-
dimensional action space (Walker and Cheetah) and one sparse reward task
(Reacher) from DMC [20]. Six robotic manipulation tasks (d)-(i) with various
challenges from MetaWorld [21].

TABLE I
ENVIRONMENT DETAILS USED ACROSS ALL METHODS FOR THE TWO
DOMAINS. WE USE ACTION REPEAT OF 4 FOR DMC TASKS EXCEPT FOR
WALKER, WHERE ACTION REPEAT OF 2 1S USED.

DMC MetaWorld
Episode length 1000 200
Action repeat 2/4 2
Effective length 500 / 250 100
Environment steps 500K 1M
Performance metric Reward Success

6 (Reacher)
17 (Cheetah)
24 (Walker)

6 (Walker, Cheetah)
2 (Reacher)

Observation dim. (M) 39 (all tasks)

Action dim. (N) 4 (all tasks)

TABLE 1T
MPC PLANNING PARAMETERS USED FOR ALL TASKS

Parameter QT-TDM (ours) / TDM  PlaNet [22]
Initial parameters (10, o0) (0,2) (0,1)
Planning horizon H 3 12
Num. of samples J 512 1000
Num. of iterations Z 6 10
Num. of top-k trajectories 64 100

the compared models are evaluated after every 10K environment
steps averaging over 10 episodes, except for DreamerV3, for
which we use the final performance after convergence that we
obtained from [33].

4) Computational Resources: For each task, we trained our
method and the baselines with 3 different random seeds. We ran
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Fig. 4. Learning curves. Three tasks from DMC (top row), episode return as performance metric. Six tasks from MetaWorld (middle and bottom rows), success

rate (%) as performance metric. Mean over 3 seeds; shaded areas are standard deviations. For DreamerV3, we report the final performance from [33].

our experiments with 6 Nvidia Quadro 6000 GPUs (24GB) using
one GPU for one seed. For one DMC task, the total training
and evaluation of our method takes on average 2 days while
TDM takes 1.5 days. For one MetaWorld task, our method takes
on average 4 days while TDM takes 3.5 days. The model-free
QT takes 2 and 6 hours for training one DMC task and one
MetaWorld task respectively.

B. Results

Results for all 9 tasks from the two benchmarks are shown in
Fig. 4. We summarize our findings as follows:

1) Planning Efficiency: The two compared Transformer-
based model-based algorithms (Q7-TDM and TDM) perform
real-time planning with a myopic planning horizon (H = 3).
However, QT-TDM relies on a learned terminal Q-value to
guide the short-horizon planning. In DMC tasks, TDM fails to
solve the Walker task, its learning stagnates at approximately
200 returns after 100 K environment steps for the Cheetah
task, and it relatively solves the sparse reward Reacher task at
approximately 600 returns. In contrast, our proposed QT-TDM
model successfully solves all tasks, except for the Cheetah task
where it struggles a bit achieving approximately 400 returns.
We achieved improved results with planning horizons H =5
and H =9 as shown in Fig. 5 but with the cost of higher
inference time. In MetaWorld tasks, while TDM struggles to
solve hard tasks such as Hammer, Door Unlock, and Button
Press Wall, QT-TDM successfully solves all six tasks. QT-TDM

outperforms TDM with only a 1.3x increase in running time
(e.g., from 1.5 days to 2 days for DMC tasks). This is more
efficient than the over 2 x increase in running time required when
extending the planning horizon (H > 6). This demonstrates that
our proposed QT-TDM achieves efficient real-time planning in
terms of both performance and computational demands.

2) Transformer Vs. Recurrent: Comparing our Transformer-
based model against two Recurrent-based models highlights the
superiority of TDMs in modeling dynamics. QT-TDM consis-
tently outperforms PlaNet across all tasks, even though PlaNet
utilizes a longer planning horizon (see table II). When compared
to the state-of-the-art DreamerV3 which performs background
planning, QT-TDM surpasses it in all MetaWorld tasks, while
DreamerV3 achieves better performance in two DMC tasks (in
Reacher Easy and Cheetah Run).

3) Planning Vs. Policy: The compared model-free Q-
Transformer selects actions with a value-based policy by maxi-
mizing Q-values over the discretized bins for all action dimen-
sions. The QT model successfully solves all tasks from Meta-
World, but with less sample efficiency than our QT-TDM model.
In DMC tasks with high-dimensional action spaces (Walker
and Cheetah), QT was extremely sample-inefficient compared
to QT-TDM. In the Walker task, QT achieves approximately
150 returns at 100K environment steps and 600 returns at SO0K
environment steps, compared with our proposed QT-TDM that
achieves approximately 600 returns at 100K environment steps
and 900 returns at 500K environment steps. It is expected that
the model-based algorithm is more sample-efficient than its
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Fig. 5. QT-TDM with different planning horizon (H) on Cheetah Run task.
TABLE III
TRANSFORMER HYPERPARAMETERS

Hyperparameter TDM QT
Input sequence Lx (N +1) tokens N tokens
Time steps (L) 20 1
Discretize action bins (K) 256 256
Embedding dim. 256 128
attention heads 4 8
Num. of layers 5 2
Embedding dropout 0.1 0.1
Attention dropout 0.1 0.1
Residual dropout 0.1 0.1

model-free counterpart [3], [4]. Nevertheless, the results demon-
strate that QT [18] is a capable model-free algorithm that can
perform effectively in both online and offline RL scenarios with
sparse and dense rewards.

