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fundamental domain. We show that, in the global supersymmetry limit of certain classes
of potentials, the vacua at these fixed points may be degenerate, leading to the formation
of modular domain walls in the early Universe. Taking supergravity effects into account,
in the background of a fixed dilaton field S, the degeneracy may be lifted, leading to a
bias term in the potential allowing the domain walls to collapse. We study the resulting
gravitational wave spectra arising from the dynamics of such modular domain walls, and
assess their observability by current and future experiments, as a window into modular
flavour symmetry.
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1 Introduction

The curious pattern of quark and lepton (including neutrino) masses and mixing remains one
of the major puzzles of the Standard Model (SM) [1]. Many approaches to this so called
flavour problem involve the introduction of a flavour symmetry which is spontaneously
broken by new Higgs scalar fields called flavons, whose vacuum alignment is controlled by
further scalar fields called driving fields (for a review see, e.g., Ref. [2]).

It has been suggested that finite flavour symmetries might arise from an infinite mod-
ular symmetry necessarily broken by a single complex modulus field τ , in a bottom-up ap-
proach [3] using ideas borrowed from string theory [4–6]. For instance, the infinite modular
symmetry, PSL(2,Z), with its series of infinite normal subgroups called the principle con-
gruence subgroups Γ(N) of level N , permits finite quotient groups ΓN

∼= PSL(2,Z)/Γ(N)

identified with flavour groups. For low integer levels N = 3, 4, 5 familiar flavour symmetries
emerge, Γ3

∼= A4 [3, 7–21], Γ4
∼= S4 [22–26], Γ5

∼= A5 [27–29]. This approach has been
widely developed in recent literature and many other related ideas and examples have been
proposed (for reviews see, e.g., Refs. [30, 31]).

In many bottom-up models, the only flavon present is the single modulus field τ ,
whose vacuum expectation value (VEV) fixes the value of Yukawa couplings which form
representations of the finite modular flavour symmetry and are modular forms, leading to
predictive models [3]. Without loss of generality, τ may be considered in its fundamental
domain in the upper-half complex plane, within which there are three fixed points where a
discrete subgroup of the modular symmetry is preserved. The three fixed points are: τ = i

(preserving ZS
2 ), τ = ω = e2πi/3 (preserving ZST

3 ), and τ = i∞ (preserving ZT
N ), where S, T

generate the modular symmetry [3]. These fixed points seem to have phenomenological
relevance in particular models (see, e.g., Refs. [23, 32–34]).
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From a theoretical point of view, moduli fields should be stabilised at the minima of
some potentials, and there is extensive string theory literature concerned with this prob-
lem. For example, in heterotic string theory, gaugino condensation [35–37] combined with
threshold corrections [38–43] can lead to non-trivial vacua which may be used to stabilise
moduli fields [44–47]. More recently these issues have been revisited in the bottom-up ap-
proach [48–51]. Many of these vacua are anti-de Sitter (AdS), but approaches to achieve de
Sitter (dS) vacua have also been proposed [52–55]. For example, by including Shenker-like
effects [56] as non-perturbative corrections to the dilaton Kähler potential, one may obtain
metastable dS vacua at the fixed points τ = i and ω [53, 55]. Interestingly, it has been
found that such potentials may also lead to the slow-roll inflation [57, 58].

In this paper, we show that, in the global supersymmetry limit of certain classes of
potentials, the vacua at the fixed points τ = i and τ = ω may be degenerate, leading to the
formation of modular domain walls (DWs) in the early Universe [59–62]. Traditionally, DWs
arise from theories in which a discrete symmetry such as Z2 is spontaneously broken [63–
65]. However, modular DWs are very different from DWs from ordinary discrete symmetry
breaking in field theory. For DWs in field theory, the two vacua on two sides are usually
connected by a conjugate transformation of the discrete symmetry [66, 67]. But for modular
DWs, the two vacua at τ = i and ω, are not related by a modular transformation. The
profile of energy density in the wall also turns out to be asymmetric along the coordinate
perpendicular to the surface of the wall. Taking supergravity effects into account, in the
background of a fixed dilaton field S, we show that the degeneracy may be lifted, leading to
a bias term in the potential allowing DWs to collapse. We study the resulting gravitational
wave (GW) spectra arising from the dynamics of such modular DWs, and assess their
observability by current and future experiments, as a window into modulus stabilisation
and modular flavour symmetry.

The layout of the remainder of the paper is as follows. In Sec. 2 we compute the
modular DW solution and discuss its properties in the global supersymmetry limit. GWs
from modular DWs are investigated in Sec. 3. We summarise our main conclusions in
Sec. 4. In appendix A, we present the expressions for modular forms and modular-invariant
functions used in this paper. The complete potentials and field equations in rigorous N = 1

supergravity are shown in appendices B and C, respectively.

2 Modular symmetry and modular domain walls

String compactifications on specific manifolds are believed to exhibit modular symmetries,
which leave the physical action invariant under modular transformations on moduli fields.
The modulus field τ can be described by a complex parameter within the upper-half complex
plane C+, transforming under an element γ of the modular group Γ ∼= PSL(2,Z) as

γ : τ → aτ + b

cτ + d
, (2.1)

with a, b, c, d ∈ Z and ad − bc = 1. Γ contains two generators, namely, the duality trans-
formation S: τ → −1/τ , and the shift transformation T : τ → τ + 1. Acting all elements

– 2 –



Figure 1. Fundamental domain of the modular group. We use blue dots to label the fixed points.

γ on a given point in C+ generates an orbit of τ . Then one can define the so-called funda-
mental domain, as shown in Fig. 1, which intersects with each of these orbits at one and
only one point. In the modular-invariant flavour models with a single modulus field, it is
usually sufficient to scan τ within G, since one can always send τ to G via a modular trans-
formation, while keeping the physical observables unchanged [23]. Additionally, we have
three fixed points within the fundamental domain, namely, i, ω ≡ e2πi/3, and i∞, at which
residual symmetries ZS

2 , ZST
3 and ZT

N (with N being the level of finite quotient groups) are
respectively maintained after the spontaneous breakdown of modular symmetries.

The VEV of τ can be determined by minimising the scalar potential constructed from
supergravity theory. Here we consider heterotic orbifolds including a single Kähler modulus
τ and a dilaton S, focusing primarily on the global supersymmetry limit of N = 1 super-
gravity. The supergravity action is determined by a modular-invariant Kähler function
G(τ, τ , S, S) defined as [68]

G(τ, τ , S, S) = K(τ, τ , S, S)/M2
p + ln

∣∣W(τ, S)/M3
p

∣∣2 , (2.2)

where K(τ, τ , S, S) and W(τ, S) represent respectively the Kähler potential and superpo-
tential, τ and S denote the complex conjugates of τ and S, and Mp = 2.43×1018 GeV is the
reduced Planck mass. The Kähler potential in our model contains two parts: one related
to S and the other to τ . We assume that the Kähler potential for the Kähler modulus τ

takes the minimal form, but we do not specify the exact form of the Kähler potential for
S. As a result, the overall Kähler potential can be written as

K(τ, τ , S, S) = −3Λ2
K ln(2 Im τ) +M2

pK
dil(S, S) , (2.3)

where the factor 3 stems from three copies of two-tori in string compactifications [45], and
Kdil(S, S) is a dimensionless real function of S and S. Note that τ and S appearing hereafter
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are regarded as dimensionless. Their dimensions can be restored by including the scales
of corresponding Kähler potentials. Specifically, the Kähler potential of S is associated
with Mp, whereas that of τ is associated with an energy scale ΛK which we assume to
be much smaller than Mp. This ensures that we can take the global supersymmetry limit
Mp → ∞ for the Kähler modulus. Additionally, we assume that the dilaton is stabilised at
a higher energy scale, independent of the Kähler modulus.1 Its VEV then leads to the 4d
gauge coupling g24/2 = 1/⟨S+S⟩. Nevertheless, the Kähler modulus τ can be stabilised via
the gaugino condensation mechanism [35–37] at a relatively low scale, due to the following
non-perturbative superpotential [45]

W(τ, S) = Λ3
WH(τ)Ω(S) , (2.4)

where ΛW denotes the energy scale at which the gaugino condensation occurs, Ω(S) refers
to a function of the dilaton S, and H(τ) = [j(τ) − 1728]m/2j(τ)n/3 with j(τ) being the
modular-invariant Klein j-function and m,n being non-negative integers.2 We show the
definition of j(τ) in appendix A. Eq. (2.4) implies that W(τ, S) is modular invariant, as a
consequence of the modular invariance of the Kähler function.

The complete scalar potential in N = 1 supergravity is given in Eq. (B.8) of appendix B.
In the global supersymmetry limit, the scalar potential for the Kähler modulus reduces to

V (τ, τ) = Kττ∂τW∂τW =
Λ4
V (2 Im τ)2

3

∣∣H ′(τ)
∣∣2 . (2.5)

where ∂τ ≡ ∂/∂τ , Kττ is the inverse of Kähler metric Kττ ≡ ∂τ∂τK = 3Λ2
K/(2 Im τ)2, and

the overall scale Λ4
V ≡ Λ6

W |Ω|2eKdil
/Λ2

K has been defined.3 Since we assume S is already
fixed at its VEV, we can absorb |Ω|2 into ΛW and eK

dil into ΛK without loss of generality.
The stabilisation of τ by minimising the scalar potential obtained from gaugino conden-

sation has been broadly explored in previous literature, see, e.g., Refs. [6, 44, 47, 50, 53, 55].
For the scalar potential V (τ, τ) given in Eq. (2.5), depending on the values of m and n, the
vacua of V (τ, τ) can be classified into the following three cases:

(a) m = n = 0: V (τ, τ) is vanishing. The modulus τ is not fixed.

