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1 Introduction

Form factors are interesting physical observables which are situated at the interface be-

tween completely on-shell quantities such as scattering amplitudes and completely off-shell

quantities like correlation functions. In a gauge theory one typically considers the overlap

of a state created by a gauge-invariant operator O(x) with a multiparticle state 〈1 · · · n|
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described by the particles’ momenta p1, . . . , pn and other relevant quantum numbers such

as the helicity, for massless particles. We will usually consider the Fourier transform of the

form factor,

∫

d4x e−iqx 〈1 · · · n|O(x)|0〉 = δ(4)

(

q −
n

∑

i=1

pi

)

〈1 · · · n|O(0)|0〉 , (1.1)

where the momentum delta function appears as a consequence of translational invariance

of the theory, with O(x) = exp(iPx)O(0) exp(−iPx).

Form factors appear in several interesting physical contexts. Some of the early applica-

tions include the amplitude for deep inelastic scattering, which is controlled by the matrix

element 〈X|Je.m.
h,µ (0)|p〉 of the hadronic electromagnetic current Je.m.

h,µ with an initial proton

state p and a final hadronic state X, and the e+e− → X annihilation process, governed

by the form factor 〈X|Je.m.
h,µ (0)|0〉. Furthermore, the universal structure of infrared diver-

gences of amplitudes is controlled by the Sudakov form factor [1–7], with the coefficient of

the leading infrared divergence being related to the cusp anomalous dimension [8] and the

large-spin limit of twist-two operators [9]. Its universal, exponential form has inspired the

all-loop conjecture for planar MHV amplitudes in N = 4 super Yang Mills (SYM) [10].

Another interesting application of form factors is the operator product expansion of null

polygonal Wilson loops proposed recently in [11].

Ultimately, one of the important goals and motivations for the study of form factors in

N = 4 SYM is that they interpolate between off-shell and on-shell quantities. For off-shell

quantities such as two-point correlation functions, integrability has been developed into

a powerful computational tool,1 and it also plays an important role in the calculation of

amplitudes [13, 14] and form factors [15, 16] at strong coupling. On the other hand, for

amplitudes at weak coupling we have so far only glimpses of hidden integrable structures,

and we hope that this interpolation will give us new insights on the role and uses of

integrability in the context of amplitudes.

Form factors in maximally N = 4 super Yang-Mills at strong coupling were recently

considered in [15, 16]. At weak coupling, they were first considered in [17], and in greater

detail and generality in [18] and [19]. In particular, [18] considered form factors of the

half-BPS scalar operator Tr(φ12φ12) in N =4 SYM at tree level and one loop, where φAB

are the six scalar fields in the theory, A,B = 1, . . . , 4, with φAB = −φBA, with external

states containing two scalars and an arbitrary number of positive-helicity gluons. These

MHV form factors were found to be remarkably simple. Specifically, at tree level they are

expressed in terms of a holomorphic function of the spinor variables associated to the par-

ticle momenta which is a close cousin of the Parke-Taylor MHV scattering amplitude [20].

This simplicity was also found to persist at one loop, where the result for these MHV form

factors is a remarkably simple expression which is very reminiscent of that for an n-point

MHV amplitude at one loop.

In this paper we continue the systematic study initiated in [18]. The preceding dis-

cussion has already outlined two of the motivations for this study. Firstly, the attempt

1For a recent review see [12] and references therein.
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at connecting the on-shell world of scattering amplitudes (with a flurry of new techniques

discovered over the past seven years) to that of off-shell observables in the theory, with

integrability playing a prominent role in determining the quantum structure of some of

these observables at strong and weak coupling. The second motivation is that form factors

are expressed by simple formulae despite being partially off shell. As we shall see, certain

form factors exhibit further unexpected simplicities, such as the maximally non-MHV form

factors. More concretely, in this paper we pursue the following objectives.

In section 2 we begin by extending to form factors some distinguished on-shell tech-

niques used successfully over the past years to calculate amplitudes, such as MHV dia-

grams [21] and on-shell recursion relations [22, 23]. Some of these findings are not unex-

pected — for example, MHV rules are related to an MHV Lagrangian which is applicable

also off shell [24], and recursion relations are based on factorisation, which is a general

property not only of amplitudes but also of Green’s functions [25]. Notice that MHV di-

agrams are expected to work also in the presence of multiple operator insertions. As an

application, we will explicitly solve the recursion relations for form factors where the exter-

nal state is made of gluons in a split-helicity configuration. This parallels a corresponding

explicit solution for amplitudes found in [26].

Section 3 — a central part of this paper — is devoted to supersymmetric form fac-

tors. We will find that harmonic superspace [27, 28] is a very convenient framework to

formulate and study such objects. More precisely, we consider form factors where the op-

erator inserted is the chiral part of the stress-tensor multiplet operator, which preserves

half of the supersymmetries off shell [29, 30], while the state is described using the super-

symmetric formalism of Nair [31]. Using a chiral superspace formulation we write down

supersymmetric Ward identities for these form factors, and show how they constrain their

form. As a particular application of these techniques we derive the maximally non-MHV

form factors which turn out to be surprisingly simple. Finally, we study form factors of

the full stress-tensor multiplet operator for which we introduce a non-chiral superspace

representation.

In section 4 we briefly introduce supersymmetric MHV diagrams, supersymmetric re-

cursion relations and unitarity for form factors. These generalisations are rather straight-

forward, so our presentation here is somewhat condensed.

Finally, in section 5 we introduce dual MHV rules for form factors formulated directly

in dual (super) momentum space by giving various examples at tree and one-loop level, and

point out and explain certain subtleties encountered at higher loops. In this construction,

a certain periodic kinematic configuration, emerging in the strong-coupling calculation

of [15, 16], plays a central role, and we discuss similarities with (and differences from) the

Wilson loop/amplitude duality [32–34].

The understanding of the large-z behaviour of form factors is crucial in formulating

the recursion relation, and is analysed in detail in appendix A. Finally, in appendix B we

provide a brief reminder of the dual MHV rules for amplitudes.
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2 Tree-level methods

In this section we will develop and extend tree-level methods for form factors by general-

ising the corresponding methods for amplitudes, namely MHV diagrams [21] and on-shell

recursions relations [22, 23].2 We then proceed to obtain several new results including the

NMHV and all split-helicity cases. We will not present the calculations with both methods

for all examples but wish to stress here that we have made extensive checks to confirm that

the results obtained with either method always agree. The supersymmetrisation of these

methods will be considered in section 4.

2.1 MHV diagrams

We start with a simple extension of the MHV diagram method [21] to form factors. We will

test this here only in tree-level calculations, but the extension to loop level, following [36],

is straightforward.

Specifically, we will be interested in calculating NMHV form factors of the simplest

class of operators in N = 4 SYM, namely the half-BPS operators Tr(φ12φ12). They take

the form

〈 g+(p1) · · · φ12(pi) · · · φ12(pj) · · · g+(pn−1) g−(pn) |Tr(φ12φ12)(x)| 0 〉 , (2.1)

where all but one of the gluons have positive helicity. The strategy of the calculation is very

simple — we need to augment the set of usual MHV vertices for amplitudes by including

a new family of MHV vertices, obtained by continuing off shell the tree-level MHV form

factors of the half-BPS operators. The expressions for these quantities were derived in [18],

and are given by

∫

d4x e−iqx 〈g+(p1) · · ·φ12(pi) · · ·φ12(pj) · · · g+(pn)|Tr(φ12φ12)(x)|0〉

= gn−2(2π)4δ(4)(
n

∑

k=1

λkλ̃k − q) FMHV , (2.2)

where

FMHV =
〈ij〉2

〈12〉 · · · 〈n1〉 . (2.3)

Here pm := λmλ̃m are on-shell momenta of the external particles, and q :=
∑n

m=1 pm is

the momentum carried by the operator insertion. It was observed in [18] that, since (2.3)

is a holomorphic function of the spinor variables, the MHV form factors are localised on a

complex line in twistor space, similarly to the MHV amplitudes [37].

Using localisation as an inspiration, we propose to use an appropriate off-shell con-

tinuation of (2.3) as a new vertex to construct the perturbative expansion of non-MHV

form factors of the operator Tr(φ12φ12). The off-shell continuation is the standard one

introduced in [21]. The momentum L of an internal, off-shell particle is decomposed as

L = l + zξ, where l = λLλ̃L is an on-shell momentum and ξ an arbitrary reference null

2For a recent review of tree-level methods in gauge theory and gravity, see [35].
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Figure 1. The four MHV diagrams contributing to the NMHV form factor (2.5).

momentum. The off-shell continuation of [21] consists then in using the spinor λL as the

spinor variable associated with the internal leg of momentum L, where

λL,α =
Lαα̇ξ̃α̇

[λ̃L , ξ̃]
. (2.4)

The denominator in the right-hand side of (2.4) will be irrelevant for our applications since

each MHV diagram is invariant under rescalings of the internal spinor variables. Hence,

we will discard it and simply replace λL,α → Lαα̇ξ̃α̇.

2.1.1 NMHV form factors

Using the MHV rules outlined in the previous section, we now present an example of

derivation of an NMHV form factor. Specifically, the form factor we consider is

FNMHV(1φ12
, 2φ12

, 3g− , 4g+) := 〈φ12(p1)φ12(p2)g
−(p3)g

+(p4)|Tr(φ12φ12)(0)|0〉 . (2.5)

There are four MHV diagrams contributing to (2.5), depicted in figure 1. A short calcu-

lation shows that these are given by the following expressions:

Diagram (a) =
[2ξ]

[ξ3]

1

[32]〈41〉
〈1|q − p4|ξ]
|〈4|q − p1|ξ]

,

Diagram (b) =
〈23〉

〈34〉s234

〈3|p2 + p4|ξ]2
〈2|p3 + p4|ξ]〈4|p2 + p3|ξ]

,

Diagram (c) =
〈12〉
[43]

[ξ4]3

[3ξ]

1

〈2|p3 + p4|ξ]〈1|p3 + p4|ξ]
,

Diagram (d) =
1

s341

〈13〉2
〈34〉〈41〉

〈3|p4 + p1|ξ]
〈1|p3 + p4|ξ]

. (2.6)

We have checked that the sum of all MHV diagrams is independent of the choice of the

reference spinor ξ̃. A particularly convenient choice of ξ̃ is ξ̃ = λ̃4, in which case we get

FNMHV(1φ12
, 2φ12

, 3g− , 4g+) =
[24]

[34]

1

〈4|p2 + p3|4]
[ 〈1|q|4]
[23]〈41〉 +

[24]〈23〉2
〈34〉

1

s234

]

+
〈13〉2[14]

〈41〉〈34〉[43]
1

s341
. (2.7)
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It is straightforward to apply this procedure to more general form factors but for brevity

we will not present them here. However, we mention that all results derived in the next

subsection using recursion relations have been compared with formulae obtained from MHV

diagrams finding a perfect match in all cases.

