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A B S T R A C T 

Current and future Type Ia Supernova (SN Ia) surveys will need to adopt new approaches to classifying SNe and obtaining their 
redshifts without spectra if they wish to reach their full potential. We present here a no v el approach that uses only photometry to 

identify SNe Ia in the 5-yr Dark Energy Surv e y (DES) data set using the SUPERNNOVA classifier. Our approach, which does not 
rely on any information from the SN host-galaxy, reco v ers SNe Ia that might otherwise be lost due to a lack of an identifiable 
host. We select 2 , 298 high-quality SNe Ia from the DES 5-yr data set an almost complete sample of detected SNe Ia. More 
than 700 of these have no spectroscopic host redshift and are potentially new SNIa compared to the DES-SN5YR cosmology 

analysis. To analyse these SNe Ia, we derive their redshifts and properties using only their light curves with a modified version 

of the SALT2 light-curve fitter. Compared to other DES SN Ia samples with spectroscopic redshifts, our new sample has in 

average higher redshift, bluer and broader light curves, and fainter host-galaxies. Future surveys such as LSST will also face 
an additional challenge, the scarcity of spectroscopic resources for follow-up. When applying our no v el method to DES data, 
we reduce the need for follow-up by a factor of four and three for host-galaxy and live SN, respectively, compared to earlier 
approaches. Our no v el method thus leads to better optimization of spectroscopic resources for follow-up. 

Key words: surv e ys – cosmology: observations – transients: supernovae. 

1

T  

c
a  

(  

t  

V  

v
2  

i  

p

�

E
b

i  

t  

2  

B  

a  

i  

f  

a
l

©
P
C
p

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/533/2/2073/7733097 by guest on 11 D
ecem

ber 2024
 I N T RO D U C T I O N  

ype Ia supernovae (SNe Ia) are crucial tools to directly measure the
osmic expansion and constrain Dark Energy models. Surveys such 
s the Dark Energy Surv e y (DES) and Zwick y Transient F acility
ZTF) hav e already disco v ered thousands of SNe Ia and other optical
ransients (Bernstein et al. 2012 ; Bellm et al. 2018 ). The upcoming
era C. Rubin Observatory will provide up to 10 million transient and
 ariable detections e very night (Rubin, LSST Science Collaboration 
009 ). During its 10-yr Le gac y Surv e y of Space and Time (LSST),
t will detect more than a million SNe, which can be used to make
recise measurements of the equation-of-state parameter of Dark 
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nergy. To constrain cosmological parameters, SNe Ia first need to 
e accurately classified and redshifts need to be determined. 
Traditionally, classification of SNe for cosmology is done us- 

ng real-time spectroscopy as in the DES 3-yr analysis and Pan-
heon + (Hicken et al. 2009 ; Contreras et al. 2010 ; Doi et al.
010 ; Betoule et al. 2014 ; Scolnic et al. 2018 ; Abbott et al. 2019 ;
rout et al. 2022 ). Ho we ver, spectroscopic resources are limited
nd thus, a large fraction of detected SNe have not been classified
n these data sets. To fully exploit the power of these current and
uture time-domain surv e ys, it has become necessary to classify
strophysical objects using photometry instead of the resource- 
imited spectroscopy. In recent years, many methods have been 
eveloped to classify transients using photometry, with an emphasis 
n supernovae (PSNID, SNLSPC, SUPERNNOVA (SNN), RAPID, 
uperRAENN, and SCONE; Sako et al. 2011 ; M ̈oller et al. 2016 ;
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h permits unrestricted reuse, distribution, and reproduction in any medium, 
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 ̈oller & de Boissi ̀ere 2019 ; Muthukrishna et al. 2019 ; Villar et al.
019 , 2020 ; Qu et al. 2021 ). 
The DES 5-yr cosmology analysis (DES Collaboration 2024 )

ses photometric instead of spectroscopic classification to obtain the
argest high-redshift SNe Ia sample from a single surv e y (M ̈oller
t al. 2022 ; Vincenzi et al. 2024 ). Around 1499 SNe Ia were
lassified using their light curves and spectroscopic host-galaxy
edshift information. In contrast to most previous cosmological
amples, SN Ia classification probabilities were incorporated in the
osmology analysis (Hlozek et al. 2012 ; M ̈oller & de Boissi ̀ere
019 ; Qu et al. 2021 ; Vincenzi et al. 2022 ). This analysis provides
he tightest cosmological constraints by any supernova data set to
ate. It also o v ercomes contamination uncertainties from previous
hotometrically classified cosmology analyses (Jones et al. 2018 ). 
To obtain even larger samples and reduce selection biases, methods

ave been extended to ignore all spectroscopic information. Most
f these methods use complete light curves and either photometric
ost-galaxy redshifts or photometric SN-derived redshifts (Bazin
t al. 2011 ; Lochner et al. 2016 ; M ̈oller et al. 2016 ; Boone 2021 ;
arrick et al. 2021 ; Gagliano et al. 2023 ). Some of these methods
ave been used for obtaining cosmological constraints (Chen et al.
022 ; Ruhlmann-Kleider, Lidman & M ̈oller 2022 ). Ho we ver, precise
lassification without the use of any redshift information remains a
hallenge in particular when using early light curves (M ̈oller et al.
021 ; Leoni et al. 2022 ; M ̈oller & Main de Boissi ̀ıre 2022 ). 
In this work, we classify SNe Ia using only the information from

he 5-yr DES light curves using an extension of the machine learning
ramework SNN (M ̈oller & de Boissi ̀ere 2019 ). We aim to fully
arness the power of the DES data by identifying most of the detected
Ne Ia in this surv e y, re gardless of whether or not a host redshift
as been acquired. We exploit the improved statistics that come from
arger, more complete, and more representative samples. 

To use these SNe Ia for cosmology, rates, and other astrophysical
nalyses, we require both accurate classification and redshifts.
raditionally, redshifts are obtained from spectra from the SN or host-
alaxies using spectroscopic follow-up (Smith et al. 2018 ; Lidman
t al. 2020 ). An alternative is to use host-galaxy photometric redshifts
ut these are biased and have not been widely used in cosmological
nalyses (Ruhlmann-Kleider et al. 2022 ). A promising avenue is to
se a subsample of host-galaxies that have highly accurate photo-
etric redshifts such as Luminous Red Galaxies (Chen et al. 2022 ).
o we ver, for these methods, host-galaxies need to be identified and
igh-SNR photometry acquired or produced with stacked images.
n alternative, which does not require host identification, is to infer

edshifts from the SN light curves directly. These methods have been
xplored with data from previous surveys obtaining promising results
Kessler et al. 2010 ; Palanque-Delabrouille et al. 2010 ; Sako et al.
011 ). In this work, we derive redshifts from SN light curves using
he SNphoto-z method (Kessler et al. 2010 ), assess biases and the
mpact these biases have on astrophysical analyses. 

Future surv e ys will continue to detect more SNe than it is possible
o follow-up spectroscopically both for classification and host-galaxy
edshift acquisition. In the case of Rubin, the 4-metre Multi-Object
pectroscopic Telescope (4MOST) Time-Domain Extragalactic Sur-
 e y (TiDES; Swann et al. 2019 ) will aim to classify live SNe
nd obtain host-galaxy redshifts for cosmology up to a limiting
agnitude of 22.5. 4MOST still won’t be able to follow up all SNe

nd transients from Rubin. 
With a focus towards future surv e ys and their spectroscopic follow-

p programmes, here we use DES data as a test bench to explore the
ptimization of follow-up resources for both host-galaxy redshift
cquisition and live supernovae follow-up. The main spectroscopic
NRAS 533, 2073–2088 (2024) 
ollow-up provider for DES was the Australian Dark Energy Survey
OzDES) on the 3.9-m Anglo-Australian Telescope (Yuan et al.
015 ; Childress et al. 2017 ; Lidman et al. 2020 ). OzDES targets
ere prioritized using a template-fitting method called Photometric
upernova IDentification software (Sako et al. 2011 , PSNID) and
electing hosts mostly with r < 24. Ho we ver, this method is time
ntensive and it will be difficult to scale it for future surv e ys. To
ddress this, machine learning algorithms have been developed for
his challenging task (M ̈oller & de Boissi ̀ere 2019 ; Muthukrishna
t al. 2019 ; Leoni et al. 2022 ). In this work, we use SNN (M ̈oller &
e Boissi ̀ere 2019 ), a photometric classification framework, for
pectroscopic follow-up optimization using DES data. 

