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We present the first numerical implementation of the massive SMOM (mSMOM) renormalization
scheme and use it to calculate the charm quark mass. Based on ensembles with three flavours of
dynamical domain wall fermions with lattice spacings in the range 0.11 – 0.08 fm, we demonstrate
that the mass scale which defines the mSMOM scheme can be chosen such that the extrapolation
has significantly smaller discretisation effects than the SMOM scheme. Converting our results to
the MS scheme we obtain mc(3GeV) = 1.008(13)GeV and mc(mc) = 1.292(12)GeV.
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I. INTRODUCTION

Non-perturbative massive renormalization schemes,
such as the ones introduced in Ref. [1], yield renormalized
correlators that satisfy vector and axial Ward identities
independently of the value of the quark masses and are
expected to reabsorb some of the lattice artefacts that
come in powers of am and can be large for heavy quark
masses. These schemes are therefore interesting candi-
dates to renormalize quantities that are affected by large
cut-off effects, leading to milder extrapolations to the
continuum limit compared to the usual massless schemes
that are currently used.

In this paper, we present the first numerical imple-
mentation of the renormalization conditions that were
spelled out in Ref. [1] and extract the renormaliza-
tion constants that are needed in order to compute
the renormalized charm-quark mass in these massive

∗ Corresponding author

symmetric-momentum-subtraction (mSMOM) schemes.
The schemes are labelled by the momentum scale of the
subtraction point and by the value of the renormalized
quark mass at which the renormalization conditions are
imposed. Lattice artefacts depend on the choice of this
mass, which can be tuned in order to obtain flatter ex-
trapolations. We use lattice QCD ensembles generated
by the RBC/UKQCD collaboration, with 2+1 dynam-
ical flavours and inverse lattice spacings ranging from
a−1 = 1.73 GeV to 2.79 GeV. We compute all the lattice
correlators that enter the renormalization conditions and
spell out in detail the workflow to implement and solve
the correct set of equations.

Results in different mSMOM schemes are converted to
MS using one-loop conversion factors and show a pleasing
consistency. The main result of this first study confirms
the theoretical expectation motivating massive schemes.
They provide a (simple) way to absorb some of the mass-
dependent lattice artefacts and yield more reliable ex-
trapolations to the continuum limit.

The remainder of this paper is organised as follows. In
Section II we remind the reader of the details of the mas-
sive non-perturbative renormalization scheme. In Sec-
tion III we provide details of our numerical set-up before
presenting the details of our analysis and our final results
in Section IV. We conclude with an outlook in section V.
An early stage of this analysis was reported in Ref. [2]

II. MASSIVE NPR

Before discussing the numerical analysis that was per-
formed for this paper, we summarise the main ideas be-
hind massive renormalization schemes. To keep our pre-
sentation self-contained, we quote below the renormaliza-
tion conditions defining mSMOM schemes, which were
originally spelled out in Ref. [1]. To match the numerical
simulations, we work in Euclidean space. In our con-
ventions, bare quantities are written without any suffix,
while their renormalized counterparts are identified by
a suffix R. The renormalization conditions are usually
expressed in terms of amputated correlators of fermion
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bilinears

Λa
Γ(p2, p3) = S(p3)−1Ga

Γ(p3, p2)S(p2)−1 , (2.1)

where S(p) is the fermion propagator,

S(p) =

∫
d4x e−ip·x⟨ψ(x)ψ̄(0)⟩ , (2.2)

and Ga
Γ(p3, p2) = ⟨Oa

Γ(q)ψ̄(p3)ψ(p2)⟩ with Oa
Γ = ψ̄Γτaψ.

The superscript a, which will be dropped henceforth, de-
notes that we consider flavour non-singlet bilinears, with
τa a generic flavour-rotation generator. In the following
we will also suppress the superscript mSMOM unless it
is required to avoid ambiguity.

We choose the same symmetric momentum configura-
tions as those chosen in in the massless SMOM scheme,
i.e. q2 ≡ (p2−p3)2 = p22 = p33 = µ2, where µ is the renor-
malization scale. The massive scheme requires the in-
troduction of another scale, mR, a renormalized mass at
which the renormalization conditions are imposed. The
massless scheme is recovered in the limit mR → 0. For
the mSMOM scheme in Euclidean space the renormaliza-
tion conditions, to be evaluated with the symmetric mo-
mentum configuration imposed and at mR = mR, read

1 =
1

12p2
Tr

[
−iSR(p)−1�p

]
, (2.3)

1 =
1

12mR

{
Tr

[
SR(p)−1

]
+

1

2
Tr [(iq · ΛA,R) γ5]

}
,

(2.4)

1 =
1

12q2
Tr [(q · ΛV,R) �q] , (2.5)

1 =
1

12q2
Tr [(q · ΛA,R + 2mRΛP,R) γ5�q] , (2.6)

1 =
1

12i
Tr [ΛP,Rγ5] , (2.7)

1 =
1

12
Tr [ΛS,R] +

1

6q2
Tr [2mRΛP,Rγ5�q] . (2.8)

The renormalized quantities are defined as follows:

ψR = Z1/2
q ψ , mR = Zmm, OΓ,R = ZΓOΓ , (2.9)

where m denotes a quark mass. The renormalized prop-
agator and amputated vertex functions are

SR(p) = ZqS(p) , ΛΓ,R(p2, p3) =
ZΓ

Zq
ΛΓ(p2, p3) .

(2.10)
As discussed in the original publication [1], these con-
ditions ensure that renormalized correlators satisfy the
Ward identities of the continuum theory, which in turn
lead to useful constraints on the renormalization con-

stants1, namely

ZV = ZA = 1, ZP = ZS, ZmZP = 1 . (2.11)

Substituting Eqs. (2.9) and (2.10) into the renormal-
ization conditions Eqs. (2.3)–(2.8) and solving the system
of equations gives access to the renormalization factors
Zq, Zm, ZA, ZV , ZS and ZP . In practice we find it con-
venient to replace the renormalization condition Eq. (2.3)
by a direct determination of ZA from ratios of conserved
and local axial currents. Combined with Eqs. (2.4)–(2.8)
this still gives access to all the required renormalization
constants.

Note that by construction the renormalization con-
stants in a massive scheme depend on both the cou-
pling and the dimensionless product am. The mSMOM
schemes are defined by tuning the renormalized quark
mass to some arbitrary scale mR, where the renormal-
ization conditions need to be satisfied.