2.2 Recursion relations

In this subsection we study the application of recursion relations to the derivation of tree-

level form factors. As a warm-up we will re-derive the NMHV form factor in (2.5) finding

agreement with (2.7), and then move on to consider more general cases including split-

helicity configurations. Since form factors contain a single operator insertion, it is clear that

every recursive diagram will contain one amplitude and one form factor as the factorisation

properties used in the case of tree-level recursions for amplitudes also apply to tree-level

form factors. This is the only modification to the on-shell recursion relations of [22]. In

appendix A we discuss the behaviour of form factors under large complex deformations,

and confirm the validity of the calculations below, i.e. we show that under the shifts used

the form factors vanish as z → ∞.

Let us begin by re-deriving the NMHV form factor (2.5). We will use a [34〉 shift,

namely
ˆ̃
λ3 := λ̃3 + zλ̃4 , λ̂4 := λ4 − zλ3 . (2.8)

There are two recursive diagrams, depicted in figure 2 below. A short calculation shows

that

Diagram (a) =
[24]2

[23][34]

1

s234

〈1|q|4]
〈1|q|2] ,

Diagram (b) =
〈13〉2

〈34〉〈41〉
1

s341

〈3|q|2]
〈1|q|2] , (2.9)

so that

FNMHV(1φ12
, 2φ12

, 3g− , 4g+) =
1

〈1|q|2]

[

[24]2

[23][34]

1

s234
〈1|q|4] +

〈13〉2
〈34〉〈41〉

1

s341
〈3|q|2]

]

.

(2.10)

It is interesting to note that the 1/〈1|q|2] pole is in fact spurious. This can be shown by

using the identities

〈1|q p4|3〉 + 〈1|q p2|3〉 = 〈13〉s234 ,

[4|p3 q|2] + [4|p1 q|2] = [42]s341 , (2.11)

which allow to recast the form factor in the alternative form

FNMHV(1φ12
, 2φ12

, 3g− , 4g+) =
1

s34 [23]〈41〉

[〈14〉〈23〉[24]2
s234

+
[41][32]〈13〉2

s341
+ [24]〈13〉

]

.

(2.12)

We have checked that our result (2.7) for the form factor derived using MHV diagrams,

and (2.12), obtained using recursion relations, are in agreement.

– 6 –
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2φ

4̂+

1φ

φ φ φ φ

Figure 2. The two recursive diagrams contributing to the NMHV form factor (2.5).

2.2.1 Recursion relations for the split-helicity form factor

In the previous section we found that the BCF recursion relation for the NMHV form factor

with a [3, 4〉 shift has just two diagrams. This property in fact holds for all form factors

of the form Fφ2;q−2,n−q(1φ, 2φ, 3−, . . . , q−, (q + 1)+, . . . , n+), which we call henceforth split-

helicity. As we will show shortly, performing a [q, q+1〉 shift leads to a general, closed-form

solution of the BCFW recursion relations for this special class of form factors. Note that

all split-helicity gluon scattering amplitudes were computed in [26] — we construct here a

similar solution for form factors.

Each recursive diagram with a [q, q + 1〉 shift contains a three-point amplitude and

an (n − 1)-point form factor. We can neatly combine the three-point amplitude and the

propagator in a prefactor to write3

Fq−2,n−q =
[q − 1q + 1]

[q − 1q][qq + 1]
Fq−3,n−q(1φ, 2φ, 3−, . . . , q̂ − 1

−
, q̂ + 1

+
, . . . , n+)

+
〈qq + 2〉

〈qq + 1〉〈q + 1q + 2〉Fq−2,n−q−1(1φ, 2φ, 3−, . . . , q̂−, q̂ + 2
+
, . . . n+) ,

(2.13)

where the shifted spinors of the external momenta that appear in the lower-point form

factors are

λ
q̂+1

=
[q − 1|Pq,q+1

[q − 1 q + 1]
, (2.14a)

λ̃bq =
Pq,q+2|q + 2〉
〈q q + 2〉 , (2.14b)

with Pa,b = pa + . . .+ pb. Furthermore, the shifted spinors associated with internal legs are

relabelled as

λ
P̂q−1 q

(z = zq−1 q) → λ
q̂−1

=
Pq,q+1|q + 1]

[q − 1 q + 1]
, (2.15a)

λ̃
P̂q+1 q+2

(z = zq+1 q+2) → λ̃
q̂+2

=
〈q|Pq,q+2

〈q q + 2〉 , (2.15b)

so that the notation remains compatible with subsequent recursions. Crucially, all lower-

point form factors appearing in (2.13) are of split-helicity form, so that the split helicity

3For the rest of this section we will always assume that the operator O = Tr(φ12φ12) is inserted and will

not mention it explicitly. Although the solution is presented for this particular insertion, the construction

can be generalised to form factors involving other operators.
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F0,0

F1,0F0,1

F2,0F1,1F0,2

F3,0F2,1F1,2F0,3

F2,2

M
H
V

M
H
V

N
M
H
V

N
M
H
V

Figure 3. The iterative structure of split-helicity form factors illustrated by a square lattice. The

three coloured paths ending on the MHV line are in one-to-one correspondence with terms that

appear in the iterated recursion of F2,2. Similarly there will be three paths (terms) that end on the

MHVline.

form factors are closed under recursions. Once we have reduced the form factor to expres-

sions that involve only MHV and MHV terms, we can insert the shifted momenta.

It is useful to illustrate the structure of the recursion relations for split-helicity form

factors using a square lattice as in figure 3. Consider for example the form factor F2,2. In

this case, the first iteration using equation (2.13) relates F2,2 to the form factors F2,1 and

F1,2, which however are neither MHV nor MHV. The next iteration leads to an expression

involving one F2,0, two F1,1’s and one F0,2 evaluated at some shifted momenta. A final

iteration would then allow us to express the answer in terms of MHV and MHV form

factors alone, or even to reduce everything down to F0,0. It is also easy to see that this

pattern generalises to arbitrary split-helicity form factors and that each term generated by

subsequent recursions corresponds to a unique path between the form factor and the MHV

or MHV edges of the lattice, as illustrated in figure 3.

In principle, all we need to do to compute a split-helicity form factor is to collect all

prefactors picked up at each step of the recursion process and follow the iterated momentum

shifts along a particular path on the lattice.

2.2.2 Solution for the split-helicity form factor

A very efficient way to organise the recursion is in terms of zig-zag diagrams, like those

introduced in [26] for split-helicity gluon amplitudes. It is natural to split the terms of the

solution into those corresponding to paths ending on the MHV or MHV lines, respectively.

Zig-zag diagrams that correspond to recursion terms with an MHV form factor will be

denoted as MHV zig-zags and the ones with an MHVform factor as MHVzig-zags. Note

that we have therefore two types of diagrams, in contrast to the case of amplitudes in [26].

One can make this separation also for amplitudes as it only means that we terminate

the iterated recursion once we reach an MHVterm, instead of recursing it further down

to F0,0 (or A2,2 for the case of amplitudes). In the path picture of the previous section,

this separation corresponds to the fact that there is a unique path between any MHVform

– 8 –
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factor and F0,0, hence one can replace that part of the recursion directly with an MHVform

factor. Because the MHV zig-zags defined below are not compatible with two point objects

such as F0,0 we chose to use this formalism with two types of diagrams. This has the added

advantage that it makes the parity symmetry of Fq−2,q−2 form factors manifest.

The MHV zig-zags are parameterised with 2k + 1 labels

2 ≤ a1 < · · · < ak < q − 1 and n ≥ b1 > · · · > bk+1 > q, k ≥ 0,

representing expressions in the following manner

2

1

n b1 + 1 b1 b2 + 1 b2 q + 2 q + 1

a1 a1 + 1 q − 1 q

=
N1N2N3

D1D2D3
(2.16)

while the MHVzig-zags are parametrised with 2k + 1 labels

2 ≤ b̄1 < · · · < b̄k+1 < q and n ≥ ā1 > · · · > āk > q + 1, k ≥ 0,

representing expressions, similarly shown below

2

1

3 b̄1 b̄1 + 1 b̄2 b̄2 + 1 q − 1 q

n ā1 + 1 ā1 q + 2 q + 1

=
N̄1N̄2N̄3

D̄1D̄2D̄3
(2.17)

where N1,2,3 and D1,2,3 are defined as

N1 = 〈1|P2,b1Pa1+1,b1Pa1+1,b2Pa2+1,b2 · · ·Pq,bk+1
|q〉

× [2|Pa1+1,b1Pa1+1,b2Pa2+1,b2 · · ·Pq,bk+1
|q〉2

N2 = 〈b1 + 1 b1〉〈b2 + 1 b2〉 · · · 〈bk+1 + 1 bk+1〉
N3 = [a1a1 + 1] · · · [ak ak + 1]

D1 = P 2
2,b1

P 2
a1+1,b1

P 2
a1+1,b2

P 2
a2+1,b2

· · ·P 2
q,bk+1

D2 = Zq,1Z̄2,q−1

D3 = [2|P2,b1 |b1 + 1〉〈b1|Pa1+1,b1 |a1][a1 + 1|Pa1+1,b2 |b2 + 1〉 · · · 〈bk+1|Pq,bk+1
|q − 1]

(2.18a)

– 9 –
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N̄1 = [q + 1|Pb̄k+1+1,q+1, . . . , Pb̄2+1,ā2
, Pb̄2+1,ā1

