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Abstract: We investigate the properties of domain walls arising from non-Abelian dis-
crete symmetries, which we refer to as non-Abelian domain walls. We focus on S4, one of
the most commonly used groups in lepton flavour mixing models. The spontaneous break-
ing of S4 leads to distinct vacua preserving a residual Z2 or Z3 symmetry. Five types of
domain walls are found, labelled as SI, SII, TI, TII, and TIII, respectively, the former two
separating Z2 vacua and the latter three separating Z3 vacua. We highlight that SI, TI and
TIII may be unstable for some regions of the parameter space and decay to stable domain
walls. Stable domain walls can collapse and release gravitational radiation for a suitable
size of explicit symmetry breaking. A symmetry-breaking scale of order 100 TeV may ex-
plain the recent discovery of nanohertz gravitational waves by PTA experiments. For the
first time, we investigate the properties of these domain walls, which we obtain numerically
with semi-analytical formulas applied to compute the tension and thickness across a wide
range of parameter space. We estimate the resulting gravitational wave spectrum and find
that, thanks to their rich vacuum structure, non-Abelian domain walls manifest in a very
interesting and complex phenomenology.
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1 Introduction

Since the discovery of neutrino oscillations [1–5], the origin of neutrino masses and lep-
tonic mixing remains the most concrete evidence of physics beyond the Standard Model.
Compared with the CKM quark mixing, leptonic mixing is significantly larger. To explain
the leptonic mixing pattern, the most studied approach is that of flavour symmetries (or
family symmetries), among which non-Abelian discrete symmetries are the most popular
candidate [6–9]. The scale at which these flavour symmetries break is typically assumed to
be very high making them largely inaccessible at current collider experiments.

Since their discovery, gravitational waves (GW) have become a powerful probe of new
physics at high scales [10]. Moreover, recently there has been the discovery of a stochastic
background of nanohertz gravitational waves by pulsar timing array experiments [11–15]
which may be of a cosmological origin [16]. Among the cosmological sources of gravitational
waves, topological defects [17–19] including cosmic strings [20, 21], domain walls [22–25],
and hybrid defects [26, 27], provide a strong connection between high-scale new physics
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and the gravitational wave observations [28–31]. It has been highlighted that GWs from
collapsing domain walls provide a good fit to the data of the recent NANOGrav Pulsar
Time Array (PTA) measurement [32]. Several studies have explored this signal, with most
focusing on Z2 domain walls or axion domain walls [33–37]. General discussions on the
classification of domain walls from the cyclic group ZN (for N > 2) and the consequent GW
signals are presented in [38, 39]. It was pointed out that non-Abelian discrete symmetries
can also lead to domain walls and thus observable gravitational waves [40]. However, the
analysis of domain walls of Ref. [40] was qualitative as it was based on the results for the
Z2 symmetry. The domain wall properties from non-Abelian discrete symmetry breaking
and the resulting GW signal are still unexplored.

In this work, we perform a detailed analysis of the domain walls from non-Abelian
discrete symmetry breaking. We consider the group to be the octahedral group S4, which
is a subgroup of SO(3) and one of the most popular groups used in addressing the origin of
lepton flavour mixing. By analysing the vacuum structure of a general renormalisable scalar
potential respecting this symmetry, we find that there are two different types of vacua, one
preserving Z2 and the other preserving Z3 symmetries. For each type of vacuum, there
are different types of domain walls (five types in total) that depend on the topology of
the vacuum manifold. We point out that some domain walls are unstable in part of the
parameter space, as their energies are high enough to enable them to decay to lower-energy
domain walls. We also estimate the gravitational wave produced by stable non-Abelian
domain walls, in the presence of suitable explicit symmetry breaking. Due to different
types of domain walls, the gravitational wave spectrum has a richer structure than the
simple Z2 case.

The paper is organised as follows. We take S4 as a representative example and discuss
the vacuum structure based on the most generic renormalisable potential in Sec. 2. Then
we present the domain wall solutions for each type of vacuum in Sec. 3. In Sec. 4, we
clarify the stability of the domain wall solutions obtained in Sec. 3. Finally, we estimate
the gravitational wave signal produced by the non-Abelian domain walls in Sec. 5 and
summarise in Sec. 6.

2 Flavon potential and vacuum alignment

We begin our discussion with a brief introduction to the octahedral group S4. S4 is the
group of even permutations of four objects. It contains 24 elements, with three generators
S, T and U satisfying S2 = T 3 = (ST )3 = U2 = (SU)2 = (TU)2 = (STU)4 = 1. There are
five irreducible representations (irrep), the trivial one-dimensional (1d) irreps 1, another 1d
sign representation 1′, one two-dimensional (2d) irrep 2, and two three-dimensional (3d)
irreps 3 and 3′. The S, T and U generators of S4 in 3d irreps are given by

T =

 0 0 1

1 0 0

0 1 0

 , S =

 1 0 0

0 −1 0

0 0 −1

 , U = ±

1 0 0

0 0 1

0 1 0

 , (2.1)
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where the ± sign of U is for 3 and 3′, respectively. Here, we have applied the 3d represen-
tation in the Ma-Rajasekaran basis of S and T [41]. Compared with the Altarelli-Feruglio
basis [42], which is widely used in flavour model building, it is easier for us to find the vacua
of ϕ in this basis and the physics remains equivalent.

We introduce a real flavon triplet ϕ = (ϕ1, ϕ2, ϕ3)
T . By arranging the flavon as a 3′ of

S4, the most general renormalisable flavon potential is

V (ϕ) = −µ2

2
I1 +

g1
4
I21 +

g2
2
I2 , (2.2)

where

I1 = ϕ2
1 + ϕ2

2 + ϕ2
3 ,

I2 = ϕ2
1ϕ

2
2 + ϕ2

2ϕ
2
3 + ϕ2

3ϕ
2
1 . (2.3)

To ensure the potential positive, g1 > 0 and g2 > −4g1 are required. We provide details of
the potential construction in Appendix A. Note that if ϕ is arranged as a 3 of S4, a cubic
term ϕ1ϕ2ϕ3 is allowed in the potential. Its effect on the vacuum structure and domain
wall properties can be found in Appendix C.