The arbitrariness in the choice of mR can be turned
into a useful tool when extrapolating lattice QCD results
to the continuum limit. Indeed, the ideal choice of mR

is determined by requiring that the observables of in-
terest have a mild dependence on the lattice spacing in
that particular scheme. Different observables may dic-
tate different values of mR; this is not a problem, since
we know how to connect schemes corresponding to dif-
ferent choices of mR to a common reference scheme such
as, e.g., MS, using the one-loop perturbative expressions
in Ref. [1] and in Appendix B.

The focus of this paper is to compute the renormalized
charm-quark mass in mSMOM, which is defined as

mmSMOM
c,R (µ,mR) = lim

a→0
ZmSMOM
m (g, aµ, am)(amc)a

−1 ,

(2.12)
where the mass scale mR defining the renormalization
scheme is obtained through

mR(µ,mR) = lim
a→0

ZmSMOM
m (g, aµ, am)(am)a−1 , (2.13)

and the bare quark mass in lattice units (am) is the sum
of the input quark mass amq and the additive mass renor-
malization amres

am ≡ (amq + amres) , (2.14)

ZmSMOM
m (g, aµ, amR) is the renormalization constant de-

fined by the renormalization conditions above and the
bare mass of the charm quark is set by requiring that the
mass of the heavy-heavy pseudoscalar meson coincides
with the mass of the physical ηc meson.

1 In [1] it was checked that the last condition in Eq. (2.8) en-
sured ZS = ZP at one loop in continuum perturbation theory in
Feynman gauge. For other gauge choices, this condition should
be modified. This renormalization condition is not used in the
analysis presented in this paper.
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TABLE I. Summary of the main parameters of the ensembles
used in this work. In the ensemble name the first letter (C, M
or F) stands for coarse, medium and fine, respectively. The
last letter (M or S) stands for Möbius and Shamir kernels,
respectively.

name L/a T/a a−1[GeV] Mπ[MeV] aml ams

C1M 24 64 1.7295(38) 276 0.005 0.0362
C1S 24 64 1.7848(50) 340 0.005 0.04
M0M 64 128 2.3586(70) 139 0.000678 0.02661
M1M 32 64 2.3586(70) 286 0.004 0.02661
M1S 32 64 2.3833(86) 304 0.004 0.03
F1M 48 96 2.708(10) 232 0.002144 0.02144
F1S 48 96 2.785(11) 267 0.002144 0.02144

TABLE II. Heavier input quark masses that were simulated
in addition to aml, 2aml, ams/2 and ams.

ens amq

C1M 0.05, 0.1, 0.15, 0.2, 0.3
C1S 0.05, 0.1, 0.15, 0.2, 0.3, 0.33
M1M 0.05, 0.1, 0.15, 0.225, 0.3, 0.32, 0.34
M1S 0.05, 0.1, 0.15, 0.225, 0.3, 0.32, 0.34, 0.36, 0.375
F1M 0.033, 0.066, 0.099, 0.132, 0.198, 0.264, 0.33, 0.36
F1S 0.033, 0.066, 0.099, 0.132, 0.198, 0.264, 0.33, 0.36, 0.396

After taking the continuum limit, the mSMOM renor-
malized mass can be converted to MS,

mMS
R (µ̃) = RMS←mSMOM(µ̃, µ,mR)mmSMOM

R (µ,mR),
(2.15)

where the dimensionful scale µ̃ stems from dimensional
regularisation and will in practice be set equal to µ. The

conversion factor RMS←mSMOM = ZMS
m /ZmSMOM

m is eval-
uated at one-loop in perturbation theory in Appendix B.

III. SIMULATION SET UP AND STRATEGY

We use RBC/UKQCD’s ensembles [3–7] with Iwasaki
gauge action [8, 9] and domain-wall fermion action [10,
11]. They include the dynamical effects from degenerate
up and down quarks as well as the strange quark. The
main ensemble properties are listed in Table I. For each of
the three lattice spacings we have one ensemble with the
Shamir domain-wall kernel [10] (last letter ‘S’) and one
with the Möbius domain-wall kernel [12–14] (last letter
‘M’). The parameters of these kernels are chosen such
that a combined continuum limit with all ensembles is
possible [4]. In addition we have data around the physical
charm quark mass on the physical pion mass ensemble
M0M which differs from M1M only in pion mass and
volume.

We implement the SMOM momentum configuration
by choosing momenta p2 = (p, p, 0, 0) and p3 = (p, 0, p, 0)
where p = 2π

L (n+θ). Since our aim is to comprehensively
cover the region 2 GeV ≲ q ≲ 3 GeV we use twist angles
θ ∈ {0, 0.25, 0.5, 0.75} in combination with Fourier modes

n ∈ {3, 4, 5} for the coarse and medium, and n ∈ {4, 5, 6}
for the fine ensembles.

We map out the parameter space by simulating at sev-
eral quark masses amq between the light-quark mass and
the largest quark mass we can reach on a given ensem-
ble whilst maintaining good control over the residual-
mass determination and the domain-wall formalism [15].
Since we expect sea-pion mass and finite volume effects
to be negligible for the determination of the charm quark
mass, the main numerical analysis is based on the com-
putationally cheaper non-physical pion mass ensembles.
However, in order to assess these effects, we simulated a
small number of heavy quark masses in the charm region
on the M0M ensemble which can be directly compared
with the equivalent M1M datapoints. As we will see in
Sec. IV A sea-pion mass effects are at the sub-permille
level.

The chosen quark masses are listed in Table II. The
measurements were carried out using the Grid and
Hadrons libraries [16–18].

For each input quark mass amq we compute ver-
tex functions (see Eq. (2.1)) as well as several mesonic
flavour-diagonal quark-connected two-point correlation
functions. For the latter we use a mild Jacobi smearing
to improve the overlap with the ground state for heavy
masses, in particular for the pseudoscalar density P , the
midpoint pseudoscalar density J5q [11] and the local (L)
and conserved (C) [4, 19, 20] versions of the temporal
component of the axial current. We determine the resid-
ual mass amres and the renormalization constant ZA from
the late time behaviour of ratios of these correlation func-
tions via

ameff
res(t) =

⟨PJ5q⟩ (t)

⟨PP ⟩ (t)
, (3.1)

and

Zeff
A (t) =

1

2

[
C(t+ 1

2 ) + C(t− 1
2 )

2L(t)
+

2C(t+ 1
2 )

L(t) + L(t+ 1)

]
.

(3.2)
Throughout this work we set the quark mass using

the quark-connected flavour-diagonal pseudoscalar me-
son Mηh

, since the quantity we are ultimately inter-
ested in is the charm quark mass and the contribution
from quark-disconnected pieces to the mass of the ηc
meson has been estimated to be negligibly small [21].
We explore reference masses in the range 1

2M
PDG
ηc

to

MPDG
ηc

= 2.9839(4) GeV [22].
The strategy of our calculation is as follows:

(a) For each mass amq on each ensemble, deter-
mine amres and hence am as well as aMηh

(am),
ZA(g, am), Zm(g, aµ, am).

