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ABSTRACT

Context. The determination of accurate photometric redshifts (photo-zs) in large imaging galaxy surveys is key for cosmological studies. One of
the most common approaches are machine learning techniques. These methods require a spectroscopic or reference sample to train the algorithms.
Attention has to be paid to the quality and properties of these samples since they are key factors in the estimation of reliable photo-zs.
Aims. The goal of this work is to calculate the photo-zs for the Y3 DES Deep Fields catalogue using the Directional Neighborhood Fitting (DNF)
machine learning algorithm. Moreover, we want to develop techniques to assess the incompleteness of the training sample and metrics to study
how incompleteness affects the quality of photometric redshifts. Finally, we are interested in comparing the performance obtained with respect to
the EAzY template fitting approach on Y3 DES Deep Fields catalogue.
Methods. We have emulated –at brighter magnitude– the training incompleteness with a spectroscopic sample whose redshifts are known to have
a measurable view of the problem. We have used a principal component analysis to graphically assess incompleteness and to relate it with the
performance parameters provided by DNF. Finally, we have applied the results about the incompleteness to the photo-z computation on Y3 DES
Deep Fields with DNF and estimated its performance.
Results. The photo-zs for the galaxies on DES Deep Fields have been computed with the DNF algorithm and added to the Y3 DES Deep
Fields catalogue. They are available at https://des.ncsa.illinois.edu/releases/y3a2/Y3deepfields. Some techniques have been developed to evaluate
the performance in the absence of "true" redshift and to assess completeness. We have studied the tradeoff on the training sample between
highest spectroscopic redshift quality vs. completeness. Some advantages have been found on relaxing the highest quality spectroscopic redshift
requirements at fainter magnitudes in favour of completeness. The result achieved by DNF on the Y3 Deep Fields are competitive with the ones
provided by EAzY showing notable stability at high redshifts. It should be noted the good results obtained by DNF for the estimation of photo-zs
in deep field catalogues and its suitability for the future LSST and Euclid data, which will have similar depths to the Y3 DES Deep Fields.

Key words. dark energy – Galaxies: distances and redshifts – Machine Learning

1. Introduction

The arrival of large photometric galaxy surveys such as Sloan
Digital Sky Survey (SDSS, York et al. 2000), Dark Energy Sur-
vey (DES, Flaugher et al. 2015), Physics of the Accelerating
Universe (PAU, Castander et al. 2012) or the future projects such
as Vera C. Rubin Observatory Legacy Survey of Space and Time
(LSST, LSST Science Collaboration et al. 2009), and Euclid
(Euclid Collaboration et al. 2020), capable of collecting huge
amounts of data, are providing invaluable insight about the Uni-
verse. One of the crucial elements for cosmological and astro-
physical studies is the estimation of accurate redshifts from pho-
tometric information which are essential for many cosmological
probes as baryon acoustic oscillation (BAO), weak lensing or
galaxy clustering. Spectroscopic surveys –measuring the differ-
ence in the wavelength of some spectral lines with respect to

their wavelength at rest frame– provide high precision redshifts,
but obtaining spectroscopic redshifts of large samples of astro-
nomical objects is very expensive in terms of observing time.
Currently, the Dark Energy Spectroscopic Instrument (DESI)
project (DESI Collaboration et al. 2016) is capable of measur-
ing thousands of galaxy spectra every night, reducing telescope
time. Despite this great advantage long exposure times are still
required to obtain good signal-to-noise spectra of faint objects,
and photometric data for target selection. An alternative is to
measure the fluxes of galaxies with a set of broadband or nar-
rowband filters within an image survey, that is using photometric
techniques. These measurements allow us to compute the photo-
metric redshift (also called photo-zs) of a large number of galax-
ies per image reducing the telescope time at the cost of a lower
precision.
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The two main approaches to determining photo-zs are tem-
plate fitting and machine learning methods. Template methods
compare the spectral energy distribution (SED) of each galaxy
with that of a set of redshifted rest-frame templates looking for
the best match (e.g. Arnouts et al. 1999; Benítez 2000; Bol-
zonella et al. 2000; Ilbert et al. 2006). Machine learning ap-
proaches use reference or training galaxy samples whose spec-
troscopic redshifts are known in order to learn the relationship
between magnitudes, colours and redshifts. With this informa-
tion, machine learning methods can predict the photometric red-
shift of a set of target galaxies (e.g. Collister & Lahav 2004;
Sadeh et al. 2016; Carrasco Kind & Brunner 2013; De Vicente
et al. 2016). Neither method is free of difficulties. Template
methods depend on synthetic models and the completeness of
the template library used in the fitting, while machine learn-
ing methods depend on the quality and variety of the training
samples. Specifically, the selection of this spectroscopic training
sample is one of the most important decisions to obtain accu-
rate photometric redshift estimations in the machine learning ap-
proach. Ideally, the spectroscopic sample should be representa-
tive of the whole target galaxy sample, covering the same colour-
magnitude space. Unfortunately, the galaxy samples whose pho-
tometric redshift is to be determined typically include galaxies
with deeper magnitudes that are not included in the spectro-
scopic sample. Hartley et al. (2020) studied the impact of using
incomplete spectroscopic samples in the redshift distribution us-
ing the Lima et al. (2008) algorithm. They show that an incom-
plete spectroscopic training sample could bias the galaxy red-
shifts. Moreover, the studies of Hildebrandt et al. (2010), Beck et
al. (2017), Sánchez et al. (2014), Schmidt et al. (2020), Bonnett
et al. (2016) and Abdalla et al. (2011) and Brescia et al. (2021)
compare different methods for photo-zs estimation. These works
suggest that machine learning methods provide more accurate
values of photo-zs than template methods as long as there is
a sufficiently adequate sample for training. Outside the magni-
tude and colour space, template methods seem to perform better
than machine learning methods because they can generate syn-
thesized spectra without redshift constraint. Everything seems
to indicate that the combination of both template and machine
learning is the best option to obtain the best photo-zs accuracy
of a sample (e.g. Tanaka et al. 2018; Salvato et al. 2019).

