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Abstract—The spectral efficiency (SE) and global energy
efficiency (GEE) trade-off encountered in the design of
millimeter-wave (mmWave)-based massive multi-input multi-
output (MIMO) non-orthogonal multiple access (NOMA) net-
works is investigated with a particular focus on user cluster-
ing. By exploiting the similarity among user channels a pair
of spectral and energy-efficient user clustering algorithms are
proposed for dynamically selecting both the number of clusters
and the number of users in each cluster. Subsequently, a
joint analog precoder/combiner and user clustering technique
is developed, followed by a multi-objective optimization (MOO)
framework for flexibly balancing the GEE and SE objectives
in a mmWave NOMA network subject to specific constraints.
The MOO objective is initially transformed to a weighted sum
rate maximization problem, followed by a quadratic-transform
(QT)-based approach conceived for maximizing the non-convex
objective by approximating it as a concave-convex function. Our
simulation results demonstrate that the user clustering techniques
designed attain a 85% performance gain over random clustering
technique and demonstrating the benefits of the algorithm
designed for mmWave NOMA networks.

Index Terms—Hybrid precoding, User clustering, mmWave,
MIMO, NOMA, spectral efficiency, energy efficiency, fractional
programming.

I. INTRODUCTION

Both millimeter-wave (mmWave) and non-orthogonal mul-
tiple access (NOMA) constitute widely recognized enabling
technologies for next-generation (NG) networks, with great
potential to address the diverse demands of emerging appli-
cations, including augmented reality, virtual reality, Internet
of Things, and ultra-reliable low-latency communications [1].
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The availability of wide blocks of spectrum in the mmWave
frequency band spanning from 30 GHz to 300 GHz is a
key enabler of high data rates and overall system capacity
[2]. However, the mmWave signal experiences significant path
loss. Thankfully, the short wavelength at mmWave frequen-
cies allows implementing a large antenna array at the base
station (BS) to compensate for the path loss via multiple-
input multiple-output (MIMO) beamforming techniques [3].
Nevertheless, the prohibitively expensive hardware require-
ments and excessive energy consumption at high frequencies
make it impractical to dedicate a separate radio frequency (RF)
chain to each antenna element. To address the above challenge,
hybrid mmWave systems significantly reduce the number of
RF chains without an obvious performance loss by striking an
attractable balance between performance and feasibility [4].

On the other hand, reducing the number of RF chains
imposes an additional challenge as it limits the number of
active users served simultaneously in mmWave networks [5].
This diminishes the potential of mmWave networks to fully
exploit the benefits of multi-user (MU) MIMO technology
by restricting its application to a scenario where massive
connectivity is desirable. Integration of mmWave technology
with the NOMA concept into massive MIMO-NOMA sys-
tems breaks the limits of the conventional mmWave network
by allowing multiple users to be served using a single RF
chain on the same time, frequency, code, and space resource
block [6]. This fact motivates the use of NOMA in con-
junction with mmWave technology to facilitate MU-MIMO
transmission, hence further enhancing the spectral efficiency
(SE), rate fairness, and connection density [7]. Compared to
the traditional orthogonal multiple access (OMA) scheme,
NOMA multiplexes the multiple user streams of a given
resource block by distinguishing them in the power domain
using superposition coding at the transmitter and successive
interference cancellation (SIC) at the receiver [8]. Although
NOMA improves the massive connectivity, it is not advisable
to directly employ NOMA in a massive user scenario. This
is because the implementation of the SIC framework at the
receiver is vulnerable to cross-user error propagation and
leads to a significant decoding delay, when a large number
of active users are present in the network. Thus, mmWave-
based massive MIMO systems beneficially support the NOMA
SIC framework of dense networks by grouping the users into
multiple clusters. Each orthogonal beam in such a network
only serves a single cluster, with NOMA being used within
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each cluster [9]. A brief review of the existing research in this
area is presented next.

A. Review of existing contributions

The potential gains and challenges of mmWave-massive
MIMO-based NOMA networks have been the focus of many
research endeavors. Hybrid beamforming, user ordering, user
clustering, and power allocation are the key design com-
ponents of mmWave-based NOMA systems [9]–[14]. These
components are inherently interlinked, and naturally, their
optimization is intertwined. For example, the choice of user
clustering affects the beamformer design, which, in turn,
impacts both the power allocation and user ordering. In this
context, the authors of [10] investigated a joint optimization
problem of user clustering, beamforming, and power allocation
in a mmWave MIMO NOMA downlink system. In their path-
breaking work Pang et al., [11], formulated a joint optimiza-
tion problem for power allocation and hybrid beamforming
to maximize the minimum user signal-to-leakage-plus-noise
ratio, while ensuring rate fairness across the users. Similarly,
in [9], a joint user grouping and power optimization framework
is developed for secure mmWave NOMA systems. Similarly,
Wang et al., [15] proposed a joint clustering and power
optimization algorithm to maximize the sum rate by exploiting
a Stackelberg game-based design.

Review of existing user clustering schemes:
The directional characteristics of the mmWave beams result

in a stronger correlation between the user channels that lie
within the main lobe of the beam, which is ideally suited for
NOMA user clustering. Generally, user clustering is a combi-
natorial problem that has NP-hard time complexity. Therefore,
various research efforts have been put forward to design
the suboptimal low-complex user clustering for mmWave-
based NOMA networks. Most of the existing literature in
mmWave-based NOMA networks is focused on random user
clustering [16], two-user pairing [17], a fixed number of users
per cluster [14], [18], [19], and on a variable number of
users per cluster [14], [15], [18], [20]–[22]. Moreover, the
above treatises mainly consider the channel correlation-based
[11], [12]; channel disparity-based [20], [23]; angle-based
[7], [24]; joint channel correlation- and disparity-based [17],
[21]; cluster head-based [25]; game theory-based [15]; graph
theory-based [19]; agglomerative hierarchical [13], [26]; re-
clustering-based [23]; beamwidth-based [24] and unsupervised
machine learning-based [27] arrangements. These also include
K-means-based [11], [12], [21], K-means variants-based [22],
and EM algorithm-based [14] user clustering algorithms. By
contrast, only a few studies [21], [27], [26] are available
in the literature that proposed a user clustering scheme by
dynamically updating both the cluster size and the number of
clusters.

The widespread adoption of wireless devices and services
requiring high data rates has triggered unprecedented the
data traffic escalation, which has also been accompanied by
an enormous increase in energy consumption [28]. At the
same time, shrinking terminal size severely limits the battery
capacity of such devices. Therefore, efficient utilization of the

available spectrum and energy resources is of vital importance
in these systems [29]. Numerous research efforts have focused
on improving the SE in mmWave NOMA networks [7], [25],
[30], [31]. An ingenious optimization problem conceived for
power allocation and power splitting to maximize the SE in
a simultaneous wireless information and power transfer-aided
mmWave NOMA system has been investigated in [25]. Simi-
larly, the authors of [30] formulated a joint beamforming and
power allocation problem to maximize the sum-rate of a two-
user scenario. Proceeding further, Shao et al., [31] considered
an angle-domain NOMA setting and improved both the user
scheduling and precoder/decoder design strategies to maxi-
mize the sum-rate of a multi-cell mmWave system. Similarly,
considering the angular orientation of the line of sight (LoS)
path in a mmWave channel, the authors of the inspirational
treatise [7] derived the closed-form sum-rate expression for an
angle-domain mmWave NOMA system. Their analysis is both
challenging and stimulating due to the incorporation of the
angle estimation error. The energy-efficient design of wireless
communication systems has become an increasingly prominent
consideration due to their ecological and economic impacts.
However, it is also important to note that prioritizing energy
efficiency (EE) may inadvertently lead to under-utilization of
the available spectral resources. Towards this, the authors of
[17] put forward an excellent framework for energy-efficient
power allocation design in a MU NOMA network for the
mmWave band, subject to per-cluster power and per-user
quality of service constraints. Along similar lines, the authors
of [32] study the challenging issue of secure EE in these
systems, considering the presence of an eavesdropper in the set
of legitimate receivers. Next, the authors of [33] formulated an
optimization problem to jointly optimize the hybrid precoding,
power allocation, and bandwidth partitioning for maximizing
the EE of mmWave NOMA HetNets. As a further advance,
the authors of [34] adjusted the beamwidth of an analog beam-
former to facilitate multiple NOMA users within each beam,
and thereafter optimized the EE of the resultant beamwidth-
controlled mmWave NOMA system.

It is widely exploited that there exists a fundamental trade-
off between the EE and SE in a typical implementation.
Common approaches to dealing with it are to maximize the
EE subject to a constrained SE and vice versa. However, these
approaches do not exploit the available degrees of freedom of
the constrained objective [35]. Furthermore, introducing these
constraints significantly adds to the complexity of obtaining
a solution for the optimization problem as it restricts the
feasible solution space [36]. Therefore, it is essential to strike
a balance between these two factors, consequently, joint rather
than constrained optimization of the EE-SE has gained signif-
icant research attention in recent years [37]. Only few works
such as [38] have successfully investigated the beamforming
design problem to find the optimal non-dominated SE-EE
Pareto front in the context of mmWave systems for index
modulated MIMO-orthogonal frequency division modulation
(OFDM) systems. As for the NOMA systems, very few studies
have focused on exploring the SE-EE trade-off. For instance,
the exposition [39] proposed an imaginative multi-objective
optimization (MOO) approach for beamformer design in a



3

multiple-input single-output-based NOMA system that strikes
an excellent balance between the SE and EE. Along similar
lines, a resource allocation scheme was proposed for hybrid
time division multi-access (TDMA)-NOMA systems in [40].