(b) Interpolate Zm(g, aµ, am) to a common momentum
scale µ̂ to obtain Zm(g, aµ̂, am) on all ensembles.

(c) Fix two mass-scales: the scale m at which the
renormalization conditions are imposed and the
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quark mass m to be determined. These do not have
to be the same.

In practice we define a set of meson masses Mi such
that Mi/M

PDG
ηc

∈ {0.5, 0.6, 0.7, 0.75, 0.8, 0.9, 1}.
We interpolate am(aM) to each choice of Mi to ob-
tain ami and similarly interpolate Zm(g, aµ̂, am) to
obtain Zm(g, aµ̂, ami). We note that the heaviest
two and three values of Mi are not directly acces-
sible on the C1S and C1M ensembles, respectively.

Then, we define the mass-scale m of the renormal-
ization condition by fixing a meson mass M to be
one of the Mi and set the bare quark mass m by
fixing a meson mass M to a potentially different
Mi.

(d) For the given choice of M and M , combine
Zm(g, aµ̂, am) and am to obtain the right hand side
of Eq. (2.12) on each ensemble. Take the contin-
uum limit to obtain mR(µ̂,mR). Finally, (since M
and M can differ) also take the continuum limit to
obtain mR(µ̂,mR) (c.f. Eq. (2.13)). This last step
is required in order to know the mass scale of the
renormalization condition which is needed to relate
it to other schemes such as SMOM or MS.

(e) Our choice of domain wall parameters does not al-
low for direct simulations at the physical charm
quark mass on the coarse lattice spacing. Hence we
repeat this procedure for different values of M , but
at fixed M . This yields values mmSMOM

i,R (µ̂,mR) as
a function of Mi, which can be parameterised to
finally obtain the value of mmSMOM

c,R (µ̂,mR).

(f) Finally, repeat the entire analysis for different
choices of µ̂ and M in order to determine the ideal
choice of m for a given µ̂.

IV. RESULTS

In this section we carry out the analysis outlined above.

A. From correlators to observables

We first determine amres, ZA and aM on all ensem-
bles and for each choice of quark mass. The plots in
Figure 1 illustrate the time behaviour of the data on the
M1M ensemble (c.f. Eqs (3.1) and (3.2)) from which
these quantities can be determined at late times. As
expected from our previous work [15], we find that for
large quark masses, the residual mass grows and eventu-
ally becomes unbounded. We conservatively discard any
data where this might be the case and only show data
points for which the residual mass reaches a plateau at
late times. We observe stable plateaus for all data points
that are included in the analysis. Since the data is very
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FIG. 1. Representative effective amres (top) and ZA (middle)
and aMηh (bottom)values on the M1M ensemble.
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FIG. 3. Coverage of the quark mass dependence of our data.

TABLE III. Comparison of observables between the M0M
(Mπ = 139MeV) and the M1M (Mπ = 286MeV) ensem-
bles for two mass points bracketing the physical charm quark
mass.

0.32 M0M M1M M0M/M1M
aM 1.23636(19) 1.23593(61) 1.00035(53)
amres 0.0006613(18) 0.0006617(21) 0.9993(41)
ZA 0.824110(43) 0.824154(95) 0.99995(12)

0.34 M0M M1M M0M/M1M
aM 1.28092(18) 1.28049(61) 1.00033(50)
amres 0.0009049(26) 0.0009004(28) 1.0050(43)
ZA 0.833863(42) 0.833897(100) 0.99996(13)

precise and the plateaus are unambiguous, we do not per-
form fits to the data, but simply take the midpoint value
(rightmost points in the plots in Figure 1). Numerical
values for all data points are presented in Tables V-X in
Appendix A. Figure 3 shows the spectrum as a function
of the bare quark mass m. Combining the determination
of ZA for each simulated mass point with the system of
equations Eqs. (2.4)-(2.8) we obtain the corresponding
values of ZmSMOM

m at each mass point for the simulated
renormalization scales µ.

Before performing the required interpolations and con-
tinuum extrapolations, we consider the size of potential
effects afflicting simulations which do not take place at
the physical pion mass. Table III contrasts the values for
aM , amres and ZA on the M0M and the M1M ensembles
for two choices of the heavy quark mass that bracket the
physical charm quark mass. These two ensembles only
differ in their volume and pion mass. We observe that
the respective values on M0M and M1M are compatible
with each other and hence their ratios are compatible
with unity. We further observe that the relative (albeit
not statistically resolved) effect on the hadron mass is at
the sub-permille level. We therefore conclude that any
chiral effects in the data can be safely neglected.

B. Interpolations

Having obtained ZmSMOM
m (g, aµ, am), M(am) and am

at each simulated mass point, we now perform the in-
terpolations listed in steps (b) and (c). Given the broad
range covered by our data (cf. Figs 2 and 3), we per-
form these interpolations locally as polynomial fits to the
closest data points. In order to estimate any systematic
uncertainties stemming from these interpolations we per-
form them in multiple ways:

• linear interpolation between the two closest brack-
eting datapoints.

• quadratic interpolations between the two data
points which bracket the target value and the near-
est other data point to the left (right).

• a cubic interpolation between the closest 4 points.

We take the quadratic interpolation with the third data
point closest to the target value as our central value and
in addition to its statistical uncertainty assign half the
spread between these values as a systematic uncertainty.
Figure 2 illustrates this for step (b), i.e. the interpolation
of Zm at fixed mass (amq = 0.15) to the scale of µ =
2 GeV). Since we want to contrast the approach to the
continuum limit between the massless (SMOM) and the
massive (mSMOM) scheme, we also compute ZSMOM

m .
For completeness, we list the numerical values for

ZmSMOM
m and ZSMOM

m at µ = 2 GeV in Tables V-X. We
compute ZSMOM

m only in the light and strange sector and
use these values to extrapolate ZSMOM

m to the massless
limit, prior to applying it.

C. Continuum extrapolations

Having determined am, am and Zm(g, aµ̂, am) on each
ensemble, we can now perform the continuum limit of the
renormalized quark mass am using the mSMOM scheme
at a renormalization scale µ̂ and mass scale m. The most
general ansatz that we consider for our continuum ex-
trapolations is given by

mX(aΛ, aµ̂) = mX(µ̂) + Cχamres + C1(aΛ)2 , (4.1)

where the coefficient Cχ captures scaling violations stem-
ming from the residual chiral symmetry breaking in our
data. We tried adding a term proportional to a4 but in
practice we find that the term proportional to a4 is com-
patible with zero and not needed to describe the data
and we hence do not include it in the ansatz. Contrary
to this, the coefficient Cχ is typically resolved from zero
and tends to be of O(1). However, the size of amres is
typically small (c.f. Tables V-X).