This paper is organized as follows. We introduce the DES in
ection 2 . F or light-curv e classification, we use the algorithm SNN

ntroduced in Section 3 . This algorithm is trained on realistic
ES simulations on both complete and partial light curves with
erformances on complete and partial shown in Sections 3.2 and
.3 , respectively. In Section 4 , we use the simulations described
n Section 3 to examine the SNphoto-z estimation and its biases
hich will be used for sample analysis but not for classification. In
ection 5 , we select a SN Ia sample without the use of any redshift

nformation, study its properties, and compare it to previous DES SN
a samples. We then explore how machine learning classification can
mpro v e follow-up optimization for host-galaxies in Section 6.1 and
or early SN identification using partial light curves in Section 6.2 .

e conclude with prospects for future surv e ys such as Rubin LSST
nd 4MOST in Section 7 . 

 DA R K  E N E R G Y  SURV EY  (DES)  

n this work, we select SNe Ia using only light-curve information
rom the Dark Energy Surv e y. DES was a photometric surv e y that
sed the Dark Energy Camera (DECam; Flaugher et al. 2015 ) at the
ictor M. Blanco Telescope in Chile. It consisted of a wide-area

urv e y (DES-wide) and a supernova survey (DES-SN). DES-SN,
hich is used in this work, imaged ten 2 . 7 deg 2 fields with an average

adence of 7 d in the griz filters during 5 yr (Abbott et al. 2018 ).
ight of these 10 fields (X1, X2, E1, E2, C1, C2, S1, and S2) were
bserved to a single-visit depth of m ≈ 23 . 5 mag (‘shallow fields’),
nd the other two (X3,C3) were observed to a depth of m ≈ 24 . 5
ag (‘deep fields’). Detailed information on the SN surv e y can be

ound in Smith et al. ( 2020 ). 
Transients were identified using the DES Difference Imaging

ipeline DIFFIMG (Kessler et al. 2015 ) coupled with a machine
earning algorithm (Goldstein et al. 2015 ) to reduce difference
maging artefacts. A candidate SN was defined from the difference
mages by requiring at least two detections with ef fecti ve S/N
hreshold about 5 in each band. These criteria were designed to
emo v e artefacts and asteroids. This yielded a sample containing
1 636 light curves with 5-yr photometry. An example of a light
urve is shown in Fig. 1 . 

From this DES SN candidate sample, SNe Ia were selected for the
ES 5-yr cosmological analysis (DES Collaboration 2024 ). Instead
f spectroscopic selection (Smith et al. 2020 ), SNe Ia were weighted
y their probability of being SNe Ia from the classification framework
NN (M ̈oller & de Boissi ̀ere 2019 ) using light curves and host-galaxy
pectroscopic redshifts (M ̈oller et al. 2022 , hereafter M22 ). This SNe
a sample is the largest and deepest SN cosmological sample acquired
rom a single surv e y. Photometric misclassification was shown not
o be a limiting uncertainty in the cosmological analysis (Vincenzi
t al. 2022 , 2024 ). Part of this analysis tested other photometric
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Figure 1. Light curve of DES15X2kvt. The measured calibrated flux (FLUXCAL, defined in Section 3.1 ) in g, r, i and z bands is plotted against Modified 
Julien Date (MJD). In the left-hand panel, we show the full 5-yr light curve. In the right-hand panel, we show the light curve of 30 d before to 100 d after the 
observed peak flux. 
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lassifiers such as SCONE (Qu et al. 2021 ) to e v aluate the systematic
ncertainty. 
A subsample of DES SNe Ia were classified using spectroscopic 

ollow-up. For this, potential SNe were identified early (before or 
round maximum brightness). A trigger is defined as a sequence 
f detections that results in tracking the light curve with forced- 
hotometry and consideration for spectroscopic follow-up. SDSS 

equired two detections on two separate nights; DES required one (or
ore) detection on two separate nights (Sako et al. 2011 ), and Rubin
SST will require just one detection. In Section 6.2 , we explore early
lassification with different triggers. 

In this work, we use the DES SN candidate sample to select SNe
a without any spectroscopic information from either host or the SN. 

e only use the SN candidates 5-yr photometric light curves. 

 CLA SSIFIC ATION  P E R F O R M A N C E  O N  

IMULATION S  

e make use of SNN to select SN Ia candidates (M ̈oller & de
oissi ̀ere 2019 ). SNN is an open-source light-curve classification 

ramew ork that w as used for the classification of Type Ia SNe in the
ES 5-yr cosmological analysis using light curves and host-galaxy 

edshifts (M ̈oller et al. 2022 ; DES Collaboration 2024 ) and is part of
he Rubin broker FINK (M ̈oller et al. 2021 ; Fraga et al. 2024 ). 

SNN is a non-parametric method that uses as input fluxes and their
easurement uncertainties o v er time for light-curv e classification. 
dditional information such as host-galaxy redshifts can be included 

o impro v e performance such as in DES Collaboration ( 2024 ). SNN
ncludes different classification algorithms, such as long short-term 

emory (LSTM), 1 Recurrent Neural Networks (RNNs), and two 
pproximations for Bayesian Neural Networks. These algorithms 
an be trained for binary or multiclass classification and then applied 
o independent data sets to obtain probabilities of a light curve 
eing of a certain class. The classification probabilities can be used 
o select a sample by performing a threshold cut or by weighting
he contribution of candidates by their classification score as in the 
 LSTM; Hochreiter & Schmidhuber 1997 ) 

(  

t  

(  
EAMS and BBC methods (M ̈oller et al. 2022 ; DES Collaboration
024 ; Vincenzi et al. 2024 ). In this work, we use an SN Ia probability
hreshold that we will denote as SNN > threshold . 

In this work, we train SNN for classification of SNe Ia versus non-
a using only photometric measurements. To a v oid luminosity biases,
e use the cosmo quantile normalization as in M22 which, for a given

ight curve, normalizes fluxes and uncertainties by the 99th quantile 
f the flux distribution (to avoid using an outlier). This normalizes the
uxes for each light curve to 1 or near 1, thus making the classification
odel agnostic to the relative differences in apparent brightness 

etween SNe and retains colour and signal-to-noise information for 
he classification. A thorough study of the cosmological biases from 

NN classification can be found in Vincenzi et al. ( 2022 ). 
The classifier was trained using DES-like simulations described 

n Section 3.1 and the SNN configuration in M22 . The performance
btained for complete light curves (using all SN photometry) is 
iscussed in Section 3.2 and for partial light curves (using photometry
efore maximum brightness) in Section 3.3 . 

.1 Simulations 

ES-like simulations are used to train and test our photometric 
lassifier using only light curves. Simulations contain light curves 
f different SNe types generated with realistic observing conditions. 
hese simulations also include a host redshift; ho we ver, we withhold

his information from the SNN classifier. Details on the simulations, 
hich were generated using SN AN A (Kessler et al. 2009 ) within the
IPPIN framework (Hinton & Brout 2020 ), can be found in M22
nd Kessler et al. ( 2019b ). Throughout this work, we use SN AN A
alibrated flux (FLUXCAL) defined from the magnitude with a fixed 
ero point given by: mag = 27 . 5 − 2 . 5 ∗ log 10 (FLUXCAL). 

As in M22 , we first create a training sample with the same
umber of Type Ia and core-collapse SNe after trigger and selection
equirements (equi v alent to 50 per cent type Ia and 50 per cent core-
ollapse SNe). This balanced training sample contains 3 . 6 × 10 6 SNe
nd co v ers the redshift range from 0.05 to 1.3. As in Vincenzi et al.
 2022 ), it contains Type Ia based on models in Guy et al. ( 2007 ) and
he optical + NIR extension from Pierel et al. ( 2018 ), peculiar Ia
SN1991bg- like SNe and SN2002cx-like SNe; Kessler et al. 2019a )
MNRAS 533, 2073–2088 (2024) 
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M

Table 1. Type Ia versus non-Ia classification metrics for complete light 
curves with no redshift information. The model was trained and e v aluated 
using two data sets: balanced and test. The metrics indicate the performance 
of the ML classifier. The metrics for the test data set indicate the expected 
performance in a real surv e y. We show the single model and the ensemble 
method metrics. Uncertainties for the single model are computed from 

the variance of five models with different seeds and uncertainties for the 
ensemble methods are computed using three ensembles of fives seeds. 