Against this backdrop, our contributions are boldly con-
trasted to the existing literature in Table I. Observe that there
is only a single treatise in [41] that investigates a joint EE-
SE objective-based design for mmWave NOMA systems in
the presence of an intelligent reflecting surface between the
BS and users. However, their model is limited to a two-
user scenario and therefore it has limited applicability in
dense multi-user networks. In addition, most of the existing
literature in mmWave-NOMA exploits correlation-based user
clustering, whose performance is sensitive to an empirically
set correlation threshold [9], [17], [25], [33]. A significant
drawback of these methodologies is that they lack a systematic
framework to determine either the optimal value of the corre-
lation threshold or the number of clusters to suppress the inter-
cluster interference. Motivated by these shortcomings of the
current state-of-the-art, this treatise aims for comprehensively
designing the user clustering, hybrid beamforming, and power
allocation schemes to achieve the optimal SE-EE trade-off
in mmWave MU massive MIMO-NOMA systems. The key
contributions of this treatise are listed below.

B. Contribution of this work
1) In contrast to [9], [10], [12], [17], [25], [30] and [24]

that consider single-antenna downlink receivers, we introduce
a general framework for an arbitrary number of antennas
at the downlink receivers. To begin with, a novel algorithm
is conceived for the dynamic selection of the cluster heads
(CHs) by optimizing the number of clusters and maximizing
the both SE as well as GEE of the system. In contrast to
the clustering algorithm of [25] that iteratively increases the
correlation threshold, potentially leading to increased inter-
cluster interference, the clustering algorithm designed itera-
tively determines the optimal number of clusters to minimize
the inter-cluster interference without necessitating an increase
of the correlation threshold. Despite the need for the dynamic
number of clusters [21], [27], [26], particularly for mmWave-
based networks, a dearth of research investigations is available
in these fields.

2) Exploiting the condition number as a correlation metric,
more sophisticated cluster head selection and user clustering
algorithms are proposed. In contrast to the existing clustering
algorithms of [9], [17], [25], [33] that successively obtain
suitable CHs, the proposed algorithm simultaneously obtains
the CHs for each cluster, which is an efficient solution for user
clustering as it allows for a more comprehensive evaluation of
the correlation of users. Notably, this study is the, first, to
explore using the condition number as a correlation metric
for user clustering for the mmWave-based NOMA network.
Furthermore, leveraging only the LoS path in the mmWave
channel, a joint analog beamforming and user grouping al-
gorithm is developed next for users that lie within the half
power beam width (HPBW) of the beamformer main lobe,
thereby ensuring that users are served by the most effective
beamformer.

3) Following user grouping, and hybrid beamformer design,
the power optimization problem is proposed next for striking a
trade-off between the SE and global energy efficiency (GEE).
Exploiting the MOO framework, an optimization problem is
developed for jointly maximizing the SE and GEE of the
network subject to total power, per user rate constraint, and
successful SIC constraints. Unlike orthogonal multiple access
(OMA) schemes, SIC constraint in NOMA allocates a larger
portion of power to users with weaker channels to ensure
successful SIC while optimizing either SE or GEE. Addi-
tionally, this work incorporates the SIC overhead at the users
into the power consumption model which is also lacking in
the existing literature of the energy-efficient mmWave-NOMA
networks. A weighted-sum optimization problem is developed
to solve the above MOO problem for the proposed system.
The resultant optimization framework is general and exclusive
SE optimization, as well as GEE optimization, constitutes its
special cases.

4) Our simulation findings demonstrate the impact of the
proposed user clustering schemes on the i) SE; ii) GEE; and iii)
SE-GEE trade-off of the proposed mmWave-NOMA network
by comparing them with random and other existing state-of-
the-art clustering techniques [21], [25], [42]. The CN-based
clustering algorithm outperforms the random and similarity-
based clustering schemes under a moderate number of anten-
nae and large user scenarios. However, its advantage dimin-
ishes as antenna numbers increase or user numbers decrease.
The impact of the proposed user clustering scheme and hybrid
precoding scheme on the SE-GEE trade-off performance was
also studied by comparing it to the fully digital MIMO,
and MIMO-OMA counterparts. Moreover, the effectiveness of
the proposed optimization framework over the random power
allocation is validated through simulations, demonstrating its
ability to balance GEE and SE by fine-tuning the weights.

II. SYSTEM MODEL

Consider the downlink of a single-cell MU mmWave
MIMO-NOMA system where a BS simultaneously serves
K users. The BS is equipped with NB transmit antennas
and NRF RF chains, while each user in the network has
NU receive antennas and a single RF chain. In contrast to
conventional mmWave transmission, where each RF chain at
the BS supports only a single user, mmWave-based NOMA
transmission allows multiple users to be served simultaneously
using a single RF chain, i.e., K > NRF . The K users are
divided into G clusters by employing a suitable user clustering
technique, where the number of clusters does not exceed the
number of RF chains, i.e., G ≤ NRF .

A. Channel model

We harness the widely used narrowband Saleh-Valenzuela
block-fading channel model for mmWave communication [4].
The downlink channel Hk ∈ CNU×NB between the BS and
kth user can be expressed as

Hk =

√
NBNU

Lk + 1

(
Hk,0 +

Lk∑
l=1

Hk,l

)
, (1)
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Table I: Contrasting our solution to the literature of HP based mmWave MIMO-NOMA systems

[25], [13], [33] [8] [34] [31] [35] [36] [39] [38] [41] [21] [26] [27] Proposed
mmWave-Based Massive MIMO ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
NOMA ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Multi-Antenna Users ✓ ✓ ✓ ✓ ✓
Dynamic User Clustering ✓ ✓ ✓ ✓
Joint User Clustering And Beamforming ✓ ✓
Power Optimization ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
Balancing GEE-SE Trade Off ✓ ✓ ✓ ✓ ✓ ✓

where Hk,0 = νk,0aR(θk,0)a
H
T (ϕk,0) and Hk,l =

νk,laR(θk,l)a
H
T (ϕk,l) denote the channel matrices for the LoS

and the lth non-line of sight (NLoS) paths, respectively,
between the BS and kth user. Due to the high free-space
path-loss and limited scattering in mmWave communication,
the number of distinguishable paths Lk + 1 is small, where
Lk denotes the number of NLoS paths. The parameter νk,l
denotes the complex gain of the lth path and it is modeled
as an independent random variable obeying the distribution
CN

(
0, σ2

k,l

)
. Upon considering uniform linear arrays (ULAs)

at both the transmitter and the receiver, the vectors aT (ϕ) =
1√
NB

[1, ej
2π
λ d sinϕ, · · · , ej 2π

λ d(NB−1) sinϕ]T ∈ CNB×1 and
aR(θ) = 1√

NU
[1, ej

2π
λ d sin θ, · · · , ej 2π

λ d(NU−1) sin θ]T ∈
CNU×1 denote the normalized transmit and receive array steer-
ing vectors for the angular directions of ϕ and θ, respectively.
In particular, θ and ϕ denote the azimuth angle of arrival
(AoA) and azimuth angle of departure (AoD), respectively,
which are uniformly distributed within the range of [0, π]. The
parameters λ and d = λ

2 denote the carrier wavelength and
antenna spacing, respectively.

B. Downlink data transmission

The BS is assumed to transmit G streams in order to serve
the K users in the G clusters. Let S = {1, 2, · · · , G} denote
the set containing the cluster indices, while the set of user
indices in the ith cluster is denoted as Ui = {1, 2, · · · , |Ui|}.
Here |Ui| represents the number of users in the ith cluster
with |Ui| ≠ 0 for ∀i. For NOMA superposition coding and
mmWave hybrid precoding, the transmitted signal of the BS
can be expressed as

x = FRFFBBs, (2)

where the vector s =
[
s1, s2, · · · , sG

]T ∈ CG×1 denotes the
symbols corresponding to all the clusters. The scalar si =
|Ui|∑
j=1

√
αi,jPmaxsi,j represents the NOMA superposition coded

symbol for all the users in the ith cluster, where si,j denotes
the information symbol of the jth user in the ith cluster which
is assumed to be independent identically distributed (i.i.d) with
an average power of E

[
|si,j |2

]
= 1. The parameters αi,j and

Pmax represent the power allocation coefficients corresponding
to symbol si,j and the average transmit power at the BS, re-
spectively. The transmit power constraint can be formulated as
G∑
i=1

|Ui|∑
j=1

αi,j ≤ 1. The matrices FRF =
[
f1RF , f

2
RF · · · , fGRF

]
∈

CNB×G and FBB =
[
f1BB , f

2
BB , · · · , fGBB

]
∈ CG×G denote

the analog and baseband transmit precoding (TPC) matrices

at the BS, respectively. The choice of αi,j , FRF and FBB

will be discussed later in the following sections.
For a given user clustering, hybrid precoding, and power

allocation, the signal ri,j ∈ CNU×1 received at the jth user of
the ith cluster can be expressed as

ri,j = Hi,jFRF

G∑
g=1

fgBB

|Ug|∑
m=1

√
αg,mPmaxsg,m + ηi,j , (3)

where the matrix Hi,j is the mmWave channel from the BS
to the jth user in the ith cluster, furthermore, the vector
ηi,j ∈ CNU×1, which follows the distribution CN

(
0, σ2

ηINU

)
,

denotes the additive white Gaussian noise (AWGN) added at
the jth user in the ith cluster.