(b) m = 0, n ̸= 0 or m ̸= 0, n = 0: V (τ, τ) has two Minkowski vacua at the fixed
points τ = i and τ = ω. The scalar potential along the lower boundary of fundamental
domain, i.e., the unit arc, is shown in the left panel of Fig. 2.

(c) m ̸= 0, n ̸= 0: Apart from τ = i and ω, there is an additional Minkowski vacuum
on the lower boundary of G. The scalar potential along the unit arc is shown in the
right panel of Fig. 2.

1One example is the Kachru-Kallosh-Linde-Trivedi (KKLT) scenario [69], where the dilaton superpoten-
tial WKKLT ∝ ξ − Be−ζS (with ξ, ζ and B being constants). Such a superpotential, when combined with
Kdil = − ln(S + S), results in a scalar potential which has an minimum at S ∼ ln(ξ/Bζ).

2We require that the function H(τ) do not introduce any singularity within G. In the most general case,
H(τ) ≡ [j(τ) − 1728]m/2j(τ)n/3P(j(τ)) with P(j(τ)) being a polynomial of j(τ). For simplicity, here we
choose P(j(τ)) = 1.

3The factor eK
dil

comes from eK/M2
p in Eq. (B.4). Substituting the Kähler potential M2

pK
dil(S, S) of

the dilaton into eK
dil

, we are left with this factor.
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Figure 2. Projection of the scalar potential along the lower boundary of the fundamental domain
(the unit arc). The field ϕ is defined as ϕ ≡ ΛK ln[tan(θ/2)]/

√
2 with θ being the complex phase

of τ = eiθ. In the left panel, we choose H(τ) = j(τ)/1728. The local maximum ϕc = 0.238ΛK and
the minimum ϕm = 0.673ΛK which corresponds to τ = ω are labelled by dashed lines. In the right
panel, we choose H(τ) = j(τ)[j(τ)− 1728]/17282.

DW solutions that connect different vacua of τ may be obtained by solving the field
equations of τ . We focus on the static planar DW solution τ = τ(z) with z being the
spatial coordinate transverse to the wall. The complete set of first-order field equations
within the framework of N = 1 supergravity can be found in Refs. [59, 61], and also in
appendix C of this paper. Generally speaking, if the gravitational effects are significant,
the spacetime metric will undergo drastic variation along the z-direction, especially near
the wall. However, in the global supersymmetry limit under consideration, the variation of
the spacetime metric is suppressed by Mp (See appendix C for more details). Consequently,
the field equations can be written as [59, 61]

∂τ

∂z
= eiθWKττ ∂W

∂τ
, (2.6)

Im

(
∂zW
W

)
=

∂θW
∂z

= 0 , (2.7)

with θW being the complex phase of W, and W represents the complex conjugate of W.
Eq. (2.7) indicates that the phase θW keeps invariant along the entire trajectory. Since
W(τ) is a modular-invariant function, it is straightforward to see that the value of W(τ)

is real at any point on the unit arc |τ | = 1, given that the relations W(τ) = W(−1/τ) and
W(τ) = W(−τ) should be satisfied. Therefore, the unit arc precisely represents the DW
trajectory which separates the two vacua, τ = i and ω, in the field space.

Along the unit arc, the modulus τ can be parametrised as τ = eiθ where θ is the
complex phase. As the kinetic Lagrangian Lkin = 3Λ2

K∂µθ∂
µθ/(4 sin2 θ) in terms of θ
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Figure 3. Left: The planar DW solution in Case (b) where we choose H(τ) = j(τ)/1728. The
convenient unit l0 ≡ Λ2

K/Λ3
W has been defined; Right: The distribution of energy density ε along

z-direction. The grey-shaded region corresponds to the thickness of DW.

is not canonical, it is more convenient to convert θ into a normalised field by defining
ϕ ≡

√
3/2ΛK ln[tan(θ/2)]. Since W should be real along the ϕ-direction, we can thereby

rewrite Eq. (2.6) as
∂ϕ

∂z
= 2

∂W
∂ϕ

. (2.8)

Squaring both sides of the above equation and differentiating with respect to ϕ, we come
into the second-order field equation

∂2ϕ

∂z2
=

∂V

∂ϕ
, (2.9)

where V = Kττ∂τW∂τW = 2(∂W/∂ϕ)2 has been adopted.
As an illustrative example, we consider Case (b) with m = 0 and n ̸= 0,4 while leaving

Case (c) for future study. More specifically, we choose H(τ) = j(τ)/1728 without loss of
generality.5 Then we solve Eq. (2.8) numerically by choosing the initial condition ϕ(0) = ϕc

with ϕc = 0.238ΛK corresponding to the barrier peak of V (τ, τ). The result is shown in
the left panel of Fig. 3. One can observe that as z → ±∞, ϕ tends to 0 (τ = i) and
ϕm = 0.673ΛK (τ = ω), respectively. Compared to the limit at ϕ = ϕm, the approach to
ϕ = 0 is faster. This can be understood from the steeper increase in the potential from
ϕ = 0 to the top of the barrier, as shown in Fig. 2.

4One can also choose m ̸= 0 and n = 0. For example, one can choose m = 2 such that H(τ) =

[j(τ)−1728]/1728, which differs from the case where H(τ) = j(τ)/1728 by a constant. The scalar potential
V (τ, τ) remains unchanged as it only depends on H ′(τ).

5We choose m = 0 and n = 3, and rescale H(τ) by a factor j(i) = 1728.
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In the right panel of Fig. 3, we present the variation of the energy density ε = (∂zϕ)
2/2+

2(∂ϕW)2 along the z-axis. We can continue to calculate the surface energy tension σ of the
DW, by integrating ε in the z-direction, namely,

σ =

∫ ∞

−∞
dz

[
1

2
(∂zϕ)

2 + 2 (∂ϕW)2
]

=

∫ ∞

−∞
dz

1

2
(∂zϕ− 2∂ϕW)2 + 2|∆W| ,

(2.10)

where ∆W ≡ W(ϕ(z → ∞)) −W(ϕ(z → −∞)).6 As ∂zϕ − 2∂ϕW = 0 should be satisfied
by Eq. (2.8), we can directly gain the surface tension as

σ = 2|∆W| = 2Λ3
W , (2.11)

where H(i) = 1 and H(ω) = 0 have been used. It is the gaugino condensation scale ΛW that
solely determines the tension energy of modular DWs, which coincides with the “no-scale”
behaviour of the Kähler potential given in Eq. (2.3).

Since the DW is asymmetric in our case, it is more convenient to define the partial
thicknesses δ± of DW separately on both sides of the peak of the energy barrier, which we
have selected to be at z = 0, and the total thickness becomes δ = δ++δ−. More concretely,
the partial thicknesses δ± can be determined by∫ 0

−δ−

dz ε(z) = 64.38%

∫ 0

−∞
dz ε(z) ,∫ δ+

0
dz ε(z) = 64.38%

∫ ∞

0
dz ε(z) ,

(2.12)

where we have drawn on the factor 64.38% from the typical Z2-symmetric DW [67]. Nu-
merical results show that δ− = 0.0294 l0 and δ+ = 0.0212 l0 with l0 ≡ Λ2

K/Λ3
W . In fact,

we can also make an order-of-magnitude estimate of the DW thickness. Since the DW
contains most of the energy within its thickness δ, the surface tension can be estimated as
σ ∼ (ϕ2

c/δ
2 + Vmax)δ with Vmax being the height of the potential barrier. As a result, we

roughly have δ ∼ Λ3
W /Vmax ∼ O(10−2) l0, coinciding with the numerical result.

At the end of this section, let us emphasise the difference between the modular DWs
considered here and the DWs arising from the spontaneous breaking of discrete symmetries
in field theory. As we have seen, the presence of degenerate vacua originates from the
properties of modular forms, rather than as a consequence of an explicit discrete symmetry
in the scalar potential. For DWs in field theory, the two vacua on two sides are usually
connected by a conjugate transformation of a certain discrete symmetry. But for modular
DWs, we cannot relate the two vacua, τ = i and τ = ω, through a modular transformation.
This explains why the DW solution obtained in our model is asymmetric. It is interesting
to point out that modular transformations can indeed relate τ in different domains. For
instance, if τ = i corresponds to a vacuum, we will obtain an infinite number of degenerate

6Although Eq. (2.10) is derived from a specific model, σ = 2|∆W| holds generally for supersymmetric
DWs [59].
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vacua at τ = i + l (with l being an integer). However, all these vacua give rise to the same
value of W. According to Eq. (2.11), the surface tension energy σ of the modular DW
depends only on the difference in the values of W at different vacua, hence no DW solution
with non-zero σ can be obtained between different domains of the modular group [59].