, Pb̄1+1,ā1
|1〉2

× [q + 1|Pb̄k+1+1,q+1, . . . , Pb̄2+1,ā2
, Pb̄2+1,ā1

, Pb̄1+1,ā1
Pb̄1+1,1|2]

N̄2 = [b̄1 b̄1 + 1] · · · [b̄k+1 b̄k+1 + 1]

N̄3 = 〈ā1 + 1 ā1〉 · · · 〈āk + 1 āk〉
D̄1 = P 2

b̄1+1,1P
2
b̄1+1,ā1

P 2
b̄2+1,ā1

. . . P 2
b̄k+1,q+1

D̄2 = Z̄2,q+1Zq+2,1

D̄3 = 〈1|Pb̄1+1,1|b̄1][b̄1 + 1|Pb̄1+1,ā1
|ā1 + 1〉〈ā1|Pb̄2+1,ā1

|b̄2] . . . [b̄k + 1|Pb̄k+1,q+1|q + 2〉,
(2.18b)

with

Zi,j = 〈i i + 1〉 · · · 〈j − 1 j〉, Z̄i,j = [i i + 1] · · · [j − 1 j]. (2.18c)

The split-helicity form factor is then the sum of all recursion terms, or equivalently the

sum of all possible MHV and MHVzig-zags, which is equal to

Fq−2,n−q−2 =
∑

{ai,bi}

N1N2N3

D1D2D3
+

∑

{āi,b̄i}

N̄1N̄2N̄3

D̄1D̄2D̄3
. (2.19)

Notice that for the form factors with equal number of negative and positive helicity glu-

ons, the MHVzig-zags can be obtained from the MHV ones by changing (2, 3, . . . , q) →
(1, n, . . . , q + 1) and 〈ij〉 → [ji].

Let us now explain the precise relation between the zig-zag diagrams and the paths on

the split-helicity form factor lattice. Let a path with r1 steps to the right, l1 steps to the

left followed by r2 steps to the right etc. be represented by

Rrk · · ·Rr2Ll1Rr1. (2.20)

Then an MHV zig-zag labelled by {ai, bi} corresponds to the path:

La1−1Rb1−b2 · · ·Lak−ak−1Rbk−bk+1Lq−1−akRbk−(q+1),

while an MHVzig-zag labelled by {āi, b̄i} corresponds to the path:

Rā1+1Lb̄2−b̄1 · · ·Rāk−āk−1Lb̄k+1−b̄kRāk−q−1Lq−b̄k+1−1 .

Note that if there are no ai indices in the MHV zig-zag diagram we set a1 = 1; and if there

are no āi in the MHV zig-zag diagram we set ā1 = n. All powers in the above formulae are

modulo n.

2.2.3 Examples

Here we present some examples to show that the solution (2.19) reproduces the correct

expressions.
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F1,n−3

=

2

1

n n − 1 5 4

3

Figure 4. Correspondence of lattice paths and MHV zig-zags for NMHV form factors.

MHV case. The zig-zag diagrams collapse onto a point between 1 and 2 as there are

neither bi nor āi. Hence, the only contributions are N1 = 〈12〉 and D2 = F2,1 and

F1,n−3(1φ, 2φ, 3+, . . . , n+) =
〈12〉

〈23〉〈34〉 . . . 〈n1〉 , (2.21)

as required. The situation for MHV amplitudes is similar [26]. An equivalent calculation

for the MHVzig-zag gives the MHVform factor.

NMHV case. At four points, there is exactly one MHV and one MHVzig-zag, repre-

senting one move to the left and one move to the right. Comparing with equations (2.16)

and (2.17) one can read off b1 = 4 for the MHV zig-zag and b̄1 = 2 for the MHVzig-zag.

F1,1

=

2

1

3

4

=
[24]2

[32][43]

〈1|q|4]
〈1|q|2]

1

s234
(2.22)

F1,1

=

2

1

3

4

=
〈13〉2

〈34〉〈41〉
〈3|q|2]
〈1|q|2]

1

s341
(2.23)

This result is in agreement with the previous section.

In general, for the NMHV form factors, there is one MHVzig-zag corresponding to the

path which proceeds along the NMHV line until it reaches the MHV edge of the lattice,

and n− 3 MHV zig-zags where the path shifts onto the MHV edge before it arrives at the

MHVedge. The MHV paths and the corresponding zig-zags are shown in figure 4.

An N2MHV example. As it can be seen from the lattice in figure 3, there are three

MHV and three MHVterms in the recursion of the six-point split-helicity form factor. These

are listed below, where the subscripts encode the shape of the path as described earlier.

For example, FRLL is the term which corresponds to the path that starts with a step to

right and terminates at the MHV edge with two steps to the left. The MHV terms are:
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• b1 = 5, no a:

FLL =
2

1

3

4

5

6

= − [25]2

[23][34][45]〈61〉
1

P 2
2,5

[5|P2,4|1〉
[2|P2,5|6〉

(2.24a)

• b1 = 6, no a:

FRLL =
2

1

3

4

5

6

=
1

〈45〉〈56〉[23]
1

P 2
2,6P

2
4,6

〈1|P2,6P4,6|4〉[2|P4,6|4〉2
[2|P2,6|1〉〈6|P4,6|3]

(2.24b)

• b1 = 6, b2 = 5, a1 = 2:

FLRL =
2

1

3

4

5

6

=
1

[34][45]

1

P 2
2,6P

2
3,6P

2
3,5

〈1|P2,6P3,6P3,5|5][2|P3,6P3,5|5]2
[2|P2,6|1〉〈6|P3,61|2][3|P3,5|6〉

(2.24c)

The MHVterms are:

• b̄1 = 3, no ā

FRR =
2

1

3

4

5

6

=
〈14〉2

〈45〉〈56〉〈61〉[23]
1

P 2
4,1

〈4|P4,1|2]
〈1|P4,1|3]

(2.25a)

• b̄1 = 2, no ā

FLRR =
2

1

3

4

5

6

=
1

[34][45]〈61〉
1

P 2
3,5P

2
3,1

〈1|P3,5|5]2[5|P3,5P3,1|2]
〈1|P3,1|2][3|P3,5|6〉

(2.25b)

– 12 –



J
H
E
P
1
0
(
2
0
1
1
)
0
4
6

• b̄1 = 2, b2 = 3, ā1 = 6

FRLR =
2

1

3

4

5

6

=
1

〈45〉〈56〉
1

P 2
3,1P

2
3,6P

2
4,6

〈4|P4,6P3,1|1〉2〈5|P4,6P3,6P3,1|2]
〈1|P3,1|2][3|P3,6|1〉〈6|P4,6|3][4|P4,6|6〉

(2.25c)

We have checked this result against an MHV diagram calculation and both methods yield

the same result.

3 Supersymmetric form factors and Ward identities

The purpose of this section is to write down supersymmetric Ward identities for certain

appropriately defined form factors of supersymmetric operators. By solving these Ward

identities, we will learn about the structure of these form factors.

To begin, we recall the familiar fact that in N = 4 SYM one can efficiently package

all scattering amplitudes with fixed total helicity and fixed number of particles n into a

superamplitude [31], thereby making manifest some of the supersymmetries of the theory.

This object depends on auxiliary fermionic variables ηi,A, one for each particle i = 1, . . . , n,

with A an anti-fundamental SU(4) index. The superamplitude can be Taylor-expanded in

the η variables, with a specific correspondence between powers of η and particular external

states. This correspondence can be read off from the Nair super-wavefunction [31], which

encodes all the annihilation operators of the physical states,

Φ(p, η) := g+(p)+ηAλA(p)+
ηAηB

2!
φAB(p)+ ǫABCD ηAηBηC

3!
λ̄D(p)+η1η2η3η4g

−(p) , (3.1)

where (g+(p), . . . , g−(p)) are the annihilation operators of the corresponding states. In

order to select a state with a particular helicity hi, we need to expand the superamplitude

and pick the term with 2 − 2hi powers of ηi.

This familiar framework becomes richer for form factors. Indeed, one can consider form

factors of bosonic operators — such as Tr(φABφAB) — with an external supersymmetric

state described using the Nair approach, but one can also supersymmetrise the operator

itself, as we shall see in the next section.

A comment on notation — we denote a form factor as 〈0|Φ(1) · · ·Φ(n)O |0〉 or equiv-

alently 〈1 · · · n| O |0〉, where |i〉 := Φ†(i)|0〉 is a Nair superstate, which satisfies

〈 i |P = 〈 i | pi , 〈 i |Q = 〈 i |λiηi , 〈 i | Q̄ = 〈 i | ∂

∂ηi
λ̃i , (3.2)

where the derivative in the last equation acts on the state on its left. We also adopt the

notation 〈1 · · · n| := 〈0|Φ(1) · · ·Φ(n).

– 13 –



J
H
E
P
1
0
(
2
0
1
1
)
0
4
6

3.1 Form factor of the chiral stress-tensor multiplet operator

We now consider the form factor of the chiral supersymmetric operator4 T (x, θ+) considered

recently in [29, 30]. This operator is the chiral part of the stress-tensor multiplet operator,

T (x, θ+) := T (x, θ+, θ̄− = 0, u) and we report here its expression from [29] for convenience,

T (x, θ+) = Tr(φ++φ++) + i2
√

2θ+a
α Tr(λ+α

a φ++)

+θ+a
α ǫabθ

+b
β Tr

(

λ+c(αλ+β)
c − i

√
2Fαβφ++

)

−θ+a
α ǫαβθb

βTr
(

λ+γ
(a λ+

b)γ − g
√

2[φ+C
(a , φ̄C +b)]φ

++
)

−4

3
(θ+)3 a

α Tr
(

Fα
β λ+β

a + ig[φ+B
a , φ̄BC ]λCα

)

+
1

3
(θ+)4 L . (3.3)

Notice that the (θ+)0 component is nothing but the scalar operator Tr(φ++φ++), whereas

the (θ+)4 component is the on-shell Lagrangian.