Owing to the fact that there is only a single RF chain at the
users, signal received at the jth user in the ith cluster after
applying the analog combiner wi,j ∈ CNU×1 is written as

wH
i,jri,j=wH

i,jHi,jFRF

G∑
g=1

fgBB

|Ug|∑
m=1

√
αg,mPmaxsg,m+wH

i,jηi,j .

(4)
The next section discusses the digital TPC design, the

NOMA SIC framework and the achievable rate analysis for
the desired user.

III. ACHIEVABLE RATE ANALYSIS

The received signal in (4) contains the desired signal, intra-
cluster interference, and inter-cluster interference, which can
be expressed as

yi,j =hH
i,jf

i
BB

√
αi,jPmaxsi,j︸ ︷︷ ︸

desired signal

+hH
i,jf

i
BB

|Ui|∑
m ̸=j

√
αi,mPmaxsi,m︸ ︷︷ ︸

intra-cluster interference

+ hH
i,j

G∑
g ̸=i

fgBB

|Ug|∑
m=1

√
αg,mPmaxsg,m︸ ︷︷ ︸

inter-cluster interference

+wH
i,jηi,j , (5)

where hH
i,j = wH

i,jHi,jFRF ∈ C1×G denotes the effective
channel spanning from the BS to the jth user in the ith cluster.
The BS minimizes the inter-cluster interference by designing
the digital TPC for each cluster, whereas, the intra-cluster
interference is minimized at each user by employing SIC.

Since the number of users exceeds the number of beams, a
digital TPC can be designed for a single user in each cluster,
which is shared among all the remaining users within the clus-
ter. Therefore, it becomes impossible to completely suppress
the inter-cluster interference. It is desirable to design the digital
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TPC for the strongest channel user in each cluster in order to
maximize the network throughput. By concatenating the effec-
tive channel vectors of the strongest channel users from each
cluster as H̃ =

[
h(1),h(2), · · · ,h(G)

]
∈ CG×G and applying

the conventional zero forcing algorithm, the digital TPC matrix
can be expressed as FBB = H̃

(
H̃HH̃

)−1
. To satisfy the unit

power constraint for the hybrid TPC, each column of FBB is
further normalized as fgBB =

fgBB

||FRF fgBB ||
, for g = 1, 2, · · · , G.

On the other hand, for SIC, the decoding order of users
within the ith cluster is set in the ascending order of their
effective channel gains as follows

|hH
i,1f

i
BB |2 ≤ |hH

i,2f
i
BB |2 ≤ · · · ≤ |hH

i,|Ui|f
i
BB |2. (6)

The NOMA power allocation coefficients corresponding to
users in the ith cluster are ordered in descending order, i.e.,
1 ≥ αi,1 ≥ αi,2 ≥ · · · ≥ αi,|Ui| ≥ 0.

Following the SIC detection order in (6), the first user
in the ith cluster detects the desired signal by treating the
signals of all other users in the same cluster as interference.
In particular, the jth user in the ith cluster employs SIC to
detect all the previous user signals, and then progressively
subtracts the interference before decoding its own information
signal. Therefore, the signal-to-interference-plus-noise (SINR)
expression at the jth user for detecting the kth user’s signal
in the ith cluster, along with k ≤ j can be expressed as

SINRi
k←j=

|hH
i,jf

i
BB |2αi,kPmax

|hH
i,jf

i
BB |2

|Ui|∑
m=k+1

αi,mPmax

+

G∑
g ̸=i

|hH
i,jf

g
BB |

2

|Ug|∑
m=1

αg,mPmax+|wH
i,jηi,j |2



, (7)

where j ≤ |Ui|, 1 ≤ k ≤ j. It follows from (6) and (7) that if
the kth user having a weaker effective channel can detect its
message signal, then the jth user associated with a stronger
effective channel is also guaranteed to be able to detect the
message of the kth user having SINRi

k←j ≥ SINRi
k←k for ∀

k ≤ j. This condition guarantees successful SIC operation
at each user and it is always satisfied, once the detection
order is set at the BS. Note that the above inequality derived
for successful SIC turns out to be a non-convex constraint
under the optimization framework of Section V. Therefore,
(6) provides a more convenient and tractable alternative for
ensuring successful SIC, when framing an optimization prob-
lem associated with NOMA [43]. The achievable rate at the
jth user in the ith cluster upon detecting its own message
signal is given as

Ri,j = log2
(
1 + SINRi

j←j

)
. (8)

In contrast to [4], which focused on developing the joint
analog TPC and receiver combining (RC) for each user in the
mmWave network, joint design is impossible for mmWave
NOMA networks since users in a particular cluster share a
common TPC designed for the CH. In the next section, the
analog RCs are designed for each user by employing the
instantaneous channel matrices. Subsequently, user grouping
and analog precoding are designed for the proposed mmWave
NOMA system.

Section IV-A: Analog-only combining

Section IV-B1: Cluster Head Selection Techniques

Section IV-B2: Analog precoding

Section IV-B3: Assignment of remaining users

Section IV-C: Joint analog precoding, analog combining and
user grouping

Section III: Digital precoding

Exploiting the beamforming codebook, analog-only
combiners wk, ∀k is designed for users in (10).

a) Similarity-based Cluster Head Selection Technique:
Dynamically selects the CHs for each cluster
by investigating the correlation between user channels
in Algorithm 2.

b) Condition Number-Based Cluster Head Selection Technique:
Exploits the condition number as correlation index to
determine to CHs for the all clusters in
Algortihm 2.

Based on the equivalent channel vectors of CHs,
analog precoding matrix FRF is designed in (13).

Similar to cluster head selection technique, the condition
number is used to identify the remaining users in all the
clusters.

Exploiting the half-power beamwidth (HPBW) of the main
lobe of the beam, a joint analog precoding, analog combin-
ing, and user clustering are discussed in Algorithm 3.

Fig. 1: Hybrid precoding, combining and user clustering

IV. ANALOG PRECODING, ANALOG COMBINING AND
USER CLUSTERING

Recall that, as the number of RF chains NRF available at
the BS is lower than the number of active users K, it is not
possible to design the analog TPC FRF and the baseband
TPC FBB for each user at the BS. Therefore, it becomes
essential to choose a CH in each cluster and to design the RF
and baseband TPC matrices for these. The remaining users
within the cluster share the same TPC designed for the CH.
In contrast to [14], [25], [44] and [13], where users equipped
with a single antenna are considered, choosing a CH for each
cluster in the MU-MIMO system under consideration in this
work is a challenging task. To address this, the analog RC is
specifically designed for each user, first, employing the user
channels. Subsequently, a cluster head selection algorithm is
proposed to determine the CH for each cluster, utilizing the
equivalent channels of the users. The systematic flow of steps
in the proposed hybrid TPC, RC and user clustering schemes
are summarized in Fig. 1.

Remark: We recommend commencing with user clustering,
then proceeding with analog and digital precoding, and finally
power optimization. However, depending on the performance
needs, other sequences may also considered. For example, in
[18] beamforming has been performed first, followed by user
clustering and power optimization.
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A. Analog receiver combining

The analog-only RC at each user can be viewed as a typical
single-user problem [4, Section IV]. Therefore, it can be de-
signed using only point-to-point channel knowledge obtained
by exploiting the codebook-based beam-training techniques
developed in [45], which do not require explicit channel
estimation and have a low training overhead. This allows each
user to choose their respective analog-only RC vector from
the pre-defined RF codebook, defined as follows [4]

Wc =
[
aR(θ0),aR(θ1), · · · ,aR(θCW−1

)
]
, (9)

where CW is the size of the codebook and {θi}Gw−1

i=0 are
selected from the set Θ = {θi; θi ∈ 2πi

CW
, ∀i}, which is the set

of feasible quantized angular grid points.
Once the codebook Wc is designed, each user exhaustively

sweeps over Wc to determine the RF-only RC. Therefore, the
RC vector wk at the kth user can be selected as follows

wH
k = arg max

∀wi∈Wc

∥wH
i Hk∥ , for ∀k. (10)

It can be observed from (10) that for a given channel matrix
Hk, the kth user selects the analog RC wk that maximizes
the strength of the equivalent channel vector h̄H

k = wH
k Hk ∈

C1×NB .
Algorithm 1: Similarity-based CH selection algorithm

Input: Given a correlation threshold, ϵ = 0.1; Number of
users, K with their channel vectors, {h̄i}Ki=1;
Number of clusters, G; g = 2

Output: CH set, Ω∗; Remaining user set, Ωc; Number of
clusters, G

1 A = {āi}Ki=1 where āi = h̄i/∥h̄i∥;
2 [∼,Ωc] = sort

(
{∥h̄1∥, ∥h̄2∥, · · · , ∥h̄K∥}, ‘descend’

)
;

3 Ω∗ = Ωc(1); Ωc = Ωc \ Ω∗;
4 while g ≤ G do
5 S = {j ∈ Ωc; |āH

i āj | < ϵ,∀i ∈ Ω∗, āi, āj ∈ A};
6 ρ = {|āH

i āj | < ϵ, ∀i ∈ Ω∗, j ∈ S};
7 if ρ ̸= Φ then
8 j∗ = arg

j∈S
minρ;

9 Ω∗ = Ω∗ ∪ Ωc(j∗); Ωc = Ωc \ Ω∗;
10 else
11 G = g − 1;

12 g = g + 1;

B. User clustering

User clustering can be leveraged to minimize both the
inter-cluster and the intra-cluster interference by efficiently
classifying the users within each cluster. Intuitively, user
channels within the same NOMA cluster are expected to be
highly correlated so that they can be aligned within the same
beam, while ensuring successful SIC operation. In addition,
the correlation between the channel gains of the users in
different NOMA clusters should be minimized for reducing
the inter-cluster interference. Therefore, user clustering can
be performed, first, by selecting the CH for each cluster based
on the user’s equivalent channel vectors {h̄i}Ki=1 and then,
associating the remaining users with the selected CHs.