Method Accuracy Efficiency Purity 

Balanced data set 
Single model 97 . 15 ± 0 . 03 97 . 94 ± 0 . 06 96 . 42 ± 0 . 07 
Ensemble 97 . 34 ± 0 . 01 98 . 17 ± 0 . 02 96 . 57 ± 0 . 01 

test dataset (realistic rates) 
Single model 97 . 04 ± 0 . 02 98 . 12 ± 0 . 06 97 . 20 ± 0 . 05 
Ensemble 97 . 22 ± 0 . 01 98 . 36 ± 0 . 01 97 . 30 ± 0 . 01 

a  

r
 

e  

p  

s  

s  

c  

d

3

W  

b  

p
 

t  

f

a

w  

(  

o  

c
 

a

p

I  

f  

S  

u  

t  

a  

p
 

T  

w  

t  

c  

t  

d

Table 2. Type Ia versus non-Ia classification metrics for partial light curves 
with no redshift information. These light curves contain only photometric 
measurements up to their peak brightness. 

Method Accuracy Efficiency Purity 

Balanced data set 
Single model 90 . 4 ± 0 . 1 91 . 5 ± 0 . 2 89 . 4 ± 0 . 2 
Ensemble 90 . 73 ± 0 . 01 91 . 9 ± 0 . 1 89 . 7 ± 0 . 1 

Test data set (realistic rates) 
Single model 90 . 6 ± 0 . 1 92 . 1 ± 0 . 2 91 . 7 ± 0 . 2 
Ensemble 90 . 46 ± 0 . 03 92 . 49 ± 0 . 03 91 . 93 ± 0 . 03 
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nd core-collapse SNe from Vincenzi et al. ( 2019 ) using volumetric
ates from Frohmaier et al. ( 2019 ). 

We generate a smaller data-sized simulation to estimate the
xpected number of SNe Ia in the DES survey as well to test our
hotometric classifiers. We simulate 30 realizations of the DES
urv e y using the expected rates of type Ia and non Ia SNe. This
imulation contains ≈ 60 per cent type Ia and 40 per cent core-
ollapse SNe, and was generated using the expected abundances of
ifferent types of supernovae through cosmic time. 

.2 Performance on complete light cur v es 

e e v aluate the classification of complete light curves: up to 100 d
eyond the time of peak brightness. We use accuracy , efficiency , and
urity as metrics to assess the performance of the classifier. 
Accuracy is measured as the number of correct predictions against

he total number of predictions. More explicitly, it is calculated as
ollows: 

ccuracy = 

TP + TN 

TP + TN + FP + FN 

(1) 

here TP (resp. TN) are true positiv es (resp. true ne gativ es) and FP
resp. FN) are false positives (resp. false ne gativ es). TP is the number
f correctly classified SNe Ia, while TN is the number of correctly
lassified non SNe Ia. 

The purity of the SN Ia sample and the classification efficiency
re defined as: 

urity = 

TP 

TP + FP 

; efficiency = 

TP 

TP + FN 

(2) 

n Table 1 , we list the accuracies, purities, and efficiencies obtained
or the balanced data set (same number of Type Ia and core-collapse
Ne) and the more realistic DES test set. The balanced data set is
seful as an e v aluation of the machine learning algorithm while the
est data set can be used to assess the reliability of the selected sample
s it is physically more representative. We find high-accuracies,
urities, and efficiencies for both data sets. 
As in M22 , we use ensemble predictions to select our sample. In

able 1 , we obtain predictions with different SNN models trained
ith different initiation parameters (random seed) and average them

o obtain an ‘ensemble probability’. Here we use five models, also
alled an ‘ensemble set’, trained with different seeds. To report
he performance of the methods, we quote the mean and standard
eviation of a given metric using three ensemble sets. 
NRAS 533, 2073–2088 (2024) 
.3 Perf ormance f or partial light cur v es 

e now evaluate the performance of our trained classifier when
sing simulated partial light curves. When training SNN , we crop
ight curves to random time-ranges in the data set, this produces a
lassification model robust for both complete and partial light-curve
lassification. 

We e v aluate the performance on light curves that were cropped
o only contain photometric measurements until peak brightness in
able 2 . As we use fewer photometric measurements per event, the
erformance is poorer. Ho we ver, this type of classification can be
sed for scheduling spectroscopic follow-up before SNe fade away. 
In the following, we use the single model classifier as the

erformance gain for the ensemble classifier is small and current
arly classification mechanisms use a single model. Ho we ver, the
xtension to ensembles can provide a gain if resources are available
o deploy multiple models as they are not very computationally
 xpensiv e. 

 ESTIMATING  REDSHI FTS  A N D  

I G H T- C U RV E  PA R A M E T E R S  

IMUL  TANEOUSL  Y  

n this work, we will select a photometric SN Ia sample from DES
ata without the use of redshift information. After classification,
e will determine the redshifts and SALT2 light-curve parameters

imultaneously on light curves using the SNphoto-z code described
n Kessler et al. ( 2010 ). 

In this section, using simulations, we examine biases arising from
his fit and e v aluate ho w these biases af fect the ef ficacy of sample cuts
n improving the classification efficiency and limiting contamination.

We start by assuming that all the photometrically classified SNe
re SNe Ia and fit them with the SALT2 superno va light-curv e model
ased on (Guy et al. 2007 ) and extended to the optical + NIR
Pierel et al. 2018 ). We use the SN AN A light-curve fitting program
Kessler et al. 2009 ) to simultaneously fit for z, t 0 , x1, c and x 0 ,
espectively, redshift, time of maximum brightness, stretch, colour,
nd amplitude, as described in Kessler et al. ( 2010 ). To obtain better
stimates of redshifts for SNe Ia, a weak distance-modulus prior is
pplied (Appendix B ), assuming a � CDM cosmology, and we use
hen available inferred photometric redshifts of the host-galaxies as
 Gaussian prior. When no photometric redshift is available, we use
 flat prior. We highlight that this SNphoto-z fit uses a cosmological
odel. 
Detailed analysis of biases on the light-curve parameters and

edshift is presented in Section 4.1 and their effect on the cuts to
mpro v e the classification by limiting contamination in Section 4.2 . 

None of the derived redshifts (SNphoto-z) or SALT2 parameters
re used for photometric classification. They are only used in
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Figure 2. A comparison between the fitted and true parameter values for simulated SNe Ia. Left: a comparison of the SNphoto-z versus true redshifts. Centre 
and right: comparisons between light-curve parameters colour ( c) and stretch ( x1). The dashed line shows the diagonal, where the values should lie if they were 
equi v alent. While the simultaneous fits are only slightly biased on average, there is considerable structure, especially in redshift and colour. 
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Figure 3. Average offset in SALT2 colour and stretch as a function of 
redshift. Each arrow represents the average offset in both colour (stretch 
in the lower plot) and redshift between a fit that fits redshift and SALT 

light-curve parameters simultaneously and a SALT2 fit that uses as input 
the true redshift. We show these offsets in magnitudes space as βc and αx1 
where α = 0 . 144 and β = 3 . 1. High redshift events are fitted towards lower 
redshifts, redder colours, and lower stretch while intermediate redshift events 
are offset to higher redshifts, bluer colours, and higher stretch. 
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ection 5.5 to study the sample properties after classification is done 
ithout this information. 

.1 SNphoto-z and light-cur v e parameters biases 

e use the test simulations to e v aluate the fitted light-curve param-
ters and SNphoto-z. In Fig. 2 , we compare the fitted light-curve
arameters and SNphoto-z against their true values. 
The fitted parameters are slightly biased on average, with median 

hift of −0 . 003 + 0 . 035 
−0 . 065 , 0 . 008 + 0 . 086 

−0 . 058 , and −0 . 0042 0 . 315 
−0 . 42 for redshift,

olour, and stretch, respectively (errors are indicated by the 25th 
nd 75th quantiles). For redshift, colour, and stretch, we compute an 
utlier fraction of 0.1, 0.06, and 0.07 using the interquartile range 
IQR) method. 

