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The simulation of various properties of quantum field theories is rapidly becoming a testing ground
for demonstrating the prowess of quantum algorithms. Some examples include the preparation of
ground states, as well as the investigation of various simple wave packets relevant for scattering
phenomena. In this work, we study the ability of quantum algorithms to prepare ground states in a
matter-free non-Abelian SO(3) lattice gauge theory in 2 + 1D in a phase where the global charge
conjugation symmetry is spontaneously broken. This is challenging for two reasons: the necessity
of dealing with a large Hilbert space for gauge theories compared to that of quantum spin models,
and the closing of the gap between the two ground states which becomes exponentially small as a
function of the volume. To deal with the large Hilbert space of gauge fields, we demonstrate how
the exact imposition of the non-Abelian Gauss Law in the rishon representation of the quantum
link operator significantly reduces the degrees of freedom. Further, to resolve the gap, we introduce
symmetry-guided ansätze in the Gauss-Law-resolved basis for trial states as the starting point
for the quantum algorithms to prepare the two lowest energy states. In addition to simulation
results for a range of two-dimensional system sizes, we also provide experimental results from the
trapped-ion-based quantum hardware, IonQ, when working on systems with four quantum links.
The experimental/simulation results derived from our theoretical developments indicate the role of
metrics–such as the energy and the infidelity–to assess the obtained results.

I. INTRODUCTION

The success of quantum field theory (QFT) as a
paradigm to explain the properties of physical systems
in Nature has proceeded hand in hand with the devel-
opment of computational techniques in this framework.
One of the key advances was the development of renor-
malized perturbation expansion in quantum field theory
[1], allowing the computation of quantities which could
be matched with experiments, and culminating in the
resounding success of quantum electrodynamics. How-
ever, the theory of strong interactions has proven to be
a challenge for perturbation theory, since the presence
of strong interactions between the quarks and gluons re-
sult in non-perturbative phenomena such as confinement.
This necessitated the introduction of lattice gauge the-
ory [2, 3], and the Markov Chain Monte Carlo methods
for non-perturbative evaluation of physical quantities in
QFTs [4, 5].

While there has been considerable improvement in var-
ious Monte Carlo techniques, there are domains where
the role of Monte Carlo as a superior method from ex-
isting methods has not been established. Investigation
of matter at finite densities is one prime example, espe-
cially in the case of doped Hubbard model (relevant for
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high-temperature superconductivity), or quantum chro-
modynamics (QCD) at finite baryon density (relevant
for equation of state of neutron stars). Similarly, studies
of the real-time dynamics of QFTs or quantum many
body systems can hardly be addressed with Monte Carlo
methods. Powerful variational methods [6, 7] involving
matrix product and tensor network states can address
both the above problems in lower dimensions, but it is
not clear whether these problems can be addressed fully
in thermodynamically large systems.

In this ecosystem, the technological realization of quan-
tum computation, which was theoretically inspired by
[8, 9], has ushered in a new array of opportunities for the
development of computational paradigms. Hamiltonians
of relevant physical systems can be designed by control-
ling various quantum degrees of freedom (such as ions,
atoms, or molecules) in various hardware (ion-traps, op-
tical lattices, superconducting qubits, Rydberg systems)
and tuning interactions between them [10–18]. In princi-
ple, quantum computation may be used for both of the
aforementioned difficult cases of simulations of matter at
finite densities and of real-time dynamics, although in
reality nontrivial work is necessary to address any phys-
ically relevant system. Currently, efforts are underway
to design and test quantum algorithms in toy quantum
field theories to demonstrate their capabilities of both
reproducing and going beyond results obtained through
well-known classical methods [19–33]. Simultaneously,
there are also efforts in the development of novel theoreti-
cal methods and models, which can be seamlessly adapted
to the framework of quantum technologies [34–49]
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As advancements in the controllability of noisy
intermediate-scale quantum (NISQ) [50] computers have
emerged, there is a growing focus on variational quantum
simulation (VQS). The main objective of VQS involves
using variational algorithms, such as variational quantum
eigensolvers (VQEs) [51], to estimate the ground-state
spectrum of a quantum Hamiltonian. At the core of VQEs
lies the development of parametrized quantum circuits.
[52, 53] As an example, a specific VQE variant, utilizing
the hardware-efficient ansatz consisting of parametrized
single-qubit rotation gate layers and non-parametrized
entangling gate blocks, has been employed to address the
ground-state energy of a quantum many-body system.
An extension of VQE, known as variational quantum de-
flation (VQD) [54], allows for the computation of excited
state spectra by incorporating overlap terms into the op-
timization function. This procedure comes at almost no
extra cost.

In contrast to the VQE utilizing the hardware-efficient
ansatz, another well-known type of variational algo-
rithm is the quantum approximate optimization algorithm
(QAOA) [55, 56], where the circuit ansatz is referred to as
the Hamiltonian variational ansatz, and the design of the
quantum circuit is intricately linked to the problem Hamil-
tonian. It was initially designed for solving combinatorial
minimization problems like the Max-Cut problem [57]. As
is sometimes expected from large multidimensional varia-
tional problems, one can run into barren plateaus. While
barren plateaus are present in the optimization landscape
of both VQEs using the hardware-efficient ansatz and the
QAOA, the QAOA has been developed in part to reduce
the probability of encountering such plateaus, and in both
cases sometimes minor adaptions in a particular ansatz
may eliminate them [58].

In addition to the general simulation issues described
above, there are also symmetry-based issues that may
arise in studying particular phases of physical systems.
Symmetries play a crucial role in modern physics in the
context of classifying various phases of matter. The
Ginzburg-Landau paradigm [59] of classifying phases and
phase transitions has largely governed numerous theo-
retical and experimental explorations both in classical
and quantum physics. Consequently, the idea that sym-
metries can be spontaneously broken, especially at low
temperatures or at finite densities, has facilitated the
identification of phases present in systems of physical
interest. In fact, the spontaneous breaking of chiral sym-
metry in quantum chromodynamics (QCD) is responsible
for the mass of visible matter (such as protons and neu-
trons) around us, while the spontaneous breaking of a
global U(1) symmetry is responsible for superconductiv-
ity in a theory of (weakly-interacting) fermions. Given
the importance of spontaneous symmetry breaking (SSB)
to physically-relevant systems, it is natural to develop
quantum algorithms suited for the preparation of these
symmetry-broken ground states. In a given system, the
phenomenon of SSB indicates the presence of multiple
ground states |ψi⟩ (where i labels the different symmetry

broken ground state), which transform into each other
by the action of a global symmetry operator U . In the
scenario where SSB does not occur, then the ground state
is unique, and has even quantum numbers corresponding
to all symmetries.

However, the relevant theoretical setup for (classical or
quantum) numerical studies is a finite box with a lattice
structure, such that both ultraviolet and infrared fluctu-
ations are regulated. In such a finite volume setup, the
ground state is not degenerate, but gapped. Moreover, the
gap decreases exponentially with increase in the volume.
Therefore, it is relevant to ask how would a variational
algorithm, especially realized with quantum hardware,
fare when asked to prepare the ground state(s) of such
a phase. Note that no problems are expected when such
a study is undertaken for the ground state of a gapped
theory: the separation between the ground state energy
E0 and the first excited state E1 is typically of the energy
scale of theory: ∆E ∼ J , where J is the energy scale
associated with the Hamiltonian. In contrast, for SSB one
has ∆E ∼ exp(−cV ), thus challenging the gap extraction
using variational methods (where c is a constant number,
and V is the physical volume).

Our primary goal is to address these challenges and
demonstrate SSB within a pure gauge theory using varia-
tional quantum algorithms. The impracticality of directly
implementing the Wilsonian version of the theory (com-
monly used in classical computation) on a quantum com-
puter arises from the infinite-dimensional Hilbert space
associated with each gauge link. One direction to proceed
is to truncate the local infinite-dimensional Hilbert space,
leading one to deal with breaking of gauge invariance ap-
propriately. A viable alternative is to explore a different
framework within gauge theory referred to as quantum
link models (QLM) [60], where each gauge link is replaced
by a finite-dimensional Hilbert space while preserving the
local gauge invariance, and rendering it suitable for quan-
tum computer implementation. Thus, it is possible to
ensure that gauge symmetry is preserved throughout the
quantum simulation. Abelian formulations have already
been extensively explored, and we proceed to non-Abelian
gauge theories while treading the road to quantum chro-
modynamics in the long-term. We concentrate on a theory
characterized by local symmetries of SO(3) and investi-
gate its representations across various lattice geometries,
including bubble, triangular, and square lattice structures.
The model has been previously investigated [61], partic-
ularly regarding spontaneous symmetry breaking (SSB)
phenomena through the use of exact diagonalization (ED).
However, as the computational demands in ED grow ex-
ponentially with system volume, exploring significantly
larger systems becomes impractical. Additionally, the
Monte Carlo method becomes difficult, mainly due to
the sign problem within the chosen basis of the Hilbert
space. Consequently, it would be beneficial to employ
quantum computing to study the model and demonstrate
SSB phenomena in larger systems. In illustrating SSB, we
employ a range of quantum algorithms to calculate both
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the ground state and a subset of excited state spectra.
In this article, we thus propose and benchmark a class

of quantum algorithms to extract the low-energy spec-
trum of a SO(3) non-Abelian lattice gauge theory without
matter. Typically, gauge theories have many more de-
grees of freedom than a corresponding spin or fermionic
model, and are thus more resource expensive to simulate
on a quantum platform. Moreover, only gauge-invariant
degrees of freedom contribute to the dynamics, and thus
mapping all degrees of freedom of the original model onto
the quantum computer is not very useful. We show that
in the quantum link formulation it is possible to impose
Gauss’ Law analytically, and reformulate the model en-
tirely in terms of gauge-invariant degrees of freedom. The
other question which we address in this paper is the ef-
ficacy of the various variational quantum algorithms to
capture the ground state and the mass gap of the theory,
which in turn depends on the global symmetries of the
Hamiltonian, and whether they are broken or not.

The rest of the paper is arranged as follows: in Sec. II,
we describe the model and its local gauge invariance, and
formulate it in a gauge-invariant way; in Sec. III, we
provide a comprehensive description of the quantum al-
gorithms used in the investigation of symmetry breaking
physics. Sec. IV is dedicated to the discussion of our re-
sults: first we discuss the VQE methods on real hardware
(before imposing gauge invariance) and display our results;
then we discuss our attempts to study SSB phenomena
using quantum algorithms on classical hardware, up to
12 qubits. We compare our results to that obtained for
the transverse field Ising model (TFIM) in the SSB phase
to demonstrate the difficulty of simulating a full-fledged
gauge theory as opposed from a spin model. We conclude
our discussion in Sec. V, summarizing the main results
and providing an outlook for the research direction which
this work inspires.