3 Gravitational waves from modular domain walls

As discussed in the previous section, the scalar potential given in Eq. (2.5) leads to two
degenerate vacua at τ = i and τ = ω, enabling the formation of stable DWs. The energy
density of DWs quickly comes to dominate our Universe, conflicting with current cosmic
microwave background (CMB) observations. In order to prevent longevity of DWs, we allow
them to annihilate by introducing a bias term in the scalar potential that breaks the vacua
degeneracy. Interestingly, if we slightly relax the global supersymmetry limit Mp → ∞, the
dilaton term in the rigorous supergravity potential given in Eq. (B.5) can serve as a small
bias term suppressed by Mp. To be more specific, with this term added back, the scalar
potential can be rewritten as

V (τ, τ) =
Λ6
W

Λ2
K

(2 Im τ)2

3

∣∣H ′(τ)
∣∣2 + Λ6

W

M2
p

A|H(τ)|2 , (3.1)

where the factor A comes essentially from the F -term of S, and can be expressed as

A =
|ΩS +Kdil

S Ω|2
Kdil

SS
|Ω|2 , (3.2)

with ΩS ≡ ∂Ω/∂S, Kdil
S ≡ ∂Kdil/∂S and Kdil

SS
≡ ∂2Kdil/(∂S∂S) being defined. H(τ) takes

different values at τ = i and ω, namely, H(i) = 1 and H(ω) = 0. Therefore, the potential
energy difference between two vacua provides a bias term

Vbias = V |τ=i − V |τ=ω =
Λ6
W

M2
p

A . (3.3)

The presence of Vbias imposes an additional pressure force on the wall, causing the false
vacuum to shrink. As a consequence, DWs start to collapse, generating a characteristic
stochastic GW spectrum [70–76]. We consider the scenario where the annihilation occurs
in the radiation-dominated era, indicating that the annihilation temperature should be
smaller than the reheating temperature. The annihilation temperature is given by [75]

Tann = 9.46× 1017 GeV C−1/2
ann S−1/2

(
g∗(Tann)

100

)−1/4( σ

M3
p

)−1/2(Vbias

M4
p

)1/2

, (3.4)

where g∗(Tann) is the relativistic degrees of freedom for the radiation energy density at the
temperature Tann. In the majority of the parameter space in our model, Tann ≳ 1 GeV,
hence we approximately have g∗(T ) ≃ 100. Additionally, we set S = 0.8 for the area
parameter and Cann = 2 for the dimensionless annihilation constant, as an analogy to the
Z2-symmetric DW case [77], although accurately determining the dynamical evolution of
asymmetric DWs requires more precise lattice simulations.
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Figure 4. Correlations between the peak frequency fp and the peak amplitude Ωph
2 of GW spectra

for ΛW = 10−13Mp, 10−11Mp, 10−9Mp, and 10−7Mp. The grey-shaded disfavoured region stems
from the measurements on the number of extra neutrino species [78–81]. The red-shaded region is
unlikely to be detectable by any GW observatories in the foreseeable future.

The peak frequency fp and peak energy density amplitude Ωph
2 of GWs from DWs can

be estimated as [75]

fp ≃ 1.53× 1011 Hz C−1/2
ann S−1/2

(
g∗(Tann)

100

)−1/12( σ

M3
p

)−1/2(Vbias

M4
p

)1/2

,

Ωph
2 ≃ 8.63× 10−7ϵS4C2

ann

(
g∗(Tann)

100

)−1/3( σ

M3
p

)4(Vbias

M4
p

)−2

,

(3.5)

where the effective relativistic degrees of freedom at the present time g∗0 = 3.36 and
g∗s0 = 3.91 have been adopted, and the efficiency parameter is taken to be ϵ ≃ 0.7 [74].
Substituting the expressions of σ and Vbias into Eqs. (3.4) and (3.5), we could roughly have
the following relations

Tann ≃ 5.29× 1017 GeV
√
A (ΛW /Mp)

3/2 ,

fp ≃ 8.54× 1010 Hz
√
A (ΛW /Mp)

3/2 ,

Ωph
2 ≃ 1.59× 10−5A−2 ,

(3.6)

where one could see that Ωph
2 depends only on A, whereas Tann and fp depend on both

A and ΛW . Apparently, we need ΛW /Mp ≪ 1 to avoid extremely large values of Tann

and fp. Moreover, once the value of ΛW is fixed, Ωph
2 and fp satisfy a power-law relation

Ωph
2 = 8.47 × 1038(ΛW /Mp)

6(f/Hz)−4. We explicitly exhibit the correlations between fp
and Ωp in Fig. 4 by choosing ΛW = 10−13Mp, 10−11Mp, 10−9Mp, and 10−7Mp, respectively.
The energy density of a GW background in the early Universe decays as relativistic degrees
of freedom, which should be constrained by the measurements on the number of extra
neutrino species ∆Neff [82]. Combined analyses using Planck and other data indicate that
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the energy density of GW backgrounds produced before Big-Bang Nucleosynthesis (BBN)
satisfies h2ΩGW ≲ 10−6 [78–81]. We denote the region where h2ΩGW ≥ 10−6 as the
“Disfavoured Region” in Fig. 4. On the other hand, GWs with h2ΩGW ≲ 10−16 are unlikely
to be detectable by any current or planned experiments in the foreseeable future. We label
this region as the “Undetectable Region”. In order for the GWs from DWs to be testable, A
should be approximately within the range 4 ≲ A ≲ 4×105. As for the gaugino condensation
scale, ΛW ≲ 10−7Mp corresponds to the peak frequencies fp ≲ 103 Hz. The typical value
of ΛW motivated by string theory can be as large as ΛW ∼ 1013 GeV ∼ 10−5Mp, which
can keep the gravitino mass m3/2 in the TeV range [83]. As we will see in Fig. 6, such a
value of ΛW may just barely reach the edge of the detectable region. However, ΛW could
also be smaller, depending on the dynamics of the hidden sector gauge group [84–86]. In
this paper, we treat ΛW as a free parameter that can vary over a wide range.

We select four benchmark (BK) points with A = 40 and ΛW /Mp = {10−13, 10−11,
10−9, 10−7}, and estimate the corresponding GW spectra using the following broken power-
law parametrisation [104, 105]

h2ΩGW = h2Ωp

(r + s)u(
sx−r/u + rxs/u

)u , (3.7)

where x ≡ f/fp, and the parameters r = 3, s = u = 1 are chosen [73]. Our results
are shown in Fig. 5. For comparison, we also present the power-law-integrated sensitiv-
ity (PLIS) curves [87–89] from the Square Kilometre Array (SKA) [90], µAres [91], the
Laser Interferometer Space Antenna (LISA) [92], Taiji [93], TianQin [94], the Deci-hertz
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Figure 6. The parameter space of {ΛW ,A} corresponding to ϱ ≤ 10 for various GW detectors.
The region disfavoured by measurements of the number of extra neutrino species is shown in teal
shading. We also mark four BK points with pentagrams.

Interferometer Gravitational-wave Observatory (DECIGO) [95], the Big-Bang Observer
(BBO) [96], the Atomic Experiment for Dark Matter and Gravity Exploration in Space
(AEDGE) [97], the Atom Interferometer Observatory and Network (AION) km [98], the
Einstein Telescope (ET) [99], the Cosmic Explorer (CE) [100], the Advanced Laser Interfer-
ometer Gravitational-Wave Observatory (aLIGO) [101], the Advanced Virgo (aVirgo) [106],
and the Kamioka Gravitational Wave Detector (KAGRA) [107]. The results from the LIGO-
Virgo-Kagra (LVK) third observing run (O3), combined with the earlier O1 and O2 runs,
placed upper limits on the strength of the GW background within the frequency band
20 Hz ≤ f ≤ 90.6 Hz at the 95% credible level [103], which is shown by the solid grey
curve in Fig. 5. Recently, several pulsar timing array (PTA) projects, such as the North
American Nanohertz Observatory for Gravitational Waves (NANOGrav) [102, 105], the Eu-
ropean PTA [108, 109], the Parkes PTA [110] and the Chinese PTA [111], reported strong
evidence of a stochastic GW background with the frequency around 10−8 Hz. In Fig. 5, we
also exhibit the NANOGrav 15-year results using grey blobs. Explaining the NANOGrav
15-year data requires ΛW ≲ 10−13Mp.

We can further estimate the capability of GW detectors to test the parameter space of
our model in a more qualitative way by calculating the signal-to-noise ratio (SNR) [112, 113]

ϱ =

[
ndettobs

∫ fmax

fmin

df

(
Ωsignal (f)

Ωnoise(f)

)2
]1/2

, (3.8)

where ndet = 1 for auto-correlated detectors and ndet = 2 for cross-correlated detectors, tobs
represents the observational time, Ωsignal represents the GW signal predicted in our model,
following the form given in Eq. (3.7), and Ωnoise denotes the noise spectrum expressed in
terms of the GW energy density spectrum which we directly take from the experiments

– 11 –



mentioned above. Integrating (Ωsignal/Ωnoise)
2 over the sensitive frequency ranges of indi-

vidual GW detectors, we obtain the SNRs for given values of ΛW and A. In Fig. 6, We use
different colour-shaded regions to indicate the parameter space of {ΛW ,A} corresponding
to ϱ ≤ 10 for various GW detectors, which delineate the parameter ranges detectable by
these detectors. We find that the gaugino condensation scale may be probed by multiple
GW observatories across a broad frequency range. More concretely, the ground-based laser
interferometers like LIGO can touch the parameter range with ΛW ≲ 10−5Mp. Results
from the LVK O3 run have already excluded the region 10−8Mp ≲ ΛW ≲ 10−6Mp and
A ≲ O(10). The space-based detectors, such as LISA, Taiji and Tianqin, are sensitive to
ΛW ∼ 10−10Mp. PTA experiments, which are capable of detecting nano-Hz GWs, hold the
potential to probe the parameter region where ΛW ≲ 10−11Mp.