Algorithm 2: Condition number-based CH selection
algorithm

Input: Given a CN threshold, ϵ = 10dB; Number of users,
K with their channel vectors, {h̄i}Ki=1; User indices
set, Ωc ={1, 2, · · · ,K}; Number of clusters, G; flag
= true

Output: Cluster head set Ω∗; Remaining user set Ωc;
Number of clusters, G

1 while flag = true do
2 Possible number of choices for cluster head set,

π =
(
K
G

)
;

3 Set of user indices corresponds to the ith choice of
cluster head set, Ωπi with Ωπi = {Ω1

πi
,Ω2

πi
, · · · ,ΩG

πi
},

for Ωk
πi

∈ {1, 2, · · · ,K} ;
4 Γi =

[
h̄Ω1

πi
, h̄Ω2

πi
· · · , h̄ΩG

πi

]
, for i = 1, 2, · · · , π;

5
[
∽,Λi,∽

]
= SVD

(
Γi

)
,∀ i;

6 σimax = max
(
diag

(
Λi

))
; σimin = min

(
diag

(
Λi

))
, ∀

i;

7 κi = 10log10

(
σ2
imax

σ2
imin

)
, ∀ i;

8 Ci = log2
(
|INT + Pmax

G
ΓiΓ

H
i |

)
;

9 S = {i;κi ≤ ϵ,∀i}; ∆ = {Cj ; j ∈ S};
10 j∗ = argmax

j∈S
∆;

11 if ∆ == Φ then
12 G = G− 1; flag = true;
13 else
14 Ω∗ = Ωπj∗ ; Ωc = Ωc \ Ω∗; flag = false;

15 if G == 1 then
16 Ω∗ = [a]; Ωc = U ;

1) Cluster head selection techniques
This section proposes a pair of spectral- and energy-efficient

CH selection algorithms by dynamically selecting the number
of clusters. These are unlike the existing clustering algorithms
of [12], [17], [25], where the number of clusters is fixed.
Following the development of a CH selection technique in
Algorithm 1, which successively obtains the CHs for all the
clusters, the subsequent CH selection technique of Algorithm 2
reflects a novel approach to simultaneously obtain the CHs.

I) Similarity-based cluster head selection: The proposed
CH selection Algorithm 1 identifies the CH for each cluster
by comparing the degree of correlation between the equivalent
user channels to a correlation threshold ϵ. Specifically, users
whose channel correlation is below the correlation threshold
can be treated as uncorrelated users in Step 6 and are
identified to be the CHs in Step 9. It is worth noting here that
the proposed algorithm dynamically updates the number of
clusters in Step 11 when there exists no potential candidate
for the CH with a correlation below the specified threshold.
unlike [25], which iteratively updates the correlation threshold
by increasing its value until there is no potential candidate to
be set as the CH, the proposed clustering algorithm complies
with stringent correlation threshold criterion.

II) Condition number1-based cluster head selection: Ex-
ploiting the combinatorial nature of user clustering, a more
efficient CH selection technique is proposed in Algorithm 2
for simultaneously determining the CHs for all clusters. This

1Condition number specifies the extent to which a matrix is ill-conditioned.
Mathematically, it is expressed as the ratio of maximum singular value to the
minimum singular value of a matrix i.e., κ(A) = 10 log10

σ2
max(A)

σ2
min(A)

.
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is unlike the CH selection algorithm discussed in the previous
sub-section, where the selection of each CH depends on the
previously selected CHs. To minimize inter-cluster interfer-
ence, it is crucial to select cluster heads (CHs) with mutually
uncorrelated channels. Leveraging the condition number (CN)
as a correlation index, the proposed scheme identifies the
potential CHs from the set of all K users. The condition
number of a matrix indicates the degree to which the matrix
is ill-posed.

Given the equivalent channel vectors {h̄k}Kk=1 for all users,
Algorithm 2 first identifies all possible combinations of cluster
heads π in Step 2. For instance, the legitimate selection
of 4 cluster heads out of 8 users in the network yielding
π = 70 combinations. The index set Ωπi , for i = 1, 2, · · · , π,
in Step 3 contains the user indices corresponding to each
specific combination. Next, the cluster head matrix (CHM) is
constructed by concatenating the equivalent channel vectors
of users having indices given in the index set Ωπi

i.e., Γi =
[h̄Ω1

πi
, h̄Ω2

πi
, · · · , h̄ΩG

πi
], as shown in Steps 4 of Algortihm 2.

Specifically, the matrix Γi ∈ CNB×G contains the equivalent
channel vectors of the potential CH candidates for all G
beams. Thereafter, the condition number of each CHM is
calculated as follows

κi = 10log10

(
σ2
imax

σ2
imin

)
, i = 1, 2, · · · , π, (11)

where σ2
imax

and σ2
imin

are the maximum and minimum
singular values of the ith cluster head matrix, respectively.
Subsequently, the capacity Ci delivered by each CHM is
calculated in Step 8.

Following this, the index set S is formed by selecting
the indices of only those CHMs whose CN κi meets the
predefined CN threshold criteria in Step 9. Specifically, those
CHMs that possess a condition number below the specified
CN threshold ϵ are selected. This indicates that the equivalent
channel vectors of the CHs in these CHMs are uncorrelated
with each other. Finally, we select the desired CHM that
maximizes the capacity in Step 10, and then we proceed to
obtain the CH set by extracting the user indices corresponding
to the CHM selected in Step 14. If no CHM exists that
meets the CN threshold criterion in Step 11, this implies
that there is no set of G users whose equivalent channels
are uncorrelated. In that case, the proposed algorithm reduces
the number of clusters by one in Step 12vand repeats with
Step 2 to identify the least-correlated cluster heads with a
reduced number of clusters. Hence, the proposed algorithm
dynamically obtains the number of clusters in Step 12 for
which the CH matrix obtained satisfies the strict pre-defined
CN threshold criterion.

It is important to note that Algorithm 2 only maximizes
the capacity for the cluster heads. This does not guarantee
that the overall capacity of the mmWave NOMA network is
maximized, as the remaining users are assigned to clusters
later in Section IV-B.3.

2) Analog precoding
This subsection focuses on the analog TPC design at the BS

using the equivalent channel vectors corresponding to the CHs
{h̄Ω∗(g)}Gg=1 obtained, where Ω∗ is the set containing the user

indices corresponding to the CHs. The beamforming codebook
Fc ∈ CNB×CF for the RF TPC can be designed, similar to (9),
using transmit steering vectors aT (ϕi) with quantized phase
angles and constant modulus entries as follows

Fc =
[
aT (ϕ0),aT (ϕ1), · · · ,aT (ϕCF−1

)
]
, (12)

where CF denotes the codebook size. By exploiting (12), the
analog TPC can be designed for maximizing the array gain of
the CHs as follows

fgRF = arg max
∀fi∈Fc

∥h̄H
Ω∗(g)fi, ∥ for g = 1, 2, · · · , G. (13)

Applying the analog TPC, the effective channel vector h̃H
k ∈

C1×G at the kth user can be expressed as
hH
k = h̄H

k FRF , for k = 1, 2, · · · ,K. (14)
It is noteworthy here that the analog TPC vectors are

designed exclusively for maximizing the desired signal power
of the CHs and are shared among the other users of the same
cluster. To effectively utilize the TPC among the other users
in the same cluster, user grouping has been investigated, next,
for the proposed system.

3) Assignment of remaining users
Similar to the CH selection criterion in Algorithm 2, the

condition number can be used as the correlation index to
identify the remaining users in a given cluster. First, the matrix
Gg

i ∈ CG×2 is constructed by concatenating the effective
channel vectors of the CH for the gth cluster and the ith user
from the remaining user index set Ωc as follows

Gg
i =

[
hi∈Ωc hΩ∗(g)

]
, for g = 1, 2, · · · , G. (15)

There exist a set of G possible matrices for the ith user,
denoted by {Gg

i }Gg=1. In the next step, the ith remaining user
is assigned to the cluster ĝ, provided that the condition number
of the matrix Gĝ

i is maximized as follows

ĝ = argmax
g=1,2,··· ,G

10 log10

(
σg
imax

σg
imin

)2

. (16)

Here, σg
imax

and σg
imin

are the maximum and minimum singular
values corresponding to the matrix Gg

i , respectively. This
process is repeated until all the users in the remaining user
set Ωc are assigned to their respective clusters.