II. MODEL, SYMMETRIES, AND GAUGE
INVARIANT STATES

Here we discuss the model with a local SO(3) gauge
invariance, operators corresponding to microscopic gauge
fields, and the appropriate gauge symmetries. Readers
familiar with the structure of quantum link models can
skip this section, an almost equivalent description is pro-
vided in [61]. The basic degrees of freedom are the SO(3)
matrix-valued gauge fields: Oab

xy (where a, b ∈ 1, 2, 3).
Each element of the gauge field is a Hermitian operator
Oab† = Oab which lives on the link joining the lattice
sites x and y = x+ µ. We denote the unit vectors in the
positive direction as +µ,+ν, · · · , while the unit vectors
in the negative direction are −µ,−ν, · · · . This notation
is useful since we will define operators which live on the
left and right (top and bottom) positions of a link. The
canonically conjugate momenta are the matrix-valued left
and right electric fields, denoted as La

x,+µ and Ra
x+µ,−µ

respectively (also Hermitian), and shown in Fig. 1. The

non-Abelian electric fields at different links always com-
mute with each other. However, for a specified link, while
La and the Ra commute with each other, [La, Rb] = 0,
the others satisfy the following commutation relations:

[La, Lb] = 2iεabcLc, [Ra, Rb] = 2iεabcRc, (1)

where εabc is the usual Levi-Civita symbol.
Just like position and momentum operators, the electric

and the gauge field operators on the same link satisfy
certain commutation relations among themselves (while
those associated with different links commute):

[La, Obd] = 2iεabcOcd; [Ra, Obd] = −2iObcεacd, (2)

and similarly, due to their non-Abelian nature the different
elements of the Oab satisfy the following commutation
rules:

[Oab, Ocd] = 2iδacεebdRe + 2iδbdεeacLe. (3)

L⃗x,+µ R⃗y,−µ

L⃗y,+ν

R⃗z,−ν

L⃗x,+ν

R⃗w,−ν

L⃗w,+µ R⃗z,−µ

R⃗x,−µ
R⃗x,−ν

Ox,y

x y = x+ µ̂

z = x+ µ̂+ ν̂x+ ν̂ = w

µ̂

ν̂

FIG. 1. The plaquette in a two-dimensional spatial lattice.
The gauge field operators are denoted as Oab

xy where a, b are
the color indices and x,y are the ends of the links on which
the gauge field is defined. The non-Abelian electric fields are
La

x,+µ and Ra
y,−µ, and are defined on the left and right side of

the link joining sites x and y respectively.

Using these operators, we can now construct the Hamil-
tonian operator. A generic Hamiltonian for a (lattice)
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gauge theory has terms containing the electric field en-
ergy and the magnetic field energy, H = HE +HB. In
terms of the electric field operators, the first term is

HE = g2

2

∑
x,µ

(
La
x,+µL

a
x,+µ +Ra

x+µ,−µR
a
x+µ,−µ

)
. The

magnetic term is the plaquette term, defined as a prod-
uct of the four oriented links around the smallest square
loop on the lattice, HB = − 1

4g2

∑
2 TrO2, where Oab

2 =

Oam
xy O

mn
yz O

np
zwO

pb
wx, and x, y, z, w label the four corners of

the plaquette 2 starting from bottom left and moving
anticlockwise. Since the operator is already Hermitian,
the conjugate is unnecessary.

Hamiltonians with this structure are invariant under a
larger class of local transformations, often called gauge
symmetries. These transformations are generated by the
local Gauss Law, which is the non-Abelian analogue of
∇ · E = 0,

Ga
x =

∑

µ

(La
x,+µ +Ra

x,−µ), [Ga, Gb] = 2iεabcGc, (4)

where the various components of the Gauss Law do not
commute. Moreover, the electric field operators which
appear in the Gauss Law are schematically shown in
Fig. 1.

Typically, if one is working in a computational basis
diagonal in the electric field, it is non-trivial to form to-
tally gauge invariant states. In this work we will take
a different route: for our chosen operators, we first con-

struct a basis which directly projects to the G⃗ = 0 sec-
tor, and then construct the Hamiltonian in this gauge
invariant basis. Under a generic gauge transformation
V =

∏
x exp(iα

a
xG

a
x), quantum link operators transform

as:

O′ab
xy = (V †OxyV )ab =

[
eiα

m
x tm

]ac
Ocd

x,y

[
e−iαp

yt
p]db

, (5)

and tabc = −εabc are the generators of the SO(3) group.
A sketch of the operators on the lattice is shown in Fig. 1.
The detailed transformation is provided in the Appendix A
as a reference.

Representations of field operators: As the next
step we need to choose concrete representations for the
operator structures discussed above. There is a simple
method to construct such representations following [62,
63]. We first note that in order to represent Oab, we
need N2 Hermitian operators, for each of La, Ra, we need
N hermitian operators, and thus a total of N2 + 2N
operators. With N = 3, this gives 15 hermitian operators,
and this can be represented by the 15 elements of the
so(6) algebra, linearly independent by construction. The
so(6) forms the embedding algebra for this model.

The simplest representation for the operators is to have
a spin- 12 bilinear operator to represent the gauge and the
electric fluxes as follows:

Oab
xy = σa

x,+µ ⊗ σb
x+µ,−µ,

La
x,+µ = σa

x,+µ ⊗ I, Ra
x+µ,−µ = I⊗ σa

x+µ,−µ.
(6)

Each operator in the bilinear is called a rishon. Note
that we have explicitly chosen the smallest representation
possible here, the spin-12 , and the generators are then
simply the tensor products of the Pauli operators. In
general, it is also possible to choose a spin-1, or any
other allowed representations. Typically, it is expected
that with integer-valued spins one obtains theories whose
ground states behave qualitatively similar to that of the
corresponding Wilson formulation of the theory [43]. On
the other hand, choice of a half-integer spin gives rise to
a novel phases, often relevant in the context of non-trivial
θ-terms [64, 65].

This representation was also the subject of [61], where
the physics in (1 + 1)-d dimension was studied in the
presence of dynamical fermionic fields. In this article, we
extend the studies to two spatial dimensions, and inclusion
of fermions in the two-dimensional model is underway.
A key feature of the spin- 12 representation is that the
electric field energy term does not explicitly appear in
the Hamiltonian, since both the fields square to yield
a constant. However, the fields still remain dynamical,
influencing the theory by choosing the physical Hilbert
space through the Gauss’ Law. The magnetic field is fully
non-trivial, and in terms of the chosen operators we have:

TrO2 = (σa
x,+µ ⊗ σb

y,−µ)⊗ (σb
y,+ν ⊗ σc

z,−ν)

⊗ (σc
z,−µ ⊗ σd

w,+µ)⊗ (σd
w,−ν ⊗ σa

x,+ν).
(7)

The location of the operators are shown in Fig. 1, and
the trace on the left-hand side is implemented on color
indices, as can be seen explicitly in the above equation.
The local plaquette is clearly a 256-dimensional matrix.

Gauss Law: A general gauge transformation is given
by V =

∏
x exp(−iαa

xG
a
x). Using equation (7), the Gauss

Law (in the absence of any matter field) is

Ga
x =

∑

µ

(
σa
x,+µ + σa

x,−µ

)
. (8)

Demanding a physical state to be gauge-invariant is
equivalent to selecting states according to the condition
Ga

x |ψ⟩ = 0.

Construction of gauge-invariant states: Now, we
discuss the construction of singlet states under gauge
transformations in both one and two spatial dimensions.
These states are sometimes called glueball states [63]. In
one spatial dimension, there are two links touching a site
x, and a gauge invariant state can be easily constructed
as follows:

|ψs⟩x,+µ,−µ

=
1√
2

(
|↑⟩x,+µ |↓⟩x,−µ − |↓⟩x,+µ |↑⟩x,−µ

)
(9)

The state |ψs⟩x is gauge-invariant, which means
Gz

x |ψs⟩x = 0, G+
x |ψs⟩x = 0, and G−

x |ψs⟩x = 0. We
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can construct a triplet state at site x as follows

|ψ1⟩x,+µ,−µ = |↑⟩x,+µ |↑⟩x,−µ

|ψ2⟩x,+µ,−µ =

1√
2

(
|↑⟩x,+µ |↓⟩x,−µ + |↓⟩x,+µ |↑⟩x,−µ

)

|ψ3⟩x,+µ,−µ = |↓⟩x,+µ |↓⟩x,−µ .

(10)

The triplet states represent with external static charges,
and are useful to track the total number of allowed states
with the chosen representation.

w z

x yσa
x,+µ σb

y,−µ

σd
w,+µ σc

z,−µ

σb
y,+ν

σc
z,−ν

σa
x,+ν

σd
w,−ν

1√
2

(
|↑↓⟩ − |↓↑⟩

)

xσa
x,−µ σa

x,+µ

σb
x,+ν

σb
x,−ν

FIG. 2. (Left): Gauge invariant states for the plaquette can
be constructed by creating singlets of each pair of spins at the
corners. The figure illustrates how the singlets are constructed
at each corner. (Right): The location of the four spins relative
to a lattice site, which is used in the construction of gauge-
invariant states for a 2D lattice. Four spin- 1

2
are considered,

and as explained in the text, two singlets can be constructed.

Next in complexity, consider a single plaquette state.
In this case also, there are two links touching a site, but in
orthogonal directions. As before, we can build four singlet
states using two spins touching each corner. Labelling the
corner sites as x, y, z, w, the single gauge invariant state
in this case can be represented as

|ψs⟩2 = |ψs⟩x,+µ,+ν |ψs⟩y,−µ,+ν |ψs⟩z,−µ,−ν |ψs⟩w,+µ,−ν

(11)
Since each singlet state is gauge-invariant separately, the
state |ψs⟩2 is also gauge-invariant trivially. Further, it is
trivial to compute the ground state energy for this state.
Noting that each singlet contributes − 3

4 , while there is

an additional factor of 28 for defining the Hamiltonian

via the Pauli σ⃗, instead of the usual S⃗ operators. This
normalization is better suited to studies of the model on
quantum computers. The ground state energy for the
state |ψs⟩2 is thus

H |ψs⟩2 = −256

4g2
(
− 3

4

)4 |ψs⟩2 = − 81

4g2
|ψs⟩2

Let us give an example of how to track the total num-
ber of states separately in different Gauss’ Law sectors.
Because every link operator consists of two spin- 12 s, there

are four possible states for each link, so a square plaquette
has a total of 44(= 256) possible states. As we argued
before, only the one such state remains invariant under
gauge transformation, which corresponds to the tensor
product of pairwise singlets as in Eq. (10). The other
states correspond to different charge insertions on the lat-
tice sites. We can decompose the 256 states into different
gauge sectors as,

256 = 1⊕ 12⊕ 54⊕ 108⊕ 81, (12)

where the 1 is the full gauge invariant state (singlets at
all corners), and 81 is the number of states at each sites
with triplet charges 34 = 81. With a single triplet charge
on any lattice site, one has 4C1 · 3 = 12 states, and with
three triplet charges, one obtains 4C3 · 33 = 108 states,
and finally the 54 corresponds to the situation when any
two of the sites have triplet charges.