A complex structure can be found in particular for the redshift
stimation. Chen et al. ( 2022 ) finds a similar structure, in particular
or redshifts around 0.4 when comparing galaxy photometric red- 
hifts obtained in redMaGiC galaxies and their spectroscopic ones. 
hese luminous red galaxies are expected to have highly accurate 
hotometric redshifts and were shown to provide constraints with 
qui v alent Hubble scatter that when using spectroscopic redshifts 
Chen et al. 2022 ). 

In Fig. 3 , we plot the average behaviour of the SNphoto-z and
olour/stretch for simulated SNe Ia. We find a pattern of offsets
esulting from degeneracies between colour/stretch and redshift. 
nterestingly, around redshift 0.7 where noise starts dominating 
he r because the rest-frame UV regions has low flux, only i, z 
re sampling the light curve and the of fset re verses. Similarly, at
edshift around 0.9, the noise dominates the i band thus light curves
re only well sampled in the z band. These ef fecti ve band drop-
uts due to low rest-frame UV flux highlight the importance of
ultiband light curves. These shifts introduce structured systematics. 

f these simultaneous fits are to be used in further analyses these
ffsets must be taken into account potentially by the use of bias
orrections, a hierarchical model or grouping events in less bias 
f fected bins. An alternati ve is to use stronger priors for redshift
sing host-galaxy photometric redshifts to reduce biases. A detailed 
tudy in DES of the cosmological biases using photometric redshifts, 
ncluding SNphoto-z with or without priors, can be found in Chen
t al. ( 2024 ). 
MNRAS 533, 2073–2088 (2024) 
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Figure 4. The percentage efficiency per bin of fitted SALT2 peak i-band 
magnitude ( i peak ), redshift, colour ( c), and stretch ( x1) for the simulated 
data set. We show the efficiency for a SALT2 fit with a fixed true redshift 
and that obtained using the SNphoto-z obtained simultaneously with SALT2 
light-curve parameters. We also study a sample selected with additional HQ 

cuts. 
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Figure 5. The percentage contamination per bin of fitted SALT2 peak i-band 
magnitude ( i peak ), redshift, colour ( c), and stretch ( x1) for the simulated data 
set. We show the contamination for a SALT2 fit with a fixed true redshift and 
that obtained with SNphoto-z fitted simultaneously with SALT2 parameters. 
We also study a sample selected with the simultaneous fit and HQ cuts. 
Contamination is distributed differently when using a fixed or SNphoto-z. 
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.2 The effect of SNphoto-z fit on SNe Ia samples 

n this section, we study how cuts on light-curve parameters affect
fficiency and contamination. We study two cuts: the baseline sample
elected using only light curves with a threshold of SNN > 0.5 using
he model in Section 3.2 , and a high-quality (HQ) sample with
dditional cuts on the light-curve parameters. The latter aims to
imic samples for cosmology that apply extra cuts to reduce peculiar
Ne Ia (Vincenzi et al. 2021 ). The HQ cuts are: −3 . 0 < x1 < 3 . 0,
0 . 3 < c < 0 . 3, and σx1 < 1 and σt 0 < 2, where c, x1, σt 0 are

stimated using SALT2 light-curve fit and represent colour, stretch,
nd the error on the time of maximum light, respectively. We also
equire that the SALT2 chi-square fit probability is larger than 0.001
ut as in M22 . 

In Fig. 4 , we show the true and measured efficiency as defined
n equation ( 3.2 ) for three cases: the SNN > 0.5 sample using its true
edshift, the SNN > 0.5 sample using SNphoto-z, and a HQ sample
sing SNphoto-z. In general, we find classification efficiencies abo v e
8 per cent for most of the parameter space. The samples show higher
easured efficiency for SNphoto-z due to the migration of true bluer

vents to redder ones. Conversely, the measured efficiency is lower
t higher redshifts. 

We also study contamination as a function of light-curve properties
n Fig. 5 . Contamination is measured 1 − purity as defined in
quation ( 3.2 ). The o v erall contamination is less than 6 per cent
n any parameter bin while the true contamination is higher for
edder e vents. Ho we ver, when measuring it using the SNphoto-
, this contamination migrates to other colour bins and can also
e absorbed by the lack of convergence of the fit. Higher con-
amination for redder events has also been observed for sam-
les selected using host-galaxy redshifts such as in M ̈oller et al.
 2022 ); Vincenzi et al. ( 2022 ). When using SNphoto-z, we find
NRAS 533, 2073–2088 (2024) 
hat more distant and hence fainter supernovae have a higher
ontamination. 

For the purpose of using this sample for astrophysical analyses,
t is promising that the contamination of a sample using SNphoto-
s remains low and below 6 per cent for any given parameter bin.
pplying HQ cuts reduces this contamination for the complete
arameter space. This causes only a small reduction in efficiency
or higher stretch events and events at higher redshifts. 

 CLASSI FI CATI ON  O F  SNE  IA  W I T H O U T  

EDSHIFT  I N F O R M AT I O N  

n this section, we classify light curves without redshift information
o obtain a large, HQ sample of photometrically selected SNe Ia.
irst, we use simulations to estimate the expected number of SNe Ia

n DES in Section 5.1 . Next, we pre-process DES data in Section 5.2 .
e define a sample using a threshold similar to M22 in Section 5.3 .
sing the SNphoto-z method introduced in Section 4 , we obtain a
Q sample in Section 5.4 and study its properties in Section 5.5 . We

onclude by comparing this sample to other DES SN Ia samples in
ection 5.6 . 

.1 Expected number of HQ DES SNe Ia 

e use the DES realistic simulation introduced in Section 3.1 to
stimate the number of SNe Ia the DES surv e y. This simulation
onsists of 30 realistic simulations of the full DES 5-yr SN surv e y
p to redshift 1.2. 
From these simulations, we expect to detect 4 , 961 ± 69 SNe Ia

median and standard deviation of 30 realizations). No selection cuts
ther than detection are applied at this stage. 



DES SNe Ia without redshifts 2079 

Table 3. The number of candidates selected after each cut is applied. We show results for the shallow and deep fields, as well as the total 
number. Note that a couple of per cent events belong to both shallow and deep fields due to field o v erlap. Columns show the selection cut, the 
number of selected candidates, the number of spectroscopic SN Ia in the sample, and the number of the DES 5-yr photometrically classified 
SNe Ia (photo Ia M22 ). 

Selection cut Shallow Deep Total DES 5-yr 
selected spec Ia selected spec Ia selected spec Ia photo Ia M22 

DES-SN 5-yr candidate sample 23 795 322 7863 93 31 636 415 1484 
Filtering multiseason 9607 317 4464 88 14 070 405 1484 
Photometric sampling 8969 314 4150 86 13 118 400 1484 
SNN > 0.001 3680 303 1996 83 5676 386 1481 
SNN > 0.5 (high purity) 2199 291 1348 77 3547 368 1376 
Converging SALT2 and SNphoto-z fit 1630 250 909 60 2539 310 1261 
HQ 1559 249 739 60 2298 309 1236 
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From these, we expect 2 , 360 ± 43 HQ SNe Ia using the cuts
ntroduced in Section 4.2 . For this estimate, we use the simulated
edshift when fitting the light curve with SALT2. We then apply the
uts. 

This simulation also includes other types that are not normal type 
a SNe with realistic rates. We estimate that DES detected 3 , 466 ± 64
Ne of other types. Importantly, we estimate up to 231 ± 13 non-
ormal type Ia SNe that would pass the HQ cuts if a SALT2 fit using
heir redshift was done. These SNe are contaminants for cosmology 
nalyses that are reduced by using photometric classifiers. For a 
horough discussion on biases, refer to Vincenzi et al. ( 2022 , 2024 ). 

.2 SN candidates pr e-pr ocessing 

n this section, we use the DES SN candidate sample introduced in
ection 2 . We make use of light curves from 31 636 candidates, using
oth the fluxes and their uncertainties. 
We use the pre-processing introduced by M22 to prepare light 

urves for photometric classification with SNN : 

(i) We select a subset of 5-yr photometry within a time-window in 
he observer frame of 30 d before to 100 d after maximum brightness
f the detected event, as shown in Fig. 1 . 
(ii) We eliminate photometry that has been flagged as flawed using 

itmap flags from SOURCE EXTRACTOR (Bertin & Arnouts 1996 ). 
round 6 per cent of measurements are discarded here. 
(iii) We filter multiseason events, which include AGN, by requir- 

ng a large ratio of good detections with respect to all detections
sing a Real/Bogus classifier. We require a ratio between the 
umber of epochs with detections that pass the Real/Bogus classifier 
 AUTOSCAN; Goldstein et al. 2015 ) and the total number of epochs
ith detections to be larger than 0.2 as inSmith et al. ( 2020 ). 