A necessary condition for the vacuum of ϕ is ∂V (ϕ)/∂ϕi = 0. The solutions satisfying
this condition can be divided into three classes according to the corresponding values of
V (ϕ):

(1) vm ∈


1

0

0

 ,

0

1

0

 ,

0

0

1

 ,

−1

0

0

 ,

 0

−1

0

 ,

 0

0

−1


 v , for m = 1, 2, ...6;

(2) un =


1

1

1

 ,

−1

1

1

 ,

 1

−1

1

 ,

 1

1

−1

 ,

−1

−1

−1

 ,

 1

−1

−1

 ,

−1

1

−1

 ,

−1

−1

1


u ,

for n = 1, 2, ...8;

(3) sl ∈


0

1

1

 ,

1

0

1

 ,

1

1

0

 ,

 0

1

−1

 ,

−1

0

1

 ,

 1

−1

0

 ,

 0

−1

−1

 ,

−1

0

−1

 ,

−1

−1

0

 ,

 0

−1

1

 ,

 1

0

−1

 ,

−1

1

0


 s , for l = 1, 2, ..., 12 ,

(2.4)

where

v =
µ

√
g1

, V (vm) = − µ4

4g1
,

u =
µ√

3g1 + 2g2
, V (un) = − 3µ4

4(3g1 + 2g2)
,

s =
µ√

2g1 + g2
, V (sl) = − µ4

4g1 + 2g2
. (2.5)
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The first class of solutions, vm, preserves a different Z2 symmetry. For example, (1, 0, 0)T
is invariant under a Z2 transformation generated by S, and (0, 1, 0)T is invariant under a
Z2 transformation generated by TST2. Similarly, each un in the second class of solutions
preserves a different Z3 symmetry, e.g., (1, 1, 1)T invariant in a Z3 generated by T and
(−1, 1, 1)T is invariant under a Z3 transformation generated by STS. For convenience, vm
and um will also be denoted as Z2-preserving and Z3-preserving vacua in the remainder of
the paper, respectively.

To guarantee that some of the above solutions are vacua, V (ϕ) must be a local minimum
at these solutions, corresponding to the requirement of a positive-definite second derivative
of V (ϕ). More specifically, the matrix M2

ϕ defined in the following should be positive-definite
at these solutions:

(M2
ϕ)ij =

∂2V (ϕ)

∂ϕi∂ϕj

∣∣∣
⟨ϕ⟩

. (2.6)

In general, M2
ϕ is a 3 × 3 real symmetric matrix which can be diagonalised through

W TM2
ϕW = diag{m2

1,m
2
2,m

2
3}, with m2

i the eigenvalues of M2
ϕ. In the above three classes

of solutions, we find:

(1) m2
1 = 2g1v

2 , m2
2 = m2

3 = g2v
2 ;

(2) m2
1 = 2(3g1 + 2g2)u

2 , m2
2 = m2

3 = −2g2u
2 ; (2.7)

(3) m2
1 = 2(2g1 + g2)s

2 , m2
2 = −2m2

3 = −2g2s
2 ,

at vm, un and sl, respectively. Although m2
1 is always positive in all solutions, m2

2 or m2
3

may be positive or negative, depending on the sign of the coefficient g2. The third solution
class is less interesting since m2

2 and m2
3 always take opposite signs at sl. Thus, sl is always

an unstable saddle point of V (ϕ) and cannot be a vacuum. For the first two classes of
solutions, if g2 > 0, m2

2 and m2
3 are positive at vm and negative at un. Therefore, un is

an unstable saddle point, and V (ϕ) can only take a local minimum value (thus, the global
minimum value) at vm. As a result, vm is the only choice of the ϕ vacuum expectation
value (VEV). On the contrary, if g2 < 0, un is the only choice of the ϕ VEV. All VEVs
for g2 > 0 and g2 < 0 have been geometrically shown in Figs. 1 and 2, respectively, in the
three-dimensional field space up to a mass-dimension normalisation factor.

3 Domain wall solutions

A domain wall (DW) is characterised by a classical and stable one-dimensional scalar field
profile in three-dimensional space. The equation satisfied by the scalar is obtained from the
scalar Equation of Motion (EOM), i.e., the Euler-Lagrange equation of the scalar, which is
given by ( d2

dt2
−▽2

)
ϕi +

∂V (ϕ)

∂ϕi
= 0 , (3.1)

where i denotes the components of the scalar ϕ. A DW refers to a stable solution of the
scalar field and thus is time-independent. Defining the direction perpendicular to the DW
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Figure 1: Z2-preserving vacua of S4 in the three-dimensional flavon field space and two
topologically different types of DWs. A straight line connecting to two vacua should not be
understood as the path in the field space, but just represent the topology of the DW sepa-
rating these two vacua. SI and SII DWs are given in the left and right panels, respectively.

Figure 2: Z3-preserving vacua of S4 and three topologically different types of DWs. TI,
TII and TIII DWs are given in the left, middle and right panels.

surface as the z-axis, the profile variation is only z-dependent. Thus the equation of motion
for the scalar field is simplified to

d2ϕi(z)

dz2
=

∂V (ϕ)

∂ϕi
. (3.2)

Given a theory where a discrete symmetry is spontaneously broken, a series of vacua (e.g.,
v1, v2, ... as obtained above) can be generated. These vacua are disconnected from each
other in the field space. By fixing two disconnected vacua vi and vj (i ̸= j) along the
z-axis, a DW can form between them. If the theory provides more than two vacua, there
would be multiple choices of pairs of vacua, and different DWs can be generated.

In this section, we derive all DW solutions between any degenerate vacua discussed in
Sec. 2. Following Eq. (3.2), we refer to the spatial coordinate perpendicular to the wall’s
surface as z. Two different vacua are fixed at z = ±∞ as two different boundary conditions.
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The solution ϕi(z) varies continuously from one vacuum, (e.g., v1 at z = +∞) to another
vacuum (e.g., v2 at z = −∞). At any z coordinate between two boundaries, ϕi(z) does
not take a vacuum value, and thus, there must be some energy stored in the scalar field.
The total energy density stored in all scalars compared with the vacuum is a sum of the
gradient energy and the potential

ρ(z) =
∑
i

1

2

[
ϕ′
i(z)

]2
+∆V (ϕ(z)) , (3.3)

where the potential is shifted such that the vacuum energy is zero, i.e., ∆V (ϕ(z)) =

V (ϕ(z))− V (ϕ(z → ∞)). Integrating along z gives the tension of the wall, i.e., the energy
per unit area of the wall,

σ =

∫ +∞

−∞
dz ρ(z) . (3.4)

The DW has a thickness δ representing the length scale over which most of the energy is
localised. Following the discussion in [39], we define the thickness δ as1

δ =

∫ z0+δ/2

z0−δ/2
dz ρ(z) ≈ 64.38%× σ . (3.6)

This definition applies to the case where ρ(z) has only a single peak centred at z = z0,
which refers to the core of the DW. Without loss of generality, we set z0 = 0 when solving
scalar profiles perpendicular to the DW.

3.1 Domain walls separating Z2-preserving vacua: S-type

We first discuss DWs formed in separating Z2-preserving vacua vm. It is straightforward
to prove that each vacua is invariant under the transformation of S or its conjugate trans-
formations. Due to this, we denote these kinds of DWs in general as S-type DWs. It is
convenient to normalise the fields and the z-coordinate as

ϕi =

√
g1

µ
ϕi =

ϕi

v
, z = µ z , (3.7)

and define β = g2/g1. Then, the EOM simplifies to

d2ϕi(z)

dz2
= ϕi[−1 + ϕ

2
1 + ϕ

2
2 + ϕ

2
3 + β(ϕ

2
j + ϕ

2
k)] , (3.8)

1In the special Z2 DW case, the width δ is defined as the factor appearing in the hyperbolic tangent
function of the profile ∝ tanh(z/δ) [17]. This leads to the condition∫ δ/2

−δ/2

dz ρ(z) =
1

2
tanh

1

2

(
3− tanh2 1

2

)
× σ ≈ 64.38%× σ , (3.5)

where σ is the wall tension. We apply this condition as a generalised definition of the wall thickness for
walls despite a hyperbolic profile.
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which includes only one free parameter β. The DW tension is given by σ = µv2σ with
dimensionless tension

σ =

∫ +∞

−∞
dz

{
1

2

[
ϕ
′2
1 (z) + ϕ

′2
2 (z) + ϕ

′2
3 (z)

]
+∆V (ϕ(z))

}
, (3.9)

where ∆V = ∆V/(µ2v2). The thickness of the DW can be parameterised into a dimen-
sionless parameter as δ = µδ. The S-type DWs are further classified into two topologically
different types of DWs, SI and SII. The topology of SI and SII DWs are shown in Fig. 1
and the profiles of the scalars in the field space for typical values of β are shown in Fig. 3.