Gauge-invariant states for four spins: Once the
pattern of building singlets to impose the Gauss Law is
understood, it is straightforward to push the construction
for a large lattice in higher dimensions. We restrict to
two space-dimensional plaquettes in this article. For a
square lattice, there are four links which touch a single
site, and we need to count how many singlets can be
constructed with four spin- 12 s. Clearly, since two spin- 12 s

give a singlet and a triplet, 1⊕ 3, with four spin- 12s, we
get (1⊕ 3)⊗ (1⊕ 3) = 2 · 1⊕ 3 · 3⊕ 5, which means that
there are two singlets, three triplets and a single quintet,
giving a total of 16 states, as expected.

Consider two spin singlet states at site x given by

|ψs⟩x,+µ,−µ , |ψs⟩x,+ν,−ν . (13)

These two states correspond to four spins, and we can
create gauge-invariant singlet states for the four spins in
two ways. The first one is given by

|ψ1s⟩x = |ψs⟩x,+µ,−µ ⊗ |ψs⟩x,+ν,−ν . (14)

Using Eq. (12) by combining two triplets, we can construct
another gauge-invariant spin singlet state at site x with
the linear combination

|ψ2s⟩x = a |ψ1⟩x,+µ,−µ |ψ3⟩x,+ν,−ν

+ b |ψ2⟩x,+µ,−µ |ψ2⟩x,+ν,−ν

+ a |ψ3⟩x,+µ,−µ |ψ1⟩x,+ν,−ν

(15)

We find the constants a = − 1√
3
and b = 1

2
√
3
by demand-

ing the state |ψ2s⟩ to be normalized and annihilated by
G+

x or G−
x .

It is then possible to use a reduced Hilbert space to
study the gauge invariant sector that consists of the two
singlet states per site, |ψ1s⟩x and |ψ2s⟩x. The Hamiltonian
can be expressed in a gauge-invariant way as follows (see
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Fig. 2 for the site indices)

Hinv = − 1

4g2

∏

i=x,z

(
1

4

(
σ3
i − 1i

)
+

√
3

4
σ1
i

)

·
∏

i=y,w

(
1

4

(
σ3
i − 1i

)
−

√
3

4
σ1
i

) (16)

In moving to the gauge-invariant basis we have reduced
our Hilbert space to 2 states per site rather than 4 states
per link. Thus, for a general 2D lattice with extent Lx×Ly,
instead of 42·Lx·Ly , one has to work with 2Lx·Ly states.
In terms of actual numbers, for the 2× 2 system, one can
get away by diagonalizing a 16× 16 matrix instead of a
65536× 65536 one. In actual calculations, we have always
used the normalization 1

4g2 = 1.

Note that Gz
x is zero on these states by construction.

The generator for gauge transformations used in this case
can be expressed as:

Ga
x = σa

x,+µ + σa
x,−µ + σa

x,+ν + σa
x,−ν , (17)

where a = +,−, z correspond to the three Gauss’ Laws.
A visual representation of this is presented in Fig. 2.

4 6 8 10 12 14 16
Vol

−6

−5

−4

−3

−2

−1

lo
g(
E
i
−
E

0)

i=1

i=2

i=3

Gauge-Invariant Fock State
0.0

0.1

0.2

0.3

0.4

0.5

P
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b
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lit
y

0000 0001 0010

0011

0100

0101 0110

0111

1000

1001 1010

1011

1100

1101 1110

1111

ψ0

ψ1

FIG. 3. (Top): Plot of the energy difference within the
pure SO(3) QLM in (2 + 1)-d. If a discrete symmetry breaks
spontaneously, the smallest mass gap becomes exponentially
small with increase in volume. However, higher energy gaps
are insensitive to this. The ED results are consistent with this
hypothesis. (Bottom): The wavefunction for the ground (blue)
and first excited (red) state expressed in the gauge invariant
basis.

It turns out that the ground state of this model breaks
the lattice translation symmetry by a single lattice spac-
ing spontaneously, which is actually identified with charge
conjugation [61]. This definition of charge conjugation en-
sures a smooth integration with staggered fermions, which
we are addressing in a future work. The physical transla-
tion operator is equivalent to two lattice spacings. From
exact diagonalization (ED), the lowest energy gap expo-
nentially decreases with volume, as ∆E ∼ exp (−αV ).
This is the telltale signature of discrete symmetry break-
ing in a finite volume, given that the ground state has
C = +1, while the first excited state has C = −1, where
C represents the charge conjugation quantum number.
This behaviour is illustrated in Fig. 3 (top panel), where
the energy difference between the ground state and the
first excited state becomes exponentially smaller as a func-
tion of volume. But the higher energy gaps (E2 −E0 and
E3−E0) are insensitive to the volume. The bottom panel
of Fig. 3 shows the ground state and the first excited state
wavefunctions, where the symmetry breaking is evident.

III. METHOD

In this section, we describe quantum algorithms to
target the low-lying energy states on quantum computers.
Since most of the quantum algorithms for this purpose use
variational methods, our results indicate how robustly the
exponentially small gap in an SSB phase can be extracted
using quantum algorithms.

A. Variational Quantum Algorithms

It is well-known from basic quantum mechanics that
for a given system described by a quantum Hamiltonian
(H), we can estimate the ground state using variational
principles. This is directly used in the variational quan-
tum eigensolver (VQE) algorithm, where the following
cost function is minimized with respect to the different

parameters represented by θ⃗ = {θ1, · · · , θN} (assuming
N variational parameters):

E(θ⃗) = ⟨ψ(θ⃗)|H|ψ(θ⃗)⟩ , (18)

where ψ(θ⃗) is a parameterized ansatz for the real parame-

ters θ⃗. Finding the ground state energy of H is equivalent

to minimizing the cost function, E(θ⃗). Additionally, we
can compute the excited state energies using a variational
algorithm known as the variational quantum deflation
(VQD) algorithm [54], which is an extension of the VQE
algorithm. The primary idea is to iteratively remove the
influence of the previously found states from the Hamil-
tonian to find higher excited states. In VQD, the cost
function often involves terms that ensure orthogonality
to previously found states to prevent overlap. To find the
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k-th excited state we minimize the cost function:

F (θ⃗k) = ⟨ψ(θ⃗k)|H|ψ(θ⃗k)⟩+
k−1∑

i=0

βi| ⟨ψ(θ⃗k)|ψ(θ⃗i)⟩ |2

= E(θ⃗k) +

k−1∑

i=0

βi| ⟨ψ(θ⃗k)|ψ(θ⃗i)⟩ |2,
(19)

where the first term can be calculated using the same
method as VQE, while the second part acts as a penalty,
ensuring that the current state is orthogonal to all the
previously optimized ones. In practice, the ansatz state

|ψ(θ⃗k)⟩ may not be perfectly orthogonal to the previously
found states |ψ0⟩, |ψ1⟩, · · · , |ψk−1⟩ during the optimiza-
tion process. The penalty terms help the optimization to
enforce orthogonality. For example, if we already found
the ground state |ψ0⟩ and the first excited state |ψ1⟩, the
cost function for the second excited state |ψ2⟩ would look
like:

F (θ) = ⟨ψ2(θ⃗)|H|ψ2(θ⃗)⟩+ β0 |⟨ψ2(θ)|ψ0⟩|2

+β1 |⟨ψ2(θ)|ψ1⟩|2 ,
(20)

where β0 and β1 are penalty coefficients, and∣∣∣⟨ψ2(θ⃗)|ψ0⟩
∣∣∣
2

and
∣∣∣⟨ψ2(θ⃗)|ψ1⟩

∣∣∣
2

represent the overlaps

of |ψ2(θ⃗)⟩ with |ψ0⟩ and |ψ1⟩ respectively. During

optimization, the penalty terms β0

∣∣∣⟨ψ2(θ⃗)|ψ0⟩
∣∣∣
2

and

β1

∣∣∣⟨ψ2(θ⃗)|ψ1⟩
∣∣∣
2

penalize overlaps with the states with

lower energy. If |ψ2(θ⃗)⟩ has a non-zero overlap with |ψ0⟩
or |ψ1⟩, these terms increase the cost function value, dis-
couraging the optimizer from selecting parameters that
result in such overlaps.

Even though we want to find a state that is orthogonal
to the previously found states, achieving perfect orthogo-
nality through the optimization process can be difficult
due to the circuit complexity and the higher dimensional
parameter space. The penalty terms provide an effective
way to ensure the ansatz state becomes orthogonal by
the end of the optimization process. As the optimization
progresses, the penalty terms actively reduce any overlap
with previously found states. The choice of βi depends
on the specific system and ansatz used. For example,
if βi values are too high, the optimization process will
prioritize orthogonality over minimizing the energy. This
can lead to a state that is highly orthogonal to previous
states but may not represent the true k-th excited state
in terms of energy. Conversely, if βi values are too low,
the optimization might not sufficiently enforce orthog-
onality, leading to an overlap with lower energy states,
which could result in an incorrect excited state. These
coefficients balance the cost function between lowering
the energy and keeping the new state orthogonal to pre-
viously found states. In the particular case of the SO(3)
model, we start with small values of β, and increase it

FIG. 4. The variational ansatz for seven qubits and two layers,
which alternates two-qubit CNOT gates with single-qubit
rotational gates in each layer.

while keeping track of the dependence of converged energy
E1 with β. An optimal value is chosen from the plateau
where E1 is stable. For the 2 × 2 lattice, this is β = 1,
and for 2× 4 lattice, we chose β = 5.

There are several options for choosing the initial varia-
tional states. For our calculations, we used the variational
ansatz with linear connectivity. The basic structure in
each layer consists of a sequence of qubits, connected to
each other with 2-qubit CNOT gates, and have rotation
gates in the Y and Z spin components. The full circuit
has several layers of such gates to increase its expressivity.
Mathematically, this can be written as:

|ψ(θ)⟩ =
Nl∏

l=1

(∏

x

exp(−iθ′l,x/2σ3
x)
∏

x

exp(−iθl,x/2σ2
x)

∏

x

exp(iπ/4(Ix − σ3
x)⊗ (Ix+1 − σ1

x+1))

)

∏

x

exp(−iθ′0,x/2σ3
x)
∏

x

exp(−iθ0,x/2σ2
x) |0⟩ .

(21)
Fig. 4 illustrates one such ansatz for seven qubits, and
for two layers Nl = 2.