With these cuts, the sample is reduced from 31 , 636 to 14 , 070
N candidates. While these cuts reduce the contamination, some 
esidual AGN remain. The number of candidates that remain after 
ach cut is listed in T able 3 . W e highlight that from the original 415
pectroscopic SNe Ia, 10 are eliminated due to the multiseason cut 
s they may be in galaxies with AGN. 

Additionally, we require at least one photometric detection before 
0 d after peak, and at least one after 10 d after peak. We highlight
hat the peak brightness is an observed peak brightness, and it does
ot necessarily correspond to the peak SN flux. Five events do not
ass these criteria. 
This sample of 13 , 118 candidates includes the following spectro- 

copically classified events: 400 SNe Ia (241 of these were in the
ES 3-yr analysis), 83 core-collapse SNe, 2 peculiar SNe Ia, 16 
uper Luminous SNe, 1 Tidal Disruption Event, 1 M Star, and 36
GN. 

.3 High purity sample (SNN > 0.5) 

e select a higher purity sample with the same threshold as M22 but
ithout the use of redshift information. We select 3 , 545 2 light curves

hat have an ensemble probability of being SNe Ia larger than 0.5 as
hown in Table 3 . As shown in Table 3 , this stricter cut reduces the
umber of events while maintaining most of the DES 5-yr SNe in
22 . In Section 4.2 , we estimated the core-collapse contamination

f such a photometrically identified sample to be around 6 per cent. 
This photometric SNe Ia sample is a factor of two larger than the

ES 5-yr SN Ia sample from M22 which used redshift information.
ur new sample, classified without redshifts, contains 93 per cent of

he SNe Ia in M22 , thus providing reasonably good o v erlap with less
nformation. Events in M22 that were not selected when classifying 
hem without redshifts are evenly distributed at all redshifts, with a
light peak around 0.5, and the y hav e slightly narrower light curves.

hile the simultaneous fit is not used for the selection, it provides
n indication of the SNIa-likeness of these events. When fitting the
ight curves of the lost M22 SNe, we find systematic offsets in colour,
tretch, and redshift. 

Approximately 4 per cent of the SNN > 0.5 sample have no asso-
iated host-galaxy detected with deep photometry in Wiseman et al. 
 2020b ). In Section 6.1 , we discuss further how our selection probes
vents with fainter hosts than other DES samples that were mostly
imited to hosts with m 

host 
r ≤ 24. 

.4 High-quality (HQ) sample 

e select a high-quality sample from the 3 , 547 candidates described
n Section 5.3 by applying cuts on the SNphoto-z and SALT2
arameters fit described in Section 4 . We find that only 2 , 539 obtain
 successful fit. This is due to convergence issues resulting from
ifficulties to obtain a simultaneous SNphoto-z and SALT2 fit. 
We select a HQ SN Ia sample shown in Table 3 by applying SALT2

uts introduced in Section 4.1 . As the estimation of the SNphoto-z
as restricted up to redshift 1.2, we add a cut where SNphoto-z must
e below 1.2. We identify 2 , 298 photometric SNe Ia. This sample
s slightly smaller to the expected number of HQ SNe Ia within
his redshift range. This small reduction may be due to some issues
btaining SNphoto-z for the SNe Ia consistent with the efficiency 
MNRAS 533, 2073–2088 (2024) 
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Figure 6. Distributions of redshift, SALT2 x1, SALT2 c and i-band peak magnitude i peak for the HQ, photometrically classified sample. We show distributions 
for both the SNphoto-z and SALT2 light-curve parameters (in red for shallow fields and maroon for deep fields) and the distributions if simulated redshift was 
used (in grey). Poisson uncertainties are assumed. Both the simulation and data pass HQ cuts. The goodness-of-fit for each histogram is shown as the χ2 /number 
of bins on each plot for both the SNphoto-z ( χ2 

S ) and fixed true redshift ( χ2 
T ). The simulations replicate the data better when the SNphoto-z is used for the 

shallow fields only. 
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stimated in Fig. 4 . Using simulations, in Section 4.2 , we estimate
he contamination of a HQ selected sample to be less than 1 per cent.

Around 83 per cent of the DES 5-yr SNIa sample in M22 is also
elected in our HQ sample. M22 SN Ia that were not selected in
he HQ sample have differences of up to 0.3 in the SNphoto-zs. We
tudy in more detail the effect of SNphoto-z and the o v erlap between
he samples in Appendix A . Due to this simultaneous fit that offsets
ignificantly the redshift of the event, these SNe Ia have SALT2
arameters that are not compatible with a HQ sample. 
We do not find any spectroscopically classified non-Type Ia SN

n this HQ sample. We find seven events in galaxies that have AGN,
ve of them have a separation from the centre of the galaxy > 1 ′′ 

nd thus are kept. We eliminate two events that are in the centre of
he galaxy with an AGN (SNIDs 1303165, 1257010). 

.5 Sample properties 

n Fig. 6 , we show the redshift and SALT2 measured light-curve
arameters for our sample and for simulations as a function of
edshift. In the following, true redshift will be the host-galaxy
pectroscopic redshift for data and simulated one for simula-
ions; while SNphoto-z will come from the method introduced in
ection 4 . 
Our photometric sample in the shallow fields agrees better in

olour and stretch with simulations using the SNphoto-z, and less
ith the distribution using parameters derived with the true redshift

s shown in the second and third panel in Fig. 6 . This reinforces the
esults from Section 4.1 and Fig. 2 showing that we can simulate and
eproduce the biases introduced by the SNphoto-z method. Ho we ver,
or the deep fields, we find a better agreement with simulations using
NRAS 533, 2073–2088 (2024) 
he true redshift. This may be due to a reduction of selection effects at
igh redshift that dominates the shallow fields. We note that for some
arameters, such as colour, the distributions with true, and SNphoto
edshifts are comparable. 

We study the redshift evolution of SN Ia light-curve parameters
olour and stretch in Fig. 7 . As the classifier does neither use
he SNphoto-z nor light-curve parameters, the selected sample is
ot influenced by the step that estimates these parameters. The
ifferences between simulations in this plot are only due to the values
btained during the SNphoto-z fit. 
We find that the data follow the simulation when using SNphoto-z.

his suggests that these biases can be reproduced in the simulations.
or the deep fields, we observe that the offset from the true z
alues is coincident with the redshifts were noise starts dominating
 band. 

.6 Comparing DES SN Ia samples 

n this section, we compare differently selected SNe Ia samples from
ES: spectroscopically classified, photometrically classified using
ost-galaxy redshifts M22 ; DES Collaboration ( 2024 ); Vincenzi et al.
 2024 ), and – our current work- a z-free photometrically classified
ample. We study SALT2 SN Ia parameters, as well as host-galaxy
roperties derived in Wiseman et al. ( 2020a ). 
Host redshifts are only available for a subset of events. We

how in Fig. 8 that a sample selected without host or SN redshifts
nformation includes SNe Ia probing a wider range of parameters
e.g. redshift co v erage), in greater numbers and in fainter hosts. Our
-free sample also contains SNe Ia that are on average bluer, fainter
nd with broader light curves when comparing to spectroscopically
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Figure 7. Redshift dependence of SALT2 c and x1 for the photometric sample (black markers) and simulated SNe Ia (piecewise curves). We plot SALT2 
parameters and SNphoto-z that are simultaneously fit for the shallow (red lines in the left-hand panels) and the deep (maroon lines in the right-hand panels) 
fields. The curves using the simulated (true) redshift are shown in grey. For the simulation, lines are binned averages of the measured parameters. The individual 
light grey lines represent 150 realizations of the DES-SN 5-yr surv e y and the solid grey filled area co v ers 68 per cent of these realizations. The mean and the 
standard deviation of the DES-SN 5-yr data are shown using black markers. 