Next we describe how to use supersymmetric Ward identities in order to constrain form

factors, slightly extending the usual procedure for amplitudes. Ward identities associated

with a certain symmetry generator s which leaves the vacuum invariant are obtained in a

standard way [38–41] by expanding the identity

0 = 〈0|[s ,Φ(1) · · ·Φ(n)O ]|0〉 , (3.4)

or

0 = 〈0|Φ(1) · · ·Φ(n) [s , O] |0〉 +

n
∑

i=1

〈0|Φ(1) · · · [s , Φ(i)] · · ·Φ(n)O|0〉 . (3.5)

For instance, by considering s to be the momentum generator P and using [Pµ,O(x)] =

−i∂µO(x) as well as the first equation of (3.2), we obtain

− i 〈0|Φ(1) · · ·Φ(n) ∂µO(x) |0〉 +

( n
∑

i=1

pi

)

〈0|Φ(1) · · ·Φ(n)O(x)|0〉 = 0 . (3.6)

Fourier transforming x to q and integrating by parts one obtains

(

q −
n

∑

i=1

pi

)

F (q; 1, . . . , n) = 0 , (3.7)

where

F (q; 1, . . . , n) :=

∫

d4x e−iqx 〈1 · · · n|O(x) |0〉 . (3.8)

From this it follows that

F (q; 1, . . . , n) = C · δ(4)

(

q −
n

∑

i=1

pi

)

. (3.9)

4A quick reminder of harmonic superspace [27, 28] conventions, following closely [29, 30]. We introduce

the harmonic projections of the θA
α and θ̄α̇

A superspace coordinates and of the supersymmetry charges Qα
A,

Q̄A
α̇, as θ+a

α := θA
α u+a

A , θ̄α̇
−a := θ̄α̇

AūA
−a, and Qα

±a := ūA
±aQα

A, Q̄+a
α̇ := u+a

A Q̄A
α̇ with the harmonic SU(4) u and

ū normalised as in section 3 of [29].
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C can be fixed by further integrating both sides of (3.9) with a d4q measure and using (3.8),

which leads to C = 〈0|Φ(1) · · ·Φ(n)O(0) |0〉 = 〈1 · · · n|O(0) |0〉 .

Similarly, we now consider Ward identities for the harmonic projections Qα
±a, a = 1, 2,

of the Q-supersymmetry generators. We obtain

0 = 〈0|Φ(1) · · ·Φ(n)[Q± , T (x, θ+)] |0〉 +
n

∑

i=1

〈0|Φ(1) · · · [Q± , Φ(i)] · · ·Φ(n)T (x, θ+) |0〉 .

(3.10)

We now have to discuss how supersymmetry acts on the chiral part of T (x, θ+) as well as

on the states.

In general the supersymmetry algebra closes only up to gauge transformations and

equations of motion,5 however we consider here gauge-invariant operators such as T which,

furthermore, are made only of a subset of all fields, namely φAB, λA
α and Fαβ . It is an

important fact that the algebra of the Q-generators closes off shell on the chiral part of

T [29], and hence these generators can be realised as differential operators. Of course,

representing the Q̄-generators in terms of differential operators is, in general, problematic,

because the full supersymmetry algebra closes only on shell.

Moreover, for the chiral operator T (x, θ+) we have broken Q̄− since we have set θ− = 0

and hence we do not have a representation for this operator. For the Q±-variation of

T (x, θ+) we have,

[Q− , T (x, θ+)] = 0 , [Q+ , T (x, θ+)] = i
∂

∂θ+
T (x, θ+) . (3.11)

Note that since we consider the chiral part of the stress-tensor multiplet we have set θ̄ = 0

and hence we have dropped θ̄ dependent terms in the realisation of Q and Q̄. Then the first

relation is obvious since T (x, θ+) is independent of θ−. This also makes manifest the fact

that all component operators of T (x, θ+) are annihilated by Qα
−a [29]. On the other hand,

Qα
+a relates different components of the supermultiplet, as the second relation in (3.11)

shows.

We define the super form factor as the super Fourier transform of the matrix element

〈1 · · · n|T (x, θ+) |0〉, i.e.

FT (q, γ+; 1, . . . , n) :=

∫

d4x d4θ+ e−(iqx+iθ+a
α γα

+a) 〈 1 · · · n |T (x, θ+) |0〉 , (3.12)

where γα
+a is the Fourier-conjugate variable to θ+a

α . Note that there is no γα
−a variable, since

θ−a
α has been set to zero in order to define the chiral part of the stress-tensor multiplet.

The Ward identities (3.10) can then be recast as

( n
∑

i=1

λiη−,i

)

FT (q, γ+; 1, . . . , n) = 0 ,

( n
∑

i=1

λiη+,i − γ+

)

FT (q, γ+; 1, . . . , n) = 0 , (3.13)

5We would like to thank Paul Heslop for a useful conversation on these issues.
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where we have also introduced

η±a,i := ūA
±aηA,i . (3.14)

In arriving at (3.13) we have used (3.11) as well as the second relation in (3.2). Next, we

observe that (3.13) are solved by

FT (q, γ+; 1, . . . , n) = δ(4)

(

q−
n

∑

i=1

λiλ̃i

)

δ(4)

(

γ+−
n

∑

i=1

η+,iλi

)

δ(4)

( n
∑

i=1

η−,iλi

)

R, (3.15)

for some function R which in principle depends on all bosonic and fermionic variables. The

simplest example is that of the MHV form factor, where the function R has a particularly

simple expression derived in [18], namely

RMHV =
1

〈12〉 · · · 〈n1〉 . (3.16)

Notice that for an NkMHV form factor, R has fermionic degree 4k.

We can further constrain R by using some of the Q̄-supersymmetries. More pre-

cisely, an inspection of the supersymmetry transformations of the fields reveals that a Q̄−

transformation on the chiral part of the stress-tensor multiplet produces operators which

are part of the full stress-tensor multiplet but not of its chiral truncation. Also, since

[Q−,T (x, θ+)] = 0 we cannot realise Q̄− such that its anticommutator with Q− gives a

translation. One could of course still write a Ward identity for Q̄−, but this would involve

operators of the full multiplet.

On the other hand, the Q̄+-supersymmetry charge moves in the opposite direction

of Q+ across the different components of T (x, θ+), and is therefore realised as Q̄+
α̇ =

−θ+α∂/∂xα̇α.

We should stress at this point that the supersymmetry algebra on component fields

closes only up to equations of motion and gauge transformations (the latter drop out since

we consider gauge invariant operators). An important exception is the subalgebra formed

by the Q’s alone which does close off-shell for the fields appearing in T (x, θ+) [29]. Now

we use the fact that matrix elements of terms proportional to equations of motion vanish

at tree level, to argue that for our tree-level form factors the algebra formed by Q+ and

Q̄+ does close and, therefore, can be realised in the fashion described above. Thus, we can

consider the Q̄+ Ward identity, which gives, after integrating by parts and using the third

relation of (3.2),

( n
∑

i=1

λ̃i
∂

∂η+,i
− q

∂

∂γ+

)

FT (q, γ+; 1, . . . , n) = 0 . (3.17)

Acting on (3.15), we obtain the following relation for R,

δ(4)

(

q−
n

∑

i=1

λiλ̃i

)

δ(4)

(

γ+−
n

∑

i=1

η+,iλi

)

δ(4)

( n
∑

i=1

η−,iλi

)

[

( n
∑

i=1

λ̃i
∂

∂η+,i
− q

∂

∂γ+

)

R

]

= 0 .

(3.18)
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Notice that (3.18) implies a realisation of the supersymmetry generators on the form fac-

tor as

Qα
+a =

n
∑

i=1

λα
i η+a,i − γα

+a , Qα
−a =

n
∑

i=1

λα
i η−a,i , (3.19)

whereas for Q̄+a
α̇ ,

Q̄+a
α̇ =

n
∑

i=1

λ̃i,α̇
∂

∂η+a,i
− qαα̇

∂

∂γα +a
. (3.20)

3.2 Examples

In the previous section we have derived the general form of the supersymmetric form factor

defined in (3.12). This expression is given in (3.15), and was obtained by solving Ward

identities related to translations and Q±-supersymmetries. The use of Q̄+ supersymmetry

led to the constraint (3.18) on the function R. For the sake of illustration, we now present

a few examples of component form factors derived from (3.15).

3.2.1 Form factor of Tr(φ++φ++)

Our first example is the form factor of Tr(φ++φ++), which appears as the (θ+)0-term in

the expansion of T (x, θ+) in (3.3). In this case, since

∫

d4θ+ eiθ+a
α γα

+a = (γ+)4 , (3.21)

we need to extract the (γ+)4 component of (3.15). This gives

∫

d4xe−iqx〈1 · · · n|Tr(φ++φ++)(x)|0〉 = δ(4)

(

q −
n

∑

i=1

λiλ̃i

)

δ(4)

( n
∑

i=1

η−a,iλ
α
i

)

R, (3.22)

or

〈1 · · · n|Tr(φ++φ++)(0)|0〉 = δ(4)

( n
∑

i=1

η−a,iλ
α
i

)

R . (3.23)

Notice that with the help of (3.23) we can rewrite the supersymmetric form factor

FT (q, γ+; 1, . . . , n) as

FT (q, γ+; 1, . . . , n) = δ(4)

(

q−
n

∑

i=1

λiλ̃i

)

δ(4)

(

γ+−
n

∑

i=1

η+,iλi

)

〈1 · · · n|T (0, 0)|0〉 , (3.24)

since T (0, 0) := Tr(φ++φ++)(0). In other words, the function R appearing in the T (x, θ+)

form factor can be calculated from the form factor of its lowest component6 Tr(φ++φ++)(0).

Similar considerations apply to form factors of other half BPS operators such as Tr(φ++)n

with n > 2.