B. Quantum Adiabatic Algorithm and the QAOA

As mentioned in the introduction, the QAOA [57, 66,
67] is a variational quantum algorithm which exploits the
form of the quantum Hamiltonian as well as the quantum
adiabatic theorem in order to approximate the ground
state of the Hamiltonian. According to the quantum
adiabatic theorem, if one starts from the ground state of
a (simple) Hamiltonian, and adds a coupling which varies
with time, then the final state will be (arbitrarily) close
to the eigenstate of the final Hamiltonian, provided the
variation is done slowly, and assuming non-degenerate
initial and the final states [68]. Using this idea, to use
the QAOA algorithm, the Hamiltonian is divided into
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Trotter-inspired parts,

H =

Nα∑

α=1

Hα. (22)

where each of the Nα parts constitutes a sum of terms that
commute with one another. This facilitates the choice of
an initial state which is the ground state of the starting
Hamiltonian.

Then the QAOA ansatz is of the form

|GS⟩QAOA =

p∏

k=1

Nα∏

α=1

eiCα,kHα |ψA⟩ , (23)

where |ψA⟩ = |ψ0⟩ is the ground state of a portion of the
Hamiltonian, which (without loss of generality) we set to
be the first term in the sum, Hα=1. In the limit of infinite
layers, there will be a set of Cα,k variational parameters
that yield the ground state. QAOA as an algorithm works
by approximating the ground state for a finite number of
parameters, and we can make the ansatz more expressive
by increasing p, the number of QAOA layers.

For the SO(3) model in particular, when we break down
the Hamiltonian into separate parts, we do so such that
one of these terms is a magnetic field in the z-direction,
which we set to be our Hα=1 due to its trivial ground
state:

Hα=1 = J
∑

x

σ3
x, |ψA=0⟩ = |↑↑ ... ↑⟩ . (24)

For the 2× 2 lattice, the Hamiltonian given by Eq. (16)
consists of four spins, and after expanding, we divide it
into nine pieces for QAOA:

H1 =
1

43

4∑

x=1

σ3
x,

H2 =− 1

43

∑

x̸=y

σ3
xσ

3
y +

1

43

∑

x ̸=y ̸=z

σ3
xσ

3
yσ

3
z

− 1

43
σ3
1σ

3
2σ

3
3σ

3
4 ,

H3 =− 3

43
σ1
1σ

1
2

(
−σ3

3σ
3
4 + σ3

3 + σ3
4 − I

)
,

H4 =− 3

43
σ1
3σ

1
4

(
−σ3

1σ
3
2 + σ3

1 + σ3
2 − I

)
,

H5 =− 3

43
σ1
2σ

1
3

(
σ3
1σ

3
4 − σ3

1 − σ3
4 + I

)
,

H6 =− 3

43
σ1
1σ

1
3

(
−σ3

2σ
3
4 + σ3

2 + σ3
4 − I

)
,

H7 =− 3

43
σ1
2σ

1
4

(
−σ3

1σ
3
3 + σ3

1 + σ3
3 − I

)
,

H8 =− 3

43
σ1
1σ

1
4

(
σ3
2σ

3
3 − σ3

2 − σ3
3 + I

)
,

H9 =− 32

43
σ1
1σ

1
2σ

1
3σ

1
4 .

(25)

The decomposition of Hamiltonian for the 2× 4 lattice
can be found in the Appendix B. The periodic boundary
conditions on ladder systems give rise to more cancella-
tions than are possible for a square geometry. The key
point in all of these decompositions is the presence of a

term H1 of the form H1 =
∑N

x=1 σ
3
x.

In order to approximate the first excited state, we use
a QAOA-inspired ansatz that makes use of symmetry to
ensure it is orthogonal to the ground state (which is then
in a different symmetry sector). In analogy to |ψ0⟩, we
define |ψA⟩ as

|ψA=1⟩ = |↑↑ ... ↓⟩ , (26)

where we have flipped the last spin. This state is the one
of the degenerate first excited states |ψ1⟩i = σx

i |ψ0⟩ of
Hα=1, and because the Hamiltonian only flips an even
number of spins at a time, it is impossible to get to the
ground state by adiabatic evolution. We thus use this
state to approximate the first excited state.

IV. RESULTS

We have applied the different quantum algorithms de-
scribed in Section III on the pure gauge SO(3) model as
described in Section II. We have used both classical and
quantum hardware platforms in order to benchmark the
performance of the algorithms. The quantum hardware
of choice was the trapped-ion quantum computer, IonQ.
With the resources available to us, we have been able to
study the problem on a small quantum hardware of four
qubits. The classical simulation results are for systems
with up to 12 qubits.

A. Simple VQE Ansätze with Real Hardware

In exploring the efficacy of variational quantum algo-
rithms on real near-term quantum hardware, we begin
with the simplest possible systems that still capture phys-
ical features of interest to us. The most trivial set-up in
our framework is to explore how well the gauge-invariant
ground state can be reliably obtained without imposing
the gauge invariance. The results can then be compared
with exact solutions, which are known analytically. We
consider three simple systems: the bubble plaquette (con-
sisting of two links), the triangular plaquette (consisting
of three links), and the square plaquette (consisting of four
links). The IonQ quantum hardware was used to obtain
the results only in the first case, the bubble plaquette.

Bubble plaquette: Consider the simplest system first,
the bubble plaquette, composed of only two links (Fig. 5,
left). From the expression for the link from Eq. (6), we
obtain

Oab
xy = σa

x,+µ ⊗ σb
y,−µ (27)
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x y
σa
x,+µ σb

y,−µ

σa
x,−µ σb

y,+µ

z

x yσa
x,+µ σb

y,−µ

σb
y,+η

σc
z,−η

σc
z,−ν

σa
x,+ν

ν

µ

η

w z

x yσa
x,+µ σb

y,−µ

σd
w,+µ σc

z,−µ

σb
y,+ν

σc
z,−ν

σa
x,+ν

σd
w,−ν

FIG. 5. (Left): A plaquette with two links, the bubble. (Middle): A plaquette with three links, the triangle. (Right): A
plaquette with four links, the square.

and the Hamiltonian for the bubble plaquette is then
given by

Hbub = −J(σa
x,+µσ

b
y,−µ)(σ

b
y,+µσ

a
x,−µ). (28)

Note that the two links are physically distinct, so the
operators do not act on the same point. Moreover, we
have used the Pauli matrices instead of the usual spin- 12
operators, but this only results in an overall normalization.
A pictorial representation of this is presented in Fig. 5
(left), where the blue squares indicate the rishon sites. In
the spin S = 1

2 representation, there are two spin halves
on each of the two rishon sites on a link, and therefore
naively each link has four states.

The analytic argument to obtain gauge singlets is sim-
ple: since each site connects two rishon sites, one to the
immediate left and the other to the immediate right, the

two spins can form a spin singlet, and a spin triplet. The
spin-triplet transforms as a charged operator under the
Gauss law and thus lies in a high-energy manifold. This is
true for both the sites. The total gauge-invariant state for
the bubble plaquette is then obtained by a tensor product
of the two singlets, one situated at site x and the other at
site y. Mathematically, the gauge-invariant ground state
can be represented as:

|ψs⟩bub = |ψs⟩x ⊗ |ψs⟩y , (29)

where |ψs⟩x is the singlet state formed at site x as de-
fined in Eq. (9). We compute the energy for the bubble
plaquette as a product of the energy of two independent
singlets,

Hbub |ψs⟩bub = −J(−3)2 |ψs⟩bub = −9J |ψs⟩bub . (30)

The VQE used to optimize the parameters of the ansatz
is defined as:

|ψ(θ)⟩ =
(
exp(

iπ

4
(I − σ3

0)⊗ (I − σ1
1)) · exp(−i

θ

2
σ3
0) ·H0

)
⊗

(
exp(

iπ

4
(I − σ3

2)⊗ (I − σ1
3)) · exp(−i

θ

2
σ3
2) ·H2

)
|0101⟩ ,

(31)
where i = 0, 1, 2, 3 denote the sites (x,+µ), (x,−µ),
(y,−µ), and (y,+µ) respectively and Hi are the
Hadamard operators acting on qubit i. Fig. 6 (left) shows
a sketch of the variational ansatz. Only a single layer of
quantum gates with a single variational parameter is used
for this example, which is optimized by running the VQE
algorithm on an exact quantum simulator. This gives the
optimal value of θ = π, and the corresponding optimized
energy (shown on the right of Fig. 6) converges to the
exact value of −9.0 (as given by Eq. (30)) very rapidly.
The optimized wavefunction is obtained by using θ = π

in Eq. (31) and consists of four Fock states, which can be
written as (up to an overall phase)

|ψ⟩GI =
1

2
(|1010⟩ − |0110⟩ − |1001⟩+ |0101⟩). (32)

For this example we have been able to test the algo-
rithm on real quantum hardware, the Ion Q, to obtain
the ground state. Fig. 7 shows the experimental results.
The left subplot shows the energy at each step of the
optimization process, while the middle one shows the
estimate of the variational parameter, and the right panel
plots the fidelity. The fidelity, defined as the overlap
between two wavefunctions is commonly used figure-of-
merit to judge their equivalence, and is mathematically
defined as f = |⟨ψ0|ψ1⟩|2. It is clear that the ground
state energy found by the real hardware is around −8.0,
which is significantly larger than the exact ground state
energy of −9.0, even though the the optimizer for the real
hardware still reaches the correct optimal value, θ = π
for the wave function. From the plots in Fig. 7 we note
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FIG. 7. Experimental results for the bubble plaquette: (left) Plot of the energy with the number of iterations using the quantum
hardware (IonQ trapped ions). The deviation from the exact result is commented upon in the text. (middle) The estimate of
the variational parameter θ at each step of the optimizer. (right) Measure of the fidelity of the variational wavefunction with
the exact wavefunction at each step in the optimization process. The dashed value indicates the analytical result.
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FIG. 6. (Left): Variational ansatz for Bubble with example
rotational parameter θ = 1.0. (Right): The convergence of the
energy with the number of iterations (denoted as nfev on the
x-axis) using the classical simulator for two different classical
optimizers. In most cases, the COBYLA optimizer performs
significantly better than the Powell one.

that the energy estimates stabilize after about the first
third of the optimization steps that we plot. We have put
a mark at the 28-th step to note the apparent equilibra-
tion of results and will use the wavefunction obtained at
this step to compare with the exact wavefunction. It is
important to note that the optimizer is unaware of the
gauge invariance of the ground state. Therefore, since we
operate in an electric flux basis where Gauss’ Law cannot

be exactly imposed, it always generates spurious states,
instead of only the four states expected from Eq. (32). Ta-
ble I lists the proportions of all the states obtained using
the quantum hardware at the 28th step of the optimiza-
tion and compares them with the exact classical result.
While we do see the expected four states that form the
gauge-invariant ground state wavefunction dominating
(each with probability approximately ∼ 0.25), there are
11 other states with probabilities two orders of magnitude
smaller than the dominant states. These states will con-
tribute to the wave-function generated by the hardware
and will raise the measured energy to −8.1318 instead of
−9. Note that we only have direct access to the measured
probabilities of the experimental wave function, and not
to the relative signs of the basis states. However, since
the optimization of θ parameter of 3.203 is much closer
to the analytic value π (the energy deviation is about
∼ 10% while the parameter deviation is about ∼ 2%),
the fidelity between the ansatz wave function at each
variational step is much closer to the analytical answer.
This is precisely because the construction of the wave
function is gauge-invariant (making singlets at each site)
and thus the fidelity calculation (shown in Fig. 7 right) is
significantly less contaminated by the gauge non-invariant
states than the energy.