In this work, we study how the incompleteness in the spec-
troscopic training sample affects Directional Neighborhood Fit-
ting (DNF) photo-zs algorithm (De Vicente et al. 2016) photo-
zs, as estimated in the Dark Energy Survey (DES) Year 3 Deep
Field sample. DNF is a nearest-neighbour approach for photo-
metric redshift estimation that has become a reference within
DES collaboration and included between the five methods to be
prioritized in Vera Rubin observatory. To assess the effects of in-
completeness, we first derive the relevant parameters to charac-
terize incompleteness, demonstrating how these parameters af-
fect photo-z performance. Then, we show how DNF accounts
for incompleteness in the photo-zs errors provided. Finally, we
study the incompleteness of the training sample in Y3 DES Deep
Fields and compare our results with those obtained from the
EAzY template method (Brammer et al. 2008).

The rest of the paper is organised as follows. In Sect. 2, we
describe the sample selection and in Sect. 3 the metrics used and
the description of DNF algorithm. We carried out an analysis
of the effects of incomplete training samples on the estimation
of photometric redshift in Sect. 4. In Sect. 5, we estimate pho-
tometric redshift for Y3 DES Deep Fields with different train-
ing samples. We compare the photo-zs determined by DNF and

EAzY in Sect. 6. Finally, we enumerate the conclusions of this
work in Sect. 7.

2. Data

2.1. Spectroscopic sample

We used the spectroscopic sample defined by Gschwend et al.
(2018). This sample contains spectroscopic redshifts of galaxies
from 34 surveys (see Appendix A) and the photometric infor-
mation for each of them. The quality of the spectroscopic red-
shift is flagged by the label FLAG_DES (with FLAG_DES =
4 as certain redshift, FLAG_DES = 3 as probable redshift,
FLAG_DES = 2 as possible redshift and FLAG_DES = 1 as
unknown redshift). For this work, we only select those objects
with spectroscopic redshift determination marked in the cata-
logue with the best redshift determination, that is: those galaxies
with flag of 3 and 4 level (FLAG_DES ≥ 3). In addition, we
exclude those galaxies with mag(i) ≥ 28. After these cuts, our
spectroscopic sample contains a total of 55,601 galaxies.

2.2. Y3 Deep Fields catalogue

The Y3 DES Deep Fields catalogue1 used is part of the Dark En-
ergy Survey. The observations were taken using the Dark Energy
Camera (DECam, Flaugher et al. 2015) on the Victor M. Blanco
4m telescope at the Cerro Tololo Inter-American Observatory
(CTIO) in Chile. DES covered 5000 deg2 in grizY bands with
approximately 10 overlapping dithered exposures in each filter
(90 sec in griz, 45 sec in Y) covering the survey footprint. The
Y3 DES Deep Fields catalogue comprises four fields measured
with 8 bands (ugrizJHKs) covering an area of ∼ 5.88 deg2 where
the integrated exposure time per pixel is approximately ten times
more than the main DES survey area (see details in Hartley et al.
2022). This catalogue contains around 2.8 million galaxies. We
have selected those galaxies that have flux measurements in the
eight filters and with mag(i) < 28, resulting a catalogue that
contains around 1.5 million galaxies. We have selected galaxies
with mag(i) < 28 –still suitable for weak lensing applications–
because for higher magnitudes the errors in the photometry are
large and the data become unreliable.

3. Metrics and algorithm

3.1. Metrics

This section describes the metrics used in this work to assess the
quality of the photo-zs estimates, where zspec, zphot and N repre-
sent the spectroscopic redshift, the photometric redshift and the
number of objects in the sample, respectively. We define the fol-
lowing metrics to quantify the degree of precision of the photo-zs
and its scatter:

– Bias: The assessment of the overall photo-zs is determined
by the mean bias:

∆z =
1
N

N∑
i=1

(∆zi),

where ∆z = zspec − zphot.

1 Available at https://des.ncsa.illinois.edu/releases/y3a2/Y3deepfields
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– Mean Absolute Deviation:

MAD(∆z) =
1
N

N∑
i=1

|∆zi|.

– σ68(∆z): denotes the half width of the central 68% percentile
range of galaxies both bias value.

σ68(∆z) =
1
2

(P84 − P16),

where P16 = 16th percentile of the cumulative distribution
and P85 = 84th percentile of the cumulative distribution.

– σ68 normalised: defined as

σNorm
68 = σ68

( |∆z|
1 + zspec

)
.

– Outlier fraction:

f =
Nout

N
,

where N is the total number of objects and Nout the outlier
defined by:

|∆z| ≥ 3σ,

where σ is the standard deviation of the ∆z distribution.