6One could arrive at (3.24) in a much more straightforward way by noticing that T (x, θ+a
α ) =

exp(iPx) exp(iQα
+aθ+a

α )T (0, 0) exp(−iPx) exp(−iQα
+aθ+a

α ) and using the invariance of the vacuum under

supersymmetry and translations.
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3.2.2 Form factor of the on-shell Lagrangian

As a second important example, we now consider the form factor for the on-shell La-

grangian, whose expression is [29]

L = Tr
[

− 1

2
FαβFαβ +

√
2gλαA[φAB , λB

α ] − 1

8
g2[φAB , φCD][φAB , φCD]

]

. (3.25)

Notice that it contains the self-dual part of Tr(F 2). The on-shell Lagrangian appears as the

(θ+)4 coefficient of the expansion of T (x, θ+) in (3.3). The corresponding Fourier transform

gives
∫

d4θ+ e−iθ+a
α γα

+a(θ+)4 = 1 , (3.26)

i.e. we have to take the O(γ0) component of (3.15). This is simply

〈1 · · · n|L(0)|0〉 = δ(8)

( n
∑

i=1

ηiλi

)

· R . (3.27)

It is interesting to note that for an MHV form factor, (3.27) is formally identical to the tree-

level MHV superamplitude, except for a delta function of momentum conservation which

now imposes
∑

i pi = q rather than the usual momentum conservation of the particles.

This allows us to make an interesting observation for the limit q → 0 in which this form

factor reduces simply to the correspond scattering amplitude. Actually, it turns out that

any form factor with the on-shell Lagrangian L inserted reduces to the corresponding

scattering amplitude in the q → 0 limit, since the insertion of the action corresponds to

differentiating the path-integral for the amplitude with respect to the coupling [42–44].

Another observation is that for the case of a gluonic state with MHV helicity config-

uration, (3.27) agrees with the Higgs plus multi-gluon or “φ-MHV” amplitude considered

in [45]. Indeed, if we have a gluonic state, we can effectively replace the on-shell La-

grangian (3.25) with its first term, the square of the self-dual field strength.

3.2.3 Why is the maximally non-MHV form factor so simple?

The simplest tree-level form factor is the MHV form factor, e.g.

〈1+2+ · · · i− · · · j− · · · (n − 1)+n+|Tr(F 2
SD)(0) |0〉 =

〈ij〉4
〈12〉〈23〉 · · · 〈n 1〉 . (3.28)

Interestingly, there are non-MHV form factors whose expression is also remarkably simple.

Consider for example that of the self-dual field strength with an all negative-helicity gluons

state — we refer to this as the “maximally non-MHV” form factor. The result for this

quantity is [45]

〈1− · · · n−|Tr(F 2
SD)(0) |0〉 =

q4

[1 2][2 3] · · · [n 1]
. (3.29)

In the following we wish to show that the simplicity of (3.29) is determined by the super-

symmetric Ward identity discussed earlier, and is linked to that of the MHV super form

factor (3.16).
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Recall from (3.24) that the super form factor of the chiral part of the stress-tensor

multiplet T (x, θ+) has the form

FT = δ(4)

(

q −
n

∑

i=1

λiλ̃i

)

δ(4)

(

γ+ −
n

∑

i=1

η+,iλi

)

Fφ2 , (3.30)

where

Fφ2 := 〈1 · · · n|Tr(φ++φ++)(0) |0〉 = δ(4)

( n
∑

i=1

η−,iλi

)

R . (3.31)

For the MHV helicity configuration, the function RMHV is given in (3.16),

FMHV
φ2 =

δ(4)
(
∑n

i=1 η−,iλi

)

〈12〉 · · · 〈n1〉 . (3.32)

We can now use this fact and perform a Grassmann Fourier transform in order to derive

the maximally non-MHV super form factor,

FNmaxMHV
φ2 =

n
∏

i=1

∫

d4η̃i eiηi,Aη̃A
i

δ(4)
(
∑n

i=1 η̃+
i λ̃i

)

[12] · · · [n1]
. (3.33)

Thus, the maximally non-MHV super form factor for the chiral part of the stress-tensor

multiplet is

FNmaxMHV
T = δ(4)

(

q −
n

∑

i=1

λiλ̃i

)

δ(4)

(

γ+ −
n

∑

i=1

η+,iλi

)

FNmaxMHV
φ2 . (3.34)

We now focus on the component corresponding to the self-dual field strength, which can

be obtained from the coefficient of (γ+)0. This is given by7

δ(4)

( n
∑

i=1

η+,iλi

) n
∏

i=1

∫

d4η̃i eiηiη̃i
δ(4)

(
∑n

i=1 η̃+
i λ̃i

)

[12] · · · [n1]

= δ(4)

( n
∑

i=1

η+,iλi

)

∑

i<j[ij]
∑

k<l[kl]

[12] · · · [n1]
η4
1..η

3
i ..η3

j ..η
3
k..η

3
l ..η4

n

=

∑

i<j〈ij〉[ij]
∑

k<l〈kl〉[kl]

[12] · · · [n1]
η4
1 · · · η4

n

=
q4

[12] · · · [n1]
η4
1 · · · η4

n . (3.35)

Equation (3.35) shows that there is a non-vanishing maximally non-MHV form factor for

the self-dual field strength, whose expression is precisely given by (3.29).

7In the following equation we omit a trivial delta function of momentum conservation.
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3.3 Form factor of the complete stress-tensor multiplet

In this section we consider the form factor of the the full, non-chiral stress-tensor multiplet

T (x, θ+, θ̃−). We can write this as8

T (x, θ+, θ̃−) := Tr(W++W++)

= eiθ+Q++iθ̃−Q̄−

Tr(φ++φ++)(x) e−iθ+Q+−iθ̃−Q̄−

(3.36)

= Tr(φ++φ++) + (θ+)4L + (θ̃−)4L̃ + (θ+σµθ̃−)(θ+σν θ̃−)Tµν + · · · ,

where we have indicated only some terms of the full multiplet.

The right-hand side of (3.36) is an expansion in the chiral as well as anti-chiral variables

θ+ and θ̃−. We can parallel this feature in the states by using a non-chiral description as

in [46] with fermionic variables η+ and η̃−. With this choice, the supersymmetry algebra

is realised on states as

〈 i |Q+ = 〈 i |λiη+,i , 〈 i |Q− = 〈 i |λi
∂

∂η̃−i
,

〈 i |Q̄− = 〈 i |λ̃iη̃
−
i , 〈 i| Q̄+ = 〈 i |λ̃i

∂

∂η+,i
. (3.37)

This non-chiral representation can be obtained via a simple Fourier transform of half of

the chiral superspace variables. In terms of the Nair description of states, this amounts to

introducing a new super wavefunction,

Φ(p, η+, η̃−) :=

∫

d2η− eiη−η̃−

Φ(p, η) (3.38)

= g+(p)(η̃−)2 + · · · + φ++(η+)2(η̃−)2 + φ−− + · · · + g−(p)(η+)2 .

As a result, operators and superstates live in a non-chiral superspace. The non-chiral form

factor in this representation is defined as

F(q, γ+, γ̃−; 1, . . . , n) :=

∫

d4x d4θ+ d4θ̃− e−i(qx+θ+γ++θ̃−γ̃−) 〈1 · · · n| T (x, θ+, θ̃−)|0〉 .

(3.39)

In order to write down Ward identities for (3.39), we consider the action of supersymmetry

generators on the operator T (x, θ+, θ̃−):

[Q+,T (x, θ+, θ̃−)] = i
∂

∂θ+
T (x, θ+, θ̃−) , [Q−,T (x, θ+, θ̃−)] = −θ̃−

∂

∂x
T (x, θ+, θ̃−) ,

[Q̄−,T (x, θ+, θ̃−)] = − ∂

∂θ̃−
T (x, θ+, θ̃−) , [Q̄+,T (x, θ+, θ̃−)] = iθ+ ∂

∂x
T (x, θ+, θ̃−) .

(3.40)

8Notice that the second equality is true only up to equations of motion because the non-chiral algebra

closes only on shell. In the following we will work at tree level and hence this point will not affect our

considerations.
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Following closely the derivation of the Ward identities described in the previous section,

we arrive at the following relations for each supersymmetry generator,

Q+ : (η+λ − γ+)F = 0 , Q− :
(

q
∂

∂γ̃−
− λ

∂

∂η̃−

)

F = 0 , (3.41)

Q̄− : (η̃−λ̃ − γ̃−)F = 0 , Q̄+ :
(

q
∂

∂γ+
− λ̃

∂

∂η+

)

F = 0 , (3.42)

and hence the form factor in (3.39) takes the form

F = δ(4)

(

q −
n

∑

i=1

λiλ̃i

)

δ(4)

(

γ+ −
n

∑

i=1

η+,iλi

)

δ(4)

(

γ̃− −
n

∑

i=1

η̃−i λ̃i

)

Fnc
φ2 , (3.43)

for some function Fnc
φ2 .

A useful observation is that Fnc
φ2 can be obtained from the corresponding function

introduced in (3.30) for the chiral form factor via a half-Fourier transform on the η and η̃

variables, as

Fnc
φ2 (λ, λ̃, η+, η̃−) =

n
∏

i=1

∫

d2η−,i eiη−,iη̃
−

i Fφ2(λ, λ̃, η+, η−) . (3.44)

In the remaining part of this section we would like to show a few applications of this

formulation.

To begin with, we specialise to the MHV case, for which we have

FMHV,nc
φ2 =

n
∏

i=1

∫

d2η−,i eiη−,iη̃
−

i
δ(4)

(
∑n

i=1 η−,iλi

)

〈12〉 · · · 〈n1〉

=
〈kl〉2

〈12〉 · · · 〈n1〉
n

∏

i6=k,l

(η̃−i )2 + · · · . (3.45)

The MHV form factor of Tr(φ+)2 is then obtained by extracting the coefficient of

(γ+)4(γ̃−)4 in (3.43), and thus it is immediately seen to give the correct answer. The form

factor with an insertion of the chiral Lagrangian L (which includes Tr(F 2
SD)) is obtained

by taking the coefficient of (γ+)0(γ̃−)4:

FMHV
L = δ(4)

(

n
∑

i=1

η+,iλi

)

FMHV
φ2 =

〈kl〉4
〈12〉 · · · 〈n1〉

(

η2
+,kη

2
+,l

n
∏

i6=k,l

(η̃−i )2
)

+ · · · , (3.46)

as expected. Finally, in order to obtain the form factor with L̃ (which includes Tr(F 2
ASD)),

we extract the coefficient of (γ+)4(γ̃−)0:

FMHV
L̃

= δ(4)

( n
∑

i=1

η̃−i λ̃i

)

FMHV
φ2 =

∑

i<j〈ij〉[ij]
∑

k<l〈kl〉[kl]

〈12〉 · · · 〈n1〉
n

∏

i=1

(η̃−i )2

=
q4

〈12〉 · · · 〈n1〉
n

∏

i=1

(η̃−i )2 , (3.47)

which is indeed also correct.
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4 Supersymmetric methods

In this section we take a brief survey of various methods that can be used to calculate

form factors of the complete stress-tensor multiplet, at tree and loop level. These are

simple but interesting extensions of well-known techniques for scattering amplitudes —

MHV diagrams [21], on-shell recursion relations [22, 23] and (generalised) unitarity [47–50]

— thus we will limit ourselves to highlighting the peculiarities we encounter when dealing

with form factors. The non-supersymmetric versions of these methods have been considered

earlier in section 2 and in [18].