We present an example continuum limit fit in the top
panel of Figure 4 for the choice M = 0.7 ×MPDG

ηc
and

M = 0.6 × MPDG
ηc

. In addition to the mSMOM data
points (blue circles) we also show the approach to the
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FIG. 4. Top: Example continuum limit extrapolation com-
paring the approach to the continuum for the SMOM scheme
to the that of the mSMOM scheme. The quark masses mR

(that is being extrapolated) and mR (defining the mSMOM
scheme) are chosen to reproduce mesons of mass 0.6×MPDG

ηc

and 0.7×MPDG
ηc , respectively. Bottom: Continuum limit de-

termining the renormalization mass scale mR at which the
renormalization conditions are imposed.

continuum limit using the chirally extrapolated value of
Zm in the SMOM scheme (orange diamonds). We clearly
see that the data has smaller discretisation effects in the
mSMOM scheme than the SMOM scheme. The contin-
uum extrapolated values are not expected to agree with
each other, since they are not converted to the same
scheme yet. However, when evaluating the conversion
factors for the scale and mass at hand (compare the right
hand panel of Fig 10 in Appendix B), we find the conver-
sion factor to be very close to unity. In order to determine
the exact parameters of the scheme it remains to deter-
mine the value of m, i.e. to take the continuum limit
where M = M . This is shown for the value 0.7 ×MPDG

ηc
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FIG. 5. Variations of the continuum limit extrapolation pre-
sented in the top panel of Fig. 4

in the bottom panel of Figure 4.
In both plots, the original mSMOM data points are

shown as partially transparent blue symbols, the opaque
blue symbols present the value once the residual mass
contribution is corrected for. We notice that this only
significantly affects the C1S data point, which is expected
since residual chiral symmetry breaking effects are known
to decrease as the lattice spacing is reduced and when
increasing the Möbius scale which is one for the Shamir
kernel and two for the Möbius kernel we are using.2 In
addition, the residual mass is known to increase as the
input quark mass amq increases as can be seen e.g. in
the top panel of Fig 1.

In order to assess the systematic uncertainties associ-
ated to the continuum limit extrapolation we repeat the
fit for several variations. In particular Figure 5 shows
this for the case of the combination of masses (M,M)
presented in the top panel of Fig. 4. We consider

• fitting all ensembles on which the hadron mass M
can be simulated including the terms proportional
to amres and (aΛ)2

• fitting all except the C1S ensemble (which has by
far the largest amres value) only including the term
proportional to (aΛ)2

• fitting only the Möbius ensembles (which have
smaller amres values) only including the term pro-
portional to (aΛ)2.

2 The residual chiral symmetry breaking of our choice of Möbius
kernel is expected to be the same as that of the Shamir kernel
with twice the extent of the fifth dimension Ls. Since Ls(C1S) =
16 and Ls(C1M) = 24 the C1M ensemble effectively has a three
times larger extent of the fifth dimension.
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c

M = 0.6MPDG
c

M = 0.7MPDG
c

M = 0.75MPDG
c

M = 0.8MPDG
c

M = 0.9MPDG
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M = 1.0MPDG
c

FIG. 6. Variations of the renormalization mass scale M at
fixed value of M . The data is fitted to Eq. (4.1) and the plot
displays it after correcting to vanishing residual mass. The
black data points show the approach to the continuum for the
case of the massless SMOM scheme. We stress that different
values of m define different schemes, hence these numbers are
not expected to agree in the continuum limit.

We quote the first of these fits as our central value and
additionally assign half the spread of the variations as a
systematic from the choice of continuum limit.

D. Varying the renormalization scales

We stress that the renormalization mass scale mR set
by M is a scale that can be varied freely within the range
where we have data. In Figure 6 we presents fits to the
ansatz Eq. (4.1) M = 0.6 ×MPDG

ηc
but for a variety of

choices of M . We emphasise again, that the extrapolated
values do not have to agree as they are still in different
schemes. It is however clearly visible that the approach
to the continuum is well described by a fit linear in a2 but
that the slope varies strongly with the choice of M . For
the largest values of M we lose coverage on the coarsest
ensembles and hence remove them from the fit. For the
remaining analysis we restrict ourselves to values of M
that allow direct simulations on all considered ensembles.

We also vary the renormalization scale µ between
2.0 GeV, 2.5 GeV and 3.0 GeV. We observe that for in-
creasing values of µ the values of M which are required to
significantly flatten the continuum limit are beyond the
range where we can determine m from all three lattice
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.3

1
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c

FIG. 7. Extrapolation of different intervals of the various ref-
erence valuesM to the physical valueMPDG

ηc at fixedM . The
right hand panel shows results for these interval-choices. The
red datapoint to the very right and the corresponding band
represents our final value of mc,R in the mSMOM scheme at
M = 0.7MPDG

ηc .

spacings. We therefore base our final results on contin-
uum limit extrapolations at µ = 2 GeV and only show
the corresponding mSMOM results obtained from larger
scales for comparison (c.f. Table IV).

E. The charm quark mass

We now vary the choice of M using the various Mi

and repeat the continuum limit fit for each case, keep-
ing M fixed in order to remain in the same scheme. For
each choice Mi we assemble the error budget of this fit
to obtain values mmSMOM

i (2 GeV,m). We now combine
these results to perform an inter- or extrapolation to the
physical charm-quark mass. This is not strictly speaking
necessary, since we already have a direct result for this
quark mass from the continuum limit at Mi = MPDG

ηc
,

however since this continuum limit is only based on the
medium and fine ensembles we prefer to supplement it
by a parameterisation using different values (in the con-
tinuum) of mR

i /Mi as a function of Mi. This is shown in
Figure 7. Of our choices for Mi we consider the ranges
Mi/M

PDG
ηc

[0.6, 1.0], [0.7, 1.0], [0.6, 0.9] and [0.6, 0.8]. In
each case we parameterise the dependence of the quark
mass as a polynomial in Mi via

mR

M
= αM−1 + β + γM . (4.2)

The result to these variations is shown in the right-
hand panel of Figure 7. We take the direct determina-
tion at the charm quark mass (i.e. Mi = MPDG

ηc
) as

central value and in addition to its uncertainty we con-
servatively associate a systematic uncertainty of half the
spread of the variation. These fit results that determine
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TABLE IV. Summary of our final results for the charm quark mass. We quote the renormalization mass scale mmSMOM
R defining

the given mSMOM scheme, as well as the charm quark mass in that scheme, converted to MS at the same scale and to MS at
mc. All quark masses are given in units of GeV.