Figure 8. Distributions of redshift, SALT2 x1, SALT2 c, i-band peak magnitude i peak , and host-galaxy r-band magnitude for the HQ sample classified without 
host information in this work, the photometrically selected SN Ia sample with spectroscopic host-galaxy redshifts M22 , and the spectroscopically classified 
SNe Ia. 
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lassified and photometrically classified with host-galaxy redshift 
amples. 

We check the power of our new sample in the context of host-
alaxies. For those SNe Ia that have an identified host, we compute
heir host stellar masses using different sources of redshift. Using 
Nphoto-z, in Fig. 9 , we find that the z-free classification includes
ainter hosts at all redshifts and with lower masses from z > 0.4. We
ighlight that the z-free sample includes most of M22 plus lower 
ass galaxies at higher redshifts. We find that the distribution of

ost-galaxy masses from this sample remains the same at all redshifts
elow 1 when using masses derived with host-galaxy spectroscopic 
edshifts or SNphoto-z. 

We further investigate correlations between stretch and host- 
alaxy mass in Fig. 10 . We find that the DES SNe Ia HQ using
Nphoto-z have higher stretch at higher masses than other DES 

amples (first row). This is also seen even if we restrict to events
ith host-galaxy spectroscopic redshift in this sample (second row) 
r if we create a ‘mixed sample’ that uses spectroscopic host-galaxy 
pectroscopic redshifts if available and then SNphoto-z for those 
ithout it (third row). A detailed study of these correlations is left

or future work. 
This z-free classified sample will be of value for studying 

ates, Delay Time Distributions (DTDs), intrinsic populations, and 
nderstanding selection biases in our current analyses. Ho we ver, 
edshifts are still needed for understanding how these quantities vary 
hrough cosmic time. Using the light curve to estimate redshifts along
ith light-curve parameters was shown to produce biased estimates. 
hese biases can be reduced by using large redshift bins or by
sing simulations to correct for the biases. This has been shown
n a preliminary analysis with a subset of the DES SN-candidate
ample for rates (Lasker 2020 ). For cosmology, another alternative 
ould be to select only candidates in certain types of galaxies such
s redMaGiC that can provide accurate host photometric redshifts 
Chen et al. 2022 ) to use for the light-curve fitting or apply SN Ia
ight-curv e redshift driv en methods such as the method described in
u & Sako ( 2023 ). 
MNRAS 533, 2073–2088 (2024) 
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Figure 9. SALT2 stretch and colour, host-galaxy mass, and r magnitude as a 
function of the redshift for the HQ sample classified without host information 
(green), the photometrically selected SN Ia sample with spectroscopic host- 
galaxy redshifts (in M22 in orange) and the spectroscopically classified SNe Ia 
(in blue). For the sample classified without host information (green) we show 

two versions: one using SNphoto-z (solid line) computed simultaneously with 
colour and stretch; and the other using the host-galaxy spectroscopic redshift 
when available (dotted line). The error bars show the standard error for a 
given redshift bin. The HQ sample probes SNe Ia in fainter hosts than the 
M22 sample at all redshifts as well as lower mass hosts from z > 0.4. 
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Figure 10. SNIa stretch as a function of host-galaxy mass. In coloured lines 
we show the median values for the HQ sample classified without host infor- 
mation (green), the photometrically selected SN Ia sample with spectroscopic 
host-galaxy redshifts (in M22 in orange) and the spectroscopically classified 
SNe Ia (in blue). The error bars show the standard error for a given redshift 
bin. In grey, we show each of the measurements for a given SNe Ia in the z- 
free sample. Each row uses a different redshift for the DES SNe Ia HQ sample 
and thus its x1 measurement, first ro w SNphoto-z, second ro w host-galaxy 
spectroscopic redshifts if available, and third row a mixture of host-galaxy 
spectroscopic redshift and when not available SNphoto-z. The z-free sample 
shows for any choice of redshift, a higher stretch at higher mass than the M22 
sample. 
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 PHOTOMETRIC  CLASSIFICATION  F O R  

OLLOW-U P  OPTIMIZATION  

n this section, we explore how to use photometric classification
o optimize spectroscopic follow-up of host-galaxies (Section 6.1 )
nd SNe while still bright enough to observe and preferably before
aximum light (Section 6.2 ). 

.1 Follow-up of host-galaxies 

ost-galaxy follow-up provides accurate redshifts, which are needed
or the Hubble diagram and thus cosmology. As spectroscopic
esources are scarce, prioritization of potential SN Ia host-galaxies
s necessary for spectroscopic follow-up programmes. 

The Australian Dark Energy Surv e y (OzDES) pro vided multi-
bject fibre spectroscopy for the DES using the 2dF fibre positioner
nd AAOmega spectrograph on the 3.9-m Anglo-Australian Tele-
cope (Yuan et al. 2015 ; Childress et al. 2017 ; Lidman et al. 2020 ).
NRAS 533, 2073–2088 (2024) 
zDES targeted a wide range of sources o v er the 6 yr, with active
ransients, AGNs, and host-galaxies with r < 24 having the highest
riority and occupying most of the fibres. 
For DES, OzDES targeted 8 , 666 candidate SN hosts and obtained

edshifts for 6 , 391 of these galaxies (Lidman et al. 2020 ). OzDES
argets were selected from 31 , 636 DES SN candidates by prioritizing
hose with a high probability of being SNe Ia from fits with the
hotometric Supernova IDentification software (Sako et al. 2011 ,
SNID ) and selecting hosts mostly with r < 24. 

In this section, we explore using SNN probabilities for host-
alaxy spectroscopic follow-up prioritization. This will be crucial
or future surv e ys such as Rubin LSST and its follow-up pro-
ramme the Time-Domain Extragalactic Surv e y (TiDES; Swann
t al. 2019 ) on the 4-metre Multi-Object Spectrograph Telescope
4MOST). 
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Figure 11. Number of events as a function of cuts applied. The size of the 
bar includes all events and they are split according to the subsamples (e.g. 
M22 photometric SNe Ia in yello w, e vents with hosts brighter than 24 mag in 
purple, without host in maroon). From left to right the first four bars represent 
an additional cut being applied. The right starred bar represents the DES 
surv e y follow-up prioritization strategy: sampling cuts plus a loose cut in 
PSNID probabilities. We show the number of OzDES follow-up targets as a 
dashed line. 
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Figure 12. Number of events in the photometrically selected SN Ia sample as 
a function of host-galaxy r band magnitude. We show samples with different 
SNN classification scores and a DES cosmology-like cut (solid lines) and 
those events that had no redshift in the DES data base (dotted). The host- 
galaxy magnitude limit used in OzDES is shown as a vertical line. 
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NN > 0.001 

e explore the use of a loose cut in SN Ia probability for identifying
otential host-galaxies. We apply an SNN > 0.001 cut after pre- 
rocessing cuts in Section 5.2 . From the pre-processed 13 , 118 
andidates, this cut reduces significantly the sample to 5 , 676 as
hown in the fourth row of Table 3 and in the third bar of Fig. 11
hile keeping all events in the M22 sample except 3 (shown in orange

n Fig. 11 ). 
To estimate the performance of this selection method we apply the 

ame SNN > 0.001 cut to DES SN simulations. We reco v er almost
ll of the simulated SNe Ia, obtaining an efficiency of 99 . 996 ±
 . 001 per cent . As this is a loose cut, we find that the purity of
he sample is only 88 . 68 ± 0 . 06 per cent . For one realization of the
ES surv e y, with 4 , 962 type Ia and 3 , 466 core-collapse SNe, this

ut selects all the type Ia and 613 core-collapse SNe. We highlight,
hat this simulation does not include other types of transients and 
purious detections which may contaminate the candidates. 

We now compare this loose SNN cut with respect to the method
sed during the DES surv e y to prioritize potential SNe host-galaxies.
uring the DES surv e y, a loose PSNID probability cut was used to

elect candidates. In Fig. 11 , we find that a loose SNN probability cut
third bar) reduces the follow-up sample from PSNID by a factor of
wo while maintaining the number of DES 5-yr SNe Ia M22 (yellow
ar). 
Future surv e ys, such as Rubin LSST, will not only require accurate

election of candidates, but also scalable methods to address the 
ig data volumes. SNN has been shown to be scalable, classifying
housands of light curves per second. 