Before closing this section, let us make two additional comments on the values of A
and ΛK . First, one may wonder whether large values of A like A ∼ 105 are theoretically
reasonable. Here, instead of constructing a specific model for the dilaton stabilisation, we
briefly demonstrate that large values of A are feasible based on some empirical hypotheses.
Assuming the tree-level Kähler potential Kdil = − ln(S + S) and an exponential function
Ω(S) = Be−ζ′S (with ζ ′ being an constant), we could identify from Eq. (3.2) that A ≃
ζ ′2⟨S + S⟩2 in the large S limit. In this regard, a sizeable A can be achieved by choosing
a sufficiently large S. Keeping in mind that the 4d gauge coupling g24/2 = 1/⟨S + S⟩, a
large A would correspond to a small gauge coupling constant. Second, ΛK is a completely
unconstrained scale in our previous discussions, as we have already seen that neither σ

nor Vbias depends on ΛK . However, the scalar potential V (τ, τ) indeed depends on ΛK .
According to the percolation theory, in order for the DWs to be formed, the height of the
potential barrier Vmax and the bias term Vbias should satisfy [75]

Vbias

Vmax
< ln

(
1− pc
pc

)
= 0.795 , (3.9)

where pc = 0.311 is the critical probability above which an infinite cluster of the false
vacuum appears in the space, supposing the system is treated as a three dimensional cubic
lattice [114]. Eq. (3.9) results in a constraint on ΛK depending on A as ΛK < 3.54A−1/2Mp.

4 Summary

Modulus stabilisation is not only a key topic in string theory research but also plays a
crucial role in low-energy modular flavour symmetries. It provides a dynamical mechanism
for determining the modulus parameter, which dictates the flavour mixing structure of
quarks and leptons. However, modulus stabilisation generally takes place at a very high
energy scale, posing significant challenges for developing effective approaches to probe it.
In this paper, we have investigated modular DWs and their testability in GW observatories
in a class of modular-invariant supersymmetric models. In such models, a single Kähler
modulus field τ can be stabilised at or near certain fixed points, τ = i and τ = ω, due to the
potential induced by gaugino condensation. In the global supersymmetry limit Mp → ∞,
such fixed points may be degenerate, leading to the formation of modular DWs in the early
Universe.
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We have numerically computed the DW solution in our model and discussed in detail
the properties of modular DWs. Their tension, i.e., mass per square unit, is of order Λ3

W ,
where ΛW is the superpotential scale resulting from gaugino condensation. The modular
DWs are very different from those arising from ordinary discrete symmetry breaking in
field theory. Specifically, the two vacua at τ = i and ω cannot be related by a modular
transformation. As a result, the profile of energy density in the wall is asymmetric along
the coordinate perpendicular to the surface of the wall. Although modular DWs are very
distinct from ordinary DWs, we have found a consistent way to define their thickness. The
total thickness of the walls is of order 10−2Λ2

K/Λ3
W where ΛK is the scale appearing in the

Kähler potential of τ .
We also have shown that, taking supergravity effects into account, in the background

of a fixed dilaton field S, the degeneracy between two vacua at τ = i and ω may be lifted,
leading to a bias term in the potential allowing the DWs to collapse. We have studied the
resulting GW spectra arising from the dynamics of such modular DWs, parametrised by
the gaugino condensation scale ΛW and a dimensionless dilaton term A, and assessed its
observability by current and future experiments. In order for the GWs from DWs to be
testable, A should be approximately within the range 4 ≲ A ≲ 4 × 105. Values of ΛW

within the range 10−14Mp ≲ ΛW ≲ 10−5Mp are promising for examination by several GW
detectors across a wide frequency range. We have identified a benchmark GW spectrum
with ΛW = 10−13Mp and A = 40 that fits the recent NANOGrav 15-year results very well.

It is worth mentioning that, although we have considered only a simplified model in
this paper, modular DWs and their collapse may be a common feature in scalar potentials
with modular symmetry. Extending our work to other string theory models or within the
rigorous framework of supergravity would be interesting. It is also worthwhile to investigate
DWs separating CP-violating vacua that are not precisely located on the boundary of the
fundamental domain.
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A Some useful modular forms and modular-invariant functions

The modular form f(τ) is a holomorphic function in terms of τ transforming under the
modular group as f (γτ) = (cτ + d)kf(τ), with k being its weight. Modular forms can
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be generated by the Dedekind η function, a modular form with a weight of 1/2, which is
defined as

η(τ) ≡ q1/24
∞∏
n=1

(1− qn) , (A.1)

where q = e2πiτ . One can express η(τ) as the following q-expansions

η = q1/24
(
1− q − q2 + q5 + q7 − q12 − q15 +O

(
q22

))
. (A.2)

The Eisenstein series G2k(τ) (k > 1) are holomorphic modular forms with weights of
2k, the definitions of which are

G2k(τ) =
∑

n1,n2∈Z
(n1,n2 )̸=(0,0)

(n1 + n2τ)
−2k . (A.3)

If k = 1, we obtain the Eisenstein series G2(τ), which can be related to the Dedekind
η-function via

η′(τ)

η(τ)
=

i

4π
G2(τ) . (A.4)

Notice that G2(τ) is a holomorphic function but not a modular form. Instead, one can
define a non-holomorphic Eisenstein series of weight two as

Ĝ2(τ) = G2(τ)−
π

Im τ
. (A.5)

With the help of η(τ) and G4(τ), one can define a modular-invariant function which is
called the Klein j-function as

j(τ) =
3653

π12

G4(τ)
3

η(τ)24
. (A.6)

One can also express j(τ) in terms of the Dedekind η-function and its derivatives as

j =

(
72

π2

ηη′′ − 3η′2

η10

)3

=

[
72

π2η6

(
η′

η3

)′]3
. (A.7)

B The scalar potential in N = 1 supergravity

In this appendix we present the generic form of the moduli scalar potential in the rigorous
N = 1 supergravity. Again, we start from the Kähler function

G(τ, τ , S, S) = K(τ, τ , S, S)/M2
p + ln

∣∣W(τ, S)/M3
p

∣∣2 . (B.1)

The Kähler potential still takes the form given by Eq. (2.3), but we do not restrict ourselves
to the global supersymmetry limit ΛK ≪ Mp. In general, one can define a ratio as m ≡
Λ2
K/M2

p . Under the modular transformation, we have Im τ → |cτ+d|−2Im τ . Therefore the
modular invariance of the Kähler function indicates that the superpotential should possess
a weight of −3m. Consequently, we have the following superpotential [45]

W(τ, S) = Λ3
W

H(τ)Ω(S)

η6m(τ)
. (B.2)
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If ΛK and Mp are precisely equal, m = 1, leading to the superpotential form given in
Refs. [53, 55]. Conversely, if ΛK ≪ Mp, m = 0, and Eq. (B.2) reduces to the global
supersymmetry limit of the superpotential, as shown in Eq. (2.4).

With the help of the Kähler function G, the scalar potential can be determined by [68]

V = M4
pe

G(KijDiGDjG− 3) , (B.3)

where the covariant derivatives Di ≡ ∂i+(∂iK)/M2
p are defined. Substituting the expression

of G into the above equation, we arrive at [68]

V = eK/M2
p

(
Kij̄DiWDj̄W − 3|W|2/M2

p

)
, (B.4)

where i, j = τ, S. Plugging Eqs. (2.3) and (B.2) into Eq. (B.4), we can obtain the expression
for the scalar potential as

V (τ, τ) =
Λ4
V

(2 Im τ)3m|η(τ)|12m

[
(2 Im τ)2

3

∣∣∣∣iH ′(τ) +
3m

2π
Ĝ2(τ, τ)H(τ)

∣∣∣∣2 +m (A− 3) |H(τ)|2
]

,

(B.5)
where the overall scale Λ4

V ≡ Λ6
W |Ω|2eKdil

/Λ2
K , and A depends on S and S as

A =
|ΩS +Kdil

S Ω|2
Kdil

SS
|Ω|2 , (B.6)

with ΩS ≡ ∂Ω/∂S, Kdil
S ≡ ∂Kdil/∂S and Kdil

SS
≡ ∂2Kdil/(∂S∂S) being defined. A es-

sentially comes from the F -term of S in the scalar potential, as we can see that DSW =

Λ3
WH(τ)(ΩS +Kdil

S Ω)/η6m(τ).
With the help of Eq. (B.5), we can compare the scalar potential in the global super-

symmetry limit with that in supergravity. If m = 0, one can get

V (τ, τ) =
Λ4
V (2 Im τ)2

3

∣∣H ′(τ)
∣∣2 , (B.7)

which is precisely the scalar potential in the global supersymmetry limit shown in Eq. (2.5).
On the contrary, if we set m = 1, the scalar potential turns out to be

V (τ, τ) =
Λ4
V

(2 Im τ)3|η(τ)|12

[
(2 Im τ)2

3

∣∣∣∣iH ′(τ) +
3

2π
Ĝ2(τ, τ)H(τ)

∣∣∣∣2 + (A− 3) |H(τ)|2
]

,

(B.8)
which recovers the scalar potential used for modulus stabilisation in Refs. [53, 55].