To summarize, the proposed user clustering technique first
identifies the CHs for each cluster by dynamically updating
the number of clusters using Algorithms 1 and 2 in Sub-
section IV-B1 and proceeds to assign the remaining users to the
CHs obtained, as discussed in Section IV-B3. Therefore, the
performance of the above user clustering technique depends on
the effectiveness of the CHs chosen. To further improve the
performance, it is necessary to investigate a user clustering
mechanism that jointly determines the CHs and assigns the
remaining users for each cluster. Moreover, the user clustering
problem has to be jointly investigated with the analog TPC
and RC design problem to further improve the performance.
Considering this, a joint analog TPC, analog RC, and user
clustering problem is investigated in the next sub-section.

C. Joint analog precoding, combining and user grouping

Exploiting the half-power beamwidth (HPBW) of the main
lobe of the beam, a more sophisticated user grouping technique
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Algorithm 3: Joint analog precoding, analog combin-
ing, and user grouping

Input: Half-power beamwidth (HPBW) = 0.891 2π
NB

;
∆θg = HPBW

2 for g = 1, 2, . . . , G; Number of
users, K, with their channel matrices,
{Hi}Ki=1; Transmit/Receive Array steering
vectors, {aR(θk,0)}Kk=1, {aHT (ϕk,0)}Kk=1;
Number of clusters, G; Intializations: Set of
user indices in the g-th cluster, Ωg = [ ] for
g = 1, 2, . . . , G; Set containing remaining user
indices, Ωc = {1, 2, . . . ,K}; ϵ = 2π

100 ; g = 1;
flag=false; iter=0;

Output: Ωg for g = 1, 2, . . . , G
1 while flag=true do
2 for g ← 1 to G do
3 if iter==0 then
4

[
j∗
]
= argmax

j∈Ωc

aHR (θj,0)HjaT (ϕj,0),

5 wj∗ = aR(θj∗); f
g
RF = aT (ϕj∗);

6 ϕg = ∠fgRF ;
7 Ωg = Ωg ∪ {j∗}; Ωc = Ωc \ Ωg;

8 S =
{
l ∈ Ωc;ϕl ∈

[
ϕg −∆ϕg, ϕg +∆ϕg

]}
;

9 if S == ϕ then
10 ∆ϕg = ∆ϕg + ϵ;
11 else
12 Ωg = Ωg ∪ S;
13 wg,m = aR(θl) for ∀m, l ∈ Ωg;
14 Ωc = Ωc \ Ωg;

15 if Ωc == ϕ then
16 flag=false;
17 break;

18 iter=iter+1;

is now investigated by integrating analog precoding, analog
combining, and user clustering, as formulated in Algorithm 3.
In this approach, only those users located within the main
lobe of the beam are allowed to form a NOMA cluster.
Here, particularly, the joint design considers the availability of
angular information of the LoS paths of the mmWave channels
between all the users and the BS to design the analog TPC and
RC vectors. First of all, the strongest user in the first cluster
is identified by maximizing the product aHR (θj,0)HjaT (ϕj,0)
for j = 1, 2, · · · ,K in Step 4. Thus, the analog TPC f1RF ,
analog RC w1,1 and the first user in the first cluster are jointly
obtained. Next, by exploiting the angular information (AoD)
ϕl corresponding to the remaining users l ∈ Ωc, the users
are assigned to the first cluster. Specifically, those users are
assigned to the first cluster that lie within the HPBW of the
main lobe, as given in Step 12. This ensures that the users are
efficiently allocated to clusters based on their angular positions
relative to the main lobe direction. Subsequently, the analog
RC for all the users in the first cluster are set as the respective
receive array response vectors aR(θl) for l ∈ Ωg , as given in
Step 13. Finally, the first cluster formulation is completed in
Step 14. The same procedure is repeated for the formation of
the remaining clusters. However, when no user is found who

lies within the main beam, the algorithm expands its search to
fill the desired cluster with the remaining users upon increasing
the angular range by ϵ in Step 10.

V. PROBLEM FORMULATION

The major challenge in future wireless networks is to max-
imize the system performance by identifying a suitable utility
function that guarantees efficient utilization of the available
network resources. In the context of mmWave-based NOMA
systems, two widely adopted utility functions are the SE and
GEE [7], [17], [25], [30]–[34].

The achievable SE of the system, measured in bits/s/Hz,
is defined as the average number of bits transmitted per unit
bandwidth, which can be expressed as follows

SE(α) =

G∑
g=1

|Ug|∑
m=1

Rg,m. (17)

The network SE can be written as
G∑

g=1

|Ug|∑
m=1

log2

(
1 +

Ng,m (α)
Dg,m (α)

)
. The terms Ng,m (α) and

Dg,m (α) represent the numerator and denominator,
respectively, of the downlink SINR expression derived
in (7).

On the other hand, the GEE is defined as the ratio of
network SE to the total power consumption, measured in
bits/Joule/Hz, which can be written as

GEE (α) =

G∑
g=1

|Ug|∑
m=1

log2
(
1 + SINRg

m←m

)
υ−1PA

∑G
g=1

∑|Ug|
m=1 αg,mPmax + Pc

. (18)

Here, the quantity υPA ∈ (0, 1] denotes the power amplifier
efficiency at the transmitter. The term Pc denotes the circuit
power dissipation at the transceiver.

Power consumption: The term Pc constitutes the power
consumed by the analog and digital circuitry of the fully
connected hybrid transceiver and it is calculated as Pc =

PFIX+PTX+KPRX+PSIC
∑G

g=1

∑|Ug|
m=1(m−1). The first three

terms of Pc constitute the power consumed of the transceiver
architecture for mmWave systems [3]. Recall that NOMA
harness SIC at the users to detect the transmitted signal. The
number of SIC operations at each user depends upon the
size of each NOMA cluster and the user index in the SIC
detection order in (6). Driven by the aforementioned property,
this work also accounts for the SIC overhead at the users in
the last term of Pc [46]. The first term PFIX denotes the fixed
component of the circuit power required for baseband signal
processing, controlling, and site-cooling. Next, the term PTX
denotes the static power consumption at the transmitter RF
front-end in the hybrid architecture and it is expressed as
PTX = NRF (2PDAC + PRF + NBPPS) + NBPPA. Here, the
terms PDAC, PRF, PPS and PPA denote the power dissipated at
the digital-to-analog converter (DAC) for each I/Q channel, RF
chain, analog phase shifter, and power amplifier, respectively.
Similarly, the static power consumption at the RF front-end
of each user can be expressed as PRX = 2PADC + PRF +
NUPPS + NUPLNA. Here, the terms PADC and PLNA denote
the power dissipated at the analog-to-digital converter (ADC)
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at the receiver and low-noise amplifier, respectively. Further,
the quantity PRF is computed as PRF = PLO + 2PM + 2PLPF,
where PM , PLO, and PLPF denote the power dissipated by a
mixer, a local oscillator, and a low-pass filter, respectively.
The insertion losses offered by passive devices, which include
power splitters, power combiners and analog phase shifters, are
considered to be negligible in the power consumption model.
The term PSIC denotes the average power dissipation during
each layer of SIC decoding.

There exists a fundamental trade-off between the GEE and
SE that prevents them from being simultaneously maximized.
To address the challenge of providing a high throughput with
limited power resources, it is imperative to simultaneously
maximize both the GEE and SE. To this end, a multi-objective
optimization (MOO) framework is proposed next to jointly
design the GEE and the SE of mwWave NOMA systems.

A. Spectral efficiency and global energy efficiency trade-off
Due to the inability of conventional resource allocation

schemes to simultaneously maximize the SE and the GEE,
in this section, we conceive a MOO framework, for jointly
optimizing the SE and the GEE. Considering both SE and GEE
as primary objectives, a constrained bi-objective problem can
be formulated as

P1 : maximize
{αg,m}

|Ug|
m=1

G

g=1

(
SE (α),GEE (α)

)
(19a)

subject to
G∑

g=1

|Ug|∑
m=1

αg,m ≤ 1, (19b)

αg,m ≥ 0, ∀g,m (19c)

αg,i ≥
|Ug|∑

j=i+1

αg,j , ∀g, i (19d)

Rg,m ≥ RQoS
g,m, ∀g,m , (19e)

where the vector α denotes the set of transmit power
coefficients {αg,m}

|Ug|
m=1

G
g=1. The constraint in (19b) lim-

its the transmit power at the BS to Pmax, i.e. we have∑G
g=1

∑|Ug|
m=1 αg,mPmax ≤ Pmax, and the constraint in (19c)

ensures non-negative power coefficients. The constraint (19d)
guarantees successful SIC operation at each user, whereas
(19e) represents the rate constraint for each user, with RQoS

g,m

as the minimum rate requirement of the mth user in the gth
cluster. It is noteworthy here that in the absence of (19d) and
(19e), the above problem can be solved by allocating a large
fraction of the available power to the stronger channel users in
each cluster, as has been routinely done in conventional OMA
systems. This causes the remaining users in each cluster to be
treated unfairly. The constraint in (19d) guarantees successful
SIC operation at the users by allocating a large fraction
of the power to the weaker channel users in each cluster.
Together with (19d), (19e) constrains the weaker channel users
to be treated fairly, while maximizing the network’s spectral
efficiency. Due to the existence of inter-cluster and intra-
cluster interference, the objectives as well as the constraint
(19e) in P1 are non-convex, which renders solving the above
maximization problem challenging.