NN > 0.5 

e now explore whether a tighter probability cut provides a good 
ample for host-galaxy follow-up. 

Using simulations, we estimate that such a cut would reco v er
 , 883 from 4 , 962 type Ia and select 128 from 3 , 466 non Ia SNe.
his represents an efficiency of 98 . 36 ± 0 . 01 per cent and purity
f 97 . 297 ± 0 . 004 per cent . As in the previous Section, these
imulations only indicate the performance on SN light curves while 
he data may include other transients and spurious detections. 

We apply a SNN > 0.5 threshold as in Section 5.3 to the DES
N-candidates, finding that there is a significant reduction on the 
umber of follow-up candidates, while maintaining the number SNe 
a. From these 3 , 547 host-galaxy follow-up candidates, 1 , 441 have
o spectroscopic redshift from DES follow-up programmes. 
As shown in Fig. 12 , most of the host-galaxies without redshift are

aint. In the context of DES, if we select those events in host-galaxies
ith a limiting magnitude similar to that for spectroscopic follow- 
p at the OzDES programme, m 

host 
r ≤ 24, we obtain 2 , 394 potential

ollow-up host-galaxies. Most of these galaxies were followed-up 
nd a redshift was acquired. The majority of hosts without redshifts
ome from SN candidates in the last 2 yr of the surv e y, which had less
ime to be followed-up and thus resulted in shorter integration times.
hese selection effects were modelled by Vincenzi et al. ( 2022 ). 
This method provides potential prioritization for follow-up galax- 

es to extend the DES 5-yr sample with 447 new events with hosts
ithin the magnitude limits of the AAT and the OzDES programme.

.2 Early classification for li v e SN follow-up 

n this Section, we explore the early identification of candidates for
N spectroscopic follow-up optimization. This identification is done 
ith partial light curves, preferably before maximum brightness. 
DES light curves are preprocessed using the following cuts: 

(i) Artifacts are rejected using the transient status flag as in Smith
t al. ( 2018 ). 

(ii) We eliminate photometry that has been flagged as flawed using 
itmap flags from SOURCE EXTRACTOR (Bertin & Arnouts 1996 ). 

To trigger follow-up, a sequence of detections must be identified. 
he DES trigger required at least one detection on two separate
ights. To verify its performance, we select photometric measure- 
ents (i) within a time-window of 7 d before to 20 d after the DES-

ike trigger and (ii) within a time-window of 30 d before the observed
eak and the observed peak. We apply SNN > 0 . 5 classification
hreshold to select candidates for follow-up as shown in Table 4 . 

We find that the median number of detections per SN in all bands
or early classification using the DES-like trigger and peak selection 
ethods respectively are: (i) 7 ± 4 and (ii) 6 ± 5 (errors are given

y one standard deviation for all SNe). 
We compare our selection for potential live SN follow-up with the

zDES strategy for a magnitude limited sample. OzDES obtained 
460 spectra of live-transients prioritizing events that were brighter 
han 22.7. As shown in Table 4 , for candidates with any band

agnitude < 22 . 7 we find that SNN reduces the number of potential
MNRAS 533, 2073–2088 (2024) 
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M

Table 4. Selection of targets for spectroscopic follow-up. The first two 
ro ws sho w the number of e v ents selected from their partial light curv es 
using photometry −7 < DES-like trigger < 20 d. The following two rows 
show the same statistics but for light curves selected within a time-window 

of −30 < peak < 1 and then for −7 < LSST-like trigger < 20. For all cases, we 
only include events with peak magnitudes brighter than 22.7 in any band, 
which was the OzDES limiting magnitude for live transient follow-up. 

cut total specIa M22 spec nonIa multiseason 

−7 < DES-like trigger < 20 
−7 < DES < 20 3250 336 776 120 230 
SNN > 0.5 1288 294 687 4 18 

−30 < peak < 1 
−30 < peak < 1 5702 359 810 144 622 
SNN > 0.5 1428 305 683 4 19 

−7 < LSST-like trigger < 20 
−7 < LSST < 20 3327 296 689 95 219 
SNN > 0.5 1305 264 618 4 28 
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ollow-up candidates by more than a factor of 3, maintaining most
f the SNe Ia. 
Interestingly, SNN is able to eliminate a large fraction of multisea-

on (e.g. AGN) events. These events were not part of the training set
nd this indicates that the classification is robust to out-of-distribution
vents. 

 PROSPECTIVES  F O R  RU BIN  A N D  4 M O S T  

he Vera C. Rubin Observatory is expected to obtain up to 10 million
etections (alerts) of transients every night during the 10-yr Legacy
urv e y of Space and Time (LSST; Bellm et al. 2019 ). There is

he potential of disco v ering hundreds of thousands supernovae for
osmology and astrophysical studies (LSST Science Collaboration
009 ; Hambleton et al. 2023 ). This is several orders of magnitudes
arger than DES. Rubin LSST will provide multiband light curves for
ll these transients. The 4MOST Time-Domain Extragalactic Surv e y
TiDES; Swann et al. 2019 ) will provide a large fraction of follow-up
or host-galaxies and live transients with spectroscopy. 

Given the sheer volume of data from LSST, it will be crucial to
ptimize resources for the spectroscopic follow-up of hosts-galaxies
nd live supernovae. 

TiDES is expected to obtain host-galaxy redshifts for 50 000 SNe
a up to redshift of 1. In Section 6.1 we have shown that SNN can
rastically reduce the number of candidates sent for host-galaxy
ollow up while maintaining most of the SNe Ia in the sample. 
NRAS 533, 2073–2088 (2024) 

igure 13. The full 5-yr light curve of DES15C3lvt in the left panel. The measure
entre and right-hand panels, we show the photometry used for classification before
r first detection, is far away from the SN and was probably due to noise. 
For follow-up of live transients, LSST will emit an alert when a
etection occurs with S/N > 5. These alerts will be received by Rubin
ommunity brokers (e.g. FINK , M ̈oller et al. 2021 ). In Table 4 , we

ho w the ef fect of using a single detection for the DES data to select
arly SNe. In the following, we explore the adequacy of a single
SST-like trigger and then explore a follow-up similar in magnitude
epth as TiDES. 

.1 Is a LSST-like trigger a good indicator for a real event? 

e now test an LSST-like trigger, where only one detection with
/N > 5 is required. Intuitively, the LSST-like trigger time should be
ithin a month of the observed peak for SNe. We check whether the
SST-like trigger is within 30 d of the observed peak finding only
5 per cent for the DES 5-yr photometric SN Ia sample (in M22 ) and
1 per cent for the spectroscopically classified SNe Ia satisfy this
ondition. 

These results show that a LSST-like trigger is not necessarily a
obust indicator of the start of the SN event for large surv e ys. An
xample of a SN with a trigger in a different year than the event is
hown in Fig. 13 . 

Importantly, using a single detection as a criterion for follow-up
ill not optimize our scarce follow-up resources. A larger fraction
f LSST-like triggers when compared to a DES-like trigger will not
orrespond to a SN-like event. To reduce the number of spurious
etections it will be necessary to increase the number of detections
ecessary for follow-up and monitor whether the light curve is rising
n brightness together with a classifier (e.g. Leoni et al. ( 2022 )) or
o implement a requirement for a second detection within 30 d as in
ES. 

.2 TiDES-like selection 

imulations predict that TiDES will be able to classify live transients
s faint as r mag ≈ 22 . 5 (Swann et al. 2019 ). In this section, we discuss
he early classification of transients in the DES surv e y as a precursor
or the Rubin LSST SN sample. 

The main contamination is multiseason events identified a poste-
iori by their detection o v er multiple seasons. For Rubin, it could
e beneficial to incorporate AGN models into the training set to
educe this contaminant or to filter out these events using pre-existing
hotometry if this photometry is available. For example, much of the
rea that LSST will co v er has imaging data with DECam. 