SI domain walls

The first type of DWs includes those separating v1 and v4, v2 and v5, and v3 and v6. We
follow the convention in [38] and denote them as

v1 v4 , v2 v5 , v3 v6 , (3.10)

respectively. vi vj = vj vi (for i ̸= j) because exchanging vi and vj on the two
boundaries gives a physically equivalent DW.

To make a quantitative analysis, we take v1 v4 as an example. In this case, we find
a DW solution that can be solved explicitly. As shown in the left panel of Fig. 3 and more
clearly as a projection in the left panel of Fig. 4, the solution is a straight line between v1
and v4 in the field space. When ϕ2 and ϕ3 are both fixed to be 0, the EOM of ϕ1 and the
boundary conditions are given by

ϕ
′′
1(z) = ϕ1[−1 + ϕ

2
1] ,

ϕ1|z→+∞ = +1 , ϕ1|z→−∞ = −1 . (3.11)

This is simply the DW formed from the spontaneous symmetry breaking of Z2, which has
been widely discussed in the literature. We refer to the latter case as the Z2 DW. The
scalar field follows the profile

ϕ1(z) = tanh
( z√

2

)
, (3.12)

which is also shown in the left panel of Fig. 5. The denominator in the Hyperbolic function
in Eq. (3.12) denotes the dimensionless thickness of the wall, i.e. δ =

√
2. The dimensionless

tension can be straightforwardly calculated:

σSI =

∫ +∞

−∞
dz

{
1

2
ϕ
′2
1 (z) +

1

4

[
ϕ
2
1(z)− 1

]2}
=

2
√
2

3
. (3.13)

With the dimensionless thickness and tension, one can express the physical tension and
thickness in terms of physical parameters as

σSI =
2

3

√
2g1v

3 =
2

3
m1v

2 , δSI =

√
2

g1v2
=

2

m1
, (3.14)

where m1 is the scalar mass given in Eq. (2.7). The result is independent of β and consistent
with the classical one for Z2 DW [17].
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Figure 3: Profiles of scalars in the field space for SI DW v1 v4 (left panel) and SII DW

v1 v2 (right panel). The green, orange and blue curves refer to β = 0.1, 2, 10, respectively.

Figure 4: Projection of the paths in Fig. 3 in ϕ1 − ϕ2 plane at ϕ3 = 0.

Figure 5: Profiles of scalars along the spatial coordinate z for SI DW v1 v4 (left) and

SII DW v1 v2 (right). ϕ2 = ϕ3 = 0 along the path for SI DW v1 v4 , while ϕ3 = 0

along the path for SII DW v1 v2 . The green, orange and red curves refer to β = 0.1, 2, 10,
respectively.
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SII domain walls

The vacua combinations of the second type DWs are all listed below,

v1 v2 , v1 v3 , v1 v5 , v1 v6 , v4 v2 , v4 v3 , v4 v5 , v4 v6 , (3.15)

which are presented visually in the right panel of Fig. (1). We take v1 v2 as an example
to solve the scalar profiles perpendicular to the DW. At both v1 and v2, ϕ3 = 0 is satisfied,
and the reflection symmetry ϕ3 ↔ −ϕ3 is satisfied on the boundaries. We remind the reader
that the EOM in Eq. (3.8) also satisfies this reflection symmetry. Thus, we expect there is
the DW solution obtained by fixing ϕ3 → 0. Then, the EOM and boundary conditions are
simplified to be

ϕ
′′
1(z) = ϕ1[−1 + ϕ

2
1 + ϕ

2
2 + βϕ

2
2] ,

ϕ
′′
2(z) = ϕ2[−1 + ϕ

2
1 + ϕ

2
2 + βϕ

2
1] ,(

ϕ1

ϕ2

)∣∣∣∣∣
z→+∞

=

(
1

0

)
,

(
ϕ1

ϕ2

)∣∣∣∣∣
z→−∞

=

(
0

1

)
. (3.16)

The tension simplifies to

σSII =

∫ +∞

−∞
dz

{
1

2

[
ϕ
′2
1 (z) + ϕ

′2
2 (z)

]
+

1

4

[
ϕ
2
1(z) + ϕ

2
2(z)− 1

]2
+

β

2
ϕ
2
1(z)ϕ

2
2(z)

}
. (3.17)

With the above parametrisation, scalar profiles and the dimensionless DW tension depend
only on a single parameter, β ≡ g2/g1. Given any positive value of β, we can calculate the
scalar profiles in the domain wall solution and the corresponding dimensionless tension and
thickness numerically. The path of the scalars in the field space is shown in the right panel
of Fig. 3 and as a projection in the right panel of Fig. 4. The domain wall solution is a
straight line between v1 and v2 in the field space when β = 2. We note that an enhanced
symmetry for β = 2 occurs since the potential of Eq. (2.2) becomes only a function of a
single coupling. We expand this point further in Appendix B. For β < 2, ϕ2 is a concave
function of ϕ1 and the path curves away from the origin; for β > 2, in contrast, ϕ2 is
a convex function of ϕ1 and the path moves toward the origin. The profiles of ϕ2 along
z for β = 0.1, 2, 10 are shown in the right panel of Fig. 5, illustrating an increase in the
dimensionless thickness as β decreases.

To study the properties of the domain walls in detail, we perform a scan on β from 10−3

to 103 and obtain the dependence of dimensionless tension and thickness upon β, which is
shown as the blue curves in Fig. 6. While the dimensionless tension of SI is independent
of β as computed in Eq. (3.13), that of SII increases as β becomes larger, as shown in the
left panel of Fig. 6. Similarly, the dimensionless thickness of SI remains a constant for all
β, but that of SII shows a negative correlation first and then a positive one with β. The
result can be semi-analytically expressed as

σSII(β) ≈ 2
√
2

3

1

1 + 1.875β−1/2

[
1 + 0.5

β1/2

1 + 2β

]
,

δSII(β) ≈ 1.52

β0.50
+

0.66β0.79

β0.70 + 1
. (3.18)
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Figure 6: Dimensionless tension (left) and thickness (right) of DWs SI and SII as functions
of β. For DW SI, σSI = 2

√
2/3 and δSI =

√
2 are independent of β.

with relative error less than 6% for 10−4 < β < 103.