µ/GeV M/MPDG
ηc mR(µ,mR) mRI

c,R(µ,mR) mMS
c (µ) mMS

c (3GeV← µ) mMS
c (mc)

2.0 0.60 0.5046(15) 1.127(7)(12) 1.112(7)(12)(4) 1.005(6)(11)(4) 1.289(6)(10)(3)
2.0 0.70 0.6559(16) 1.129(7)(12) 1.115(7)(12)(4) 1.008(6)(11)(4) 1.292(5)(10)(4)
2.0 0.75 0.7371(16) 1.130(6)(13) 1.118(6)(13)(4) 1.010(6)(11)(4) 1.294(5)(10)(4)
2.0 SMOM — 1.136(9)(12) 1.114(9)(12) 1.007(8)(10) 1.291(8)(10)
2.5 0.60 0.4698(14) 1.052(7)(14) 1.038(7)(14)(3) 0.995(7)(14)(3) 1.280(6)(13)(3)
2.5 0.70 0.6124(16) 1.057(6)(15) 1.043(6)(15)(3) 1.000(6)(14)(3) 1.284(6)(13)(3)
2.5 0.75 0.6894(16) 1.059(6)(15) 1.046(6)(15)(3) 1.003(6)(15)(3) 1.287(5)(13)(3)
2.5 SMOM — 1.066(11)(12) 1.048(10)(12) 1.004(10)(12) 1.288(9)(11)
3.0 0.60 0.4450(14) 0.998(7)(15) 0.986(7)(15)(3) 0.986(7)(15)(3) 1.271(6)(14)(2)
3.0 0.70 0.5811(15) 1.004(6)(15) 0.992(6)(15)(3) 0.992(6)(15)(3) 1.277(5)(14)(2)
3.0 0.75 0.6549(16) 1.008(6)(16) 0.995(6)(16)(3) 0.995(6)(16)(3) 1.280(5)(15)(2)
3.0 SMOM — 1.018(8)(12) 1.002(8)(12) 1.002(8)(12) 1.287(8)(11)

this uncertainty are shown in the right hand panel of Fig-
ure 7. We quote the two uncertainties separately, since
the latter only arises since we require our final number
to be based on continuum limits from more than two lat-
tice spacings. With additional finer ensembles, this last
uncertainty would be completely removed, since a contin-
uum limit with three lattice spacings could be obtained
directly at the charm quark mass. We then repeat the
analysis for different choices of M (and hence mR) as well
as the massless SMOM scheme.

Finally, it remains to convert these results into a com-
mon scheme where they can be directly compared to

each other. Using the conversion factor RMS←mSMOM
m

given in Eq. (B18), we can convert the results from

mmSMOM
c,R (µ,mR) to mMS

c,R(µ). Unfortunately, for the
mSMOM scheme, this is currently only known at one
loop. In order to quantify the truncation effects in
the temporary absence of perturbative two-loop calcu-
lations, we investigate the difference between one- and
two-loop corrections for the massless scheme [23, 24] and
assign the relative difference between them as a system-
atic truncation uncertainty. In practice we find that for
µ = 2.0 GeV (2.5 GeV, 3.0 GeV) the difference between
1- and 2-loop conversion to MS is a 0.38% (0.31%, 0.27%)
effect. Within the MS scheme we then run the results up
to 3 GeV as well as down to the charm quark scale to
quote mc(mc). To compute the strong coupling and run-
ning of the MS quark mass we make use of RunDec [25–
27], which in turn relies on 5-loop results for the beta
function and for the mass anomalous dimension [28–33].

We list these results for some choices of M and µ in
Table IV where the first uncertainty is the result from the
pure mSMOM calculation at at a chosen quark mass, the
second uncertainty lists encapsulates the charm-mass in-
terpolation, and the last uncertainty estimates the trun-
cation effect due to performing the matching at 1-loop.
In principle one could also quote a fourth uncertainty en-
capsulating the uncertainties of the inputs to the running
and the truncation of the running factor, however these
are found to be negligible.

0

0.99

1.00

1.01

1.02

1.03

m
M

S
c,

R
(3

Ge
V

)[
Ge

V]

SMOM

0.6 0.7 0.75
M/M PDG

c

mSMOM

= 2.0GeV = 2.5GeV = 3.0GeV

FIG. 8. Results for the continuum-extrapolated renormal-
ized charm quark mass converted to MS from RI/SMOM and
RI/mSMOM with variation in M at renormalization scale of
3 GeV using results from µ = 2.0, 2.5, 3.0GeV. Numerical
values are presented in Table IV.

Our final results for the charm quark mass converted
to MS and then (where necessary) ran to 3 GeV within
the MS scheme are shown in Figure 8. As mentioned
above, in the massive scheme the continuum limit is well
controlled for determinations at µ = 2 but values of M
which significantly decrease the slope of the continuum
limit are not reachable on our current data set for larger
values of µ and we therefore exclude them. We find good
agreement between the SMOM and the mSMOM schemes
as well as amongst different values for mR within the
mSMOM scheme. As our final number we quote our
results obtained from mSMOM at µ̂ = 2 GeV from the
choice M = 0.7MPDG

ηc
which corresponds to mmSMOM

R =
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FIG. 9. Comparison of our result with previous determi-
nations of the charm quark mass in the literature that en-
ter the FLAG [34] average. The magenta star and corre-
sponding band are our result, the blue triangles are results
based on Nf = 2 + 1 [35–39] and the black circles based on
Nf = 2+1+1 [40–45]. The blue and black bands show the cor-
responding FLAG averages for Nf = 2+1 and Nf = 2+1+1,
respectively.

0.6559(16) GeV. We find

mmSMOM
c,R (2 GeV,mR) = 1.129(7)(12) GeV , (4.3)

mMS
c,R(2 GeV) = 1.115(7)(12)(4) GeV , (4.4)

mMS
c,R(3 GeV) = 1.008(6)(11)(4) GeV , (4.5)

mMS
c,R(mMS

c,R) = 1.292(5)(10)(4) GeV . (4.6)

The first uncertainty comes from the determination di-
rectly at the charm quark mass, the second from the
inter-/extrapolation taking smaller than physical refer-
ence values, the third from the perturbative truncation
uncertainty when converting to MS. We have not applied
any additional uncertainties associated with the running
within MS.