Importantly, for DES we found that the LSST-like trigger can
ometimes occur much earlier than the SN event as a result of
d flux in g, r, i, z bands, plotted against Modified Julien Date (MJD). In the 
 observed peak (grey) and around trigger (orange). For this event the trigger, 

ber 2024



DES SNe Ia without redshifts 2085 

n  

c
T  

a
r
a
i

 

L
o  

a  

8

I  

D  

O  

h  

e  

g
 

c
d
i  

(
 

f  

2  

o  

e
s

 

S  

S  

h
w  

p

o
i  

S  

a
 

S
c
a  

r
l
I
t

s
u  

fi  

a
W  

t
 

D  

s
h  

r  

t  

a
h

 

w  

s  

a

A

A  

A
fi
v  

1
F
(
d
D
t

m
a
a  

c
a  

c  

a  

t  

o
d
t

 

o  

U
t  

T
E
S
C
U
P
F
n  

A  

d  

C
s  

T
U
C
n
L
t
N
C
I
L
a
g
S
o

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/533/2/2073/7733097 by guest on 11 D
ecem

ber 2024
oise fluctuation or subtraction artefact. This can be an issue if
lassification is restricted to a small time window around trigger. 
hus, to a v oid losing potential SN, a DES-like trigger could be
pplied or an strategy could be applied where detections are classified 
egardless of the trigger time with algorithms that can classify SNe 
t any time step. To increase purity, additional requirements can be 
ncluded such as a second detection night or rising light curves. 

In this work, we use data from DES as a precursor for Rubin
SST. Using LSST simulations, other works have explored: the 
ptimization of the 4MOST follow-up strategy Carrick et al. ( 2021 )
nd the rate of reco v ery of SNe Ia using SNN (Petreca et al. in prep.).

 C O N C L U S I O N S  

n this work, we photometrically classified SNe Ia from the 5-yr
ES surv e y data using only light curves and the framework SNN.
ur goal was to classify detected SNe Ia regardless of whether their
osts could be identified. In anticipation of future surv e ys, we also
xplore the use of SNN to optimize follow-up resources for host-
alaxies and live SNe. 

From the DES 5-yr data, we obtain 3 , 547 SNe Ia, photometrically
lassified without using any redshift information. This sample 
oubles the DES 5-yr sample classified with host-galaxy redshifts 
n M ̈oller et al. ( 2022 ), DES Collaboration ( 2024 ), Vincenzi et al.
 2024 ), and contains SNe Ia in faint galaxies. 

To obtain a high-quality SN Ia sample, we first estimate redshifts
rom the SN light curves using the SNphoto-z method (Kessler et al.
010 ). We then use the redshifts and light-curve parameters to restrict
ur sample to 2298 high-quality SNe Ia. This is consistent with the
stimated number of well-measured SNe Ia in DES according to 
imulations. 

We find that this HQ sample contains 83 per cent of the previous
Ne Ia sample classified with host-redshifts in M22 . Most of the M22
Ne Ia are lost due to lack of convergence of the SNphoto-z. If new
ost-galaxy photo-z are available, combining the SNphoto-z method 
ith a host-galaxy photo-z prior is expected to significantly impro v e
hoto-z estimates and the fitting efficiency (Mitra et al. 2023 ). 
We also find that there are structured offsets between the estimates 

f SNphoto-z and SALT2 parameters with respect to the true values 
n simulations. Ho we ver, we find potential for using this sample with
Nphoto-zs for analyses in the deep fields or in analyses that require
 binning o v er redshift or other parameters. 

Future surv e ys such as Rubin LSST will continue to detect more
Ne than it is possible to follow-up spectroscopically both for 
lassification and host-galaxy redshift acquisition. In this work, we 
lso show that SNN is more ef fecti ve than previous methods at
educing the number of candidates for host-galaxy (four times) and 
ive SN (three times) follow-up while maintaining the number of SNe 
a. Importantly, it significantly reduces contaminants such as AGN 

hat were not used for training as they are challenging to simulate. 
We use our DES results to examine potential challenges and 

olutions for Rubin LSST and the spectroscopic time domain follow- 
p programme 4MOST TiDES. In particular for li ve SN follo w-up we
nd that using an LSST-like trigger (only 1 detection SNR > 5) yields
 large number of triggers not coincident with real SNe detections. 
e find that an alternative to impro v e triggering is to use a DES-like

rigger to define the time region for classification. 
In this work, we have identified most of the expected SNe Ia in the

ES data set. When compared to other DES SN Ia samples both the
pectroscopically classified and the photometrically classified using 
ost-galaxy redshifts in M22 , we find that we are probing higher
edshift, fainter , bluer , and higher stretch SNe Ia populations. For
hose SNe Ia in this sample with an identified host, we find that we
re probing lower host-galaxy masses at high-redshifts and at higher 
ost masses we are obtaining higher stretch SNe Ia. 
A purely light curve classified SN Ia sample, such as the one in this

ork, harnesses the power of large surv e ys such as DES. These large
tatistical sample, has the potential to further shed light on questions
bout SNe Ia diversity and environments. 
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PPENDI X  A :  D E S  H Q  SAMPLE  A N D  

NPHOTO-Z  

n this appendix, we inspect events in the HQ sample introduced in
ection 5 and their SNphoto-z and SALT2 light-curve parameter fits.
In Fig. A1 , we find that for the common events in DES HQ SNe Ia

nd the M22 sample, the SNphoto-z estimation agrees mostly with
heir spectroscopic host redshifts. For the 248 events from M22 that
re not selected in our z-free sample, only 116 obtain a SNphoto z
stimation. For the latter, in Fig. A2 , we find a large dispersion on
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DES SNe Ia without redshifts 2087 

Figure A1. DES HQ o v erlap with M22 . Left: a comparison of the SNphoto-z v ersus host-galaxy spectroscopic redshifts. Centre and right: comparisons between 
light-curve parameters colour ( c) and stretch ( x1) using the SNphoto-zs and the host spectroscopic one. The dashed line shows the diagonal where the values 
should converge if they were equi v alent. The lo wer ro w indicated the dif ference between parameters with host-galaxy spectroscopic redshift and SNphoto-z. 
Events classified by SNe Ia by both methods are mostly consistent with their estimates. 

Figure A2. M22 SNe Ia not included in the DES HQ sample (248 SNe Ia). We show only events that have a converging SNphoto z fit (116 events). Left: a 
comparison of the SNphoto-z versus host-galaxy spectroscopic redshifts. Centre and right: comparisons between light-curve parameters colour ( c) and stretch 
( x1) using the SNphoto-zs and the host spectroscopic one. The dashed line shows the diagonal where the values should converge if they were equi v alent. Lost 
M22 events include SNe Ia that have SNphoto-z beyond the HQ cuts (shown as a square grey dashed line) and some more scattered fitted events. 
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he fitted vs. spectroscopic redshift parameters. In some cases these 
arameters are estimated outside the HQ cuts. 

PPEN D IX  B:  FITTED  L I G H T- C U RV E  

HOTOM ETR IC  REDSHIFT  

he method used in this work to estimate photometric redshifts by 
imultaneously fitting redshift with SALT2 light-curve parameters is 
urther described in Kessler et al. ( 2010 ) and in the SN AN A manual
ection 5.12. 
In this appendix, we clarify the distance prior mechanism used 

or this fit. We assume a �CDM cosmology with wide priors cen-
red around H 0 = 70, w = −1, �m 

= 0 . 315, �� 

= 0 . 685 (Planck
ollaboration 2020 ). 
First, the fitted distance modulus, μSALT 2 , is approximately com- 
uted as 

SALT 2 = 30 . 0 − 2 . 5 ∗ log10( x0) + ( α ∗ x1) − ( β ∗ c) (B1) 

here x 0 , x 1 and c are SALT2 light-curve parameters, and we use
efault parameters α = 0 . 14 and β = 3 . 2. 
Next, the difference between the fitted and theoretical distance 
odulus, μDIF , is computed as: 

DIF = μSALT 2 − μtheory ( z PHOT ) (B2) 

here z PHOT is the SNphoto-z. 
An intentionally large estimate of the distance uncertainty, σ 2 

μ, is 
iven by: 

2 
μ = 4([d μ/ d �M 

∗ σ�M 
] 2 + [d μ/ d w ∗ σw ] 

2 ) (B3) 
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here σ�M 
= 0 . 3 and σw = 0 . 1 are errors in the cosmological

arameters, the factor 4 is an arbitrary number to do an o v erestimation
f the uncertainty, �M 

and w, matter density and equation of state
f Dark Energy, respectively. 
For the fitting procedure, to the nominal SALT2 χ2 , we add: 

χ2 
SALT 2 = [ μDIF /σμ] 2 (B4) 
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