A preliminary observation is that the form factor of the complete stress-tensor multiplet

operator T (x, θ+, θ̃−) can be expressed in terms of that of its lowest bosonic component

Tr(φ++φ++), as we have shown in (3.43), namely

F = δ(4)

(

q −
n

∑

i=1

λiλ̃i

)

δ(4)

(

γ+ −
n

∑

i=1

η+,iλi

)

δ(4)

(

γ̃− −
n

∑

i=1

η̃−i λ̃i

)

Fnc
φ2 , (4.1)

where Fnc
φ2 := 〈1 · · · n|Tr(φ++φ++)(0)|0〉 and the superstate 〈1 · · · n| is here in the non-

chiral representation. One can then switch instantly to the chiral representation via a half-

Fourier transform from the η̃− to the η+ variables. Hence, we only need to devise methods

to calculate the form factor 〈1 · · · n|Tr(φ++φ++)(0)|0〉 using a chiral representation for the

external state. This is the problem we address in the following.9

4.1 Supersymmetric MHV rules

We begin with a lightning illustration of super MHV rules. Here, the super MHV form

factor,

FMHV(1, 2, · · · , n; q) =
δ(4)(q − ∑

i λiλ̃i) δ(4)(
∑

i λiηi,−)

〈1 2〉〈2 3〉 · · · 〈n 1〉 , (4.2)

is continued off shell with the standard prescription (2.4) of [21], and used as a vertex

in addition to the standard MHV vertices. Form factors have a single operator insertion,

hence we only draw diagrams with a single form factor MHV vertex. As an example,

consider the NMHV tree-level super form factor. It can be computed by summing over all

diagrams in figure 5(a), whose expression is

F (0)
NMHV=

n
∑

i=1

i+n−2
∑

j=i+1

∫

d4Pij

∫

d4ηP A(0)
MHV(i, .., j, Pij )

1

P 2
ij

F (0)
MHV(j+1, .., i−1,−Pij ; q)

=F (0)
MHV

n
∑

i=1

i+n−2
∑

j=i+1

〈i−1 i〉〈j j+1〉
〈i−1 Pij〉〈Pij i〉〈j Pij〉〈Pij j+1〉

1

P 2
ij

δ(4)

( j
∑

k=i

〈Pij k〉ηA
k

)

. (4.3)

We have also calculated tree-level N2MHV super form factor up to six points and checked

that the results are all independent of the choice of reference spinor. We have also re-

derived the split-helicity form factors, and checked numerical agreement with the results

presented in section 2.2.1.

9To simplify our notation, we will drop from now on the subscript in Fφ2 .
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i

j

i

j

A
MHV

F
MHV

A
MHV

F
MHVPij

L1

L2

(a) (b)

Figure 5. (a) MHV diagram for a tree-level NMHV form factor. (b) MHV diagram for a one-loop

MHV form factor.

As an additional example, consider the one-loop MHV super form factor. Follow-

ing [36], this can be computed by summing over all diagrams in figure 5(b), and is given by

F (1)
MHV =

n
∑

i=1

i+n−1
∑

j=i

∫

dDL1

L2
1 + iε

dDL2

L2
2 + iε

∫

d4ηL1

∫

d4ηL2
(4.4)

A(0)
MHV

(

i . . . , j, L1, L2

)

F (0)
MHV(−L2,−L1, j+1, . . . , i−1; q) .

Finally, we note that the MHV vertex expansion may be proved at tree level along the

lines of [51], namely by using a BCFW recursion relation with an all-line shift and showing

that this is identical to the MHV diagram expansion.

4.2 Supersymmetric recursion relations

Now we consider a simple extension of the supersymmetric version [52, 53] of the BCFW

recursion relation [22, 23]. We choose to work with an [i, j〉 shift, λ̃i → λ̃i + zλ̃j , λj →
λj − zλi, ηi → ηi + zηj . Factorisation requires that each term in the recursion relation

must contain one form factor and one amplitude. Hence, for each kinematic channel we

need to sum over two diagrams, with the form factor appearing either on the left-hand or

right-hand side, see figure 6. The result one obtains by summing over these two classes of

diagrams has the form

F(0) =
∑

a,b

∫

d4Pd4ηP FL(z=zab)
1

P 2
ab

AR(z=zab)

+
∑

c,d

∫

d4Pd4ηP AL(z=zcd)
1

P 2
cd

FR(z=zcd) . (4.5)

One point deserves a special attention, namely the large-z behaviour of the form fac-

tor. Recall that in order to have a recursion relation without boundary terms we need

F(. . . p̂i, . . . , p̂j , . . .) → 0 as z → ∞. We discuss this important point in appendix A, where

we prove that the condition mentioned above is indeed satisfied. We would also like to

point out that the basic seeds in the form factor recursion relation are the two-point form

factor, together with the three-point amplitudes.
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î

ĵ

a

b

AL FR
î

ĵ

c

d

FL AR

(a) (b)

Figure 6. The two recursive diagrams discussed in the text.

q

l2

l1

pa+1

pa+2

pb−1

pa

pb

F A

Figure 7. A two-particle cut diagram for a one-loop form factor.

4.3 Supersymmetric unitarity-based method

Supersymmetric generalised unitarity, as well as supersymmetric MHV rules, are easily

applied to form factors. Consider for example a two-particle cut, depicted in figure 7. On

one side of the cut we have a tree-level form factor, on the other a tree scattering amplitude.

For the case of a one-loop supersymmetric MHV form factor, the two-particle cut is equal to

F (1)
MHV

∣

∣

∣

sa+1,b−1−cut
=

∫

dLIPS(l1, l2;P )

∫

d4ηl1

∫

d4ηl2 (4.6)

F (0)
MHV(−l2,−l1, b, . . . , a; q)A(0)

MHV

(

l1, l2, (a + 1) . . . , (b − 1)
)

,

where the Lorentz-invariant phase-space measure is

dLIPS(l1, l2;P ) := dDl1 dDl2 δ+(l21)δ
+(l22)δ

D(l1 + l2 + P ) . (4.7)

The sum over all possible states which can propagate in the loop is automatically

performed by the fermionic integration. A simple calculation gives

F (1)
MHV

∣

∣

∣

sa+1,b−1−cut
= F (0)

MHV

∫

dLIPS(l1, l2;Pa+1,b−1)
〈a a + 1〉〈l2 l1〉
〈a l2〉〈l2 a + 1〉

〈b − 1 b〉〈l1 l2〉
〈b − 1 l1〉〈l1 b〉 , (4.8)

which reproduces the result derived in [18] using component form factors and amplitudes.

5 Dual MHV rules for form factors

It was shown in [54] that the expectation value of supersymmetric Wilson loops in momen-

tum twistor space generates all planar amplitudes in N = 4 SYM, and dual MHV rules

in momentum twistor space were proposed in [55]. Inspired by these results, dual MHV

rules directly formulated in dual momentum space were introduced in [56]. In these rules

a lightlike closed polygon formed by linking the on-shell momenta of the external parti-

cles following their colour ordering plays an important role. Note that the same polygon

appears in the amplitude/Wilson loop duality [32–34].
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q

p3

p2

p1

x1

x2

x3

x4

x5

x6

x7

x8

x9

x10

q

q

Figure 8. The kinematic configuration in dual momentum space used to calculate three-point

form factors using dual MHV rules.

In this section we extend these rules to the calculation of form factors of the special op-

erator considered in previous sections, namely the chiral part of the stress-tensor multiplet

operator. It turns out that the rules for the amplitude have to be modified only slightly.

More precisely, there are no new vertices to be introduced, and we only have to modify (su-

per)momentum conservation of the particles in order to account for the (super)momentum

injected by the operator. In the dual momentum picture, this implies the breaking of the

closed null contour describing the particle’s momenta.

The vertices of this open polygon in dual supermomentum space are labelled by

(xi,Θi) [57], with10

xi − xi+1 := pi = λiλ̃i , Θi − Θi+1 := λiηi , (5.1)

with

xi − xi+n =

n
∑

j=1

pj = q , Θi − Θi+n =

n
∑

j=1

λjηj = γ , (5.2)

where q (γ) is the (super)momentum carried by the operator. Note that in the previous

equation we have effectively injected the (super)momentum of the operator between on-

shell states labelled by i−1 and i and this is where the breaking of the polygon occurs. For

each diagram an appropriate choice for the location of the breaking will have to be made.

Furthermore, in this section we consider the chiral operator T (x, θ+) for which γ− = 0,

and hence Θi;− − Θi+n;− = 0. For amplitudes we have of course q = 0 and γ = 0 which

would bring us back to a closed lightlike polygon.

In practice it is useful to convert the open polygon for form factors into a periodic

configuration in dual momentum space with period q (γ) in the bosonic (fermionic) direction

as in figure 8. This is partially motivated by a duality observed at strong coupling in [15, 16]

where form factors are related to the area of minimal surfaces ending on an infinite periodic

sequence of null segments at the boundary of AdS. In [18] an attempt was made to map

this geometric picture to weak coupling, in a way similar to the amplitude/Wilson loop

duality [33, 34].