3.2. DNF algorithm

Directional Neighborhood Fitting (DNF, De Vicente et al. 2016)
is a nearest neighbour algorithm for estimating the redshift of a
sample of galaxies. DNF uses the colours and magnitudes/fluxes
as a measurement of closeness to a reference sample composed
of galaxies whose spectroscopic redshifts are known. DNF pro-
vides the main photo-z value and its error estimation along with
a secondary value intended for photo-z distribution estimation:

– DNF_Z: the main photo-z estimate determined by the fit of a
number of neighbour galaxies to a hyperplane in magnitude
space. The process is iterated to remove outliers. In addi-
tion the algorithm can provide individual photo-z probability
density funcions (PDFs).

– DNF_ZSIGMA: indicator of photo-z quality computed from
the quadratic sum of the error due to photometry plus the
error due to the fit. DNF_ZSIGMA takes the value -99 when
DNF does not estimate the photo-z of a galaxy because there
is no neighbour galaxy within a given radius.

– DNF_ZN: a secondary photo-z determined by the single
nearest neighbour galaxy which is valuable for redshift dis-
tribution estimation.

The algorithm provides three alternative metrics for the as-
sessment of closeness: Euclidean, angular and directional. While
Euclidean and angular metrics account for magnitude and colour
respectively, directional metric integrate both in a unique num-
ber. The present work takes advantage of the combination of
5 optical plus 3 near-infrared filters to define non-degenerated
colours within the angular metric.

Fig. 1. Magnitude and colour distribution for incomplete training and
validation samples. The red dashed lines represent the incomplete train-
ing sample and the blue lines the validation sample. The dotted vertical
lines are the mean of each distribution. We have not included the curve
for the complete training figure because these distributions overlap per-
fectly with those of the validation sample.

4. Effect of training incompleteness in photometric
redshift estimation

We study the effect of using an incomplete spectroscopic training
sample to determine the photo-zs with the DNF algorithm. We
refer to an incomplete training sample when it does not cover the
same range of magnitudes and/or colours as the target sample for
which we want to determine its photo-zs.

The spectroscopic sample, in addition to being used to train
the algorithm, allows us to study the accuracy and precision of
the photo-z estimation. For this purpose, the spectroscopic sam-
ple is usually split into two samples: one used to train the al-
gorithm and the other one to validate the photo-zs (known as
the training and validation sample, respectively). However, we
must be careful when extrapolating the results obtained in the
validation sample to the galaxies in the scientific target sample.
The scientific sample may well contain galaxies at deeper mag-
nitudes or in a different colour range which are not represented in
the training sample and photo-zs may not be correctly estimated.

4.1. Incompleteness emulation with the spectroscopic
sample

With the goal to learn how the incompleteness affects photomet-
ric redshift performance, we use the spectroscopic sample to em-
ulate, at brighter magnitudes, two different scenarios: a case in
which we have completeness of magnitude and colour coverage
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from the training to the target sample, and another in which we
do not (incomplete case).

We split the spectroscopic catalogue into two sub-samples
of equal size (with 27, 801 galaxies each) and equal magnitude-
colour distribution. We take one of these sub-samples as a val-
idation sample and the other as training sample. We select the
galaxies of the training sample in two different ways to emulate
the scenarios mentioned. On one hand, we take all galaxies of
the training sample (the 27, 801 galaxies) to emulate a complete
training set, that is a training sample that covers the same colour-
magnitude space as the validation sample. On the other hand, we
use the training sample to construct an incomplete version. In
this second case, we want to emulate, at brighter magnitudes, the
incompleteness observed in the Y3 DES Deep Fields catalogue
when the training sample is formed by galaxies of the spectro-
scopic sample with FLAG_DES=4. To achieve this, some high-
magnitude galaxies can be manually removed from the training
sample until incompleteness is reached. In order to automate this
process rather than performing it manually, we have employed
the following method. We first calculate ∆band, that is the dif-
ference between the mean magnitude of the objects in the spec-
troscopic sample and in the Y3 DES Deep Fields photometric
catalogue, for each band. Then, we subtract ∆band from the mag-
nitudes of every galaxy in the training sample to emulate a sim-
ilar incompleteness at brighter magnitudes. Applying this mag-
nitude left-shift, we achieve a magnitude incompleteness at the
expense of decoupling galaxies from their own redshift. To solve
this issue, we use a nearest neighbour algorithm to find, within
the shifted sample, real galaxies with similar magnitudes. The
algorithm assigns for each left-shifted magnitude a real galaxy
from the training sample, many of them repeated. After applying
this procedure and dropping out the repeated galaxies, the new
training sample, hereafter referred to as the incomplete training
sample, is reduced to 5, 336 galaxies out of the original 27, 801.
In this way, we now have a galaxy sample that simulates incom-
pleteness in a magnitude range for which we have information
about the spectroscopic redshift, enabling us for the study of the
effects of incompleteness.

Figure 1 shows the magnitudes and colour distributions (up-
per and lower plots, respectively) for the incomplete training
sample (red dashed lines) and the validation sample (blue lines).
We have not included the comparison to the complete training
sample since their distributions overlap perfectly with those of
the validation sample by construction.

4.2. Incompleteness assessment

We determine the DNF photometric redshifts for the valida-
tion sample with both complete and incomplete training sets de-
fined as in Sect. 4.1. We select objects meeting the conditions
DNF_Z > 0, DNF_ZN > 0 and DNF_ZSIGMA < 1.0 to en-
sure the quality of the sample. The cut-off of DNF_ZSIGMA has
been defined taking into account the analysis carried out in Ap-
pendix B which studies the possible biases that DNF_ZSIGMA
may have as a quality estimator of DNF photo-z. The number of
galaxies after these cuts is 26, 882 galaxies (96.7% of the sam-
ple) using the complete training sample and 22, 617 (81.3% of
the sample) using the incomplete training sample.