It is important to note here that the SE in the above MOO
problem is a monotonically increasing function of the transmit
power and it is maximized by completely exhausting the
available transmit power budget Pmax. On the other hand, GEE
is maximized by using only a small portion of the available
power budget, also known as green power, which prevents the
SE from increasing further. Therefore, the solution space of
the above MOO problem is classified as trivial or non-trivial
depending on the available transmit power budget.

Trivial solution: Let α∗SE and α∗GEE be the unique un-
constrained maximizers of the SE and GEE maximization
problems such that

∑G
g=1

∑|Ug|
m=1 α

GEE
g,m
∗
=

∑G
g=1

∑|Ug|
m=1 α

SE
g,m
∗

[47]. This implies that the solution space of the constrained
GEE maximization problem lies in the low transmit power
region, where both the SE and GEE are increasing func-
tions of the transmit power [47], [48]. This is because the
SE is maximized by using all the available power, i.e.,∑G

g=1

∑|Ug|
m=1 α

SE
g,m
∗
= 1, whereas in the low transmit power

regime, the GEE is maximized by maximizing the SE in the
numerator of (18), rather than reducing the available power.
Therefore, there exists a unique maximizer for the problem
P1 that simultaneously maximizes both the SE and the GEE.

Non-trivial solution: If
∑G

g=1

∑|Ug|
m=1 α

GEE
g,m
∗

<∑G
g=1

∑|Ug|
m=1 α

SE
g,m
∗ and Rg,m (αGEE

g,m
∗
) ≥ RQoS

g,m for ∀g,m, the
solution space of the problem P1 lies in the moderate and
high transmit power region where the SE and GEE compete
with each other [48]. In such a scenario, the problem P1 does
not possess a unique solution, but rather a set of solutions
that lie on the SE-GEE trade-off region. These solutions are
commonly referred to as Pareto-optimal solutions. Typically,
the Pareto optimal solutions are obtained by employing a
dominance test over the solution space of problem P1. A
feasible solution αu from the solution space is said to be
Pareto dominant over another feasible solution αv , if and
only if [49]

SE (αu) ≥ SE (αv), GEE (αu) > GEE (αv), or
SE (αu) > SE (αv), GEE (αu) ≥ GEE (αv). (21)

If there exists no other solution that dominates αu, then the
vector αu is a member of the non-dominated set. The set
is constructed by all such non-dominant solutions over the
entire feasible space, termed the Pareto optimal set, and the
boundary defined by mapping them onto the corresponding
objective space is termed the Pareto Front. Specifically, the
Pareto front is constitute of the collection of all optimal points,
where neither the GEE nor the SE may be improved without
degrading the other.
It is crucial to note here that the SE and the GEE are both
non-convex, since the SE is the sum of the log-ratios that are
rational functions of the optimization variables, whereas the
GEE is a single-ratio fractional program. Therefore, solving
a bi-objective problem in the face of non-convex conflicting
objectives over a high-dimensional solution space necessitates
significant computational resources. Consequently, it becomes
extremely challenging to solve P1. To obtain the unique
globally optimal solution, the original multi-objective problem
is first transformed into a single-objective problem via a
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weighted sum approach [50]. Such an approach, also termed as
scalarization, is a popular method of reformulating the MOO
problem by transforming it into a single objective optimization
(SOO) problem by assigning each objective the weighting
factor wi ∈ [0, 1] for i = 1, 2, so that w1 + w2 = 1. The
SOO problem, therefore, can be expressed as follows

P2 : maximize
{αg,m}Gg=1

|U|g
m=1

w1SE (α) + w2GEE (α) (22a)

subject to (19b), (19c), (19d), (19e). (22b)
The weights w1 and w2 are adjusted in accordance with the
relative importance of the two objectives. It can be readily
observed that the above maximization problem simplifies to
the SE maximization framework by setting w1 = 1 and
the GEE maximization problem for w2 = 1. Furthermore,
a unique solution is obtained by setting different values for
the weighting factors over problem P2 and the set of all
the unique solutions obtained by choosing different possible
values for weighting factors constitutes the Pareto-optimal set
of the original MOO problem.

To construct a weighted sum of the SE and the GEE in
the above SOO problem due to their different units as well as
scales, it is required to normalize the first term of (22a) with
Psum as follows

P3 : maximize
{αg,m}Gg=1

|U|g
m=1

GEE (α) + β
SE (α)

Psum
(23a)

subject to (19b), (19c), (19d), (19e). (23b)

Here the constant Psum = υ−1PA Pmax + Pc, is defined similarly
to the total network power consumption, so that both the terms
in (23a) are on the same scale. Note that the problem P3 is
equivalent to P2 with w1

w2
= β

Psum
.

The problem P3 is still challenging to solve because both
the GEE and SE objectives are non-convex. Exploiting the
quadratic transform (QT) technique, an iterative algorithm is
developed next to attain the optimal solution of the SE-GEE
trade-off problem [51].

The QT framework is adopted for transforming the non-
convex objective in problem P3 to a quadratic concave func-
tion. Using the QT framework, the numerator and denominator
of the GEE in P3 are decoupled by introducing the auxiliary
variable y. The problem P3 can therefore be recast as follows

P4 :maximize
α

2y

√√√√ G∑
g=1

|Ug|∑
m=1

log2

(
1+
Ng,m (α)

Dg,m (α)

)
−y2Ptot(α)

+
β

Psum

G∑
g=1

|Ug|∑
m=1

log2

(
1+
Ng,m (α)

Dg,m (α)

)
(24a)

subject to
G∑

g=1

|Ug|∑
m=1

αg,m ≤ 1, (23b)

αg,m ≥ 0, ∀g,m (23c)

αg,i ≥
i−1∑
j=1

αg,j , ∀g, i (23d)

log2

(
1+
Ng,m (α)

Dg,m (α)

)
≥ RQoS

g,m, ∀g,m. (23e)

Since the optimization variables are coupled in the numerator
and denominator of the term Ng,m (α)

Dg,m (α) , the optimization prob-
lem P4 is still non-convex. Therefore, QT can be applied once
again to transform the problem P4 into the equivalent problem
P5 by decoupling each of the ratios inside the logarithms as
follows

P5 :max
α

2y

√√√√ G∑
g=1

|Ug|∑
m=1

log2

(
1+2zg,m

√
Ng,m(α)−z2g,mDg,m(α)

)
− y2Ptot(α)

+
β

Psum

G∑
g=1

|Ug|∑
m=1

log2

(
1+2zg,m

√
Ng,m(α)

− z2g,mDg,m (α)

)
(26a)

subject to (23b), (23c), (23d) (26b)

log2

(
1 + 2zg,m

√
Ng,m (α)

− z2g,mDg,m (α)

)
≥ RQoS

g,m, ∀g,m. (26c)

The auxiliary variables z = {zg,m}
|Ug|
m=1

G

g=1 decouple the ratios
Ng,m (α)
Dg,m (α) in (24a) and (23e). For the given auxiliary variables
{y, z}, the problem P5 is concave over α and can be solved
by using a standard toolbox such as CVX [52]. For a fixed
value of α, the optimal values of the auxiliary variables {y, z}
are computed in the closed form below [53]

y∗ =

√
G∑

g=1

|Ug|∑
m=1

log2

(
1 +

Ng,m (α)
Dg,m (α)

)
Ptot(α)

, and (27)

z∗g,m =

√
Ng,m (α)

Dg,m (α)
. (28)

Next, the power allocation coefficients α are iteratively opti-
mized by solving problem P5, while updating the auxiliary
variables {y∗, z∗}. This process is repeated until a stationary
point of the original optimization problem is obtained.

To summarize, the following steps are carried out in se-
quence to balance the SE-GEE trade-off: i) a bi-objective
problem P1 is developed using the MOO framework; ii)
the bi-objective problem is then transformed into a single-
objective optimization problem P2 by using the weighted-
sum scalarization technique; iii) next, the objectives in the
P2 optimization problem are normalized in P3 to make
them consistent with units as well as range; and iv) finally,
the SE-GEE trade-off optimization problem is convexified by
adopting the QT framework in P5, which iteratively updates
the auxiliary and power variables. The various steps of the QT
approach for SE-GEE trade-off maximization are summarized
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Table II: SYSTEM PARAMETERS

Parameter Specification Parameter Specification
Noise variance, σ2

η 1 Number of BS antennas, NB 64

Number of user antennas, NU 2 Number of RF chains, NRF 4
Number of users, K {8, 12} Number of clusters, G NRF

Size of transmit beamforming codebook, CF 2NB Size of receive beamforming codebook, CW 32
User’s minimum rate constraint, RQoS,k

g,m , ∀k 0.01 bps/Hz Weight factor, β 1

Tolerance of Algorithm 4 termination, ϵ 10−3 BS power amplifier efficiency, υPA 1
Average channel gain of LoS component, σ2

k,0, for ∀k U[1,10] Average channel gain of NLoS components, σ2
k,l, for ∀k 10−1

in Algorithm 1, which computes the auxiliary variables {y, z}
in Step 3 and solves P5 in Step 4.