Triangular and square plaquettes: The calcula-
tions done for the triangular and the square plaquettes
(with three and four links respectively) are very similar
to that of the bubble plaquette. The geometry is illus-
trated in (Fig. 5 (middle and right) respectively, where
the rishon sites are also indicated). The Hamiltonians for

the two systems are:

Htri = −J Tr(O△)

= −J(σa
x,+µσ

b
y,−µ)(σ

b
y,+ησ

c
z,−η)(σ

c
z,−νσ

a
x,+ν),
(33)

Hplaq = −J Tr(O2)

= −J (σa
x,+µσ

b
y,−µ)(σ

b
y,+νσ

c
z,−ν)

(σc
z,−µσ

d
w,+µ)(σ

d
w,−νσ

a
x,+ν). (34)
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States
Probablities from

exact States
Probablities from
classical simulator

Probablities from
IonQ hardware

0000 0.0 0.0 0.0
0001 0.0 0.0 0.0064
0010 0.0 0.0 0.0061
0011 0.0 0.0 0.0002
0100 0.0 0.0 0.0082
0101 0.25 0.25 0.2436
0110 0.25 0.25 0.2386
0111 0.0 0.0 0.0066
1000 0.0 0.0 0.0048
1001 0.25 0.25 0.2364
1010 0.25 0.25 0.2303
1011 0.0 0.0 0.0061
1100 0.0 0.0 0.0004
1101 0.0 0.0 0.005
1110 0.0 0.0 0.003
1111 0.0 0.0 0.0002

TABLE I. Comparison of results between the exact state, classical simulator, and the quantum hardware for the bubble
plaquette. While the classical simulator gives exact zeroes for the probabilities of 12 out of the 16 states, there are small nonzero
“leakage” probabilities for 11 of these states in the real quantum hardware.

Once again, the analytic results are easy to obtain. Let
us consider the triangle first. We note that here it is not
possible to build the ground state by forming singlets
at each site due to the frustrated nature of the lattice.
Instead, the ground state is not gauge-invariant, but has
two singlets at two sites, and a triplet on the third site.
The corresponding energy is then E = −(−3)2 · 1 = −9.
The wavefunction is a linear combination of three terms
where the triplet can be located at the three possible sites,

|ψG⟩ =
1√
3

[
|ψs⟩x |ψs⟩y |ψ2⟩z + 2 permutations,

]
(35)

where the states |ψs⟩ and |ψ2⟩ are described in Eq. (9)
and Eq. (10).

The square plaquette is made up of four links and eight
spin-1/2 particles (Fig. 5). Since the arrangement of
the degrees of freedom does not cause frustration, the
ground state is gauge-invariant and is the product of four
two-spin singlets as described in Eq. (9), with energy
E = −(−3)4 = −81.

We use a VQE algorithm on an exact simulator to
check against analytical results for both the triangular
and square plaquettes. Their variational ansätze are
shown in Fig. 8. As in the bubble case, a single varia-
tional parameter is sufficient to parameterize the states.
In Fig. 9, we present the convergence of VQE, demon-
strating that the result converges to the exact analytical
results. The convergence behavior is shown for two dif-
ferent classical optimizers, COBYLA and Powell, and
in both cases COBYLA clearly outperforms the Powell
method, consistent with what we observed for the bubble
plaquette in Fig. 6.
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FIG. 8. (Left): Variational ansatz for the triangular plaquette
with example rotational parameter θ = 1.0. (Right): Varia-
tional ansatz for the square plaquette with initial rotational
parameter θ = 1.0.

B. Spontaneous Symmetry Breaking with VQE,
VQD and QAOA

The last section demonstrated the extraction of the
ground state (GS) in the electric basis, but since the basis
is not gauge-invariant, noisy hardware leads to contri-
butions from other Gauss Law sectors. To completely
eliminate any traces of gauge-variant states, here we adopt
the gauge-invariant basis described in Section II. Using
this basis and some variational techniques, we aim at
recovering not only the GS, but also the lowest-lying ex-
citation. The ground state of the model breaks the Z2

charge conjugation symmetry spontaneously, leading to
a scenario where the GS and the first excited state are
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Lattice
N-terms
in H

No. of
Qubits

CNOT Depth ED VQElin QAOAshots QAOAEX

VQElin QAOA E0 E1 E0 E1 E0 E1 E0 E1

2× 2 41 4 15(p=5) 665(p=5) -0.6745 -0.5957 -0.6745 -0.5957 -0.6745 -0.5957 -0.6745 -0.5957

2× 4 164 8 385(p=55) 5592(p=12) -1.2809 -1.2638 -1.2809 -1.2638 -1.2809 -1.2637 -1.2809 -1.2638

2× 6 246 12 440(p=40) 12690(p=18) -1.9118 -1.9062 -1.9051 -1.9044 -1.9042 -1.9019 - -

2× 8 328 16 - - -2.5464 -2.5444 - - - - - -

TABLE II. Computational resource and algorithms comparison for the pure SO(3) QLM. In addition to QAOA calculations
using a quantum circuit simulator, which we called QAOAshots, we also have included a column that we used to provide checks
on the QAOA where we used exact matrix multiplications to compute each parameter-dependent energy, which we called
QAOAEX. Since this operation scales exponentially with the volume, it is not possible to do this calculations without access to
large memory nodes for the 2× 6 and the 2× 8 systems.

0 10 20 30 40 50

nfev

−8

−6

−4

−2

0

E
n

er
gy

Exact

Powell

COBYLA

0 10 20 30 40 50 60

nfev

−80

−70

−60

−50

−40

−30

−20

−10

0

E
n

er
gy

Exact

Powell

COBYLA

FIG. 9. Plots of the energy with the number of iterations
for the triangular plaquette (left) and the square plaquette
(right).

identified with Z2-even and Z2-odd quantum numbers re-
spectively, and the gap between them closes exponentially
with the volume.

We show that spontaneous symmetry breaking can be
detected with two specific variational techniques: the
first uses a generic linearly connected VQE ansatz, and
the second involves QAOA-inspired ansätze for both the
GS and first excited state as discussed in Section III.
To appreciate the complexity involved in the simulation
of the fully dynamical non-Abelian SO(3) lattice gauge
theory in comparison to the paradigmatic transverse-field
Ising model (TFIM), we perform computations for the
TFIM as well using our QAOA-inspired ansätze.

SO(3)-symmetric gauge theory: For the SO(3)
model, we compute the two lowest-lying energies, E0

and E1, at four lattice sizes: 2× 2, 2× 4, 2× 6, and 2× 8,
in order to understand the behavior of the system in the
thermodynamic limit. We use the gauge-invariant basis
in order to study the system at these larger lattices, and
we get the E0 and E1 using two different variational tech-
niques. The first technique employs the linearly connected
VQE ansatz defined in Eq. (21) to get the ground state,
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FIG. 10. (Top): Comparison of the results of ED, QAOAshots,
VQElin, and QAOAEX by calculating E0 and E1. (Bottom):
The smallest energy gap (E1−E0) for different system sizes in
the pure SO(3) QLM in 2-d. Note that although the extraction
of the energy looks good, extraction of the gap exposes the
difficulty of the problem. Both the VQElin and the QAOAshots

have difficulty in convergence on classical hardware with the
stated circuit depth on the 2× 6 lattice.

and then uses VQD with the optimized VQE state in order
to get the first excited state. We use the SLSQP optimizer
for these variational methods. The second technique uses
the QAOA ansatz defined in Eq. (23) and Eq. (24) to get
the ground state, and then for the first excited state it
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uses a QAOA-inspired ansatz with Eq. (23) and Eq. (26).
We used the L-BFGS-B optimizer.

Figure 10 summarizes the results, with the top panel
showing E0 and E1 computed using the two variational
methods as well as the ED results, and the bottom panel
showing the energy gap E1 − E0 computed using these
methods as a function of the volume in a semi-log plot. We
use VQElin to denote simulator linearly connected vari-
ational results, QAOAshots to denote simulator QAOA
results, and QAOAEX to denote QAOA results where
each parameter-dependent energy is computed exactly
rather than with simulator shots. For the VQE linearly
connected ansatz and QAOA approaches, we have com-
pleted calculations on 2× 2, 2× 4, and 2× 6 lattices. On
the top panel of Fig. 10, we note good visual agreement
between the methods with the data points on top of each
other. Table II gives the numerical values: even in the
most difficult case of the 2× 6 lattice, the energy results
agree to better than 0.1%. By plotting log(E1 − E0) as
a function of volume, the bottom panel of Fig. 10 shows
a gap that closes exponentially with the system volume.
With the data from three lattice sizes, we thus have evi-
dence of spontaneous symmetry breaking in the ground
state by making use of quantum-circuit-friendly varia-
tional ansätze. Here we note that in ED calculations, the
computational time grows exponentially with the volume
of the system. However, it appears that the number of
layers in the circuit necessary to capture the energies may
grow only linearly with system size, keeping the quantum
circuit calculations polynomial in system size. This is
consistent with classical ground state quantum Monte
Carlo calculations when there is no sign problem, such as
projector quantum Monte Carlo.

For the VQE algorithm with the linearly-entangled
ansatz, it is difficult to design a parameterized ansatz
that respects the different symmetries of the ground state
and the first excited state. In Fig. 11, we show the energy
convergence as a function of circuit depth (p) for both the
ground state and the first excited state energy for 2×2 and
2×4 lattices. For the 2×2 lattice, the ground state energy
gets closer to the exact value as the circuit depth increases.
For the first excited state, we see large fluctuations up
until p = 4. This happens because, with smaller p, the
VQD optimizer tends to mix the ground state and the
first excited state, causing an overlap that may push E1

above the exact value. As the circuit depth increases, the
optimizer is able to better resolve the symmetries leading
to a good convergence. We observe a similar behavior for
the 2× 4 lattice, where the convergence requires a much
larger circuit depth (p).

From Table II we also note the significantly larger circuit
depth necessary for QAOA versus the linearly-entangled
VQE ansatz. This is a disadvantage of the QAOA as
we can see it is still possible to resolve the energy gap
with the simpler linearly entangled VQE ansatz. However,
an advantage that the QAOA-inspired ansätze offer over
VQE/VQD is that the variational algorithm to find the
first excited state is independent from the estimation of
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FIG. 11. (Top): Convergence of the ground state energy as
a function of the circuit depth (p) on a 2 × 2 lattice using
the VQD algorithm (VQElin). If the starting state is not
created in a symmetry resolved way, the ground and the first
excited states mix for lower circuit depths. However, with an
increase in the circuit depth, the VQD optimizer can resolve
the symmetry between these states, allowing the ground state
energy to converge properly. (Bottom): The convergence of
the first excited state energy for the 2 × 4 lattice using the
VQD algorithm. The convergence occurs only at a much larger
circuit depth compared to the 2× 2 lattice.

that of the ground state, which removes a potential source
of error inherent to VQE/VQD for low-lying excitations.