Next, let us derive the bias term, by considering the dilaton term A, and relaxing the
global supersymmetry limit, i.e., by allowing m to be non-zero but still a small parame-
ter. Indeed, there are several terms in the scalar potential that depend on A, as shown in
Eq. (B.5), whereas we only turn on the term mA|H(τ)|2. The reasons for this selective treat-
ment are as follows. First, the inclusion of (2 Im τ)3m|η(τ)|12m and 3m Ĝ2(τ, τ)H(τ)/(2π)

with a small m does not break the degeneracy between two vacua at τ = i and ω, which
remain as Minkowski vacua. In this regard, they make very small modifications to the po-
tential, given that they are suppressed by Mp. Hence we can safely neglect them. Second,
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the term −3m|H(τ)|2 can break the vacua degeneracy, shifting τ = i down to an anti-de
Sitter (AdS) vacuum. However, this term could also induce a non-vanishing gravitational
mass, compensating for the difference in the values of the potential at τ = i and ω. As a
result, the total energy, defined as a sum of the vacuum and gravitational energies, is the
same at τ = i and ω, ensuring the stability of DWs [59]. Therefore, the term −3|H(τ)|2
can not act as a bias term. Conversely, as mentioned above, the term mA|H(τ)|2 comes
from the F -term of the dilaton, rather than from gravitational corrections. Finally, one can
choose relatively large values for A, e.g., A ≳ O(10), to ensure that the term mA|H(τ)|2
dominates over other m-suppressed terms. As discussed in Sec. 3, such values of A are
indeed favoured in our model. Based on the above arguments, we incorporate only the
term mA|H(τ)|2 into the global supersymmetry potential given in Eq. (2.5), namely,

V (τ, τ) =Λ4
V

[
(2 Im τ)2

3

∣∣H ′(τ)
∣∣2 +mA|H(τ)|2

]
=
Λ6
W

Λ2
K

(2 Im τ)2

3

∣∣H ′(τ)
∣∣2 + Λ6

W

M2
p

A|H(τ)|2 ,
(B.9)

where Λ4
V ≡ Λ6

W /Λ2
K and m ≡ Λ2

K/M2
p have been used. As H(τ) takes different values at

τ = i and ω, the last term in Eq. (B.9) can generate a bias term as shown in Eq. (3.3).

C Complete field equations in N = 1 supergravity

In this appendix, we present the equations for the modulus field in the presence of a planar
thin DW within supergravity theory, and investigate under which conditions they reduce
to the global supersymmetry case.

We have mentioned that the DW can result in the dramatic change of the spacetime
metric. Assuming the spatial components of the metric parallel to the wall are homogeneous
and isotropic in the co-moving frame, we define ds2 = α(z)(dt2− dz2)+β(z)(−dx2− dy2),
with z being the coordinate transverse to the wall. Note that here we are looking for
the time-independent metric solution, hence the dependence on time of the metric has
been omitted. The first-order field equations can be derived by allowing the variations
of corresponding spinors within the superfields to be vanishing. Here we directly give
the complete set of equations that the modulus field and the metric should satisfy as
follows [59, 61]

∂τ

∂z
= −ζ

√
αeK/(2M2

p)Kττ |W|
Mp

DτW
W ,

∂ lnα

∂z
=

∂ lnβ

∂z
= 2ζ

√
αeK/(2M2

p)
|W|
M3

p

,

Im

(
∂τ

∂z

DτW
W

)
= 0 ,

(C.1)

where ζ = ± defined as ζ ≡ W/(ieiθW |W|) (with θW being the complex phase of W)
only changes at points where W vanishes, and the last equation of Eq. (C.1) refers to
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the geodesic path between two vacua in the supergravity potential space. Keeping Kττ =

(2 Im τ)2/(3Λ2
K) in mind, we observe from the first two equations of Eq. (C.1) that the

variation of lnα with z relative to that of τ is suppressed by a factor Λ2
K/M2

p . In this sense,
the differential equation for the metric components is decouple in the global supersymmetry
limit Mp → ∞, allowing us to consider the case with a constant spacetime metric.

References

[1] Z.-z. Xing, Flavor structures of charged fermions and massive neutrinos, Phys. Rept. 854
(2020) 1 [1909.09610].

[2] S.F. King and C. Luhn, Neutrino Mass and Mixing with Discrete Symmetry, Rept. Prog.
Phys. 76 (2013) 056201 [1301.1340].

[3] F. Feruglio, Are neutrino masses modular forms?, in From My Vast Repertoire ...: Guido
Altarelli’s Legacy, A. Levy, S. Forte and G. Ridolfi, eds., pp. 227–266 (2019), DOI
[1706.08749].

[4] J. Lauer, J. Mas and H.P. Nilles, Duality and the Role of Nonperturbative Effects on the
World Sheet, Phys. Lett. B 226 (1989) 251.

[5] S. Ferrara, D. Lust, A.D. Shapere and S. Theisen, Modular Invariance in Supersymmetric
Field Theories, Phys. Lett. B 225 (1989) 363.

[6] S. Ferrara, .D. Lust and S. Theisen, Target Space Modular Invariance and Low-Energy
Couplings in Orbifold Compactifications, Phys. Lett. B 233 (1989) 147.

[7] T. Kobayashi, K. Tanaka and T.H. Tatsuishi, Neutrino mixing from finite modular groups,
Phys. Rev. D 98 (2018) 016004 [1803.10391].

[8] J.C. Criado and F. Feruglio, Modular Invariance Faces Precision Neutrino Data, SciPost
Phys. 5 (2018) 042 [1807.01125].

[9] T. Kobayashi, N. Omoto, Y. Shimizu, K. Takagi, M. Tanimoto and T.H. Tatsuishi, Modular
A4 invariance and neutrino mixing, JHEP 11 (2018) 196 [1808.03012].

[10] F.J. de Anda, S.F. King and E. Perdomo, SU(5) grand unified theory with A4 modular
symmetry, Phys. Rev. D 101 (2020) 015028 [1812.05620].

[11] H. Okada and M. Tanimoto, Towards unification of quark and lepton flavors in A4 modular
invariance, Eur. Phys. J. C 81 (2021) 52 [1905.13421].

[12] G.-J. Ding, S.F. King and X.-G. Liu, Modular A4 symmetry models of neutrinos and
charged leptons, JHEP 09 (2019) 074 [1907.11714].

[13] D. Zhang, A modular A4 symmetry realization of two-zero textures of the Majorana
neutrino mass matrix, Nucl. Phys. B 952 (2020) 114935 [1910.07869].

[14] T. Kobayashi, T. Nomura and T. Shimomura, Type II seesaw models with modular A4

symmetry, Phys. Rev. D 102 (2020) 035019 [1912.00637].

[15] X. Wang, Lepton flavor mixing and CP violation in the minimal type-(I+II) seesaw model
with a modular A4 symmetry, Nucl. Phys. B 957 (2020) 115105 [1912.13284].

[16] H. Okada and M. Tanimoto, Quark and lepton flavors with common modulus τ in A4
modular symmetry, Phys. Dark Univ. 40 (2023) 101204 [2005.00775].

– 17 –

https://doi.org/10.1016/j.physrep.2020.02.001
https://doi.org/10.1016/j.physrep.2020.02.001
https://arxiv.org/abs/1909.09610
https://doi.org/10.1088/0034-4885/76/5/056201
https://doi.org/10.1088/0034-4885/76/5/056201
https://arxiv.org/abs/1301.1340
https://doi.org/10.1142/9789813238053_0012
https://arxiv.org/abs/1706.08749
https://doi.org/10.1016/0370-2693(89)91190-8
https://doi.org/10.1016/0370-2693(89)90583-2
https://doi.org/10.1016/0370-2693(89)90631-X
https://doi.org/10.1103/PhysRevD.98.016004
https://arxiv.org/abs/1803.10391
https://doi.org/10.21468/SciPostPhys.5.5.042
https://doi.org/10.21468/SciPostPhys.5.5.042
https://arxiv.org/abs/1807.01125
https://doi.org/10.1007/JHEP11(2018)196
https://arxiv.org/abs/1808.03012
https://doi.org/10.1103/PhysRevD.101.015028
https://arxiv.org/abs/1812.05620
https://doi.org/10.1140/epjc/s10052-021-08845-y
https://arxiv.org/abs/1905.13421
https://doi.org/10.1007/JHEP09(2019)074
https://arxiv.org/abs/1907.11714
https://doi.org/10.1016/j.nuclphysb.2020.114935
https://arxiv.org/abs/1910.07869
https://doi.org/10.1103/PhysRevD.102.035019
https://arxiv.org/abs/1912.00637
https://doi.org/10.1016/j.nuclphysb.2020.115105
https://arxiv.org/abs/1912.13284
https://doi.org/10.1016/j.dark.2023.101204
https://arxiv.org/abs/2005.00775


[17] C.-Y. Yao, J.-N. Lu and G.-J. Ding, Modular Invariant A4 Models for Quarks and Leptons
with Generalized CP Symmetry, JHEP 05 (2021) 102 [2012.13390].

[18] P. Chen, G.-J. Ding and S.F. King, SU(5) GUTs with A4 modular symmetry, JHEP 04
(2021) 239 [2101.12724].