Remarks: This treatise assumes having block fading chan-
nels between the BS and users in (1), which remain static
within the coherence interval. Therefore, the near-perfect chan-
nel estimates can be obtained using sufficiently long training
sequences by employing any of the existing channel estima-
tion techniques discussed in [54]. Therefore, the proposed
user clustering, beamforming, and SE-GEE optimization tech-
niques can be effectively adapted to scenarios with imperfect
CSI at a modest performance degradation.
Algorithm 4: SE-GEE trade-off maximization using
QT

Input: Initialize α(0) = {αg,m}
|Ug|
m=1

G

g=1 with random
entries for each cluster arranged in decreasing
order. Set tolerance ϵ > 0 and the maximum
number of iterations L.

Output: α as the solution.
1 for t← 1 to L do
2 Given the latest updates of the optimization

variable α(t−1), use (27) and (28) to calculate the
auxiliary variables yt and zt.

3 Solve P5 to obtain α(t).
4 if ∥α(t) −α(t−1)∥2 < ϵ then
5 α∗ ← α(t) and break the loop

6 else
7 Repeat steps 2 and 3.

B. Computational complexity of the proposed algorithms

• Complexity of similarity-based CHS scheme in Algo-
rithm 1: The computational complexity of Algorithm 1
is primarily dominated by Step 5, which involves cal-
culating the correlation between elements of the cluster
head set Ω∗ and the remaining user set Ωc. For each
cluster index g, the number of correlation operations
is (K − g)g. Consequently, the total number of cor-
relation operations required is given by the summation∑G

g=1(K − g)g. This summation can be simplified as
K ·G(G+1)

2 −G(G+1)(2G+1)
6 . Thus, for K >> G, the time

complexity of Step 5 can be expressed as O(KG2),
indicating that the complexity grows with the number of
users K and the number of clusters G.

• Complexity of CN-based CHS scheme in Algorithm 2: The
time complexity of Algorithm 2 is primarily determined

by the number of possible cluster head choices in Step 2
and the complexity of the SVD operation in Step 5.
Specifically, the algorithm involves evaluating

(
K
G

)
pos-

sible choices for the cluster head set with complexity
O(KG). For each choice, the SVD is computed, which
has a time complexity of O(NBG

2). Thus, the overall
time complexity of the algorithm is O

(
KG ·NBG

2
)
.

This escalates for large values of K and G.
• Complexity of joint analog precoding, digital precoding

and clustering in Algorithm 3: The complexity of Al-
gorithm 3 is primarily driven by the user selection and
updating processes. Specifically, the selection of the user
having the strongest beamforming gain in each cluster
involves evaluating the beamforming vectors for K − g
users, which incurs a complexity of O(NBG) per user.
Given that this process is repeated for each of the G clus-
ters, the total complexity for user selection is O(GKNB).
Additionally, updating the analog precoding vector and
checking the user angles contributes complexity order of
O(K) and O(NBG), respectively, per iteration. Consid-
ering the iterative nature of the algorithm, the overall
complexity is O(K2GNB).

• Complexity of SE-GEE trade-off optimization in Algo-
rithm 4: The per iteration complexity of Algorithm 4
is calculated by computing the complexity of auxiliary

variables
(
y, {zg,m}

|Ug|
m=1

G

g=1

)
in Step 2 and solving P5

in Step 3. Algorithm 4 solves the SE-GEE optimization
problem involving 2K + 1 real variables and 3K + 1
constraints and has overall computational complexity of

order O
[
µπ

(
(5K +2)3.5(2K +1)2

)]
, where µπ is the

number of iterations required by Algorithm 4 to converge.

VI. SIMULATION RESULTS

This section validates the effectiveness of the proposed
clustering algorithms for the mmWave-based NOMA downlink
system and investigates the fundamental trade-off between SE
and GEE for the proposed system. The performance of the
proposed optimization Algorithm 4 is shown to strike a flexible
SE-GEE trade-off. The transmit signal-to-noise ratio (SNR) at
the BS is defined as 10 log10

Pmax

σ2
η

dB. The wireless channel
matrix between the BS and kth user is modeled based on (1)
with Lk = 3 NLoS components. Furthermore, equal power
allocation is used among the clusters, i.e., Pmax

G for all the
clusters, while random power allocation (RPA) satisfying the
SIC decoding condition in (6) is adopted for the users within
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Fig. 2: (a) SE versus SNR performance of similarity-based clustering scheme in Algorithm 1; (b) SE versus SNR performance of CN-based clustering scheme
in Algorithm 2; (c) SE performance of CN-based clustering scheme with different number of users K.
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Fig. 3: (a) Comparison of CN-based scheme with joint clustering for different values of K−NRF ; (b) Comparison of GEE versus SE trade-off performance
for the different state-of-the-art clustering schemes with NB = 64, K = 10 and NRF = 4; (c) Comparison of GEE versus SE trade-off performance for the
different state-of-the-art beamforming techniques with NB = 64, K = 10 and NRF = 4.

each cluster. The parameters PFIX, PRF, PPS, PLNA and PSIC of
circuit power consumption are set as 5 W, 31.6 mW, 2 mW,
39 mW and 0.2 W, respectively. The remaining components of
the power consumption model are set as given in [3]. All the
simulation parameters are summarized at a glance in Table II,
unless stated otherwise.

A. Clustering performance

The efficacy of the proposed user clustering in Section IV-B
along with the cluster head selection techniques proposed in
Algorithms 1 and 2, in terms of SE, are validated in this sub-
section by comparing them to both the random clustering, K-
means [21] and the other state-of-the-art clustering techniques
of [25], [42].

Fig. 2a illustrates the SE versus SNR performance of the
proposed similarity-based dynamic cluster head selection Al-
gorithm 1 by comparing it to the i) random; ii) K-means [21];
and iii) existing state-of-the-art user clustering schemes of

[25], [42]. For this study, the number of users K and the num-
ber of RF chains NRF are set as 12 and 4, respectively. It is
noted that the proposed Algorithm 1 shows a 85% performance
gain compared to the random clustering technique, while the
gain over the baseline technique in [25] is 10%. It is also
observed that the proposed clustering scheme surpasses both
the K-means [21] and the existing user clustering techniques
[25], [42]. The SE improvement can be justified by the fact
that when no potential user is found to be uncorrelated, the
existing clustering schemes assign the correlated users as CHs
for different clusters, whereas, the proposed clustering scheme
guarantees the uncorrelated users to be chosen as CHs by
dynamically adjusting the number of clusters.

Fig. 2b compares the SE performance of the CN-based
clustering technique proposed in Algorithm 2 to the similarity-
based clustering scheme of Algorithm 1 and to random
clustering. The impact of the number of transmit antennas
NB is also investigated. Similar to the previous studies, the
number of users, K, and the number of RF chains, NRF
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Fig. 4: (a) Comparison of GEE versus SE trade-off performance for the ZF-based and MMSE-based digital precoding techniques with NB = {64, 128, 256},
K = 16, and NRF = 4; (b) GEE-SE trade-off performance of mmWave-based NOMA systems with K = 8, NRF = 4, and NB = 64 for the proposed
OPA scheme in Algorithm 4; (c) GEE and SE performance of Algorithm 4 by varying β for the fixed transmit SNR Pmax = 15 dB with K = 8, NRF = 4,
and NB = 64.

are set as 12 and 4, respectively. It can be seen that for
NB = 16, the relative performance of the proposed CN-
based clustering technique is better compared to both the
similarity-based and to the random clustering techniques. On
the other hand, as NB increases, both the CN-based and
the similarity-based clustering techniques perform similarly.
This is because uncorrelated users of the network are easily
obtained, as NB increases. Consequently, both the proposed
clustering techniques effectively identify the uncorrelated users
for different clusters.

Fig. 2c demonstrates the impact of the number of users
K by comparing the proposed CN-based clustering in Algo-
rtihm 2 to random clustering. The number of BS antennae
NB and the number of RF chains NRF are fixed to 64
and 4, respectively. It is observed that the SE performance
of both the CN-based clustering and the random clustering
techniques reduces as K increases. This is because both the
inter-cluster and intra-cluster interferences increase when the
number of users in the network increases. It is also evident
that the relative performance of the proposed clustering over
random clustering improves, as K increases. This is because
when (K − NRF ) reduces, the number of users assigned in
each cluster decreases, thereby reducing the dominance of the
clustering algorithm in improving spectral efficiency.