3.2 Domain walls separating Z3-preserving vacua: T-type

The DWs separating Z3-preserving vacua have three topologically different types, which
are labelled as TI, TII and TIII, respectively. The label “T” refers to the vacua preserving
residual Z3 symmetries either generated by T or its conjugate elements. For convenience,
we perform the following normalisation for the fields and the coordinate

ϕ̃i =

√
3g1 + 2g2

µ
ϕi =

ϕi

u
, z = µ z. (3.19)

Under such a normalisation, the EOM can be simplified into

d2ϕ̃i(z)

dz2
= ϕ̃i

[
− 1 +

1

3 + 2β
(ϕ̃2

1 + ϕ̃2
2 + ϕ̃2

3) +
β

3 + 2β
(ϕ̃2

j + ϕ̃2
k)
]
. (3.20)

The DW tension is given by σ = µu2σ̃ with

σ̃ =

∫ +∞

−∞
dz

{
1

2

[
ϕ̃′2
1 (z) + ϕ̃′2

2 (z) + ϕ̃′2
3 (z)

]
+∆Ṽ (ϕ̃(z))

}
, (3.21)

where ∆Ṽ = ∆V/(µ2u2). The DW thickness is given by δ̃ = µδ. In particular, the EOMs
become decoupled for each ϕ̃i when β = −1, i.e. d2ϕ̃i(z)/dz

2 = ϕ̃i[−1+ ϕ̃2
i /(3 + 2β)]. As a

result, there is no correlation between the field when β = −1 and the paths in field space
are straight lines. The topology of TI, TII and TIII DWs are shown in Fig. 2. Typical
examples of scalar profiles in the field space are shown in Fig. 7 with β = −0.1, −1, −1.4,
with projections in Fig. 8. Those profiles along the spatial coordinate are shown in Fig. 9.
By varying the value of β, we obtain the β-dependent tensions and thicknesses of each type
of DW, as shown in Fig. 10. We discuss each type of DWs in more detail in the following
sections.
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Figure 7: Profiles of scalars in the field space for TI DW u1 u5 (left panel), TII DW

u1 u4 (middle panel) and TIII DW u1 u8 (right panel). The green, orange and red
curves refer to −β = 0.1, 1, 1.4, respectively.

Figure 8: Projection of the paths in Fig. 7 in ϕ̃1 − ϕ̃3 with ϕ̃1 = ϕ̃2.

Figure 9: Profiles of scalars along the spatial coordinate z for TI DW u1 u5 (left panel),

TII DW u1 u2 (middle panel) and TIII DW u1 u8 (right panel). There are ϕ̃1 = ϕ̃2 =

ϕ̃3, ϕ̃2 = ϕ̃3, and ϕ̃1 = ϕ̃2 along the path for the three cases, respectively. The green, orange
and red curves refer to −β = 0.1, 1, 1.4, respectively.
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TI domain walls

Similar to the SI domain walls, the TI domain walls are also equivalent to the Z2 domain
walls, including

u1 u5 , u2 u6 , u3 u7 , u4 u8 . (3.22)

Again, we choose u1 u5 as an example for detailed discussion. As visualised in the left

panel of Fig. 7 and Fig. 8, the path of domain wall u1 u5 in the field space is a straight
line between u1 and u5. The EOMs and the boundary conditions for scalar fields across the
DW are given by

ϕ̃′′
1(z) = ϕ̃1[−1 + ϕ̃2

1] ,

ϕ̃1|z→+∞ = 1 , ϕ̃1|z→−∞ = −1 , (3.23)

with ϕ̃2 = ϕ̃3 = ϕ̃1 satisfied. The EOM for ϕ̃1 and the boundary conditions are equivalent to
Eq. (3.11) and hence the profile of ϕ̃1 is in the same form as Eq. (3.12) and the dimensionless
thickness of the wall is

√
2. The dimensionless tension includes contribution from all three

fields ϕ̃1, ϕ̃2, ϕ̃3, with 2
√
2/3 from each field equally. Thus the total energy stored in the

DW is given by 3× 2
√
2/3 = 2

√
2. We summarise the dimensionless tension and thickness

as follows,

σ̃TI = 2
√
2 , δ̃TI =

√
2 . (3.24)

TII domain walls

The second type domain walls include

u1 u2 , u1 u3 , u1 u4 , u2 u7 , u2 u8 , u3 u6 ,

u3 u8 , u4 u6 , u4 u7 , u5 u6 , u5 u7 , u5 u8 . (3.25)

We take the DW u1 u4 as an example. In both u1 and u4, ϕ̃1 and ϕ̃2 take the same

value. Since there is no source to break the permutation symmetry between ϕ̃1 and ϕ̃2, we
expect that ϕ̃1 = ϕ̃2 for z from −∞ to ∞. In this case, EOM and boundary conditions for
scalar profiles are simplified to

ϕ̃′′
1(z) = ϕ̃1

[
− 1 +

2 + 2β

3 + 2β
ϕ̃2
1 +

1

3 + 2β
ϕ̃2
3

]
,

ϕ̃′′
3(z) = ϕ̃3

[
− 1 +

2 + 2β

3 + 2β
ϕ̃2
1 +

1

3 + 2β
ϕ̃2
3

]
,(

ϕ̃1

ϕ̃3

)∣∣∣∣∣
z→+∞

=

(
1

1

)
,

(
ϕ̃1

ϕ̃3

)∣∣∣∣∣
z→−∞

=

(
1

−1

)
. (3.26)

By fixing −β = 0.1, 1, 1.4 respectively, we obtain solutions for scalar profiles in the field
space in the middle panel of Fig. 7 and Fig. 8, and those along the z coordinate in the
middle panel of Fig. 9. As mentioned, the path of the scalar profiles in the field space is a
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straight line between u1 and u4 when β = −1, which corresponds to the yellow line. The
distance between the path and the origin positively depends on β.

Following the numerical results of β-dependent dimensionless tension and thickness as
the yellow lines in Fig. 10, we find that the dimensionless tension decreases as β decreases
while the dimensionless thickness increases. The following analytical formulas can fit the
numerical results very well with relative error less than 3%,

σ̃TII(β) =
0.77(−β)0.5

(1.5 + β)0.25
, δ̃TII(β) =

2.12(−β)−0.5

0.48 + (−β)1.35
. (3.27)

TIII domain walls

The third type of domain walls include

u1 u8 , u1 u6 , u1 u7 , u6 u7 , u6 u8 , u7 u8 ,

u2 u3 , u2 u4 , u2 u5 , u3 u4 , u3 u5 , u4 u5 . (3.28)

We take u1 u8 as an example to solve for the DW solution. Similar to the TII case, there

is no source to break the permutation symmetry between ϕ̃1 and ϕ̃2 and thus, we expect
ϕ̃1 = ϕ̃2 for any z. Then, the EOM and boundary conditions for ϕ̃1 and ϕ̃3 are given by:

ϕ̃′′
1(z) = ϕ̃1

[
− 1 +

2 + β

3 + 2β
ϕ̃2
1 +

1 + β

3 + 2β
ϕ̃2
3

]
,

ϕ̃′′
3(z) = ϕ̃3

[
− 1 +

2 + β

3 + 2β
ϕ̃2
1 +

1 + β

3 + 2β
ϕ̃2
3

]
,(

ϕ̃1

ϕ̃3

)∣∣∣∣∣
z→+∞

=

(
1

1

)
,

(
ϕ̃1

ϕ̃3

)∣∣∣∣∣
z→−∞

=

(
−1

1

)
. (3.29)

The scalar profiles in the field space obtained by numerical computation are shown in the
right panel of Fig. 7 and Fig. 8. Again, the path is straight between u1 and u8 for β = −1

and moves away from the origin as β increases. The scalar profiles along the z coordinate
in the right panel of Fig. 9. The dependence of dimensionless tension and thickness on
the value of β in the TIII case is qualitatively similar to the TII case, which is shown by
the green lines in Fig. 10. The following analytical formulas fit the numerical results with
relative errors within 3%,

σ̃TIII(β) =
2.06(−β)0.5

1 + 0.09(−β)0.6
,

δ̃TIII(β) =
1.62(−β)−0.5

1 + 0.125(−β)0.6
. (3.30)

4 Stability of the domain wall solutions

Different DWs can be generated through the usual Kibble mechanism during phase tran-
sitions in the early universe. However, not all of them are necessarily stable. Given two
vacua as boundary conditions and the generic static differential equations of scalars given
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Figure 10: Dimensionless tension (left) and thickness (right) of DWs TI, TII, and TIII as
functions of β. For DW TI, σ̃TI = 2

√
2 and δ̃TI =

√
2 are independent of β.

in Eq. (3.2), there may be other DW solutions beyond those in Sec. 3. These solutions, as
shown below, could consist of several other DWs. If the energy stored in a DW solution,
i.e., the tension, is not the lowest compared to other DW solutions, it can decay. These
unstable solutions with higher tensions can evolve into DWs with the lowest tension, i.e.
the ground state. In this section, we determine the stability of S-type and T-type DWs
separately.

4.1 S-type domain walls

In the last section, we summarised that there are two obviously distinct types of DWs, SI
and SII, for the DWs separating two Z2-preserving vacua. To check the stability of the SI
DW, we focus on the vacuum transition from v1 to v4. Given the EOM in Eq. (3.2) and
boundaries v1 and v4 at z → ±∞, we will check if the SI DW solution, in which v1 and v4
are directly connected by a straight line in the field space, is the only solution. We have
found several solutions, as shown in Fig. 11:

1. The most obvious solution is the SI DW solution in Sec. 3.1, e.g., v1 v4 , referring
to the straight path connecting v1 and v4 in the field space. We remind the reader
that this solution is the Z2 domain wall solution with the tension independent of the
Lagrangian parameters g1 and g2.

2. The second solution, shown as the purple curve in Fig. 11, is a path indirectly between
v1 and v4 with the third vacuum, e.g. v2, as transit point. This path is a combination
of two SII DWs v1 v2 and v2 v4 and we can denote the combination as v1 v2 v4
for simplicity. Note that the transit point is an arbitrary choice for any vacuum of
v2, v3, v5 and v6 and such paths in the field space constitute a class of paths which
minimise the energy density of the domain wall for β < 2.

3. A third solution is the straight line connection between v1 and v4 without crossing
any other vacuum. However, the path in the field space is different from that of the
SI solution but lies in the 45◦ (or 135◦, 225◦, 315◦) direction when projected to the
ϕ2 − ϕ3 plane, shown as orange curve in the left panel of Fig. 11.

– 14 –



Figure 11: Left: Three different types of possible domain solutions from v1 to v4 when
β = 0.3. Right: The corresponding tension of the three different types of solutions for
different β values.

Figure 12: The energy density of the DW along the z direction for the three different
solutions in Fig. 11 with the same conventions.

Tensions for different solutions as functions of the free parameter β are presented in the
right panel of Fig. 11. The tension of the first solution, which is independent of β, is given
by a constant σSI =

2
√
2

3 . Tensions obtained in the other solutions are β-dependent. For
β < 2, tensions in these solutions are smaller than in the first solution, and the tension of
the second solution is the smallest. In this case, β < 2, σ̄SI > 2σ̄SII and thus the SI DW is
unstable. For β > 2, the tension of the second solution is the largest, and the third solution
gives tension equal to that of the first solution. In this case, β > 2, σ̄SI < 2σ̄SII and thus
the SI DW is stable.

When β = 2, the tensions of all three solutions are equal, which can be proved ana-
lytically. Notice that the second solution is equivalent to two SII DWs, i.e. v1 v2 and

v2 v4 . Proving the tension of the second solution to be 2
√
2/3 is equivalent to proving

that the tension of a SII DW at β = 2 is
√
2/3, i.e., σ(β = 2) =

√
2/3. With β = 2, it is
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convenient to make the parameterisation ϕ± = ϕ1 ± ϕ2 so that Eq. (3.16) becomes

ϕ
′′
±(z) = ϕ±[−1 + ϕ

2
±] ,

ϕ±
∣∣
z→+∞ = 1, ϕ±

∣∣
z→−∞ = ±1 . (4.1)

ϕ+ in this case has a constant solution ϕ+(z) = 1 and ϕ− obeys the Z2 DW solution,
ϕ−(z) = tanh( z√

2
). Substituting this solution into Eq. (3.17), the tension is

σSII(β = 2) =

√
2

3
=

1

2
σSI . (4.2)

The SII DW does not have the stability problem as it always gives the smallest tension for
vacuum transition between v1 and v2 for any positive value of β, which is obviously seen
from the topology.

We show the dimensionless energy density distribution along the z direction of the
three different solutions between v1 and v4 in Fig. 12 with β = 0.3, where

ρ(z) =
∑
i

1

2

[
ϕ
′
i(z)

]2
+∆V (ϕ(z)) , (4.3)

is the dimensionless energy density normalised using Eq. (3.3). The blue curve refers to
the energy density profile of SI DW v1 v4 . As anticipated we observe that the energy
density peaks at z = 0 as falls off at |z| ∼ 1/0.3. The purple curve shows the energy density
profile of v1 v2 v4 and we see that there are two peaks (i.e. two domain walls) with the
energy density peaking around z ∼ ±10 with magnitude significantly smaller than the SI
DW scenario. The orange curve refers to the third solution where there is a flatter and
broader domain wall than the SI DW case.

The first and second solutions give tensions σSI = 2
√
2/3 and 2σSII(β = 0.3) ≈ 0.5,

respectively, representing the largest and smallest energy unit area stored in the scalar
fields. In this case, the SI DW is unstable and decays to two SII DWs. We anticipate that
during this decay the difference in energy of the higher and lower tension domain walls is
released as gravitational radiation or possible light scalar (flavon) degrees of freedom.

We have numerically checked that given an initial SI path in the field space with a
small perturbation to ϕ̄2 and ϕ̄3, the path automatically deviates from the initial one dur-
ing the deformation iteration and eventually stabilised at the path v1 v2 v4 or any other

equivalent ones v1 v3,5,6 v4 . We developed code to numerically calculate domain wall
solutions using a method similar to that of CosmoTransitions [43], solving the equations
of motion for scalar field configurations. While CosmoTransitions focuses on solving the
equations of motion for first-order phase transitions by finding bounce solutions and com-
puting the Euclidean action, which determines the tunnelling probability between vacuum,
our approach uses a similar methodology but for domain wall solutions.