[19] T. Kobayashi, H. Otsuka, M. Tanimoto and K. Yamamoto, Modular symmetry in the
SMEFT, Phys. Rev. D 105 (2022) 055022 [2112.00493].

[20] D.W. Kang, J. Kim, T. Nomura and H. Okada, Natural mass hierarchy among three heavy
Majorana neutrinos for resonant leptogenesis under modular A4 symmetry, JHEP 07
(2022) 050 [2205.08269].

[21] S. Centelles Chuliá, R. Kumar, O. Popov and R. Srivastava, Neutrino mass sum rules from
modular A4 symmetry, Phys. Rev. D 109 (2024) 035016 [2308.08981].

[22] J.T. Penedo and S.T. Petcov, Lepton Masses and Mixing from Modular S4 Symmetry, Nucl.
Phys. B 939 (2019) 292 [1806.11040].

[23] P.P. Novichkov, J.T. Penedo, S.T. Petcov and A.V. Titov, Modular S4 models of lepton
masses and mixing, JHEP 04 (2019) 005 [1811.04933].

[24] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto and T.H. Tatsuishi, New A4 lepton
flavor model from S4 modular symmetry, JHEP 02 (2020) 097 [1907.09141].

[25] X. Wang and S. Zhou, The minimal seesaw model with a modular S4 symmetry, JHEP 05
(2020) 017 [1910.09473].

[26] X. Zhang and S. Zhou, Inverse seesaw model with a modular S 4 symmetry: lepton flavor
mixing and warm dark matter, JCAP 09 (2021) 043 [2106.03433].

[27] P.P. Novichkov, J.T. Penedo, S.T. Petcov and A.V. Titov, Modular A5 symmetry for
flavour model building, JHEP 04 (2019) 174 [1812.02158].

[28] G.-J. Ding, S.F. King and X.-G. Liu, Neutrino mass and mixing with A5 modular
symmetry, Phys. Rev. D 100 (2019) 115005 [1903.12588].

[29] J.C. Criado, F. Feruglio and S.J.D. King, Modular Invariant Models of Lepton Masses at
Levels 4 and 5, JHEP 02 (2020) 001 [1908.11867].

[30] T. Kobayashi and M. Tanimoto, Modular flavor symmetric models, 7, 2023 [2307.03384].

[31] G.-J. Ding and S.F. King, Neutrino mass and mixing with modular symmetry, Rept. Prog.
Phys. 87 (2024) 084201 [2311.09282].

[32] P.P. Novichkov, S.T. Petcov and M. Tanimoto, Trimaximal Neutrino Mixing from Modular
A4 Invariance with Residual Symmetries, Phys. Lett. B 793 (2019) 247 [1812.11289].

[33] G.-J. Ding, S.F. King, X.-G. Liu and J.-N. Lu, Modular S4 and A4 symmetries and their
fixed points: new predictive examples of lepton mixing, JHEP 12 (2019) 030 [1910.03460].

[34] I. de Medeiros Varzielas, M. Levy and Y.-L. Zhou, Symmetries and stabilisers in modular
invariant flavour models, JHEP 11 (2020) 085 [2008.05329].

[35] M. Dine, R. Rohm, N. Seiberg and E. Witten, Gluino Condensation in Superstring Models,
Phys. Lett. B 156 (1985) 55.

[36] H.P. Nilles, Dynamically Broken Supergravity and the Hierarchy Problem, Phys. Lett. B
115 (1982) 193.

– 18 –

https://doi.org/10.1007/JHEP05(2021)102
https://arxiv.org/abs/2012.13390
https://doi.org/10.1007/JHEP04(2021)239
https://doi.org/10.1007/JHEP04(2021)239
https://arxiv.org/abs/2101.12724
https://doi.org/10.1103/PhysRevD.105.055022
https://arxiv.org/abs/2112.00493
https://doi.org/10.1007/JHEP07(2022)050
https://doi.org/10.1007/JHEP07(2022)050
https://arxiv.org/abs/2205.08269
https://doi.org/10.1103/PhysRevD.109.035016
https://arxiv.org/abs/2308.08981
https://doi.org/10.1016/j.nuclphysb.2018.12.016
https://doi.org/10.1016/j.nuclphysb.2018.12.016
https://arxiv.org/abs/1806.11040
https://doi.org/10.1007/JHEP04(2019)005
https://arxiv.org/abs/1811.04933
https://doi.org/10.1007/JHEP02(2020)097
https://arxiv.org/abs/1907.09141
https://doi.org/10.1007/JHEP05(2020)017
https://doi.org/10.1007/JHEP05(2020)017
https://arxiv.org/abs/1910.09473
https://doi.org/10.1088/1475-7516/2021/09/043
https://arxiv.org/abs/2106.03433
https://doi.org/10.1007/JHEP04(2019)174
https://arxiv.org/abs/1812.02158
https://doi.org/10.1103/PhysRevD.100.115005
https://arxiv.org/abs/1903.12588
https://doi.org/10.1007/JHEP02(2020)001
https://arxiv.org/abs/1908.11867
https://arxiv.org/abs/2307.03384
https://doi.org/10.1088/1361-6633/ad52a3
https://doi.org/10.1088/1361-6633/ad52a3
https://arxiv.org/abs/2311.09282
https://doi.org/10.1016/j.physletb.2019.04.043
https://arxiv.org/abs/1812.11289
https://doi.org/10.1007/JHEP12(2019)030
https://arxiv.org/abs/1910.03460
https://doi.org/10.1007/JHEP11(2020)085
https://arxiv.org/abs/2008.05329
https://doi.org/10.1016/0370-2693(85)91354-1
https://doi.org/10.1016/0370-2693(82)90642-6
https://doi.org/10.1016/0370-2693(82)90642-6


[37] S. Ferrara, L. Girardello and H.P. Nilles, Breakdown of Local Supersymmetry Through
Gauge Fermion Condensates, Phys. Lett. B 125 (1983) 457.

[38] V.S. Kaplunovsky, One Loop Threshold Effects in String Unification, Nucl. Phys. B 307
(1988) 145 [hep-th/9205068].

[39] L.J. Dixon, V. Kaplunovsky and J. Louis, Moduli dependence of string loop corrections to
gauge coupling constants, Nucl. Phys. B 355 (1991) 649.

[40] I. Antoniadis, K.S. Narain and T.R. Taylor, Higher genus string corrections to gauge
couplings, Phys. Lett. B 267 (1991) 37.

[41] I. Antoniadis, E. Gava and K.S. Narain, Moduli corrections to gauge and gravitational
couplings in four-dimensional superstrings, Nucl. Phys. B 383 (1992) 93 [hep-th/9204030].

[42] I. Antoniadis, E. Gava and K.S. Narain, Moduli corrections to gravitational couplings from
string loops, Phys. Lett. B 283 (1992) 209 [hep-th/9203071].

[43] V. Kaplunovsky and J. Louis, On Gauge couplings in string theory, Nucl. Phys. B 444
(1995) 191 [hep-th/9502077].

[44] A. Font, L.E. Ibanez, D. Lust and F. Quevedo, Supersymmetry Breaking From Duality
Invariant Gaugino Condensation, Phys. Lett. B 245 (1990) 401.

[45] M. Cvetic, A. Font, L.E. Ibanez, D. Lust and F. Quevedo, Target space duality,
supersymmetry breaking and the stability of classical string vacua, Nucl. Phys. B 361
(1991) 194.

[46] M. Cicoli, S. de Alwis and A. Westphal, Heterotic Moduli Stabilisation, JHEP 10 (2013)
199 [1304.1809].

[47] E. Gonzalo, L.E. Ibáñez and A.M. Uranga, Modular symmetries and the swampland
conjectures, JHEP 05 (2019) 105 [1812.06520].

[48] T. Kobayashi, Y. Shimizu, K. Takagi, M. Tanimoto and T.H. Tatsuishi, A4 lepton flavor
model and modulus stabilization from S4 modular symmetry, Phys. Rev. D 100 (2019)
115045 [1909.05139].

[49] K. Ishiguro, T. Kobayashi and H. Otsuka, Landscape of Modular Symmetric Flavor Models,
JHEP 03 (2021) 161 [2011.09154].

[50] P.P. Novichkov, J.T. Penedo and S.T. Petcov, Modular flavour symmetries and modulus
stabilisation, JHEP 03 (2022) 149 [2201.02020].

[51] S. Funakoshi, J. Kawamura, T. Kobayashi, K. Nasu and H. Otsuka, Moduli stabilization
and light axion by Siegel modular forms, 2409.19261.

[52] K. Ishiguro, H. Okada and H. Otsuka, Residual flavor symmetry breaking in the landscape
of modular flavor models, JHEP 09 (2022) 072 [2206.04313].

[53] J.M. Leedom, N. Righi and A. Westphal, Heterotic de Sitter beyond modular symmetry,
JHEP 02 (2023) 209 [2212.03876].

[54] V. Knapp-Perez, X.-G. Liu, H.P. Nilles, S. Ramos-Sanchez and M. Ratz, Matter matters in
moduli fixing and modular flavor symmetries, 2304.14437.

[55] S.F. King and X. Wang, Modulus stabilization in the multiple-modulus framework, Phys.
Rev. D 110 (2024) 076026 [2310.10369].