In Fig. 12, we show the results obtained using the
QAOA-inspired symmetry resolved ansätze for both the
ground and the excited states. We note that while the
energies themselves show agreements to better than 0.1%,
the fidelities for the both the wavefunctions on the larger
lattice are still several orders of magnitude larger than the
smaller lattice. We point out that such considerations are
important to be kept in mind while deciding the applica-
tion for the quantum simulation methods. Clearly, when
evaluating expectation values of local operators (such as
order parameters), getting a few percent accuracy on the
ground state is perhaps sufficient, while the computation
of gaps in symmetry broken phase could be expensive.
On the other hand, if the gaps have a O(J) scaling, then
the percent accuracy is enough. In summary, both meth-
ods seem to successfully capture the energies with good
precision (better than 0.1%), and yet we observe linear
growth in the necessary circuit depth of the VQE/VQD
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FIG. 12. Results for the energy and the fidelity as a function of circuit depth for two different lattice sizes: the top column is
the result for 2× 2, while the bottom column is for 2× 4 lattice. The left panel shows the ground state and the first excited
state energy as a function of circuit depth (p) using the VQE algorithm (QAOAshots); the middle panel shows the convergence
of the ground state and the first excited state energy using the QAOA algorithm (QAOAEX), and the right panel shows the
in-fidelity with the circuit depth using the QAOA algorithm. Corresponding figures showing the convergence (restricted to our
circuit depths) is shown in Fig. 15 Appendix C.

ansätze as a function of system size. As a caveat, the time taken by the optimizer to find the minimum in the ansatz
has not been taken into account in this scaling analysis.

1D Transverse Ising model: In order to better
understand the challenge of the resolving energy gaps
with variational techniques, and in particular test our
QAOA-inspired ansätze in a different context, we also
perform calculations for the transverse field Ising model
(TFIM), which is a paradigmatic model hosting a gapped
and Z2 broken phase, separated by a second order phase
transition [69]. The Hamiltonian for the model is given
by

H = −J
∑

⟨i,j⟩
σ3
i σ

3
j − hx

∑

i

σ1
i (36)

with J the interaction strength between adjacent spins,
and hx the external magnetic field. We consider |J | = 1
and explore three different regimes by varying the value
of hx. When |hx| < |J |, the ground state breaks the spin-
flip symmetry spontaneously (ferromagnetic phase). For
a finite system, we expect the lowest mass gap to scale
as exp(−αV ). When |hx| = 1, the system undergoes a
quantum phase transition, and for |hx| > |J |, the system
is in a gapped phase (paramagnetic phase).

We use the QAOA algorithm to find the smallest mass
gap for different lattice sizes, dividing the Hamiltonian

for our variational ansatz into

H1 = −J
∑

⟨ij⟩
σ3
i σ

3
j , H2 = −hx

∑

i

σ1
i . (37)

Note that here we set H1 to be the interaction terms
rather than the magnetic field terms which we used in the
SO(3) example, and indeed which are typically used for
QAOA for the Ising model. The QAOA ansatz is then

|GS⟩QAOA =

p∏

k=1

eiC1,kH1eiC2,kH2 |ψA⟩ , (38)

where to obtain the ground state we set |ψA⟩ =

1/
√
2(|↑↑ ... ↑⟩+ |↓↓ ... ↓⟩ , the GHZ state. If we had built

|ψA⟩ using the transverse magnetic field terms instead (as
is typically done), we would have |ψA⟩ =

∏
iHi |↑↑ ... ↑⟩,

where Hi(= 1/
√
2(σ1

i + σ3
i )) is the Hadamard operator

acting on qubit i. The results for this other ansatz are
given in the appendix in Fig. 17.

The first excited state wavefunction of H1 is an-
tisymmetric under spin-flip symmetry. To compute
the energy of the first excited state, we use the state
1/
√
2(|↑↑ ... ↑⟩− |↓↓ ... ↓⟩) as the initial ansatz state |ψA⟩.

We compare both the ED results and the results from the
quantum algorithm in Table III. We point out that for
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Lattice
N-terms
in H N-qubits

Circuit Depth
QAOAEX

hx = 0.5
(E1 − E0)

hx = 1.0
(E1 − E0)

hx = 1.5
(E1 − E0)

CNOT p ED QAOAEX ED QAOAEX ED QAOAEX

4 8 4 40 4 0.03549 0.03549 0.39782 0.39782 1.15446 1.15446

6 12 6 56 4 0.00689 0.00689 0.2633 0.2633 1.0523 1.0523

8 16 8 108 6 0.00146 0.00146 0.19698 0.19698 1.01945 1.01945

10 20 10 132 6 0.00032 0.0003 0.1574 0.1574 1.00757 1.00757

TABLE III. Computational Resource and Algorithms Comparison for 1D-TFIM

the same number of qubits (8), the CNOT circuit depth
for the TFIM is 56, while it is 5592 for the SO(3) model.
Moreover, the desired results in the TFIM are easily ob-
tained with circuit depths of p ≃ 6, while at least double
the circuit depth is necessary for the SO(3) model. The
energy gap of the TFIM model is shown in Fig. 13, where
we can see that the QAOA-inspired algorithm accurately
measures the energy gap in all regimes, matching the ED
results. We show the performance of QAOA in Fig. 17 in
Appendix D, by plotting the ground state and first excited
state energies, as well as the in-fidelity (1−f) with circuit
depth (p) for a 1-d lattice with 10 sites. While much work
has already been done to compute the ground state of the
1D TFIM using QAOA [70, 71], this extension of QAOA
to compute the first excited state provides an additional
proof of principle of the QAOA-inspired excited state
ansatz that we have introduced in this work.
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FIG. 13. Plot of the energy difference for transverse field Ising
model (TFIM) in 1-d.

Due to the plaquette interaction, our SO(3) model has
the ingredients of a 2-d model. Thus, to have a fair com-
parison, we have also simulated the TFIM in 2-d using our
proposed methods. It becomes clear that the symmetry-

resolved QAOA method does not work as well for the
2 × 4 lattice compared to the comparable 1-d system.
Specifically, we compared the performance of the QAOA
algorithm for the TFIM with periodic boundary condi-
tions at the critical point (hx = 1) on both a 1-d lattice
with 8 sites and a 2-d lattice of size 2× 4. The number of
qubits is the same (8) in both cases. The performance is
compared through the in-fidelity. As shown in Fig. 14, for
the ground state, the 1-d lattice achieves significantly bet-
ter infidelity (1−f) at lower circuit depths, while the 2×4
lattice requires much larger circuit depths (p) to achieve
a comparable in-fidelity. In fact, the same behaviour was
also visible for the SO(3) model in the context of the 2×2
and the 2×4 lattice. Due to periodic boundary conditions,
many terms cancel out in the Hamiltonian for the former
lattice in contrast to the latter. The results in Fig. 12
clearly show the excellent convergence obtained for the
former lattices, and the larger circuit depths required for
a corresponding convergence on the 2× 4 lattices.

The observed difference in convergence rate could per-
haps be justified from general arguments about the entan-
glement structure for the ground states. Ground states of
quantum systems interacting via a local Hamiltonian can
exist in gapped, critical, or gapless phases. The ground
states of gapped phases are expected to have an area-law
for the entanglement entropy. This implies that the entan-
glement content of two-dimensional ground states is more
than that of one dimensional counterparts, in particular
if the ground state of a gapless phase is under question.
The observed results indeed follow this general reasoning:
to capture the ground state in two dimensions with the
same precision as in one dimension, a larger circuit depth
is necessary.

V. CONCLUSION

In this article, we have explored several theoretical
and experimental aspects relevant for digital quantum
simulation of non-Abelian lattice gauge theories in two
spatial dimensions. Until now, most quantum simulations
of gauge theories have been restricted to just one spatial
dimension, primarily due to the complexity of managing
large-dimensional Hilbert spaces associated with gauge
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FIG. 14. (Top): Plot of the in-fidelity of the ground state of
TFIM at the critical point (hx = 1) with circuit depth (p) on
a 1D lattice with 8 sites. (Bottom): We plot the in-fidelity of
the ground state on a 2 × 4 lattice. The plots demonstrate
that for the same circuit depth, the 1D lattice performs much
better than the 2D lattice.

fields and the challenges of enforcing Gauss’s law con-
straints.

To get around these challenges in two spatial dimension,
we consider a specific quantum link model with SO(3)
gauge invariance in the absence of matter fields, and, ex-
plicitly demonstrate the utility of defining and working in
the gauge-invariant basis. Given that this model exhibits
notable nuclear physics phenomenology (such as binding,
chiral symmetry breaking, and its restoration at finite
density—that are also observed in nature), it is worth-
while to investigate the potential of quantum computing
for studying this particular model.

While working in the electric flux basis can be intuitive
for understanding, and exact gauge-invariant results can
be obtained using classical computations, implementing
the problem on a quantum hardware does not always
ensure that the (non-Abelian) gauge invariance is exactly
maintained. We demonstrated this using the simplest
possible plaquette with only two links (a bubble plaque-
tte) on the trapped-ion IonQ quantum computers. We
observe that when employing variational quantum algo-
rithms like the VQE, the hardware generates an excess
of states in the electric flux beyond what is required to
accurately reproduce the gauge-invariant ground state.
This is reflected in the ground state energy, which shows

a deviation of approximately ∼ 10% from the exact en-
ergy. However, by using a gauge-invariant ansatz for the
ground state, we have reproduced the wave function with
a fidelity ∼ 1.

Having justified the requirement of the gauge-invariant
basis, we then formulated the variational ansätze directly
in the gauge-invariant basis, and used different quantum
algorithms such as the linearly connected VQE and the
QAOA to explore the ground state and the first excited
state of this model. The key objective was to determine
the feasibility of using quantum algorithms in order to ex-
plore the scenario of SSB of a discrete symmetry, when the
finite volume mass gap closes exponentially with increas-
ing volume, which we show to be a challenging problem
even in the gauge-invariant basis. Our studies explore
two different strategies to combat this challenge: the first
being the VQE for the ground state, and then the VQD
with converged ground state to extract the excited state,
and the second is the QAOA with symmetry-resolved
initial states. Our results indeed suggest that the increase
in circuit depth required to resolve energies appears to
scale polynomially with the system’s volume. Further, in
order to have a fair comparison of the difficulty associated
with simulating SSB in non-Abelian gauge theories, we
also simulate the paradigmatic TFIM which has a Z2

SSB for a range of parameters. In both the models, we
demonstrate the necessity of using a symmetry-resolved
variational ansatz in order to capture the ground state
and first excited state with different symmetries.