C. Implementation

Our GPT-like Transformer in both models (TDM and QT)
is based on the implementation of minGPT [34]. See Table
III for the Transformer hyperparameters. The reward and next
state predictors in TDM are implemented as 3-layer MLPs with
dimension 512, Leaky ReLU activation, and 0.01 dropout. We
implement 2 Q-functions in QT model as 2-layer MLPs with
dimension 128 and ReLU activation. TD-targets are computed
as the minimum of these 2 Q-functions. Both models use Adam
optimizer and Table I'V shows the optimization hyperparameters
for TDM and QT.

D. Complexity Analysis

We compare the complexity of our QT-TDM model against
the Generalist TDM model [12] in terms of model size (i.e.,
number of parameters) and inference speed. Since the imple-
mentation of Generalist TDM is not available, we do not use
quantitative measures for inference speed such as wall-time or
FLOPs. Instead, we measure inference speed based on planning
horizon H, terminal value Q™ , number of planning samples
J and number of tokens per timestep T (see Table V). Due
to the per-dimension tokenization, Generalist TDM requires
(M + N + 1) tokens per timestep: M state tokens, N action
tokens, and one reward token. In contrast, QT-TDM requires
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TABLE IV
OPTIMIZATION HYPERPARAMETERS

Hyperparameter Value
TDM

Batch size 512

Learning rate (14) 1x10~4

Weight decay 1x 106

Max gradient norm 30

Transition loss coef (81). 1.0

Reward loss coef. (82) 2.0

QT
Batch size 512

3 x 10~* (fixed) (DMC)
3 x 10~* (decay) (MetaWorld)
Weight decay 1x 106
Max gradient norm 20
EMA coef. (¢) 0.005
b 5 (DMC), 10 (MetaWorld)
3

Learning rate (14)

Target (¢) update freq.
n-step return

Monte Carlo return
Discount ()

sparse reward tasks (Reacher)
0.98

TABLE V
COMPLEXITY RELATED PARAMETERS

Parameter QT-TDM  Generalist TDM

(ours) [12]
Num. of parameters 6M 7™M
Planning horizon(H) 3 20 - 100
Terminal value (Q™) N Not used
Num. of samples (J) 512 64 — 128
Num. of per timestep tokens (7°) 1+ N M+ N+1

only (1 + N) tokens per timestep by reducing the state tokens
to a single token using a learned linear layer and by not using the
reward token. Additionally, our model utilizes an 85% shorter
planning horizon compared to the Generalist TDM model. How-
ever, our model leverages a terminal Q-value N times, with one
value for each action dimension. Despite the additional steps,
the total planning steps required by our model (34N steps)
remain fewer than those required by the Generalist TDM (at least
20 steps). Consequently, QT-TDM achieves faster inference
speed with 92% fewer parameters than Generalist TDM. The
computational demands of handling a high number of samples
J can be mitigated by increasing parallelization (using multiple
cores) [12].

VI. CONCLUSION AND FUTURE WORK

In this letter, we propose QT-TDM, a Transformer-based
model-based algorithm that overcomes the slow and compu-
tationally inefficient inference associated with TDMs.

Model size: Although the QT-TDM model comprises two
separate GPT-like Transformers, it has a relatively small num-
ber of parameters (6 M) compared to other Transformer-based
models such as Generalist TDM (77 M). This helps mitigate
the overfitting issue commonly encountered with high-capacity
Transformers.

Inference speed: The proposed QT-TDM achieves fast real-
time inference by reducing the number of per timestep tokens
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and combining short-horizon planning with a learned terminal
Q-value to guide the planning process. In addition to sampling
random trajectories from a Gaussian distribution, we sample
a small number of trajectories (only 24) from the learned Q-
Transformer. Further improvements to inference speed could
be achieved by reducing the number of random trajectories
and incorporating more policy-sampled trajectories. We plan
to investigate this strategy in future work. Another straight-
forward approach to increase inference speed is to train the
Q-Transformer model using the imagined trajectories generated
by TDM. The learned QT model can then be used to select
actions during inference. This technique is referred to as learning
inside imagination [14].

Limitations: First, QT-TDM relies heavily on the learned
Q-values to guide the myopic planning horizon. However, learn-
ing a value function to approximate future returns is known to
be unstable and prone to overestimation. We observe that the
Q-Transformer model struggles to solve complex and hard-to-
explore environments such as pick Place and Shelf Place from
MetaWorld benchmark. As part of our future work, we plan to
explore the use of an ensemble of Q-functions instead of just two
Q-functions [33] which helps mitigate the overestimation issue.
Additionally, we intend to employ a categorical cross-entropy
loss as the TD-error rather than the traditional MSE regression
loss, as it has been shown to be more effective and can accelerate
the learning process [35]. Second, the use of per-dimension
tokenization for the action space makes it difficult to scale to
high-dimensional action spaces (e.g., humanoid robots) because
it increases both the sequence length and the inference time.

Generalization: In this work, we evaluate QT-TDM in online
RL scenarios to solve single tasks (i.e., specialist agent). For
future work, we plan to assess the generalization capabilities of
the QT-TDM model (i.e., generalist agent) by training it with
large, diverse offline datasets and evaluating its performance in
unseen environments through few-shot and zero-shot scenarios.

Pixel observations: In this work, we experiment exclusively
with state-based environments. We plan to extend our approach
to pixel-based environments in future work by developing an
observation model such as ViT [10] or discrete autoencoder [23].
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