4.2 T-type domain walls

For β < 0, we arrive at three T-type DWs. The TII DW is always stable as seen from the
topology. We first check the stability of the TI DW. There can be three different types of
solutions between u1 and u5, as shown in the left panel of Fig. 13 in field space.
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Figure 13: Left: Three different types of possible domain solutions from u1 to u5 when
β = −0.1. Right: Tension of different possible DW solutions from u1 to u5.

1. The TI DW which is a blue straight line in the left panel of Fig. 13 that runs between
u1 and u5 in the field space and is labelled as u1 u5 .

2. The combination of a TII DW and a TIII DW, which passes one of the other vacua
in the field space, e.g. u1 u4 and u4 u5 , or equivalently u1 u4 u5 . This is
shown as a grey line in the left panel of Fig. 13.

3. The combination of three TII DWs, which consists of three edges of the cube, e.g.
u1 u2 , u2 u7 and u7 u5 , or equivalently, u1 u2 u7 u5 . This is shown as a

green line in the left panel of Fig. 13.

The tensions of the three different solutions are shown in the right panel of Fig. 13 for
various β. For −β > 1, the TI DW, referred to as solution 1 here, has the lowest energy
and is, therefore, energetically stable. The TI DW is unstable for −β < 1 as solution 3
has the lowest energy. We then check the stability of the TIII DW. Taking u2 and u5 as
boundary conditions. We find two types of solutions.

1. One is the path directly connecting between u2 and u5, which is equivalent to that
between u4 and u5. See u4 u5 in Fig. 13.

2. The other is the path from u1 to u2 to u8. This is equivalent to the path from u2 to
u7 to u5, i.e., u2 u7 u5 in Fig. 13.

By comparing tensions in these two solutions, we see that the TIII DW is stable when
−β > 1. Finally, we conclude that both TI and TIII DWs are stable for −β > 1 and
unstable for −β < 1.
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5 Gravitational waves from non-Abelian domain walls

In general, stable DWs can be problematic as their energy would come to dominate the
total energy density of the universe. This problem can be solved if the residual discrete
symmetry is softly broken by energy biases between the vacua. The energy biases can be
expressed as

V bias
ij = ϵijv

4 , (5.1)

where i, j refers to the scalar field indices with v the VEV of the field in the absence of
softly symmetry breaking. In addition to leading to the decay of domain walls, the bias term
can help correct leading order mixing patterns which describe flavour mixing in the lepton
sector [40, 44, 45]. These biases make the DWs unstable and annihilate at a temperature
Tann, generating gravitational waves. The spectrum of the GW for frequency f and at time
t is given by

Ωh2(f, t) =
h2

ρc(t)

(
dρgw(t)

d ln f

)
. (5.2)

For a typical Z2 DW, the GW spectrum is characterised by a peak at the frequency

fpeak ≃ a (tann)H (tann) ≃ 1× 10−4 Hz

(
g∗ (Tann)

10

)1/6(Tann

TeV

)
≃ 3× 103 Hz

(
10

g∗ (Tann)

)1/12( Vbias

σTeV

)1/2

,

(5.3)

with amplitude

Ωgwh
2
∣∣
peak ≃ 0.7× 10−37

(
10

g∗ (Tann )

)4/3( σ

TeV T 2
ann

)2

≃ 0.9× 10−67

(
10

g∗ (Tann )

)1/3( σ

TeV3

)4(TeV4

Vbias

)2

,

(5.4)

where the present critical density ρc(t0) = 10.53h2keV/cm3 and effective degrees of free-
dom gs∗(t0) = 3.91 is applied. On each side of peak, we use the power-law approxima-
tion obtained from numerical simulation, which are Ωgwh

2(f) ∝ f3 for f < fpeak and
Ωgwh

2(f) ∝ f−1 for f > fpeak [25]. In the non-Abelian DWs discussed in this work, some
solutions are unstable even in the absence of any biases. The evolution of those unstable
DW solutions can change the kinetic history of the DW network and thus produce special
gravitational waves signal. An interesting example is the decay of an SI DW into a pair of
SII DWs, during which extra energy is released, partly into the kinetic energy of the walls
and gravitational radiation. The details of those complex processes are beyond the scope of
this work. Here, we focus on the case where all the wall solutions are stable, namely β > 2

for the Z2 preserving case and β < −1 for the Z3 preserving case.

5.1 Gravitational waves emission by non-Abelian domain walls

For the S-type DWs, the SII DWs are four times more likely to be produced than SI DWs
during the phase transition. We assume that the ratio of number density to be constant
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ϵv12 ϵv13 ϵv14 ϵv15 ϵv16
2ϵ̂ 3ϵ̂ ϵ̂ 4ϵ̂ 5ϵ̂

ϵu12 ϵu13 ϵu14 ϵu15 ϵu16 ϵu17 ϵu18
2ϵ̂ 4ϵ̂ 6ϵ̂ ϵ̂ 3ϵ̂ 5ϵ̂ 7ϵ̂

Table 1: Choice of the bias for the difference between the vacua of the Z2 (left) and Z3

(right) preserving scenario in terms of ϵ̂, which is a free parameter which we set when
discussing testability.

Figure 14: The black line shows the gravitational waves spectrum due to overlapping
spectra for the S-type DWs (left) with β = 10, and T-type DWs (right) with β = −1.2.
The frequencies and the spectrum are normalised to f̂ = fZ2

peak, the peak frequency of the
contribution from SI/TI DWs, and its correspondent amplitude Ω̂h2. The values of five
possible biases for the Z2 case and seven possible biases for the Z3 case are given in Tab. 1.

during the subsequent evolution and we have nSI : nSII = 1 : 4. To be consistent with
cosmology, biases are introduced to make the DWs unstable and decay. From the vacuum
structure in Fig. 1, at first glance there are 15 biases between the six vacua: three for SI
DWs and 12 for SII DWs. However, only five of them are linearly independent. Here, as
a example, v1 is chosen to be the lowest vacuum and the other five vacua are determined
by the biases between them and v1. The biases for the benchmark case are summarised in
Tab. 1.

The left panel of Fig. 14 shows the resulting GW amplitude as a function of the wave-
number. While the biases are free parameters, the tensions of the DWs can be fixed by the
potential as discussed in Sec.3. The consequence of different possible tensions is similar to
what has been observed in Ref. [40] but more significant. In Ref. [40], the origin of having
different peaks is the difference between the biases while the tension is unique. Here, since
there are different types of DWs, these DWs with different tensions contribute to various
peaks in the complete spectrum. This additional effect leads to a more pronounced multi-
peak structure than the one caused by different biases. In particular, if ΩSI ∼ ΩSII, the
spectrum does not evolve as f−1 in a significant interval of frequencies after the first peak,
which is more likely to be detected.