Another significant issue highlighted in our work is the
impact of higher than one spatial dimensionality. While
various variational quantum algorithms have demon-
strated remarkable success for quantum systems in one
spatial dimension, their performance degrades notably
when applied to genuinely two-dimensional systems. Al-
though energy estimates remain accurate within a few per-
cent, the fidelities of the resulting ground state wavefunc-
tions are orders of magnitude lower. This phenomenon
persists even for well-studied models like the paradigmatic
TFIM. Therefore, the development of more effective quan-
tum algorithms for systems in higher spatial dimensions
remains an open and pressing challenge.

Our results pave the way for various new investigations:
the most immediate is to include fermions in the problem,
and explore how the quantum algorithms fare in the pres-
ence of fermions. This presents a significant challenge,
as it requires the development of efficient fermion-to-
qubit encoding schemes that maintain a high degree of
locality, particularly in two-dimensional systems. The
phenomenology of the SO(3) model with fermions is ex-
pected to be richer in two spatial dimensions as compared
to the previously studied one dimensional model because
the magnetic field term can play a non-trivial role and
generate more phases. We are currently investigating
these aspects in detail. In terms of quantum computing,
the circuits developed here with considerable theoretical
insights need to be implemented on actual quantum hard-
ware for the larger systems in order to understand their
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scaling. It is possible to place external charges in the
pure gauge theory, and study the string breaking for an
non-Abelian gauge theory on a quantum hardware.
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[7] Mari Carmen Bañuls, “Tensor network algorithms: A
route map,” Annual Review of Condensed Matter Physics
14, 173–191 (2023).

[8] Paul Benioff, “The computer as a physical system: A
microscopic quantum mechanical Hamiltonian model of
computers as represented by Turing machines,” Journal
of Statistical Physics 22, 563–591 (1980).

[9] Richard P. Feynman, “Simulating Physics with Comput-
ers,” International Journal of Theoretical Physics 21,
467–488 (1982).

[10] Dimitris G. Angelakis and Changsuk Noh, “Quantum
simulations and many-body physics with light,” Rept.
Prog. Phys. 80, 016401 (2016).

[11] Morten Kjaergaard, Mollie E. Schwartz, Jochen
Braumüller, Philip Krantz, Joel I-Jan Wang, Simon
Gustavsson, and William D. Oliver, “Superconducting
Qubits: Current State of Play,” Physics 11, 369–395
(2020), arXiv:1905.13641 [quant-ph].

[12] Lawrence W. Cheuk, Matthew A. Nichols, Melih Okan,
Thomas Gersdorf, Vinay V. Ramasesh, Waseem S. Bakr,
Thomas Lompe, and Martin W. Zwierlein, “Quantum-
Gas Microscope for Fermionic Atoms,” Phys. Rev. Lett.
114, 193001 (2015).

[13] Z. Hadzibabic, C. A. Stan, K. Dieckmann, S. Gupta,
M. W. Zwierlein, A. Görlitz, and W. Ketterle, “Two-
species mixture of quantum degenerate bose and fermi
gases,” Phys. Rev. Lett. 88, 160401 (2002).

[14] Ehud Altman et al., “Quantum Simulators: Architectures
and Opportunities,” PRX Quantum 2, 017003 (2021),

arXiv:1912.06938 [quant-ph].
[15] C. Monroe et al., “Programmable quantum simulations

of spin systems with trapped ions,” Rev. Mod. Phys. 93,
025001 (2021), arXiv:1912.07845 [quant-ph].

[16] Giulia Semeghini et al., “Probing topological spin liquids
on a programmable quantum simulator,” Science 374,
abi8794 (2021), arXiv:2104.04119 [quant-ph].

[17] D. Bluvstein et al., “Controlling quantum many-body
dynamics in driven Rydberg atom arrays,” Science 371,
1355–1359 (2021).

[18] Michael Foss-Feig, Guido Pagano, Andrew C. Potter,
and Norman Y. Yao, “Progress in trapped-ion quantum
simulation,” (2024), arXiv:2409.02990 [quant-ph].

[19] Jarrod R. McClean, Jonathan Romero, Ryan Babbush,
and Alán Aspuru-Guzik, “The theory of variational hybrid
quantum-classical algorithms,” New J. Phys. 18, 023023
(2016), arXiv:1509.04279 [quant-ph].

[20] J. Zhang, G. Pagano, P. W. Hess, A. Kyprianidis,
P. Becker, H. Kaplan, A. V. Gorshkov, Z. X. Gong, and
C. Monroe, “Observation of a many-body dynamical phase
transition with a 53-qubit quantum simulator,” Nature
551, 601–604 (2017), arXiv:1708.01044 [quant-ph].

[21] Abhinav Kandala, Kristan Temme, Antonio D. Corcoles,
Antonio Mezzacapo, Jerry M. Chow, and Jay M. Gam-
betta, “Error mitigation extends the computational reach
of a noisy quantum processor,” Nature 567, 491–495
(2019), arXiv:1805.04492 [quant-ph].

[22] Christian W. Bauer, Wibe A. de Jong, Benjamin Nach-
man, and Davide Provasoli, “Quantum Algorithm for
High Energy Physics Simulations,” Phys. Rev. Lett. 126,
062001 (2021), arXiv:1904.03196 [hep-ph].

[23] Anthony Ciavarella, “Algorithm for quantum computation
of particle decays,” Phys. Rev. D 102, 094505 (2020),
arXiv:2007.04447 [hep-th].

[24] Benjamin Hall, Alessandro Roggero, Alessandro Baroni,
and Joseph Carlson, “Simulation of collective neutrino
oscillations on a quantum computer,” Phys. Rev. D 104,
063009 (2021), arXiv:2102.12556 [quant-ph].
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Jinglei Zhang, Jan F. Haase, Christine A. Muschik, and
Karl Jansen, “Investigating a (3+1)D topological θ-term
in the Hamiltonian formulation of lattice gauge theories
for quantum and classical simulations,” Phys. Rev. D 104,
034504 (2021), arXiv:2105.06019 [hep-lat].

[28] Thomas D. Cohen, Henry Lamm, Scott Lawrence, and
Yukari Yamauchi (NuQS), “Quantum algorithms for trans-
port coefficients in gauge theories,” Phys. Rev. D 104,
094514 (2021), arXiv:2104.02024 [hep-lat].

[29] Lukas Homeier, Annabelle Bohrdt, Simon Linsel, Eugene
Demler, Jad C. Halimeh, and Fabian Grusdt, “Realistic
scheme for quantum simulation of Z2 lattice gauge theories
with dynamical matter in (2+1)D,” Commun. Phys. 6,
127 (2023), arXiv:2205.08541 [cond-mat.quant-gas].

[30] Pierpaolo Fontana, Joao C. Pinto Barros, and Andrea
Trombettoni, “Quantum simulator of link models using
spinor dipolar ultracold atoms,” Phys. Rev. A 107, 043312
(2023), arXiv:2210.14836 [cond-mat.quant-gas].

[31] Jesse Osborne, Ian P. McCulloch, Bing Yang, Philipp
Hauke, and Jad C. Halimeh, “Large-Scale 2 + 1D U(1)
Gauge Theory with Dynamical Matter in a Cold-Atom
Quantum Simulator,” (2022), arXiv:2211.01380 [cond-
mat.quant-gas].

[32] Christian W. Bauer et al., “Quantum Simulation for
High-Energy Physics,” PRX Quantum 4, 027001 (2023),
arXiv:2204.03381 [quant-ph].

[33] Roland C. Farrell, Marc Illa, Anthony N. Ciavarella, and
Martin J. Savage, “Quantum simulations of hadron dy-
namics in the Schwinger model using 112 qubits,” Phys.
Rev. D 109, 114510 (2024), arXiv:2401.08044 [quant-ph].

[34] Uwe-Jens Wiese, “Ultracold Quantum Gases and Lattice
Systems: Quantum Simulation of Lattice Gauge Theories,”
Annalen Phys. 525, 777–796 (2013), arXiv:1305.1602
[quant-ph].

[35] Erez Zohar, Alessandro Farace, Benni Reznik, and J. Ig-
nacio Cirac, “Digital lattice gauge theories,” Phys. Rev.
A 95, 023604 (2017), arXiv:1607.08121 [quant-ph].

[36] Sergey B. Bravyi and Alexei Yu. Kitaev, “Fermionic Quan-
tum Computation,” Annals Phys. 298, 210–226 (2002),
arXiv:quant-ph/0003137.

[37] Danny Paulson et al., “Simulating 2D Effects in Lattice
Gauge Theories on a Quantum Computer,” PRX Quan-
tum 2, 030334 (2021), arXiv:2008.09252 [quant-ph].

[38] Zohreh Davoudi, Indrakshi Raychowdhury, and Andrew
Shaw, “Search for efficient formulations for Hamiltonian
simulation of non-Abelian lattice gauge theories,” Phys.
Rev. D 104, 074505 (2021), arXiv:2009.11802 [hep-lat].

[39] Tanmoy Bhattacharya, Alexander J. Buser, Shailesh
Chandrasekharan, Rajan Gupta, and Hersh Singh,
“Qubit regularization of asymptotic freedom,” Phys. Rev.
Lett. 126, 172001 (2021), arXiv:2012.02153 [hep-lat].

[40] Andrei Alexandru, Paulo F. Bedaque, Siddhartha Har-
malkar, Henry Lamm, Scott Lawrence, and Neill C.
Warrington (NuQS), “Gluon Field Digitization for Quan-
tum Computers,” Phys. Rev. D 100, 114501 (2019),
arXiv:1906.11213 [hep-lat].

[41] Anthony Ciavarella, Natalie Klco, and Martin J. Savage,
“Trailhead for quantum simulation of SU(3) Yang-Mills
lattice gauge theory in the local multiplet basis,” Phys.
Rev. D 103, 094501 (2021), arXiv:2101.10227 [quant-ph].

[42] Yannick Meurice, “Theoretical methods to design and test
quantum simulators for the compact Abelian Higgs model,”
Phys. Rev. D 104, 094513 (2021), arXiv:2107.11366

[quant-ph].
[43] Torsten V. Zache, Maarten Van Damme, Jad C. Halimeh,

Philipp Hauke, and Debasish Banerjee, “Toward the con-
tinuum limit of a 1 + 1D quantum link Schwinger model,”
Phys. Rev. D 106, L091502 (2022), arXiv:2104.00025
[hep-lat].

[44] Hanqing Liu and Shailesh Chandrasekharan, “Qubit Reg-
ularization and Qubit Embedding Algebras,” Symmetry
14, 305 (2022), arXiv:2112.02090 [hep-lat].

[45] Erik Gustafson, “Prospects for Simulating a Qudit Based
Model of (1+1)d Scalar QED,” Phys. Rev. D 103, 114505
(2021), arXiv:2104.10136 [quant-ph].