Figure 2 shows the magnitude and colour distributions of
the galaxies in the validation sample (blue lines) versus the dis-
tributions of their nearest-neighbours galaxies (orange dashed
lines) determined from the incomplete training sample. Note that
while nearest-neighbour magnitude distributions do not match to
the weaker magnitudes in all the filters, the colour distributions

Fig. 2. Magnitude and colour distribution for the nearest neighbour
galaxies used for the estimation of photo-z in the incomplete training
and the validation sample. The orange dashed lines represent the near-
est neighbour galaxies distribution of incomplete training and the blue
lines the validation sample. The dotted vertical lines are the mean of
each distribution. We have not included the distributions for the com-
plete training sample since they overlap perfectly with those of the val-
idation sample.

are close to being recovered in comparison with those shown
in Fig. 1. The matching of the colour distributions between the
validation sample and their nearest-neighbour in the incomplete
training sample may be a necessary condition to produce a re-
liable photometric redshift distribution. However, it may not be
sufficient due to the possibility of the existence of galaxies with
colour combinations not covered by the training sample.

In order to study the effect of incompleteness and how to
detect it, we have carried out a principal component analysis
(PCA). The PCA has been performed with the magnitudes of the
bands ugrizJHKs. The first principal component (PC1) for this
sample represents 92.8% of the variance of the validation sam-
ple in magnitude space, while the percentage grows up to 98.1%
with the second component (PC2). We represent the density map
of the validation sample for the principal components in the up-
per panel of Fig. 3. We have also stored the first two eigenvectors
obtained for the validation sample to represent in the same basis
the training sample. In the bottom panel of Fig. 3 the red dots
show the scatter of the incomplete training sample represented
using the same eigenvectors of the validation sample. Compar-
ing both panels of Fig. 3, it can be seen that the incomplete train-
ing sample does not cover the full validation sample, but this red
area is well delimited by the inner bold black line that corre-
sponds to the region for which DNF_ZSIGMA < 0.1. Note that
this plot shows the limitations in determining the photo-zs us-
ing the DNF algorithm with an incomplete training sample but it

Article number, page 4 of 15
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Fig. 3. Density map as a function of the first and second principal com-
ponent of the galaxies of the validation sample. In the bottom panel, we
included the galaxies of the training sample (red dots) and the limit in
principal components of the galaxies that DNF provides a value of pho-
toz with DNF_ZSIGMA < 1.0 (orange line) and DNF_ZSIGMA < 0.1
(bold black line) with this training sample.

Table 1. Summary of metrics.

Training Sample Num. galaxies ∆z σNorm
68

Complete 26, 883 0.0104 0.0373
Incomplete 22, 651 −0.0740 0.0500

also shows how DNF_ZSIGMA informs of this fact. The outer
orange line corresponds to galaxies with DNF_ZSIGMA < 1.0
(this is 81.3% of the sample). Therefore, we can identify 3
groups of galaxies. Those galaxies covered by the red dots will
have precise photo-zs since for these galaxies the training sam-
ple covers the full range of principal component. On other hand,
DNF tags as unreliable photo-zs those galaxies outside the or-
ange limit. Therefore, we must study the quality of the photo-zs
of the galaxies that are located inside the orange limit but are not
covered by the training sample (red area).

4.3. Photo-zs performance estimation

We compare the photo-z estimation given by DNF in the vali-
dation sample using the incomplete and complete training sam-

ples. Figure 4 shows the comparison between the spectroscopic
redshift (zspec) and the photometric redshift (DNF_Z) for incom-
plete training sample (left panel) and complete training sample
(right panel). We can see that the complete training sample not
only determines photo-z values for a larger number of galax-
ies compared to the incomplete case (26, 883 galaxies versus
22, 651), but also presents a lower bias and σNorm

68 (see Table
1). In addition to the completeness, the number of galaxies in
the training sample is a factor that influences the quality of the
photo-zs. In Appendix C we have included the results of calcu-
lating the photometric redshift using a complete sample with the
same number of galaxies as the incomplete sample. The results
show that the completeness allows to calculate more accurate
photo-zs then the incomplete case for comparables training sam-
ple sizes.

We have studied the behaviour of the photo-zs estimation
through the mean absolute deviation, the σNorm

68 and outliers.
Figure 5 shows the mean absolute deviation (upper panel) and
the σNorm

68 (bottom panel) of DNF_Z with respect to zspec and
DNF_ZN (solid and dashed lines, respectively) as a function of
the mag(i) for the complete training sample (blue lines) and in-
complete training sample (magenta lines). The solid lines display
the mean absolute deviation andσNorm

68 of the photo-zs calculated
with zspec (which we will refer to as real metric values). It can be
readily seen in Fig. 5 that the completeness of the training sam-
ple affects the metrics. Then, we cannot assume that the metrics
(mean absolute deviation, σNorm

68 or those chosen in the study)
will have the same behaviour in the validation sample and in the
target sample if the training sample shows incompleteness. We
must keep in mind that the zspec value of each galaxy is not avail-
able when we are calculating the photo-zs for a catalogue so we
will not have these measurements to estimate the precision of
the photo-zs. Nevertheless, note that DNF_ZN (nearest neigh-
bour photo-z) is able to reproduce zspec distribution for moderate
training incompleteness in the same way that colour distributions
are well recovered for the case of incomplete training (Fig. 2). In
this way, statistical metrics involving zspec are well represented
by DNF_ZN. For this reason, we have calculated the mean abso-
lute deviation and the σNorm

68 replacing zspec by DNF_ZN (dashed
lines). In both plots the behaviour of the mean absolute deviation
and theσNorm

68 can be considered a good approximation to the real
value which changes depending on the training sample. We can
take these metrics calculated by DNF_ZN as an upper limit of
real ones. Figure 6 shows the outliers as a function of the i band
magnitude mag(i) for the complete training case (blue lines) and
incomplete training case (magenta lines). The number of outliers
is less than 4% in both cases, up until mag(i) > 24 where it starts
to increase for the incomplete training case. Finally, we com-
plete this study with the behaviour of the photo-z estimation as
a function of the spectroscopic redshifts in Appendix D.