B. Performance of the joint algorithm

Considering only the LoS component of the mmWave
channel in (1), i.e. Lk = 0, the SE performance of the pro-
posed joint analog precoding, combining, and user clustering
technique of Algorithm 3 is investigated now. Fig. 3a plots the
SE versus SNR for the proposed joint clustering technique by
varying the value of (K−NRF ). The number of BS antennas
NB is set to 64. For comparison, the SE performance of
CN-based and random user clustering are also plotted. It is
observed that when a small number of active users are present

in the network, i.e., for a small value of (K − NRF ), the
joint technique of Algorithm 3 yields improved performance
compared to the clustering techniques provided in Algorithm 1
and 2. Conversely, for a large number of active users in the
network, i.e, for a high value of (K − NRF ), the CN-based
clustering technique of Algorithm 2 has an edge over the
joint clustering technique. The system designer can exploit
this information to select an appropriate clustering algorithm
based on the specific number of users in the network.

C. SE-GEE trade-off performance

Fig 3b characterizes the SE-GEE trade-off performance of
the proposed clustering Algorithm 2 by comparing it with i)
random clustering; ii) baseline clustering [25]; iii) K-means
[21]; and iv) other existing [42] clustering schemes. For
this setup, the ZF-based HP precoding and RPA schemes
are employed, with the SNR range set between −15 dB to
25 dB. The performance comparison with Algorithm 1 is
omitted for this investigation as it always performs inferior to
Algorithm 2. It is discovered that the SE-GEE trade-off of the
proposed Algorithm 2 is always better than that of the other
existing state-of-the-art clustering techniques. This shows the
effectiveness of the proposed clustering scheme in enhancing
both the SE as well as the GEE of the network.

In the next subsections, we evaluate the SE-GEE trade-
off of the proposed HP-based MIMO NOMA network (HP
MIMO NOMA) by comparing it to that of its MIMO-OMA
counterpart (MIMO OMA) and fully digital MIMO coun-
terpart (MIMO FD). Specifically, the MIMO-OMA system
exploits the TDMA scheme within each cluster, wherein the
BS transmits multiple user signals in each cluster on a time-
sharing basis. The SE expression of the MIMO-OMA system
is given by

∑G
g=1

1
|Ug|

∑|Ug|
m=1 log2(1+SINRg

m), where 1
|Ug| is

the equal fraction of time allocated to all users within the gth
cluster. On the other hand, the FD MIMO system exploits a
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Fig. 5: (a) Convergence behavior of the proposed optimization Algorithm 4 for different values of weight factor β; (b) GEE versus SNR performance of the
proposed mmWave-based NOMA system compared with OMA and FD counterparts by setting NB = 64.

fully digital architecture, where each RF chain is connected to
each antenna element and only digital precoding is performed
at the BS. In the FD MIMO scheme, each RF chain serves
a single user only. The SE expression of the FD scheme is∑K

k=1 log2(1 + SINRk). Here, SINRg
m and SINRk are the

SINR expressions for the MIMO-OMA and FD counterparts,
respectively. Furthermore, the power consumption models of
the corresponding MIMO-OMA and fully digital architecture
are given as Pc,FD = PFIX+2NBPDAC+PRF+NBPPA+KPRX
[3] and Pc,OMA = PFIX + PTX +KPRX, respectively.

Fig. 3c compares the SE versus GEE trade-off of the pro-
posed mmWave-based MIMO NOMA system to the different
beamforming techniques. The SNR range is set as -15 dB
to 25 dB for this simulation setup. It is observed that the
proposed HP MIMO NOMA system has an improved SE-
GEE trade-off compared to the MIMO OMA system. This
is because the HP MIMO-NOMA system attains significantly
higher values of GEE and SE compared to the MIMO-OMA
system. It is also observed that the FD MIMO scheme has a
poor SE-GEE trade-off for low SNR values compared to both
the HP MIMO NOMA and MIMO OMA counterparts. This
is because, in the low SNR regime, the slope of the SE-GEE
trade-off curve is inversely proportional to the circuit power
consumption [55] and the FD scheme consumes higher power
than the HP MIMO NOMA and MIMO OMA systems. On the
other hand, the MIMO FD scheme attains a superior SE-GEE
trade-off at higher SNR values than the other two scenarios,
which can be attributed to the fact that in the high SNR regime
the slope of the SE-GEE plot is directly proportional to the
multiplexing gain [55], coupled with the fact that the MIMO
FD scheme has a higher multiplexing gain compared to the
other systems under consideration.

Fig. 4a compares the SE versus GEE trade-off of the
proposed ZF-based MIMO NOMA system (MIMO NOMA,
ZF) to that of its MMSE-based digital counterpart (MIMO
NOMA, MMSE) for different antenna configurations. The
SNR range for this simulation setup is ranges from -15 dB
to 25 dB. It is first noted that the MMSE-based digital
precoding provides minimal improvement in the GEE-SE

trade-off compared to the ZF-based digital precoding. This is
because digital precoding is designed to cancel interference
only among cluster heads. However, both the ZF- and the
MMSE-based digital precoding perform ineffectively for the
remaining users, resulting in the undesired phenomenon that
significant inter-cluster interference persists irrespective of the
specific choice of precoding. Furthermore, it is observed that
as the number of antennas increases, the effectiveness of
MMSE precoding over ZF-based digital precoding diminishes.

Fig. 4b characterizes the efficiency of the optimization
framework proposed in Section V to balance the GEE-SE
trade-off in the proposed system for different values of the
weighting factor β. Similar to the previous study, the transmit
SNR is varied from −15 dB to 25 dB. It is demonstrated
that as β increases, the optimal value of the GEE-SE trade-off
achieved by Algorithm 4 allocates a higher weight to the SE
and for β = 10, the optimal value attained is close to that when
only the SE is optimized i.e., SEopt. Similarly, for β = 0.1, the
optimal value attained approximately equals the one obtained
when only the GEE is optimized i.e., GEEopt. For β = 1, the
problem P3 assigns equal weights to both the components,
and the performance gains attained by Algorithm 4 are 11%
and 7% for the GEE and SE, respectively.

Fig 4c demonstrates the impact of the weighting factor β
on the GEE and SE of the proposed system, when Pmax = 15
dB. It is observed that increasing β improves the SE, while
leading to a reduction in the GEE of the network. This is
because a low value of β assigns a higher consideration to the
GEE, whereas a high value of β gives precedence to the SE.
Thus, as β → 0 and β → 100, applying Algorithm 4 leads to
GEE and SE maximization, respectively. Therefore, the GEE-
SE trade-off adopted is more comprehensive in comparison
to the conventional approach that optimizes only one of these
objectives. Thus, by choosing an appropriate weighting factor
β, the BS has the flexibility to trade-off the GEE against the
SE, as per the requirements of the system.

Fig 5a investigates the convergence performance of the
proposed technique by plotting the value of the objective
function versus the number of iterations, for different values
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of the weighting factor β. The transmit SNR Pmax for this
setting is fixed to be 10 dB. It is observed that a non-
decreasing sequence of objective values is obtained as the
number of iterations increases, with the algorithm converging
to its optimal value within as few as 10 iterations. Interestingly,
it is also observed that the convergence speed decreases upon
increasing the weight β.

D. GEE performance
Fig. 5b characterizes the GEE performance of the scheme

advocated, while setting β = 0 in the optimization
problem P3. The number of users and the RF chains are set
to K = 8 and NRF = 4, respectively. It is observed that
the GEE obtained for the optimal power allocation (OPA)
scheme is enhanced over the one obtained via the naive
random power allocation (RPA) procedure for all SNR values.
It is also observed that the GEE performance of the proposed
mmWave-based NOMA scheme always surpasses that of its
OMA counterpart, while being inferior in comparison to its
FD counterpart in the high SNR regime. This is explained by
the fact that both the circuit power consumption and spatial
multiplexing gain of the FD technique are higher than that
of the HP scheme. However, in the low SNR regime, the SE
gap between the FD and HP techniques is smaller, whereby
the larger circuit power consumption of the former results in
lower GEE in contrast to the latter.

VII. SUMMARY AND CONCLUSIONS

This work investigated the SE-GEE trade-off in a mmWave
NOMA network by designing hybrid precoding/combining,
user clustering, and power optimization techniques. A joint
hybrid precoding/combining was designed next, followed by
the novel clustering techniques developed for minimizing
inter-cluster interference. Thereafter, a MOO problem was
formulated by considering the SE and GEE objectives, with
the aim of achieving the optimal SE-GEE trade-off in the
system. The above MOO problem was transformed into a
non-convex SOO problem using a weight-sum approach, and
further converted to concave optimization via QT. Our sim-
ulation findings demonstrated the impact of the proposed
user clustering schemes on the i) SE; ii) GEE; and iii) SE-
GEE trade-off of the proposed mmWave-NOMA network by
comparing them with random and other existing state-of-
the-art clustering techniques [21], [25], [42]. To summarize
the performance of the proposed user clustering algorithms,
simulation findings validated that the CN-based user clus-
tering algorithm outperformed both random and similarity-
based clustering with a moderate number of antennas and a
large number of users. However, as the number of antennas
increased, the SE performance of the random and similarity-
based clustering started to converge with that of the CN-based
clustering. Similarly, when the number of users became small,
the dominance of the proposed clustering algorithm to enhance
SE was reduced, limiting the advantage of CN-based clustering
over the random and similarity-based methods. Moreover, the
effectiveness of the proposed optimization framework was
validated through simulations, demonstrating its ability to
balance GEE and SE by fine-tuning the weights.
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