[46] Saurabh V. Kadam, Indrakshi Raychowdhury, and
Jesse R. Stryker, “Loop-string-hadron formulation of an
SU(3) gauge theory with dynamical quarks,” Phys. Rev.
D 107, 094513 (2023), arXiv:2212.04490 [hep-lat].

[47] Debasish Banerjee, Emilie Huffman, and Lukas Ram-
melmüller, “Exploring bosonic and fermionic link models
on (3+1)D tubes,” Phys. Rev. Res. 4, 033174 (2022),
arXiv:2201.07171 [hep-lat].

[48] Andrei Alexandru, Paulo F. Bedaque, Andrea Carosso,
Michael J. Cervia, Edison M. Murairi, and Andy Sheng,
“Fuzzy gauge theory for quantum computers,” Phys. Rev.
D 109, 094502 (2024), arXiv:2308.05253 [hep-lat].

[49] Saurabh V. Kadam, Aahiri Naskar, Indrakshi Raychowd-
hury, and Jesse R. Stryker, “Loop-string-hadron ap-
proach to SU(3) lattice Yang-Mills theory: Gauge in-
variant Hilbert space of a trivalent vertex,” (2024),
arXiv:2407.19181 [hep-lat].

[50] John Preskill, “Quantum Computing in the NISQ era
and beyond,” Quantum 2, 79 (2018), arXiv:1801.00862
[quant-ph].

[51] Jules Tilly et al., “The Variational Quantum Eigensolver:
A review of methods and best practices,” Phys. Rept.
986, 1–128 (2022), arXiv:2111.05176 [quant-ph].

[52] Abhinav Kandala, Antonio Mezzacapo, Kristan Temme,
Maika Takita, Markus Brink, Jerry M. Chow, and Jay M.
Gambetta, “Hardware-efficient variational quantum eigen-
solver for small molecules and quantum magnets,” Nature
549, 242–246 (2017).

[53] Sukin Sim, Peter D. Johnson, and Alán Aspuru-Guzik,
“Expressibility and Entangling Capability of Parameter-
ized Quantum Circuits for Hybrid Quantum-Classical
Algorithms,” Adv. Quantum Technol. 2, 1900070 (2019),
arXiv:1905.10876 [quant-ph].

[54] Oscar Higgott, Daochen Wang, and Stephen Brierley,
“Variational Quantum Computation of Excited States,”
Quantum 3, 156 (2019), arXiv:1805.08138 [quant-ph].

[55] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann, “A
Quantum Approximate Optimization Algorithm,” (2014),
arXiv:1411.4028 [quant-ph].

[56] Leo Zhou, Sheng-Tao Wang, Soonwon Choi, Hannes Pich-
ler, and Mikhail D. Lukin, “Quantum Approximate Op-
timization Algorithm: Performance, Mechanism, and Im-
plementation on Near-Term Devices,” Phys. Rev. X 10,
021067 (2020), arXiv:1812.01041 [quant-ph].

[57] Gavin E. Crooks, “Performance of the Quantum Approx-
imate Optimization Algorithm on the Maximum Cut
Problem,” (2018), arXiv:1811.08419 [quant-ph].

[58] Martin Larocca, Piotr Czarnik, Kunal Sharma, Gopikr-
ishnan Muraleedharan, Patrick J. Coles, and M. Cerezo,
“Diagnosing Barren Plateaus with Tools from Quantum Op-
timal Control,” Quantum 6, 824 (2022), arXiv:2105.14377
[quant-ph].

http://dx.doi.org/ 10.1103/PhysRevD.104.034504
http://dx.doi.org/ 10.1103/PhysRevD.104.034504
http://arxiv.org/abs/2105.06019
http://dx.doi.org/10.1103/PhysRevD.104.094514
http://dx.doi.org/10.1103/PhysRevD.104.094514
http://arxiv.org/abs/2104.02024
http://dx.doi.org/10.1038/s42005-023-01237-6
http://dx.doi.org/10.1038/s42005-023-01237-6
http://arxiv.org/abs/2205.08541
http://dx.doi.org/10.1103/PhysRevA.107.043312
http://dx.doi.org/10.1103/PhysRevA.107.043312
http://arxiv.org/abs/2210.14836
http://arxiv.org/abs/2211.01380
http://arxiv.org/abs/2211.01380
http://dx.doi.org/10.1103/PRXQuantum.4.027001
http://arxiv.org/abs/2204.03381
http://dx.doi.org/10.1103/PhysRevD.109.114510
http://dx.doi.org/10.1103/PhysRevD.109.114510
http://arxiv.org/abs/2401.08044
http://dx.doi.org/10.1002/andp.201300104
http://arxiv.org/abs/1305.1602
http://arxiv.org/abs/1305.1602
http://dx.doi.org/10.1103/PhysRevA.95.023604
http://dx.doi.org/10.1103/PhysRevA.95.023604
http://arxiv.org/abs/1607.08121
http://dx.doi.org/10.1006/aphy.2002.6254
http://arxiv.org/abs/quant-ph/0003137
http://dx.doi.org/10.1103/PRXQuantum.2.030334
http://dx.doi.org/10.1103/PRXQuantum.2.030334
http://arxiv.org/abs/2008.09252
http://dx.doi.org/10.1103/PhysRevD.104.074505
http://dx.doi.org/10.1103/PhysRevD.104.074505
http://arxiv.org/abs/2009.11802
http://dx.doi.org/ 10.1103/PhysRevLett.126.172001
http://dx.doi.org/ 10.1103/PhysRevLett.126.172001
http://arxiv.org/abs/2012.02153
http://dx.doi.org/10.1103/PhysRevD.100.114501
http://arxiv.org/abs/1906.11213
http://dx.doi.org/10.1103/PhysRevD.103.094501
http://dx.doi.org/10.1103/PhysRevD.103.094501
http://arxiv.org/abs/2101.10227
http://dx.doi.org/10.1103/PhysRevD.104.094513
http://arxiv.org/abs/2107.11366
http://arxiv.org/abs/2107.11366
http://dx.doi.org/10.1103/PhysRevD.106.L091502
http://arxiv.org/abs/2104.00025
http://arxiv.org/abs/2104.00025
http://dx.doi.org/ 10.3390/sym14020305
http://dx.doi.org/ 10.3390/sym14020305
http://arxiv.org/abs/2112.02090
http://dx.doi.org/ 10.1103/PhysRevD.103.114505
http://dx.doi.org/ 10.1103/PhysRevD.103.114505
http://arxiv.org/abs/2104.10136
http://dx.doi.org/10.1103/PhysRevD.107.094513
http://dx.doi.org/10.1103/PhysRevD.107.094513
http://arxiv.org/abs/2212.04490
http://dx.doi.org/10.1103/PhysRevResearch.4.033174
http://arxiv.org/abs/2201.07171
http://dx.doi.org/ 10.1103/PhysRevD.109.094502
http://dx.doi.org/ 10.1103/PhysRevD.109.094502
http://arxiv.org/abs/2308.05253
http://arxiv.org/abs/2407.19181
http://dx.doi.org/ 10.22331/q-2018-08-06-79
http://arxiv.org/abs/1801.00862
http://arxiv.org/abs/1801.00862
http://dx.doi.org/10.1016/j.physrep.2022.08.003
http://dx.doi.org/10.1016/j.physrep.2022.08.003
http://arxiv.org/abs/2111.05176
http://dx.doi.org/ 10.1038/nature23879
http://dx.doi.org/ 10.1038/nature23879
http://dx.doi.org/ 10.1002/qute.201900070
http://arxiv.org/abs/1905.10876
http://dx.doi.org/ 10.22331/q-2019-07-01-156
http://arxiv.org/abs/1805.08138
http://arxiv.org/abs/1411.4028
http://dx.doi.org/10.1103/PhysRevX.10.021067
http://dx.doi.org/10.1103/PhysRevX.10.021067
http://arxiv.org/abs/1812.01041
http://arxiv.org/abs/1811.08419
http://dx.doi.org/ 10.22331/q-2022-09-29-824
http://arxiv.org/abs/2105.14377
http://arxiv.org/abs/2105.14377


19

[59] P.C. Hohenberg and A.P. Krekhov, “An introduction
to the ginzburg–landau theory of phase transitions and
nonequilibrium patterns,” Physics Reports 572, 1–42
(2015), an introduction to the Ginzburg–Landau theory
of phase transitions and nonequilibrium patterns.

[60] S. Chandrasekharan and U. J. Wiese, “Quantum link
models: A Discrete approach to gauge theories,” Nucl.
Phys. B 492, 455–474 (1997), arXiv:hep-lat/9609042.

[61] E. Rico, M. Dalmonte, P. Zoller, D. Banerjee, M. Bögli,
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Appendix A: Gauge transformation of the quantum
link operators

The commutation relations for La
x,y, R

a
x,y and Oab
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The link operator Oab
x,y transforms under gauge trans-

formation as
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Appendix B: Hamiltonian decomposition for 2× 4
lattice

The Hamiltonian for the 2× 4 lattice was decomposed
into twenty-four pieces for implementation with QAOA:
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Appendix C: Energy convergence for the SO(3) model
on a 2× 6 lattice

In this section, we show the energy convergence for
both the ground state and the first excited state energy
as a function of circuit depth (p) for the SO(3) model on
a 2× 6 lattice, using VQE and VQD methods in Fig. 15.

Appendix D: The results for 1-d TFIM

This section collects the results of the ground and
the first excited state energy for the 1-d TFIM in three
different regimes for various lattice sizes using the QAOA
method. To see the performance of QAOA we plot both
energies and in-fidelity with the circuit depth (p) for a
1-d lattice with 10 sites in Fig. 17. In addition, we show
an example of how the minimization proceeds for a given
circuit depth and an initial state in Fig. 16 for several
different classical optimizers (for hx = 0.5 and L = 8)
and compare among them.
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FIG. 15. (Top): The optimized ground state and first excited
state energies are shown as a function of circuit depth (p) on a
2×6 lattice using the VQE algorithm (QAOAshots). (Bottom):
The energy convergence results are presented for the VQD
method (VQElin).
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FIG. 16. Plot of the optimized ground state energy using the
QAOA method (QAOAEX) against the number of iterations
for a lattice with 8 sites at hx = 0.5, comparing three different
optimizers. The optimizer L-BFGS-B took more iterations to
converge than the others but achieved a very low in-fidelity of
about 10−10. In contrast, the COBYLA reached an in-fidelity
of around 10−6, and the SLSQP optimizer had an in-fidelity
of approximately 10−4.
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FIG. 17. (First row): We display both the ground state and the first excited state energy as a function of circuit depth (p)
on a 1-d lattice with 10 sites. In the first row, the leftmost figure shows the results for the ground state with the GHZ state
as an initial state, the middle figure also shows the ground state results when one starts with an eigenstate of the H2 term
as the initial state, while the rightmost figure presents the performance for the first excited state. The second row shows the
corresponding in-fidelity for each of the cases in the first row.
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