5. Photometric redshift Deep Fields catalogue

We want to study the effects of using different training samples
on the quality of the photo-zs in the Y3 DES Deep Fields cata-
logue. For that, we applied the same analysis developed in Sect.
4 using two training samples. The first training sample contains
only galaxies with the highest quality of spectroscopic redshift
determination (i.e. with FLAG_DES = 4). In this case, the train-
ing sample does not contain galaxies with magnitudes as deep
as the Y3 DES Deep Fields catalogue. In other words, this train-
ing sample is of the highest quality but shows a certain incom-
pleteness with respect to the science sample. The second train-
ing sample contains galaxies labelled with spectroscopic redshift

Article number, page 5 of 15
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Fig. 4. Scatter plot of spectroscopic redshift zspec and the photo-z DNF_Z for incomplete training (left panel) and complete training (right panel).
Note the improvement for z > 1 in the complete case.

quality FLAG_DES ≥ 3. The inclusion of galaxies whose spec-
troscopic redshift quality is not optimal but still good in this
training sample reduces the problem of incompleteness. In this
second case, the training sample reaches the deepest magnitudes
of the Y3 DES Deep Fields catalogue. Figure 7 shows the mag-
nitude and colour distributions of both training samples (in the
left panels for the incomplete sample and in the right panels for
the semi-complete sample). In order to carry out a similar analy-
sis of that performed in Sect. 4, we selected those galaxies with
mag(i) < 28.0 and with a positive flux measurement in the eight
filters. This sample contains 1, 478, 705 galaxies.

5.1. Assessment of high quality but incomplete training

For this study, the incomplete training sample is limited to
38, 123 galaxies for which their spectroscopic redshift has been
determined with very high quality. As we can see in the left pan-
els of Fig. 7, this spectroscopic sample is shallower than the
Y3 DES Deep Fields catalogue (red lines and blue lines, re-
spectively). We want to know how this incompleteness affects
the photometric redshift calculation. Using DNF and selecting
galaxies with DNF_Z > 0, DNF_ZN > 0 and DNF_ZSIGMA <
1.0, we have determined the photometric redshift for 1, 254, 981
galaxies (84.9%) of the Deep Fields catalogue using this training
sample.

The left panel of Fig. 8 shows the density map as a func-
tion of the first and second principal component of the Y3 DES
Deep Fields catalogue and the galaxies of the training sample
(red dots). The orange line is the limit of the photo-zs of this
84.9% of galaxies with the cuts defined above. In addition we
overplot another limit bold black line) using a more stringent
cut, namely DNF_ZSIGMA < 0.1 that keeps 441, 144 galaxies,
that is 29.8%.

5.2. Assessment of medium quality but semi-complete
training

The second training sample used to determine the photomet-
ric redshift of Y3 DES Deep Fields catalogue contains 55, 601
galaxies which have magnitudes as deep as the Y3 DES Deep

Fields catalogue but with a different distribution as shown in the
right panels of Fig. 7.

We can see in the right panel of Fig. 8, corresponding to
the principal components (the first two eigenvectors represent
93.59% of the sample), that the spectroscopic training sample
is located in the area where the density of galaxies is higher.
Although it does not cover the entire of principal component
area of the field, DNF provides photo-z for almost all galax-
ies in the sample (1, 318, 960 galaxies, 91.67%) delimited by
the orange line in the figure. We plot another limit with a bold
black line that represents galaxies with a more stringent cut of
DNF_ZSIGMA < 0.1 as we did before (405,854 galaxies, i.e.
28.2%).

5.3. Performance and comparison of science sets with
different training samples

According to the results obtained, based on the cuts defined in
Sect. 4, DNF determines photometric redshifts for slightly fewer
galaxies when using the incomplete but high quality training
sample than in the semi-complete case. The question is how the
quality of these photometric redshifts estimates compare. Or in
other words, whether it is more important to have high quality
spectroscopic redshifts or we can slightly relax that condition to
cover the magnitude-colour space as much as possible.

The results of Fig. 9 show the precision of the photo-z esti-
mation by DNF for Y3 DES Deep Fields catalogue defined by
mean absolute deviation (left panel) and the σNorm

68 (right panel)
as a function of the mag(i). Note that the zspec of each galaxy is
not available in Y3 DES Deep Fields catalogue, then to estimate
the mean absolute deviation and the σNorm

68 , we have replaced
zspec by DNF_ZN following the analysis done in Sect. 4.3. We
can see that the results obtained by the incomplete, high qual-
ity training (dashed purple lines) and the semi-complete training
(blue lines) samples follow a similar behaviour for mag(i) < 24
although slightly better for the incomplete, high quality training.
In this case we obtain a lower error for magnitudes-colour areas
covered by the spectroscopic sample.