For the T-type DWs, the ratio of the number densities of different vacua is nTI : nTII :

nTIII = 1 : 3 : 3. Again, u1 is chosen to be the lowest energy vacuum and the other seven
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σ1/3/TeV V
1/4
bias/TeV

BP1 3× 102 10−3.75

BP2 3× 105 101

Table 2: The values for the tension of SI and TI DWs and the smallest bias of the two
benchmark points.

vacua are determined by the biases between them and u1. The biases for the benchmark
case are summarised in Tab. 1. Following the same procedure as the S-type DWs, we find a
similar behaviour, where there is a deviation from f−1 power-law spectrum after the peak,
as shown in the right panel of Fig. 14.

Finally, it is important to recall that the discussion above holds only when β > 2 for the
S-type DWs and β < −1 for the T-type DWs. If β is smaller (larger) for the S-type (T-type)
DWs, there would be unstable DWs which may decay much earlier than the annihilation
time of the stable ones. Such a process may generate additional signals at higher frequencies
and provide a different GW spectrum.

5.2 Testability with gravitational wave observatories

Given the recent discovery of a stochastic gravitational wave background by Pulsar Time
Array (PTA) observatories and planned next-generation earth and space GW observatories,
it is interesting to see how the deviation from the ordinary Z2 spectrum can be detected.
Here, we provide a qualitative analysis regarding the possibility of such GW observatories
to detect this deviation. Two free parameters can affect the gravitational wave spectrum
produced by the DW network: the wall tensions and the biases. As discussed in Sec. 3, the
DWs tension can be determined by β up to an overall scale. In the following discussion, we
fix the overall scale of the tensions by fixing the tension of SI and TI DW in the Z2- and
Z3-preserving cases, respectively. For the biases, we follow the ratio given in Tab. 1, with
the smallest bias as a free parameter.

To provide a more concrete discussion, we choose two benchmark values for the tensions
of SI and TI DWs and the smallest biases, as shown in Tab. 2. The estimated gravitational
wave spectrum is shown in Fig. 15. The peak of the first benchmark point is in the nHz
range and the spectrum is consistent with the signal observed by PTA, as shown in Fig. 15.
At the higher frequencies spanned by PTAs, the multi-peak structure shows up instead of
the power-law structure, changing the slope of the spectrum after the peak. According
to Ref. [32], the annihilation of the network happens at around 100 MeV. For the other
benchmark point, the peak falls within the frequency range that is detectable for next-
generation space-based gravitational wave detectors, such as LISA and Taiji. Moreover,
the deviation from the ordinary Z2 spectrum around the peak frequencies can also be
observed. Nevertheless, more quantitative discussion about the GW spectrum would require
a numerical simulation of the DW dynamics and GW production, which will be addressed
in subsequent works.
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Figure 15: Gravitational waves spectrum due to overlapping spectra for the S-type DWs
(top) with β = 10, and T-type DWs (bottom) with β = −1.2. The solid and dashed lines
correspond to the benchmark points BP1 and BP2 in Tab. 2, respectively.

6 Conclusion

In this work, we have performed the first detailed analysis of the properties of domain
walls (DWs) emerging from the spontaneous breaking of non-Abelian discrete symmetries.
Choosing S4 as an example, we have discussed the vacuum structure from a generic renor-
malisable potential of a triplet flavon ϕ. Depending on the potential parameters, this group
provides two types of vacua, six Z2-preserving and eight Z3-preserving vacua. From these
vacua, we found five types of DWs, labelled as SI, SII and TI, TII, TIII, respectively. Here,
SI and SII refer to two types DWs separating two Z2-preserving, and TI, TII and TIII refer
to three types of DWs separating two Z3-preserving vacua.
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Given the different types of DWs, we explored their properties by computing the pro-
files, the tension and the thickness for each of them with respect to β (where β = g2/g1),
which is the only free parameter of S4 after the redefinition of the scalar fields and the
space coordinate. Noticing that the DW between some pairs of vacua can be unstable, we
have discussed the stability of the various solutions, and we find the tension plays a crucial
role. For |β| ≪ 1 the difference between the tensions of the different DWs can be more than
an order of magnitude. In that case, the DWs with higher tension will evolve into the ones
with lower tension. The stable DW solutions are the SII type for the Z2-preserving vacua
and the TII type for the Z3-preserving vacua.

Finally, we have estimated the gravitational wave signature for non-Abelian DWs and
qualitatively compared it with the signal from a network of Z2 DWs. We have found a
multi-peak behaviour which is more enhanced with respect to what has been discussed in
Ref. [40] because there are DW solutions with differing tensions which may be hierarchical.
When all the solutions are stable, i.e. β > 2 for the S-type DWs and β < −1 for the
T-type DWs, the gravitational wave signals produced by the DWs with different tensions
reach their peaks at various frequencies, which is a distinctive feature of DWs generated by
non-Abelian discrete symmetries.

In summary, the DWs from non-Abelian discrete symmetry breaking have a richer
structure than the Z2 scenario in many aspects. This could lead to interesting phenom-
ena regarding the evolution of the DWs, such as solution instabilities that could affect
the production of gravitational wave signals and may have other possible cosmological
consequences. The study of DWs from non-Abelian discrete symmetries allows a precise
connection between flavour physics and gravitational wave phenomenology and our work
opens a new pathway to test flavour models.
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A Derivation of renormalisable potentials in S4

The renormalisable potential V (ϕ) in Eq. (A.4) applies to S4 in the Ma-Rajasekaran basis
[41]. It is the general form of renormalisable potentials invariant in these discrete groups.
Below we show how to derive it in S4.

Given two triplets a = (a1, a2, a3)
T and b = (b1, b2, b3)

T of S4, In S4, there are five
irreps 1, 1′ 2, 3 and 3′. The product of two 3(′)-plets follows the decomposition 3 × 3 =
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3′ × 3′ = 1+ 2+ 3+ 3′, with

(ab)1 = a1b1 + a2b2 + a3b3 ,

(ab)2 = (a1b1 + ωa2b2 + ω2a3b3, a1b1 + ω2a2b2 + ωa3b3)
T ,

(ab)3 = (a2b3 + a3b2, a3b1 + a1b3, a1b2 + a2b1)
T ,

(ab)3′ = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)
T . (A.1)

The product of 3 and 3′ follows the decomposition 3 × 3′ = 1′ + 2 + 3′ + 3. Here no
trivial singlet is given. Constructions of (ab)1 and (ab)2 follows those in (ab)1 and (ab)2 in
Eq. (A.1), respectively. Constructions of (ab)3 and (ab)3′ are reversed compared with those
in Eq. (A.1).

If ϕ is arranged to be a triplet 3′, the most general S4-invariant potential is given by

V (ϕ) = −1

2
µ2(ϕϕ)1 +

1

4

[
f1
(
(ϕϕ)1

)2
+

1

2
f2
(
(ϕϕ)2(ϕϕ)2

)
1
+ f3

(
(ϕϕ)3(ϕϕ)3

)
1

]
,(A.2)

where µ2 and f1,2,3 are real parameters. Then we fully recover Eq. (2.2) with g1 = f1 + f2,
g2 = 2f3 − 2

3f2. If ϕ is arranged to be the triplet 3, where will also be a cubic term
(

(ϕϕ)3ϕ
)
1
= 6ϕ1ϕ2ϕ3.