The emergence of a periodic configuration is also natural from a field-theoretic point

of view once one takes into account that the operator insertion is a colour singlet, and

10In order to avoid confusion with the variables θ’s introduced in earlier sections, we denote by Θ the

variables living in dual super momentum space.
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Z10

Figure 9. The same kinematic configuration presented in figure 8, in terms of momentum twistor

space variables.

q
(a) (b) (c)

q
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Figure 10. Dual MHV diagrams for the three-point tree NMHV form factor.
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A
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F
MHV
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2
3

(a)

A
MHV

F
MHV

q

x3

x1

x4

x2

x5

x3

Figure 11. Corresponding MHV diagrams for the three-point tree NMHV form factor.

hence does not interfere with the colour ordering of the external state. In other words,

the (super)momentum carried by the operator can be inserted between any pair of particle

momenta without spoiling the ordering. Precisely by resorting to a periodic configuration

we can account for this property, as figure 8 clearly shows.

One can also consider this periodic kinematic configuration in momentum twistor

space [58], as shown in figure 9, with space-time points being mapped to lines in twistor

space: (xi,Θi) ∼ Zi−1 ∧ Zi, where

Zi = (λi, νi, χi) , νi = xiλi = xi+1λi , χi = Θiλi = Θi+1λi . (5.3)

5.1 Examples

In this section we want to explain the dual MHV rules by discussing a number of simple

examples of tree-level and one-loop form factors. The dual MHV rules in dual momentum

space for N = 4 amplitudes are summarised for the reader’s convenience in appendix B,

and we refer to [56] for full details.

The first example is that of an NMHV three-point form factor. The corresponding

diagrams are shown in figure 10, and are in one-to-one correspondence with three conven-

tional MHV diagrams, depicted in figure 11. Notice that the three diagrams in figure 10

can be obtained by selecting the appropriate period in figure 8.
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The extension to n-point NMHV form factors is immediate — we consider all dual

MHV diagrams where one propagator connects two external vertices within one period.

The final result is given by summing over all translationally inequivalent diagrams as

F (0)
NMHV = F (0)

MHV

n
∑

i=1

i+n−1
∑

j=i+2

〈i−1 i〉
〈i−1 ℓij〉〈ℓij i〉

〈j−1 j〉
〈j−1 ℓij〉〈ℓij j〉

1

x2
ij

∫

d4ηij δ0|8(ℓijηij + Θij) ,

(5.4)

where the spinor |ℓij〉 associated to the internal leg is defined as

|ℓij〉 := |xij|ξ] , (5.5)

and where |ξ] is an arbitrary reference spinor. Notice that the particle labels of spinor

variables i and i + n are identified in this expression. Importantly, the fact that we are

calculating a form factor rather than an amplitude — and the corresponding dependence on

q and γ — is completely encoded in the periodic kinematic configuration as defined earlier.

Furthermore, we observe that every diagram in the sum corresponds to a particular period

(see figures 10 and 11).

Notice that diagrams where a propagator connects two adjacent points give a vanishing

result, and therefore are not included in the summation. On the other hand, diagrams

where a propagator connects two points separated by exactly one period or more are non-

vanishing, and have to be excluded since there is no corresponding conventional MHV

diagram. For instance, among the three-point diagrams in figure 10 we do not include the

diagram with a propagator connecting points x1 and x4. This is an example of a more

general fact: diagrams where a single propagator connects points xi and xj with |i− j| ≥ n

have to be discarded. This applies to any loop order. The reason for this rule is that there

are no corresponding supersymmetric MHV diagrams.

As an aside we mention that (5.4) can also be written in terms of momentum twistor

variables as

F (0)
NMHV = F (0)

MHV

n
∑

i=1

i+n−1
∑

j=i+2

[∗, i−1, i, j−1, j] , (5.6)

where Z∗ is the reference momentum twistor, chosen as

Z∗ = (0, ξ, 0) , (5.7)

and [∗, i−1, i, j−1, j] is defined in (B.4).

The case of one-loop MHV form factors is similar to the tree-level NMHV case. The
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x0

xI ′ xI ′′

(a) (b)

1

3

F
MHV

xI

x1

x4

2 qA
MHV

Figure 12. A special diagram with two propagators with momenta xiI and xi+nI . In the dual

MHV diagram there are two propagators with momenta x1I and x4I , and two vertices, x1 and xI .

Such diagrams correspond to the last three lines of (5.8).

n-point one-loop MHV form factor is given by

F (1)
MHV = F (0)

MHV

∫

d4xId
8ΘI

n
∑

i=1

i+n−1
∑

j=i+1

〈i−1 i〉
〈i−1 ℓiI〉〈ℓiI i〉

〈j−1 j〉
〈j−1 ℓIj〉〈ℓIj j〉 (5.8)

1

〈ℓiIℓIj〉〈ℓIjℓiI〉
1

x2
iI

∫

d4ηiI δ0|8(ℓiIηiI + ΘiI)
1

x2
Ij

∫

d4ηIj δ0|8(ℓIjηIj + ΘIj)

+F (0)
MHV

∫

d4xId
8ΘI

n
∑

i=1

〈i−1 i〉
〈i−1 ℓiI′〉〈ℓiI′ ℓiI〉〈ℓiI i〉

1

〈ℓiIℓi+nI〉〈ℓi+nIℓiI〉
1

x2
iI

∫

d4ηiI δ0|8(ℓiIηiI + ΘiI)
1

x2
i+nI

∫

d4ηi+nI δ0|8(ℓi+nIηi+nI + Θi+nI)

∫

d4xI′d
8ΘI′δ

4(xI′I − xii+n)δ0|8(ΘI′I − Θii+n) .

Notice that we have treated a special class of diagrams differently, corresponding to the

last three lines in (5.8). These are diagrams where the two propagators have momenta xiI

and xi+nI . An example of such a diagram in the case of a three-point form factor is shown

in figure 12.

The three-point dual MHV diagrams at one loop are shown in figure 13. The diagrams

in figure 13 (g)-(i) are of the special class described earlier in figure 12. Note that in the case

of loop diagrams we also have to include diagrams where two adjacent points or two points

separated by exactly one period are connected by two or more propagators (see figure 13

diagrams (a)-(c) and (g)-(i) respectively). We should also stress that all diagrams where

two points xi and xj with |i− j| > n are connected must be discarded. Generalisations to

non-MHV form factors are straightforward.

Finally we compare the dual MHV diagrams with the periodic Wilson line diagrams

studied in [18]. We can see that an identical truncation was necessary in order to obtain

the correct result: in a single MHV diagram the external vertices which are connected

to propagators must reside within one period, and the whole form factor is obtained by

summing over all translationally inequivalent diagrams.
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x4
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q
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x4

x6

xI

(f)

qx3

x5

x4
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xI

(e)

qx2

x4

x3

x5

xI

q
(d)

x1

x3x2

x4

xI

Figure 13. Dual MHV diagrams for the three-point MHV form factor at one loop.

5.2 Higher-loop diagrams

At higher loops, the situation becomes more involved. To illustrate the main novelty we

consider the two-point MHV form factor at two loops.11

As prototypical examples, we consider two particular diagrams, depicted in figures 14

and 15. In the first diagram, the form factor MHV vertex is inserted in the exterior part of

the diagram, whereas in the second situation it is inserted in the interior. On the right-hand

side of each figure we also draw the corresponding dual MHV diagram. Let us start with

the first, simpler situation. There is no subtlety in defining the internal region momenta

xI and xJ . The momenta in the propagators in the outer loop are x2I , x3J and x1J , and

it is straightforward to write down the two-loop dual MHV integrand. In the notation of

appendix B, there are two internal vertices, two external vertices at x1 and x2 (with x1

being a two-point vertex) and four propagators, as shown by dark bullets and dark wavy

lines in figure 14 (b).

Consider now the second, more subtle situation drawn in figure 15. In order to assign

region momenta consistently to all regions in this diagram, we need to introduce an addi-

tional loop momentum xJ ′ such that xJ −xJ ′ = q, in exactly the same way as x1 −x3 = q.

Similarly, one can also introduce xI′ such that xI′ − xI = q. The dual MHV diagram is

shown in figure 15(b).

As before, we consider only translationally inequivalent diagrams within one period.

Each such diagram will have two one-point external vertices, two three-point internal ver-

tices and four propagators, as shown by dark bullets and dark wavy lines in figure 15(b).

11Incidentally, we recall that while at one loop it has been proved that (four-dimensional) MHV diagrams

reproduce complete amplitudes [59], there is no such statement at two loops and beyond. However, MHV

diagrams at two loops and beyond can be used effectively to compute unregulated integrands of amplitudes

(and form factors, as demonstrated here) which have recently attracted great interest in their own right [60].
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AMHV
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x3x1

FMHV

xI

xJ ′

xI

xJ

x1

x2

x3

xJ

xI ′

x0 x4

Figure 14. (a) First MHV diagram for a two-loop, two-point MHV form factor. (b) The corre-

sponding dual MHV diagram.

xI

AMHV

p1

xJ

FMHV

p2

AMHV

(a) (b)

x2

x1

x2

x3xI
x1

xJ xJ ′

x0

p1
p2p2

xI ′

x4

Figure 15. (a) Second MHV diagram for a two-loop, two-point MHV form factor. (b) The

corresponding dual MHV diagram.

The expression of this dual MHV diagram is then

∫

d4xId
8ΘI

1

〈ℓI2ℓIJ〉〈ℓIJℓIJ ′〉〈ℓIJ ′ℓI2〉

∫

d4xJd8ΘJ
1

〈ℓJ1ℓJI′〉〈ℓJI′ℓJI〉〈ℓJIℓJ1〉
〈12〉

〈1ℓ2I〉〈ℓ2I2〉
〈21〉

〈2ℓ1J 〉〈ℓ1J1〉 (5.9)

1

x2
I2

∫

d4ηI2 δ0|8(ℓI2ηI2 + ΘI2)
1

x2
J1

∫

d4ηJ1 δ0|8(ℓJ1ηJ1 + ΘJ1)

1

x2
IJ

∫

d4ηIJ δ0|8(ℓIJηIJ + ΘIJ)
1

x2
IJ ′

∫

d4ηIJ ′ δ0|8(ℓIJ ′ηIJ ′ + ΘIJ ′)

∫

d4xI′d
8ΘI′δ

4(xII′ + x13)δ
0|8(ΘII′ + Θ13)

∫

d4xJ ′d8ΘJ ′δ4(xJJ ′ − x13)δ
0|8(ΘJJ ′ − Θ13) .