We have also seen the same behaviour in Sect. 5.1 and 5.2
where the incomplete, high quality training contains more galax-
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Fig. 5. The precision of the photo-z defined by MAD(∆z) (upper panel)
and the σNorm

68 (bottom panel) as a function of the mag(i) for the com-
plete training sample (blue lines) and incomplete training sample (ma-
genta lines). The solid lines display the metrics calculated with zspec and
the dashed lines has been calculated replacing zspec by DNF_ZN.

ies with DNF_ZSIGMA < 0.1 even though, globally, the semi-
complete training generates more precise photo-zs. For mag(i) ≥
24, the semi-complete training sample, formed by galaxies with
slightly lower quality spectroscopic redshift, outperforms the
photo-zs of the incomplete training sample formed by the high-
est quality spectroscopic redshift galaxies. The results indicate
that completeness plays an important role in determining higher
quality photometric redshift values, as expected. But the results
also suggest that for specific studies focussed on brighter galax-
ies, we may be more interested in using only the redshifts of the
highest possible quality in our training.

Finally, we studied the absolute median deviation and σNorm
68

as a function of the redshift for the two training samples. You
can see more details in Appendix D.

6. Comparison between DNF and EAzY

We estimated the photo-zs for the whole deep fields and we
added this information to the Y3 DES Deep Fields data2.

2 Available at des.ncsa.illinois.edu/releases/y3a2/Y3deepfields

Fig. 6. Outliers as a function of the mag(i) for the complete training
(blue lines) and incomplete training (magenta lines). The solid lines
display the outliers calculated with zspec and the dashed lines replacing
zspec by DNF_ZN.

The training sample used to estimate the photo-zs contains
galaxies with spectroscopic redshift information labeled with
FLAG_DES ≥ 3 corresponding to the semi-complete training
sample in Sect. 5.2. It is important to note that when computing
DNF in this case, we ignore the own spectroscopic redshift for
each galaxies in the training sample, to provide a homogeneous
comparison of all estimates.

In addition to the DNF photo-zs (De Vicente et al. 2016),
the Y3 DES Deep Fields catalogue contains photo-zs deter-
mined with the EAzY algorithm (Hartley et al. 2022; Brammer
et al. 2008). These two methods approach the photometric red-
shift problem from different perspectives: EAzY determined the
photo-zs by fitting a linear combination of template components
while DNF is a machine learning code.

We analysed the photo-zs obtained using both methods.
Firstly, we selected from Y3 Deep Fields catalogue those galax-
ies with spectroscopic redshift information, mag(i) < 28.0, flux
measurements in the eight filters. This sample contains 55, 198
galaxies and covers a large portion of the total sample as we
can see in the right panel of Fig. 8. Figure 10 shows the scatter
of the photo-zs determined by both methods versus the spectro-
scopic redshift (on the left DNF and on the right EAzY). The
metrics obtained by DNF slightly outperforms those provided
by EAzY, justified in part for the completeness of the training
sample used in this test. The bias and the σNorm

68 are −0.0148 and
0.0519 for EAzY and 0.0065 and 0.0390 for DNF respectively.
Both methods give good photo-zs values for z < 1. However, for
z ≥ 1 EAzY shows a somewhat biased behaviour. The plot at the
bottom shows the photo-z values of DNF (X-axis) vs EAzY (Y-
axis). We can see the same bias appeared on right panel, that is
EAzY with respect to SPEC_Z. Therefore, this behaviour seems
to come from the EAzY estimation. It may be due to the lack of
Y-band data. The break is poorly constrained from z ∼ 1 until the
4000Å break starts to enter the J-band. The prior tends to favour
a lower redshift and so the point estimates are pulled to lower
redshift slightly. This would be partially alleviated with the full
EAzY PDFs.

In Fig. 11 (left), we compare the photo-z provided by both
methods for the Y3 DES Deep Fields catalogue (right panel).
We have focussed on galaxies with flux measurements in all
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Fig. 7. Magnitude and colour distribution for incomplete training (right panels) and semi-complete training (left panels). The red dashed lines
represents the training samples and the blue lines the Y3 DES Deep Fields sample. The dotted lines are the mean of each distribution.

Fig. 8. Density map as a function of the first and second principal component of the galaxies of Y3 DES Deep Fields (density plot in green and
yellow colours), the galaxies of the training sample (red dots) and the limit in principal components of the galaxies that DNF provides a value
of photoz with DNF_ZSIGMA < 1.0 (orange line) and DNF_ZSIGMA < 0.1 (bold black line) with this training sample. The red blob is less
extensive than the green-yellow blob (where the highest density of galaxies is located) when we select only the galaxies with FLAG_DES = 4.

the eight filters and mag(i) < 28.0. It corresponds to a sam-
ple of 1,473,381 galaxies. For z > 1 we can see a similar be-
haviour to that observed with spectroscopic redshifts (right panel
of Fig. 10). Therefore, this behaviour seems to come from EAzY
estimation. On the other hand, there is a cloud of points below
the diagonal around EAzY_Z ∼ 0.5 which extend along several
values of DNF_Z. We can see in Fig. 11 (right) that the cloud can
be removed by applying the quality cut DNF_ZSIGMA < 0.5.
In general DNF_ZSIGMA allow us to detect galaxies with large
errors due to bad photometry, degeneracies or incompleteness.