F. Comparison to the literature

The charm quark mass has been previously computed
by various collaborations in various schemes. In Fig-
ure 9 we compare our result to the results in the lit-
erature which enter the FLAG average in the MS scheme
at 3 GeV3 We find good agreement with other Nf = 2+1
calculations and obtain similar uncertainties. The lead-
ing uncertainty in our calculation arises from the fact
that not all the ensembles we currently use allow for di-
rect simulation at the physical charm quark mass. Using
an additional finer lattice spacing will allow to eliminate
this uncertainty in the future.

3 In cases where the results were quoted at 2GeV, we follow
FLAG’s convention and apply a running factor of 0.900 to obtain
the result at 3GeV.

V. SUMMARY AND OUTLOOK

We have presented the first numerical implementation
of the massive non-perturbative renormalization scheme
which was first suggested in Ref. [1]. We find that vary-
ing the mass scale at which the renormalization condi-
tions are imposed can be used to significantly modify the
approach to the continuum limit, and in particular to
flatten it. We observe good agreement between different
renormalization mass scales (and hence continuum limit
approaches), further substantiating that the continuum
limit is controlled.

This scheme can be applied to any observable and
hence be used to obtain more reliable continuum lim-
its. Since different choices of the renormalization mass
scale must agree in the continuum limit, it also provides
non-trivial tests allowing to scrutinise a given continuum
limit by performing it for different choices of the renor-
malization scheme mass scale. This is not restricted to
heavy-quark observables but is useful for any observable
with large discretisation effects compared to the desired
statistical precision.

The joint continuum limit fits to the chosen Möbius
und Shamir domain wall kernels with very similar lattice
spacings agree well with only fitting the Möbius ensem-
bles and (at the present level of precision) are well de-
scribed by an ansatz that is linear in a2. We obtain the
charm quark mass in the MS scheme at 3 GeV with a
precision of 1.3% in good agreement with the literature.
This uncertainty can be significantly reduced by using
additional finer ensembles. By direct computation, we
find the sea-pion effect on the charmed meson mass Mηc

between a pion mass of 286 MeV and the physical pion
mass to be below the permille level.

For the future, we envisage applications of the
mSMOM scheme to other observables and an extension
to four quark operators.
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TABLE V. Summary of numerical results on the C1M ensem-
ble used for the analysis. The values of Zm are given after
interpolation to µ = 2GeV.

C1M 103amres aM ZA ZmSMOM
m ZSMOM

m

0.0050 0.601(12) 0.1642(34) 0.71302(34) 1.5754(65) 1.5428(15)
0.0100 0.574(11) 0.2203(22) 0.71337(19) 1.6088(36) 1.5442(12)
0.0181 0.5330(95) 0.2886(14) 0.71443(12) 1.6211(22) 1.5425(11)
0.0362 0.4642(79) 0.40331(87) 0.717257(77) 1.6232(15) 1.5362(10)
0.0500 0.450(17) 0.4769(22) 0.71979(19) 1.6185(14) -
0.1000 0.361(12) 0.6877(14) 0.72921(11) 1.5996(12) -
0.1500 0.3210(100) 0.8637(11) 0.74087(11) 1.5725(10) -
0.2000 0.3172(94) 1.01971(85) 0.75528(13) 1.53813(93) -
0.3000 0.599(16) 1.28930(50) 0.79647(16) 1.44377(74) -

TABLE VI. Summary of numerical results on the C1S ensem-
ble used for the analysis. The values of Zm are given after
interpolation to µ = 2GeV.

C1S 103amres aM ZA ZmSMOM
m ZSMOM

m

0.0050 3.162(19) 0.1885(29) 0.71796(44) 1.3145(75) 1.5410(19)
0.0100 3.085(18) 0.2367(21) 0.71822(28) 1.4381(35) 1.5411(14)
0.0200 2.938(16) 0.3129(15) 0.71942(17) 1.5245(18) 1.5392(12)
0.0400 2.720(12) 0.4304(10) 0.72235(12) 1.5706(12) 1.5325(12)
0.0500 2.644(22) 0.4829(18) 0.72413(27) 1.5772(14) -
0.1000 2.427(15) 0.6904(14) 0.73344(23) 1.5763(12) -
0.1500 2.420(11) 0.8636(11) 0.74507(19) 1.5542(11) -
0.2000 2.6192(92) 1.01733(94) 0.75960(15) 1.5210(10) -
0.3000 4.530(18) 1.28409(79) 0.80194(14) 1.42069(78) -
0.3300 6.455(18) 1.35527(38) 0.821474(90) 1.37464(67) -
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National E-infrastructure capital grant ST/K000411/1,
STFC capital grant ST/H008845/1, and STFC DiRAC
Operations grants ST/K005804/1 and ST/K005790/1.
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Appendix A: Numerical results

In tables V- X we summarise the numerical data for
the residual mass, ZA, the hadron mass aM as well as
the renormalization constant Zm interpolated to a scale
of 2 GeV.

TABLE VII. Summary of numerical results on the M1M en-
semble used for the analysis. The values of Zm are given after
interpolation to µ = 2GeV.

M1M 103amres aM ZA ZmSMOM
m ZSMOM

m

0.0040 0.3116(61) 0.1196(26) 0.74376(24) 1.5167(51) 1.5743(21)
0.0080 0.3018(56) 0.1651(16) 0.74421(13) 1.5635(26) 1.5722(23)
0.0133 0.2907(51) 0.2113(12) 0.744798(86) 1.5820(20) 1.5709(20)
0.0266 0.2709(39) 0.29939(79) 0.746330(56) 1.5955(18) 1.5667(18)
0.0500 0.2527(54) 0.4178(17) 0.749495(88) 1.5970(16) -
0.1000 0.2414(40) 0.6163(11) 0.757548(60) 1.5851(15) -
0.1500 0.2523(35) 0.78311(79) 0.767843(47) 1.5612(14) -
0.2250 0.3173(27) 1.00082(63) 0.788084(41) 1.5093(11) -
0.3000 0.5277(20) 1.19017(57) 0.815321(43) 1.44227(90) -
0.3200 0.6634(21) 1.23610(64) 0.824062(46) 1.42193(84) -
0.3400 0.8998(26) 1.28063(63) 0.833810(56) 1.39986(79) -

TABLE VIII. Summary of numerical results on the M1S en-
semble used for the analysis. The values of Zm are given after
interpolation to µ = 2GeV.