Notice in the last line of (5.9) the delta functions which enforce the periodicity of the super

region momenta xI′ and xJ ′ . One can check that (5.9) is indeed equivalent to the result of

the conventional MHV diagram in figure 15(a).

The dual MHV rules for form factors described above can be understood more naturally

if we put the periodic configuration on a cylinder of period q, see figure 16. In particular,

figure 16(b) corresponds to the MHV diagram in figure 15. The two coloured propagators

connecting xI and xJ form a loop with winding momentum q, which exactly correspond to

the coloured lines in the MHV diagram in figure 15(a). We would like to stress a general

feature of the rules we have described before, namely that no single propagator can stretch

for one or more than one period around the cylinder.
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p1
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p2

(b)

xJ

xI

x1
x2

(a)

xJ

xI

x1
x2

Figure 16. (a) Cylinder picture for the MHV diagram in figure 14. (b) Cylinder picture for the

MHV diagram in figure 15. The period of the cylinder is q.

The dual MHV rules can be applied to generic form factors. As in the case of ampli-

tudes, in order to calculate an NkMHV form factor at L loops, we need to sum over all

allowed diagrams with

#(internal vertices) = L , #(propagators) = k + 2L . (5.10)

It would be very interesting to map the dual MHV rules described here to a dual Wilson

line picture for form factors. We leave this question for future work.
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A Vanishing of form factors at large z

A.1 Bosonic form factors

In this appendix we consider a generic non-MHV bosonic form factor of the operator Tr(φ2)

and prove that, for a [k, l〉 shift

ˆ̃λk := λ̃k + zλ̃l , λ̂l := λl − zλk , (A.1)
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F (z) vanishes as z → ∞ if

(hk, hl) is equal to : (0,+), (+,+), (−,+), (0, 0), (−, 0), (−,−) . (A.2)

The proof is based on the MHV diagram expansion of form factors, and follows closely that

for amplitudes presented in [23].

To begin with, it is immediate to see that an MHV form factor (2.3) with a [k, l〉
shift vanishes as z → ∞, with the only exception of the case (hk, hl) = (+, 0). Consider

now a generic non-MHV form factor. Each MHV diagram contributing to its expansion

is a product of MHV vertices, times propagators 1/L2. These propagators will either be

independent of z, or vanish when z → ∞. As in [23], the spinors λL = L|ξ̃] associated

to internal legs can also be made z-independent by choosing the reference spinor ξ̃ to be

equal to ξ̃ = λ̃l. Thus, dangerous z-dependent terms can only arise from terms affected by

the shifts in the external legs k and l.

For the cases where (hk, hl) is (±,+) or (0,+), only the denominators acquire z-

dependence, and hence F (z) vanishes at large z. By using anti-MHV diagrams we arrive

at the same result for the case where (hk, hl) is equal to either (−,−) or (−, 0). The

case (hk, hl) = (0, 0) needs special attention. The case when k and l belong to the same

MHV vertex has already been considered, and leads to a falloff of the diagram as z → ∞.

When k and l belong to different vertices, there will be at least one propagator depending

on z, which will provide a factor of 1/z at large z. The vertex involving leg l behaves

asymptotically as z2/z2 regardless of whether it is an MHV form factor or a conventional

MHV vertex, while all other vertices are independent of z. We conclude that each MHV

diagram falls off as 1/z at large z.

We mention here that the argument described above can also been applied to scattering

amplitudes. Shifting two scalars makes the amplitude vanish as z → ∞ provided that the

scalars take the same SU(4) indices.

A.2 Supersymmetric form factors

As we have shown in the previous appendix, the bosonic form factor vanishes at infinity

for an [i, j〉 shift if i and j are both scalars. Here we want to use supersymmetry to relate

the large-z behaviour of generic supersymmetric form factors to that of form factors with

legs i and j being both scalars. This will then prove the validity of the supersymmetric

BCFW recursion relation for all supersymmetric form factors in fashion similar to [53].

For supersymmetric non-chiral form factor F (λ, λ̃, η+, η̃−), the [i, j〉 shift is

ˆ̃
λi(z) := λ̃i + zλ̃j , λ̂j := λj − zλi ,

η̂i,+ := ηi,+ + zηj,+ , ˆ̃η−j = η̃−j − zη̃−i . (A.3)

As in [53], we choose a particular transformation where

Q̄ζ̃ = ζ̃α̇+Q̄α̇+ , Qξ = ξ−α Qα
− , (A.4)

where

ζ̃ =
1

[i j]

(

− λ̃iηj + λ̃jηi

)

, ξ =
1

〈i j〉
(

− λiη̃j + λj η̃i

)

. (A.5)
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One can check that their action on the fermionic coordinates ηk,+, η̃−k is

eQ̄
ζ̃ηk,+ := η′k,+ = ηk,+ − ηi,+

[kj]

[ij]
+ ηj,+

[ki]

[ij]
, (A.6)

eQξ η̃−k := η̃′−k = η̃−k − η̃−i
〈kj〉
〈ij〉 + η̃−j

〈ki〉
〈ij〉 , (A.7)

and in particular eQ̄
ζ̃ηi,+ = eQ̄

ζ̃ηj,+ = eQξ η̃−i = eQξ η̃−j = 0. Since the form factor is

invariant under Q̄+ and Q− transformations, i.e. eQ̄
ζ̃F = eQξF = F (see (3.41)), we

conclude that

F(λ1, λ̃1, η1,+, η̃−1 ; · · · ;λi,
ˆ̃λi, η̂i,+, η̃−i ; · · · ; λ̂j , λ̃j , ηj,+, ˆ̃η−j ; · · · ;λn, λ̃n, ηn,+, η̃−n )

= F(λ1, λ̃1, η
′
1,+, η̃′−1 ; · · · ;λi,

ˆ̃λi, 0, 0; · · · ; λ̂j , λ̃j , 0, 0; · · · ;λn, λ̃n, η′n,+, η̃′−n ) . (A.8)

Thus, we can always choose a supersymmetry transformation which sets i and j to be

scalars. It is important to notice that under the [i, j〉 shift, the transformed η′+ and η̃′−

variables are independent of z. The large-z behaviour of F(z) is therefore the same as

that of the bosonic form factor with i and j being scalars. This case was considered in

the previous appendix, and shown to fall off as 1/z at large z. Hence the statement is

also true for the shifted supersymmetric form factor F(z). The proof illustrated above

concerned the large-z behaviour of the full non-chiral super form factor, but a very similar

one applies to the form factor in chiral superspace, since the latter is related to the former

by a half-Fourier transform in superspace.

B Dual MHV rules

We recall that momenta and supermomenta for a massless particle are defined in terms of

dual momenta and supermomenta as [57]

xi − xi+1 = λiλ̃i , Θi − Θi+1 = λiηi , (B.1)

where xij := xi − xj and Θij := Θi − Θj.

The dual MHV diagram rules of [56] are summarised in figure 17.

In these rules, the off-shell continuation for spinors associated to internal legs, |ℓij〉, is

defined as usual as [21]

|ℓij〉 := xij |ξ] , (B.2)

where |ξ] is an arbitrary reference spinor.

For convenience, we recall here two simple applications of these rules from [56]. A

generic dual MHV diagram contributing to an NMHV tree amplitude is pictured in fig-

ure 18(a). There are two boundary vertices and one propagator. By applying the dual

MHV rules of figure 17, we get

〈i−1 i〉
〈i−1 ℓij〉〈ℓij i〉

〈j−1 j〉
〈j−1 ℓij〉〈ℓij j〉

1

x2
ij

∫

d4ηij δ0|8(ℓijηij + Θij) , (B.3)
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1

x2

ij

∫
d4ηij δ0|8(ℓijηij + Θij)

g2
YM

∫
d4xId

8ΘI

〈i−1 i〉
〈i−1 ℓij1〉〈ℓij1ℓij2〉〈ℓij2ℓij3〉···〈ℓijr−1

ℓijr〉〈ℓijr i〉

1
〈ℓIi1

ℓIi2
〉〈ℓIi2

ℓIi3
〉···〈ℓIir−1

ℓIir〉〈ℓIirℓIi1
〉

i j

i1

i2 i3

ir

I

i

i − 1

i + 1

j1

j2

jr

(a)

(b)

(c)

Figure 17. Feynman rules for dual MHV diagrams. (a) Propagator. (b) r-point internal vertex.

(c) r-point external vertex.

(a)

xi xj

Zj−1

Zi−1

Zi

Zj

(b)

xi xj

xI

Zj−1

Zj
ZA

ZB

Zi−1

Zi

Figure 18. Dual MHV diagrams for (a) a NMHV tree amplitude, and (b) a one-loop MHV

amplitude, and the corresponding momentum twistor diagrams.

which can be easily translated in terms of the superconformal invariant R-function R∗;ij :=

[∗, i−1, i, j−1, j], with

[i, j, k, l,m] ≡ δ(4)(〈i j k l〉χm + cyclic terms)

〈i j k l〉〈j k l m〉〈k l m i〉〈l m i j〉〈m i j k〉 . (B.4)

The reference momentum twistor is Z∗ = (0, ξ, 0).

Similarly, a generic dual MHV diagram for a one-loop MHV amplitude is depicted in

figure 18(b) and is equal to

g2
YM

∫

d4xId
8ΘI

1

〈ℓiIℓIj〉〈ℓIjℓiI〉
〈i−1 i〉

〈i−1 ℓiI〉〈ℓiI i〉
〈j−1 j〉

〈j−1 ℓIj〉〈ℓIj j〉
1

x2
iI

∫

d4ηiI δ0|8(ℓiIηiI + ΘiI)
1

x2
Ij

∫

d4ηIj δ0|8(ℓIjηIj + ΘIj) . (B.5)

In terms of momentum twistor variables this becomes [55],

g2
YM

∫

d3|4ZA ∧ d3|4ZB [∗, i−1, i, A,B′][∗, j−1, j, A,B′′ ] , (B.6)

where (xI ,ΘI) ∼ ZA ∧ ZB and

B′ = (A,B) ∩ (∗, j−1, j) , B′′ = (A,B) ∩ (∗, i−1, i) . (B.7)
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