– 19 –

https://doi.org/10.1016/0370-2693(83)91325-4
https://doi.org/10.1016/0550-3213(88)90526-3
https://doi.org/10.1016/0550-3213(88)90526-3
https://arxiv.org/abs/hep-th/9205068
https://doi.org/10.1016/0550-3213(91)90490-O
https://doi.org/10.1016/0370-2693(91)90521-Q
https://doi.org/10.1016/0550-3213(92)90672-X
https://arxiv.org/abs/hep-th/9204030
https://doi.org/10.1016/0370-2693(92)90009-S
https://arxiv.org/abs/hep-th/9203071
https://doi.org/10.1016/0550-3213(95)00172-O
https://doi.org/10.1016/0550-3213(95)00172-O
https://arxiv.org/abs/hep-th/9502077
https://doi.org/10.1016/0370-2693(90)90665-S
https://doi.org/10.1016/0550-3213(91)90622-5
https://doi.org/10.1016/0550-3213(91)90622-5
https://doi.org/10.1007/JHEP10(2013)199
https://doi.org/10.1007/JHEP10(2013)199
https://arxiv.org/abs/1304.1809
https://doi.org/10.1007/JHEP05(2019)105
https://arxiv.org/abs/1812.06520
https://doi.org/10.1103/PhysRevD.100.115045
https://doi.org/10.1103/PhysRevD.100.115045
https://arxiv.org/abs/1909.05139
https://doi.org/10.1007/JHEP03(2021)161
https://arxiv.org/abs/2011.09154
https://doi.org/10.1007/JHEP03(2022)149
https://arxiv.org/abs/2201.02020
https://arxiv.org/abs/2409.19261
https://doi.org/10.1007/JHEP09(2022)072
https://arxiv.org/abs/2206.04313
https://doi.org/10.1007/JHEP02(2023)209
https://arxiv.org/abs/2212.03876
https://arxiv.org/abs/2304.14437
https://doi.org/10.1103/PhysRevD.110.076026
https://doi.org/10.1103/PhysRevD.110.076026
https://arxiv.org/abs/2310.10369


[56] S. Shenker, The Strength of Nonperturbative Effects in String Theory, Random Surfaces and
Quantum Gravity, (1990) 191.

[57] G.-J. Ding, S.-Y. Jiang and W. Zhao, Modular invariant slow roll inflation, JCAP 10
(2024) 016 [2405.06497].

[58] S.F. King and X. Wang, Modular invariant hilltop inflation, JCAP 07 (2024) 073
[2405.08924].

[59] M. Cvetic, S. Griffies and S.-J. Rey, Static domain walls in N=1 supergravity, Nucl. Phys. B
381 (1992) 301 [hep-th/9201007].

[60] M. Cvetic and R.L. Davis, Cosmological implications of domain walls due to duality
invariant moduli sector of superstring vacua, Phys. Lett. B 296 (1992) 316
[hep-th/9205060].

[61] M. Cvetic and H.H. Soleng, Supergravity domain walls, Phys. Rept. 282 (1997) 159
[hep-th/9604090].

[62] M. Cvetic, F. Quevedo and S.-J. Rey, Stringy domain walls and target space modular
invariance, Phys. Rev. Lett. 67 (1991) 1836.

[63] Y.B. Zeldovich, I.Y. Kobzarev and L.B. Okun, Cosmological Consequences of the
Spontaneous Breakdown of Discrete Symmetry, Zh. Eksp. Teor. Fiz. 67 (1974) 3.

[64] T.W.B. Kibble, Topology of Cosmic Domains and Strings, J. Phys. A 9 (1976) 1387.

[65] A. Vilenkin, Cosmic Strings and Domain Walls, Phys. Rept. 121 (1985) 263.

[66] G.B. Gelmini, S. Pascoli, E. Vitagliano and Y.-L. Zhou, Gravitational wave signatures from
discrete flavor symmetries, JCAP 02 (2021) 032 [2009.01903].

[67] B. Fu, S.F. King, L. Marsili, S. Pascoli, J. Turner and Y.-L. Zhou, Non-Abelian Domain
Walls and Gravitational Waves, 2409.16359.

[68] E. Cremmer, S. Ferrara, L. Girardello and A. Van Proeyen, Yang-Mills Theories with Local
Supersymmetry: Lagrangian, Transformation Laws and SuperHiggs Effect, Nucl. Phys. B
212 (1983) 413.

[69] S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, De Sitter vacua in string theory, Phys.
Rev. D 68 (2003) 046005 [hep-th/0301240].

[70] A. Vilenkin, Gravitational Field of Vacuum Domain Walls and Strings, Phys. Rev. D 23
(1981) 852.

[71] G.B. Gelmini, M. Gleiser and E.W. Kolb, Cosmology of Biased Discrete Symmetry
Breaking, Phys. Rev. D 39 (1989) 1558.

[72] S.E. Larsson, S. Sarkar and P.L. White, Evading the cosmological domain wall problem,
Phys. Rev. D 55 (1997) 5129 [hep-ph/9608319].

[73] T. Hiramatsu, M. Kawasaki and K. Saikawa, On the estimation of gravitational wave
spectrum from cosmic domain walls, JCAP 02 (2014) 031 [1309.5001].

[74] T. Hiramatsu, M. Kawasaki, K. Saikawa and T. Sekiguchi, Axion cosmology with long-lived
domain walls, JCAP 01 (2013) 001 [1207.3166].

[75] K. Saikawa, A review of gravitational waves from cosmic domain walls, Universe 3 (2017)
40 [1703.02576].

– 20 –

https://doi.org/10.1088/1475-7516/2024/10/016
https://doi.org/10.1088/1475-7516/2024/10/016
https://arxiv.org/abs/2405.06497
https://doi.org/10.1088/1475-7516/2024/07/073
https://arxiv.org/abs/2405.08924
https://doi.org/10.1016/0550-3213(92)90649-V
https://doi.org/10.1016/0550-3213(92)90649-V
https://arxiv.org/abs/hep-th/9201007
https://doi.org/10.1016/0370-2693(92)91327-6
https://arxiv.org/abs/hep-th/9205060
https://doi.org/10.1016/S0370-1573(96)00035-X
https://arxiv.org/abs/hep-th/9604090
https://doi.org/10.1103/PhysRevLett.67.1836
https://doi.org/10.1088/0305-4470/9/8/029
https://doi.org/10.1016/0370-1573(85)90033-X
https://doi.org/10.1088/1475-7516/2021/02/032
https://arxiv.org/abs/2009.01903
https://arxiv.org/abs/2409.16359
https://doi.org/10.1016/0550-3213(83)90679-X
https://doi.org/10.1016/0550-3213(83)90679-X
https://doi.org/10.1103/PhysRevD.68.046005
https://doi.org/10.1103/PhysRevD.68.046005
https://arxiv.org/abs/hep-th/0301240
https://doi.org/10.1103/PhysRevD.23.852
https://doi.org/10.1103/PhysRevD.23.852
https://doi.org/10.1103/PhysRevD.39.1558
https://doi.org/10.1103/PhysRevD.55.5129
https://arxiv.org/abs/hep-ph/9608319
https://doi.org/10.1088/1475-7516/2014/02/031
https://arxiv.org/abs/1309.5001
https://doi.org/10.1088/1475-7516/2013/01/001
https://arxiv.org/abs/1207.3166
https://doi.org/10.3390/universe3020040
https://doi.org/10.3390/universe3020040
https://arxiv.org/abs/1703.02576


[76] R. Roshan and G. White, Using gravitational waves to see the first second of the Universe,
2401.04388.

[77] M. Kawasaki, K. Saikawa and T. Sekiguchi, Axion dark matter from topological defects,
Phys. Rev. D 91 (2015) 065014 [1412.0789].

[78] T.L. Smith, E. Pierpaoli and M. Kamionkowski, A new cosmic microwave background
constraint to primordial gravitational waves, Phys. Rev. Lett. 97 (2006) 021301
[astro-ph/0603144].

[79] I. Sendra and T.L. Smith, Improved limits on short-wavelength gravitational waves from the
cosmic microwave background, Phys. Rev. D 85 (2012) 123002 [1203.4232].

[80] L. Pagano, L. Salvati and A. Melchiorri, New constraints on primordial gravitational waves
from Planck 2015, Phys. Lett. B 760 (2016) 823 [1508.02393].

[81] Y. Gouttenoire, G. Servant and P. Simakachorn, Beyond the Standard Models with Cosmic
Strings, JCAP 07 (2020) 032 [1912.02569].

[82] C. Caprini and D.G. Figueroa, Cosmological Backgrounds of Gravitational Waves, Class.
Quant. Grav. 35 (2018) 163001 [1801.04268].

[83] H.P. Nilles, Gaugino Condensation and Supersymmetry Breakdown, Int. J. Mod. Phys. A 5
(1990) 4199.

[84] P. Binetruy and E. Dudas, Gaugino condensation and the anomalous U(1), Phys. Lett. B
389 (1996) 503 [hep-th/9607172].

[85] P. Binetruy and M.K. Gaillard, S duality constraints on effective potentials for gaugino
condensation, Phys. Lett. B 365 (1996) 87 [hep-th/9506207].

[86] K. Saririan, Gaugino condensation with S duality and field theoretical threshold corrections,
Phys. Rev. D 55 (1997) 4839 [hep-th/9611061].

[87] E. Thrane and J.D. Romano, Sensitivity curves for searches for gravitational-wave
backgrounds, Phys. Rev. D 88 (2013) 124032 [1310.5300].