M1S 103amres aM ZA ZmSMOM
m ZSMOM

m

0.0040 0.6727(72) 0.1290(24) 0.74486(27) 1.5055(58) 1.5720(26)
0.0080 0.6561(64) 0.1714(16) 0.74542(15) 1.5557(28) 1.5708(21)
0.0150 0.6319(55) 0.2283(11) 0.746212(91) 1.5802(19) 1.5690(19)
0.0300 0.5977(42) 0.32118(69) 0.747987(58) 1.5930(18) 1.5639(18)
0.0500 0.5767(52) 0.42023(76) 0.75062(11) 1.5951(18) -
0.1000 0.5479(35) 0.61780(44) 0.758721(100) 1.5838(17) -
0.1500 0.5602(29) 0.78382(43) 0.769158(89) 1.5596(15) -
0.2250 0.6677(29) 1.00056(52) 0.789767(76) 1.5066(13) -
0.3000 1.0409(41) 1.18880(56) 0.817587(74) 1.43775(99) -
0.3200 1.2562(65) 1.23385(41) 0.826456(79) 1.41695(97) -
0.3400 1.6053(82) 1.27801(40) 0.836317(81) 1.39437(87) -
0.3600 2.189(11) 1.32043(39) 0.847392(85) 1.36951(81) -
0.3750 2.936(12) 1.35187(55) 0.857047(90) 1.34809(77) -

TABLE IX. Summary of numerical results on the F1M ensem-
ble used for the analysis. The values of Zm are given after
interpolation to µ = 2GeV.

F1M 103amres aM ZA ZmSMOM
m ZSMOM

m

0.0021 0.2399(56) 0.0865(21) 0.75927(21) 1.4816(57) 1.5797(23)
0.0043 0.2390(52) 0.1172(16) 0.75952(11) 1.5229(31) 1.5802(21)
0.0107 0.2343(43) 0.1795(10) 0.760226(53) 1.5766(21) 1.5792(19)
0.0214 0.2286(36) 0.25287(54) 0.761281(42) 1.5924(20) 1.5759(18)
0.0330 0.2244(31) 0.31620(38) 0.762536(41) 1.5942(19) -
0.0660 0.2201(21) 0.46183(32) 0.766829(40) 1.5935(19) -
0.0990 0.2248(15) 0.58391(32) 0.772132(39) 1.5838(18) -
0.1320 0.2378(12) 0.69368(30) 0.778456(38) 1.5683(16) -
0.1980 0.29064(77) 0.88979(25) 0.794371(35) 1.5243(14) -
0.2640 0.39970(57) 1.06271(21) 0.815121(32) 1.4682(11) -
0.3300 0.66808(62) 1.21606(19) 0.841614(31) 1.40308(87) -
0.3600 1.0280(12) 1.27967(19) 0.856367(32) 1.36962(80) -

Appendix B: Mass conversion factor

Here we determine the mSMOM to MS conversion fac-
tor for the mass at one-loop in continuum perturbation
theory, with an arbitrary choice of the gauge parameter
ξ. We work in Minkowski space, with fermion propagator

S(p) =
i

/p−m− Σ(p) + iϵ
. (B1)

We use dimensional regularisation in d = 4 − 2ϵ dimen-
sions, denoting by µ̃ the dimensionful scale introduced

TABLE X. Summary of numerical results on the F1S ensem-
ble used for the analysis. The values of Zm are given after
interpolation to µ = 2GeV.

F1S 103amres aM ZA ZmSMOM
m ZSMOM

m

0.0021 0.9769(95) 0.0994(18) 0.76231(18) 1.4979(67) 1.5802(18)
0.0043 0.9722(88) 0.1263(13) 0.76263(11) 1.5265(38) 1.5809(18)
0.0107 0.9565(62) 0.18387(86) 0.763139(55) 1.5759(23) 1.5802(17)
0.0214 0.9393(43) 0.25453(57) 0.764180(44) 1.5918(19) 1.5768(17)
0.0330 0.9291(36) 0.31626(41) 0.765486(42) 1.5935(20) -
0.0660 0.9188(24) 0.45975(34) 0.769873(38) 1.5923(19) -
0.0990 0.9251(18) 0.58074(34) 0.775231(37) 1.5822(17) -
0.1320 0.9463(14) 0.68965(34) 0.781619(36) 1.5662(16) -
0.1980 1.0427(11) 0.88429(32) 0.797730(37) 1.5208(13) -
0.2640 1.2577(11) 1.05584(28) 0.818823(38) 1.4630(10) -
0.3300 1.7485(18) 1.20763(25) 0.845736(38) 1.39618(82) -
0.3960 3.1873(46) 1.34062(22) 0.880386(40) 1.31942(65) -
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FIG. 10. Left: conversion factor RMS←mSMOM
m (m2/µ2) for 0 < m < 2GeV. Right, ratio

RMS←mSMOM
m (m2/µ2)/RMS←mSMOM

m (0) = RSMOM←mSMOM
m (m2/µ2). Both plots show curves with (α, µ) = (0.293347, 2GeV)

(solid) and (α, µ) = (0.24358, 3GeV) (dashed), and for gauge-parameter ξ set to 1 (Feynman gauge) or 0 (Landau gauge). The
dimensional regularisation scale µ̃ is set to µ.

(to distinguish it from the scale µ defining the mSMOM
symmetric-momentum point). We compute the fermion
self-energy to find the wave-function renormalization and
then determine ZmSMOM

m by using the mSMOM renor-
malization from equation (2.4), which in Minkowski space

reads

1 =
1

12mR

{
Tr[−iSR(p)−1]p2=−µ2

− 1

2
Tr[q·ΛA,Rγ5]sym

}
.

(B2)

The conversion factor is given by

RMS←mSMOM
m = ZMS

m /ZmSMOM
m . (B3)

The one-loop self-energy integral is

−iΣ(1)(p) = −g2µ̃2ϵCF

∫
ddk

(2π)d

[
γµ(/p− /k +m)γµ

k2
(
(p− k)2 −m2

) − (1 − ξ)
/k(/p− /k +m)/k

(k2)2
(
(p− k)2 −m2

)] , (B4)

where CF = 4/3 is the SU(3) quadratic Casimir operator in the fundamental representation. This can be evaluated
by standard techniques, using Mathematica [46] to perform the Feynman-parameter integrals. The result is

Σ(1)(p) =
α

4π
CF

[
/p ξ

(
−1

ϵ
− 1 + u+ u2 ln

( u

1 + u

)
+ ln(1 + u) + ln(µ2/µ̃2)

)
+m

(
4 + 2ξ + (3 + ξ)

(1

ϵ
+ u ln

( u

1 + u

)
− ln(1 + u) − ln(µ2/µ̃2

))]
=

α

4π
CF [/pAξ +mBξ],

(B5)

where we have set u = m2/µ2 and have defined

1

ϵ
≡ 1

ϵ
− γE + ln(4π). (B6)