Determining the best method to be applied to a scientific
sample is non-trivial. Salvato et al. (2019) points out that ma-
chine learning methods outperforms the template approaches
when the training survey is sufficiently complete. However, tem-
plate methods are more favourable when spectroscopic samples
are limited. In the case of DNF and EAzY, the biggest differ-
ences appear for z > 1, when the completeness of the training
sample is poorer. Nevertheless, the photo-zs generated by DNF
present better metrics than those of provided by EAzY. Accord-
ing to Salvato et al. (2019), template methods work best for high
redshift because of the lack of photometric information to con-
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Fig. 9. The precision of the photo-z estimates defined by MAD(∆z) (up-
per panel) and σNorm

68 (bottom panel) as a function of the mag(i) calcu-
lated by DNF_Z and DNF_ZN determined by training sample with only
galaxies with FLAG_DES = 4 (incomplete training sample, in purple)
and training sample with galaxies with FLAG_DES≥3 (semi-complete
training sample, in blue).

struct training samples for machine leaning methods. In the same
sense, the templates are built on physical assumptions that may
not be entirely correct or have incomplete coverage in certain
areas.

7. Conclusions

This study is an analysis of how the completeness and spectro-
scopic quality of the training sample affects the photometric red-
shift determination using the DNF algorithm. The conclusions
are the following:

1. We have emulated the problem of an incomplete training
sample for DNF with the goal of measuring its effects and
to take them into account on the photo-z performance. The
principal component analysis provides a graphical method
to assess completeness and DNF_ZSIGMA turns out to be a
reliable parameter to separate the set of galaxies computed
with a complete training.

2. We have analysed the possibility of substituting zspec by
DNF_ZN to assess ∆(z) in the scatter metrics of DNF_Z

(MAD(∆z) and σNorm
68 ). The results show that DNF_ZN pro-

vides an upper limit of the real values. Using this method
the photo-z quality can be estimated when no spectroscopic
information is available.

3. We determine the photo-zs of the Y3 DES Deep Fields cat-
alogue using both, a semi-complete training sample with
high and medium quality redshift spectroscopy and an in-
complete training sample with the highest quality redshift
spectroscopy. The obtained results are globally better for
the semi-complete sample in spite of its slight relaxation in
quality. However, the photo-z improves for that sub-sample
where the high-quality incomplete training covers its princi-
pal component analysis space. For faint magnitudes it seems
better to use a training sample with medium quality spec-
troscopic redshift covering deeper magnitudes. This result
advocates for training completeness at the expenses of sac-
rificing slightly the quality of the spectroscopic redshifts.
The results also suggest that for specific studies focussed on
brighter galaxies, we may be more interested in using only
redshift of the highest possible quality in our training.

4. We have compared the photometric redshift of Y3 DES Deep
Fields catalogue determined with DNF and EAzY. Both
methods show a similar behaviour up to z ∼ 1. For z > 1
DNF outperforms EAzY, which shows some bias towards
higher redshift.
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Fig. 10. Scatter plot of spectroscopic sample: SPEC_Z vs DNF_Z (left), SPEC_Z vs EAzY_Z (right) and DNF_Z vs EAzY_Z (bottom)

Fig. 11. Y3 DES Deep Fields catalogue. Scatter plot DNF_Z vs EAzY_Z: for mag < 28 (left) and for additional quality cut DNF_ZSIGMA<0.5
(right)
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Fig. B.1. Comparison of pull distribution (blue) with a standard Gaus-
sian distribution (orange line).

Appendix A: Spectroscopic data

We have listed in Table A.1 the 34 spectroscopic samples com-
piled by Gschwend et al. (2018) to create the spectroscopic sam-
ple used in this work.

Appendix B: DNF_ZSIGMA as an indicator of the
quality of photo-z

DNF_ZSIGMA is the indicator of the quality of each photo-z
provided by DNF. These values are computed from the quadratic
sum of the error due to the photometry plus the error due to the
fit. In this Appendix, we analyse the DNF_ZSIGMA values. For
this purpose, we have calculated the pull defined as follow:

pull =
zspec − DNF_Z
DNF_ZSIGMA

,

where zspec is the spectroscopic redshfit and DNF_Z the photo-
metric redshift.

Figure B.2 compares the pull distribution (blue) with a stan-
dard Gaussian distribution with mean zero and unit width (or-
ange line) for the values obtained from the complete sample.
The pull together with the central limit theorem allows us to
analyse the possible dispersion and bias in the DNF_ZSIGMA
values comparing the pull distribution with a standard Gaussian.
The results obtained from the pull using the complete training
sample fit to the Gaussian distribution. The pull distribution is
slightly narrower in the centre and with larger wings. These dif-
ferences are showing that DNF_ZSIGMA overestimates the er-
rors for photo-zs with small errors and underestimates for large
errors.

Appendix C: Effect of training sample size on
Photometric Redshift

In addition to incompleteness, the number of galaxies in the
training sample is also a factor that must be taken into account
to determine the quality of the photometric redshift. We wanted
to check what the results would be if the complete sample had
the same number of galaxies as our incomplete sample, that is,

Fig. B.2. Comparison of pull distribution (blue) with a standard Gaus-
sian distribution (orange line) for the error due to the fit (upper panel)
and to the photometry (bottom panel).

5, 336 galaxies. In this appendix, the Fig. C.1 shows the compar-
ison between the spectroscopic redshift (zspec) and the photomet-
ric redshift (DNF_Z) for a training sample that is complete but
consists of 5, 336 galaxies. The number of galaxies that DNF has
calculated photometric redshifts for with the same cuts defined in
4.2 is 26, 608 galaxies (95.7% of the sample). This value is very
close to the case of the complete sample with 27, 801 galaxies
(96.8%) and considerably improves the result of the incomplete
sample (81.3%). On the other hand, the results found are inter-
mediate values between the incomplete and complete cases for
bias and σNorm

68 .