[88] K. Schmitz, New Sensitivity Curves for Gravitational-Wave Signals from Cosmological
Phase Transitions, JHEP 01 (2021) 097 [2002.04615].

[89] M. Breitbach, J. Kopp, E. Madge, T. Opferkuch and P. Schwaller, Dark, Cold, and Noisy:
Constraining Secluded Hidden Sectors with Gravitational Waves, JCAP 07 (2019) 007
[1811.11175].

[90] G. Janssen et al., Gravitational wave astronomy with the SKA, PoS AASKA14 (2015) 037
[1501.00127].

[91] A. Sesana et al., Unveiling the gravitational universe at µ-Hz frequencies, Exper. Astron. 51
(2021) 1333 [1908.11391].

[92] LISA collaboration, Laser Interferometer Space Antenna, 1702.00786.

[93] W.-H. Ruan, Z.-K. Guo, R.-G. Cai and Y.-Z. Zhang, Taiji program: Gravitational-wave
sources, Int. J. Mod. Phys. A 35 (2020) 2050075 [1807.09495].

[94] TianQin collaboration, TianQin: a space-borne gravitational wave detector, Class. Quant.
Grav. 33 (2016) 035010 [1512.02076].

[95] S. Kawamura et al., Current status of space gravitational wave antenna DECIGO and
B-DECIGO, PTEP 2021 (2021) 05A105 [2006.13545].

– 21 –

https://arxiv.org/abs/2401.04388
https://doi.org/10.1103/PhysRevD.91.065014
https://arxiv.org/abs/1412.0789
https://doi.org/10.1103/PhysRevLett.97.021301
https://arxiv.org/abs/astro-ph/0603144
https://doi.org/10.1103/PhysRevD.85.123002
https://arxiv.org/abs/1203.4232
https://doi.org/10.1016/j.physletb.2016.07.078
https://arxiv.org/abs/1508.02393
https://doi.org/10.1088/1475-7516/2020/07/032
https://arxiv.org/abs/1912.02569
https://doi.org/10.1088/1361-6382/aac608
https://doi.org/10.1088/1361-6382/aac608
https://arxiv.org/abs/1801.04268
https://doi.org/10.1142/S0217751X90001744
https://doi.org/10.1142/S0217751X90001744
https://doi.org/10.1016/S0370-2693(96)01305-6
https://doi.org/10.1016/S0370-2693(96)01305-6
https://arxiv.org/abs/hep-th/9607172
https://doi.org/10.1016/0370-2693(95)01242-7
https://arxiv.org/abs/hep-th/9506207
https://doi.org/10.1103/PhysRevD.55.4839
https://arxiv.org/abs/hep-th/9611061
https://doi.org/10.1103/PhysRevD.88.124032
https://arxiv.org/abs/1310.5300
https://doi.org/10.1007/JHEP01(2021)097
https://arxiv.org/abs/2002.04615
https://doi.org/10.1088/1475-7516/2019/07/007
https://arxiv.org/abs/1811.11175
https://doi.org/10.22323/1.215.0037
https://arxiv.org/abs/1501.00127
https://doi.org/10.1007/s10686-021-09709-9
https://doi.org/10.1007/s10686-021-09709-9
https://arxiv.org/abs/1908.11391
https://arxiv.org/abs/1702.00786
https://doi.org/10.1142/S0217751X2050075X
https://arxiv.org/abs/1807.09495
https://doi.org/10.1088/0264-9381/33/3/035010
https://doi.org/10.1088/0264-9381/33/3/035010
https://arxiv.org/abs/1512.02076
https://doi.org/10.1093/ptep/ptab019
https://arxiv.org/abs/2006.13545


[96] V. Corbin and N.J. Cornish, Detecting the cosmic gravitational wave background with the
big bang observer, Class. Quant. Grav. 23 (2006) 2435 [gr-qc/0512039].

[97] AEDGE collaboration, AEDGE: Atomic Experiment for Dark Matter and Gravity
Exploration in Space, EPJ Quant. Technol. 7 (2020) 6 [1908.00802].

[98] L. Badurina et al., AION: An Atom Interferometer Observatory and Network, JCAP 05
(2020) 011 [1911.11755].

[99] M. Punturo et al., The Einstein Telescope: A third-generation gravitational wave
observatory, Class. Quant. Grav. 27 (2010) 194002.

[100] D. Reitze et al., Cosmic Explorer: The U.S. Contribution to Gravitational-Wave Astronomy
beyond LIGO, Bull. Am. Astron. Soc. 51 (2019) 035 [1907.04833].

[101] LIGO Scientific collaboration, Advanced LIGO, Class. Quant. Grav. 32 (2015) 074001
[1411.4547].

[102] NANOGrav collaboration, The NANOGrav 15 yr Data Set: Evidence for a
Gravitational-wave Background, Astrophys. J. Lett. 951 (2023) L8 [2306.16213].

[103] KAGRA, Virgo, LIGO Scientific collaboration, Upper limits on the isotropic
gravitational-wave background from Advanced LIGO and Advanced Virgo’s third observing
run, Phys. Rev. D 104 (2021) 022004 [2101.12130].

[104] C. Caprini et al., Detecting gravitational waves from cosmological phase transitions with
LISA: an update, JCAP 03 (2020) 024 [1910.13125].

[105] NANOGrav collaboration, The NANOGrav 15 yr Data Set: Search for Signals from New
Physics, Astrophys. J. Lett. 951 (2023) L11 [2306.16219].

[106] VIRGO collaboration, Advanced Virgo: a second-generation interferometric gravitational
wave detector, Class. Quant. Grav. 32 (2015) 024001 [1408.3978].

[107] KAGRA collaboration, KAGRA: 2.5 Generation Interferometric Gravitational Wave
Detector, Nature Astron. 3 (2019) 35 [1811.08079].

[108] EPTA, InPTA: collaboration, The second data release from the European Pulsar Timing
Array - III. Search for gravitational wave signals, Astron. Astrophys. 678 (2023) A50
[2306.16214].

[109] EPTA, InPTA collaboration, The second data release from the European Pulsar Timing
Array - IV. Implications for massive black holes, dark matter, and the early Universe,
Astron. Astrophys. 685 (2024) A94 [2306.16227].

[110] D.J. Reardon et al., Search for an Isotropic Gravitational-wave Background with the Parkes
Pulsar Timing Array, Astrophys. J. Lett. 951 (2023) L6 [2306.16215].

[111] H. Xu et al., Searching for the Nano-Hertz Stochastic Gravitational Wave Background with
the Chinese Pulsar Timing Array Data Release I, Res. Astron. Astrophys. 23 (2023) 075024
[2306.16216].

[112] M. Maggiore, Gravitational wave experiments and early universe cosmology, Phys. Rept.
331 (2000) 283 [gr-qc/9909001].

[113] B. Allen and J.D. Romano, Detecting a stochastic background of gravitational radiation:
Signal processing strategies and sensitivities, Phys. Rev. D 59 (1999) 102001
[gr-qc/9710117].

[114] D. Stauffer, Scaling theory of percolation clusters, Phys. Rept. 54 (1979) 1.

– 22 –

https://doi.org/10.1088/0264-9381/23/7/014
https://arxiv.org/abs/gr-qc/0512039
https://doi.org/10.1140/epjqt/s40507-020-0080-0
https://arxiv.org/abs/1908.00802
https://doi.org/10.1088/1475-7516/2020/05/011
https://doi.org/10.1088/1475-7516/2020/05/011
https://arxiv.org/abs/1911.11755
https://doi.org/10.1088/0264-9381/27/19/194002
https://arxiv.org/abs/1907.04833
https://doi.org/10.1088/0264-9381/32/7/074001
https://arxiv.org/abs/1411.4547
https://doi.org/10.3847/2041-8213/acdac6
https://arxiv.org/abs/2306.16213
https://doi.org/10.1103/PhysRevD.104.022004
https://arxiv.org/abs/2101.12130
https://doi.org/10.1088/1475-7516/2020/03/024
https://arxiv.org/abs/1910.13125
https://doi.org/10.3847/2041-8213/acdc91
https://arxiv.org/abs/2306.16219
https://doi.org/10.1088/0264-9381/32/2/024001
https://arxiv.org/abs/1408.3978
https://doi.org/10.1038/s41550-018-0658-y
https://arxiv.org/abs/1811.08079
https://doi.org/10.1051/0004-6361/202346844
https://arxiv.org/abs/2306.16214
https://doi.org/10.1051/0004-6361/202347433
https://arxiv.org/abs/2306.16227
https://doi.org/10.3847/2041-8213/acdd02
https://arxiv.org/abs/2306.16215
https://doi.org/10.1088/1674-4527/acdfa5
https://arxiv.org/abs/2306.16216
https://doi.org/10.1016/S0370-1573(99)00102-7
https://doi.org/10.1016/S0370-1573(99)00102-7
https://arxiv.org/abs/gr-qc/9909001
https://doi.org/10.1103/PhysRevD.59.102001
https://arxiv.org/abs/gr-qc/9710117
https://doi.org/10.1016/0370-1573(79)90060-7

	Introduction
	Modular symmetry and modular domain walls
	Gravitational waves from modular domain walls
	Summary
	Some useful modular forms and modular-invariant functions
	The scalar potential in N  = 1 supergravity
	Complete field equations in N  = 1 supergravity