When ξ = 1 the result for Σ(1)(p) above agrees with equation (37) in Ref. [1]. From this, the mSMOM wave-function
renormalization constant, up to one loop, is

ZmSMOM
q = 1 − α

4π
CF Aξ. (B7)
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Now write the one-loop contribution to an amputated bilinear vertex as Λ
(1)
Γ = Λ

(1)
Γ,ξ=1 + Λ

(1)
Γ,ξ ̸=1, with:

Λ
(1)
Γ,ξ=1 = −ig2µ̃2ϵCF

∫
ddk

(2π)d
γµ(/p3 − /k +m)Γ(/p2 − /k +m)γµ

k2
(
(p3 − k)2 −m2

)(
(p2 − k)2 −m2

) , (B8)

Λ
(1)
Γ,ξ ̸=1 = ig2µ̃2ϵCF (1 − ξ)

∫
ddk

(2π)d

/k(/p3 − /k +m)Γ(/p2 − /k +m)/k/k2

k2
(
(p3 − k)2 −m2

)(
(p2 − k)2 −m2

) . (B9)

The renormalization condition above requires us to com-

pute Tr[q · Λ
(1)
A γ5], with Γν

A = γνγ5. By tracing the nu-
merators of the two integrands for ξ = 1 and ξ ̸= 1, we
see that

Tr[Λ
(1)
A,ξ ̸= 1γ5] = −1 − ξ

d
Tr[Λ

(1)
A,ξ = 1γ5]. (B10)

Hence we have to evaluate only the ξ = 1 (Feynman

gauge) term for Tr[Λ
(1)
A,ξ = 1γ5]. Using the notation,

NΓ = γµ(/p3 − /k +m) Γ (/p2 − /k +m)γµ, (B11)

we have

Tr[q ·NAγ5] = 12mdq2 (B12)

and we learn that Tr[q · Λ
(1)
A,ξ = 1γ5] can be expressed in

terms of the finite integral

−ig2µ̃2ϵCF

∫
ddk

(2π)d
1

k2
(
(p3−k)2 −m2

)(
(p2−k)2 −m2

)
= − α

4π
CF

1

µ2
C0(m2/µ2), (B13)

where C0(u) comes from a Feynman-parameter integral
and is given by

C0(u) =
2i√

3

[
Li2

( −i+
√

3√
3 − i

√
4u+ 1

)
−Li2

( i+
√

3√
3 − i

√
4u+ 1

)
+Li2

( −i+
√

3

i
√

4u+ 1 +
√

3

)
−Li2

( i+
√

3

i
√

4u+ 1 +
√

3

)]
. (B14)

Since the result is finite, we can set d = 4 and find

Tr[q·Λ(1)
A γ5]sym =

(
1 − 1 − ξ

4

)
Tr[q·Λ(1)

A,ξ=1γ5]sym = 12m
α

4π
CF (3 + ξ)C0(m2/µ2). (B15)

Now we have all we need to evaluate ZmSMOM
m from the renormalization condition in (B2), which we rewrite as

ZmSMOM
m = lim

mR→m

1

12m

1

ZmSMOM
q

[
Tr

(
−iS(p)−1

)
p2=−µ2 −

1

2
ZmSMOM
A Tr(q · ΛAγ5)sym

]
. (B16)

Using the results in (B5), (B7) and (B15), together with (in Minkowski space) iS(p)−1 = /p −m − Σ(p), shows that
to one loop,

ZmSMOM
m = 1 +

α

4π
CF

[
Aξ +Bξ −

3 + ξ

2
C0(m2/µ2)

]
= 1 +

α

4π
CF

[
3

1

ϵ
+ (4 + ξ) − 3 + ξ

2
C0(u) − 3 ln(µ2/µ̃2)

+ ξ

(
u+ u2 ln

( u

1 + u

))
+ (3 + ξ)u ln

( u

1 + u

)
− 3 ln(1 + u)

]
,

(B17)

where now u = m2/µ2. Finally, the conversion factor is:

RMS←mSMOM
m = 1 +

α

4π
CF

[
−(4 + ξ) +

3 + ξ

2
C0(u) + 3 ln(µ2/µ̃2) + 3 ln(1 + u)

− ξ

(
u+ u2 ln

( u

1 + u

))
− (3 + ξ)u ln

( u

1 + u

)]
.

(B18)
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When m̄ → 0 (u → 0), this agrees with equation (24) in Sturm et al [47], after setting µ̃ = µ. For ξ = 1 the
result for ZmSMOM

P = 1/ZmSMOM
m reproduces the Feynman-gauge result in Ref. [1]. We also computed ZmSMOM

P to
one-loop order directly from the renormalization condition of equation (2.7) (in Minkowski space) and confirmed that
ZmSMOM
P = 1/ZmSMOM

m for arbitrary ξ.
The lattice computations are performed using Landau-gauge-fixed configurations and hence we need the conversion

factor in Landau gauge, ξ = 0:

RMS←mSMOM
m = 1 +

α

4π
CF

[
−4 +

3

2
C0(u) + 3 ln(µ2/µ̃2) + 3 ln(1 + u) − 3u ln

( u

1 + u

)]
. (B19)

In figure 10, we show plots of the mass conversion factor as a function of m, in both Feynman and Landau gauge for
two choices of matching scale µ (taking µ̃ = µ).
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“The Möbius domain wall fermion algorithm,” Comput.
Phys. Commun. 220, 1–19 (2017), arXiv:1206.5214 [hep-
lat].

[15] Peter Boyle, Andreas Juttner, Marina Krstic Marinkovic,
Francesco Sanfilippo, Matthew Spraggs, and Justus To-
bias Tsang, “An exploratory study of heavy domain
wall fermions on the lattice,” JHEP 04, 037 (2016),
arXiv:1602.04118 [hep-lat].

[16] Peter A. Boyle, Guido Cossu, Azusa Yamaguchi, and
Antonin Portelli, “Grid: A next generation data parallel
C++ QCD library,” PoS LATTICE2015, 023 (2016).

[17] Azusa Yamaguchi, Peter Boyle, Guido Cossu, Gian-
luca Filaci, Christoph Lehner, and Antonin Portelli,
“Grid: OneCode and FourAPIs,” PoS LATTICE2021,
035 (2022), arXiv:2203.06777 [hep-lat].

[18] Antonin Portelli, Nelson Lachini, Felix Erben, Michael

Marshall, Fabian Joswig, Raoul Hodgson, Fionn Ó
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