Appendix D: Quality metrics as a function of the
redshift

We studied the behaviour of the photo-zs estimation as a function
of the spectroscopic redshift for the complete and incomplete
spectroscopic training samples defined in Sect. 4. The Fig. D.1
and D.2 show the behaviour of the absolute median deviation and
the σNorm

68 as a function of zspec for the complete training sample
(blue lines) and incomplete training sample (magenta lines). We
have also calculated the mean absolute deviation and the σNorm

68
replacing zspec by DNF_ZN (dashed lines). As in Fig. 5 of Sect.
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Table A.1. Spectroscopic samples used in Gschwend et al. (2018).

Survey Ref.
PRIMUS Coil et al. (2011); Cool et al. (2013)
SDSS DR14 Abolfathi et al. (2018)
DES AAOmega Yuan et al. (2015); Childress et al. (2017)
VIPERS Garilli et al. (2014) and http://vipers.inaf.it/rel-pdr1.html
WiggleZ Parkinson et al. (2012) and http://wigglez.swin.edu.au/site/
VVDS Garilli et al. (2008); Le Fèvre et al. (2004)
zCOSMOS Lilly et al. (2009)
3D-HST Momcheva et al. (2016) and http://3dhst.research.yale.edu/Data.php
DEEP2 Davis et al. (2003, 2017) and http://deep.ps.uci.edu/DR4/home.html
2dF Colless et al. (2001) and http://www.2dfgrs.net/
GAMA Driver et al. (2011)
ACES Cooper et al. (2012) and http://mur.ps.uci.edu/cooper/ACES/zcatalog.html
6dF Jones et al. (2009) and http://www.6dfgs.net/
DES IMACS Nord et al. (2016)
SAGA Geha et al. (2017) and http://sagasurvey.org/
NOAO OzDES Yuan et al. (2015); Childress et al. (2017)
XXL AAOmega Lidman et al. (2016) and http://cosmosdb.iasf-milano.inaf.it/XXL/
SPT GMOS Bayliss et al. (2016)
UDS http://www.nottingham.ac.uk/astronomy/UDS/UDSz/
SNLS FORS Bazin et al. (2011)
ATLAS Mao et al. (2012)
Pan-STARRS Rest et al. (2014); Scolnic et al. (2014); Kaiser et al. (2010)
C3R2 Masters et al. (2017)
SpARCS Muzzin et al. (2012)
SNVETO http://www.ast.cam.ac.uk/ fo250/Research/SNveto/
FMOS-COSMOS Silverman et al. (2015) and http://member.ipmu.jp/fmos-cosmos/FC_catalogs.html
SNLS AAOmega Lidman et al. (2013); Yuan et al. (2015); Childress et al. (2017) and

http://apm5.ast.cam.ac.uk/arc-bin/wdb/aat_database/observation_log/make
CDB Sullivan et al. (2011)
VUDS Tasca et al. (2017) and http://cesam.lam.fr/vuds/DR1/
ZFIRE Nanayakkara et al. (2016) and http://zfire.swinburne.edu.au/data.html
MOSFIRE http://mosdef.astro.berkeley.edu
2dFLenS Blake et al. (2016) and http://2dflens.swin.edu.au/http://2dflens.swin.edu.au/
GLASS Treu et al. (2015) and https://archive.stsci.edu/prepds/glass/
XMM-LSS Stalin et al. (2010)

4.3, in both plots the behaviour of the mean absolute deviation
and the σNorm

68 can be considered a good approximation to the
real value which changes depending on the training sample. The
high errors that can be observed for zspec close to zero are due to
stars wrongly classified in the validation sample.

In addition, we studied the behaviour of the photo-zs esti-
mation as a function of the redshift for the galaxies of Y3 Deep
Field catalogue using the incomplete and semi-incomplete train-
ing sample defined in Sect. 5. In this case, as we lack information
on the spectroscopic redshift, we have replaced zspec by DNF_Z.
The results of Fig. D.3 and D.4 show that MAD(∆z) and σNorm

68
get worse for higher redshift. Both training samples have simi-
lar results for z < 1.4. After this value, semi-incomplete training
sample works better than incomplete training sample.

Fig. C.1. Scatter plot of spectroscopic redshift zspec and the photo-z
DNF_Z for complete training of 5, 336 galaxies.
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Fig. D.1. MAD(∆z) as a function of the zspec for the complete training
(blue lines) and the incomplete training (magenta lines). The solid lines
display the metrics calculated with zspec and the dashed lines replacing
zspec by DNF_ZN.

Fig. D.2. σNorm
68 as a function of the zspec for the complete training (blue

lines) and the incomplete training (magenta lines). The solid lines dis-
play the metrics calculated with zspec and the dashed lines replacing zspec
by DNF_ZN.

Fig. D.3. The precision of the photo-z estimates defined by the abso-
lute median deviation as a function of the zspec calculated by DNF_Z
and DNF_ZN determined by training sample with only galaxies with
FLAG_DES = 4 (incomplete training sample) and training sample with
galaxies with FLAG_DES<=3 (semi-complete training sample), in pur-
ple and blue, respectivaly.

Fig. D.4. The precision of the photo-z estimates defined by the σNorm
68

as a function of the zspec calculated by DNF_Z and DNF_ZN deter-
mined by training sample with only galaxies with FLAG_DES = 4
(incomplete training sample) and training sample with galaxies with
FLAG_DES<=3 (semi-complete training sample), in purple and blue,
respectivaly.
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