Including the cubic term actually gives the most general A4-invariant renormalisable
potential for a triplet. A4 has four irreps, 1, 1′, 1′′, and 3. Kronecker products of two
triplet follows the decomposition 3×3 = 1+1′+1′′+3S +3A, where the subscripts S and
A stand for the symmetric and anti-symmetric parts, respectively,

(ab)1 = a1b1 + a2b2 + a3b3 ,

(ab)1′ = a1b1 + ωa2b2 + ω2a3b3 ,

(ab)1′′ = a1b1 + ω2a2b2 + ωa3b3 ,

(ab)3S = (a2b3 + a3b2, a3b1 + a1b3, a1b2 + a2b1)
T ,

(ab)3A = (a2b3 − a3b2, a3b1 − a1b3, a1b2 − a2b1)
T . (A.3)

Following the representation theory of A4, one can construct the general A4-invariant renor-
malisable potential as

V (ϕ) = −1

2
µ2(ϕϕ)1 +

1

4

[
f1
(
(ϕϕ)1

)2
+ f2(ϕϕ)1′(ϕϕ)1′′ + f3

(
(ϕϕ)3S (ϕϕ)3S

)
1

]
+
A

6

(
(ϕϕ)3Sϕ)3S

)
1
, (A.4)

where A is real. This is almost the same except the last cubic term. In A4, this term can
be forbidden by introducing a parity ZP

2 symmetry, ϕ ↔ −ϕ.

B Domain wall properties at β = 2

In the special case at β = 2, i.e., g2 = 2g1 in the potential. The domain wall can be
analytically solved and we provide the of derivation below. We take the DW of v1 v2 as
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an example. Since ϕ3 vanishes in the solution, it is enough for us to consider the effective
potential of only ϕ1 and ϕ2, i.e.,

V (ϕ1, ϕ2) = −µ2

2
(ϕ2

1 + ϕ2
2) +

g1
4
[(ϕ2

1 + ϕ2
2)

2 + 4ϕ2
1ϕ

2
2] . (B.1)

By taking the transformation ϕ± = 1√
2
(ϕ1 ± ϕ2), we obtain V (ϕ1, ϕ2) = V (ϕ+) + V (ϕ−)

with V (ϕ±) given by

V (ϕ±) = −µ2

2
ϕ2
± +

g1
2
ϕ4
± . (B.2)

In this parameterisation, ϕ+ and ϕ− decouple in the potential. And the potential is invariant
under two seperate Z2 symmetries Z+

2 : ϕ+ ↔ −ϕ+ and Z−
2 : ϕ− ↔ −ϕ−. Boundary

conditions for v1 v2 are equivalent to

ϕ±|z→∞ =
v√
2
, ϕ±|z→−∞ = ± v√

2
(B.3)

This suggests ϕ+(z) takes the VEV v√
2

along the z-direction from +∞ to −∞ and ϕ−(z)

just follows the Z2 domain wall solution ϕ−(z) =
v√
2
tanh( µz√

2
). The tension and thickness

of the domain wall are obtained straightforwardly,

σSII(β = 2) = µ
v2

2

2
√
2

3
, δSII(β = 2) =

√
2

µ
. (B.4)

Following the parametrisation in the Sec. 3.1, we obtain the dimensionless tension and
thickness:

σ̄SII(β = 2) =

√
2

3
=

1

2
σ̄SI , δ̄SII(β = 2) =

√
2 = δ̄SI . (B.5)

We have proved that at β = 2, the energy stored in an SII DW is half that of a SI DW.

C Effect of the cubic term in the potential

By arranging the flavon as a 3 of S4 or considering the potential in A4, we have to include
a cubic term in the potential. Then the full renormalisable potential is written to be

V (ϕ) = −µ2

2
I1 +

g1
4
I21 +

g2
2
I2 +Aϕ1ϕ2ϕ3 . (C.1)

We discuss the vacuum structure and DW property induced by the last term.
Including this term, the six Z2-preserving vacua do not be modified, but the eight

Z3-preserving solutions un are further split into to two groups,

u1,6,7,8 =


1

1

1

 ,

 1

−1

−1

 ,

−1

1

−1

 ,

−1

−1

1


u− (C.2)

u2,3,4,5 =


−1

1

1

 ,

 1

−1

1

 ,

 1

1

−1

 ,

−1

−1

−1


u+ , (C.3)
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where

u∓ =
µ√

3g1 + 2g2

(√
1 + a2 ∓ a

)
(C.4)

and a = 2A
µ
√
3g1+2g2

. The potential at these solutions are split into two values

V∓ = − 3µ4

4(3g1 + 2g2)

(
1 +

2

3
a2 ∓ 2

3
a
√
a2 + 1)

)(
1 + 2a2 ∓ 2a

√
a2 + 1

)
, (C.5)

where the ∓ signs are for u1,6,7,8 and u2,3,4,5, respectively. In the case of negative A (i.e.,
a < 0), V− < V+, and thus V− is the global minimum. u1,6,7,8 and u2,3,4,5 are not equivalent
any more and the former four solutions represent the true vacua, while the latter solutions
become metastable false vacua. On the contrary, for positive A (i.e., a > 0), the vacua
properties are flipped. In either cases, the flavon masses are modified to

m2
1,∓ = 2(3g1 + 2g2)u

2
∓

(
1 + a2 ± a

√
a2 + 1

)
,

m2
2,∓ = m2

3,∓ = −2g2u
2
∓

(
1 + (a2 ± a

√
a2 + 1)(4 + 6g1/g2)

)
. (C.6)

Due to inclusion of the cubic term, the vacua structure become more complicated and
we expect that DWs can have more complicated structures compared with those in the
maintext. We will study this scenario in detail elsewhere. Below, we give brief comments
on the influence of the cubic term on DWs.

For S-type DWs, where two Z2-preserving vacua have been fixed by boundary condi-
tions, the coefficient A of the cubic term does not contribute to the EOM of the scalar.
Thus all S-type DWs are independent of the cubic term.

For T-type DWs, the cubic term can contribute to their properties but at different levels
for different types. For TIII DWs, the cubic term contributes to both the vacua expectation
value and flavon EOM. Thus, it modifies the DWs just quantitatively. Modifications to TI
and TII DWs are more significant. A TI or TII DW separates two vacua in two different
sets. We take u1 u2 with A < 0 as an example. From the discussion in the end of Sec. 2,
it is clear that the vacuum energy V− of the true vacua u1 on one side is lower than the
vacuum energy V+ of the false vacua u2 on the other side. Such a term, if it is not too large,
can be treated as a bias. As discussed in section 5, a bias makes DWs collapse at a certain
temperature and generate gravitational waves. Here, a non-zero cubic term can generate a
pre-existing bias term to the vacua. If this term is larger than the bias from soft symmetry
breaking, the TI and TII DWs, as well as half of the TIII DWs, may collapse at a higher
temperature, namely, earlier than the other DWs. Its collapsing also generates GWs, but
the signal is weak due to the large bias.
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