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ABSTRACT

Context. The determination of accurate photometric redshifts (photo-zs) in large imaging galaxy surveys is key for cosmological studies. One of
the most common approaches is machine learning techniques. These methods require a spectroscopic or reference sample to train the algorithms.
Attention has to be paid to the quality and properties of these samples since they are key factors in the estimation of reliable photo-zs.
Aims. The goal of this work is to calculate the photo-zs for the Year 3 (Y3) Dark Energy Survey (DES) Deep Fields catalogue using the Direc-
tional Neighborhood Fitting (DNF) machine learning algorithm. Moreover, we want to develop techniques to assess the incompleteness of the
training sample and metrics to study how incompleteness affects the quality of photometric redshifts. Finally, we are interested in comparing the
performance obtained by DNF on the Y3 DES Deep Fields catalogue with that of the EAzY template fitting approach.
Methods. We emulated – at a brighter magnitude – the training incompleteness with a spectroscopic sample whose redshifts are known to have a
measurable view of the problem. We used a principal component analysis to graphically assess the incompleteness and relate it with the perfor-
mance parameters provided by DNF. Finally, we applied the results on the incompleteness to the photo-z computation on the Y3 DES Deep Fields
with DNF and estimated its performance.
Results. The photo-zs of the galaxies in the DES deep fields were computed with the DNF algorithm and added to the Y3 DES Deep Fields
catalogue. We have developed some techniques to evaluate the performance in the absence of “true” redshift and to assess the completeness. We
have studied the tradeoff in the training sample between the highest spectroscopic redshift quality versus completeness. We found some advantages
in relaxing the highest-quality spectroscopic redshift requirements at fainter magnitudes in favour of completeness. The results achieved by DNF
on the Y3 Deep Fields are competitive with the ones provided by EAzY, showing notable stability at high redshifts. It should be noted that the
good results obtained by DNF in the estimation of photo-zs in deep field catalogues make DNF suitable for the future Legacy Survey of Space and
Time (LSST) and Euclid data, which will have similar depths to the Y3 DES Deep Fields.
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1. Introduction

The arrival of large photometric galaxy surveys such as the Sloan
Digital Sky Survey (SDSS, York et al. 2000), the Dark Energy
Survey (DES, Flaugher et al. 2015), Physics of the Accelerat-
ing Universe (PAU, Castander et al. 2012), or future projects
such as the Vera C. Rubin Observatory Legacy Survey of Space
and Time (LSST, LSST Science Collaboration 2009), and Euclid
(Euclid Collaboration 2020), capable of collecting huge amounts
of data, are providing invaluable insights about the Universe.
One of the crucial elements for cosmological and astrophysi-
cal studies is the estimation of accurate redshifts from photo-
metric information, which are essential for many cosmological
probes as baryon acoustic oscillation (BAO), weak lensing, or
galaxy clustering. Spectroscopic surveys – measuring the dif-

? The data are available at https://des.ncsa.illinois.edu/
releases/y3a2/Y3deepfields

ference in the wavelength of some spectral lines with respect
to their wavelength at rest frame – provide high-precision red-
shifts, but obtaining spectroscopic redshifts of large samples
of astronomical objects is very expensive in terms of observ-
ing time. Currently, the Dark Energy Spectroscopic Instrument
(DESI) project (DESI Collaboration 2016) is capable of mea-
suring thousands of galaxy spectra every night, reducing tele-
scope time. Despite this great advantage, long exposure times
are still required to obtain good signal-to-noise spectra of faint
objects, and photometric data for target selection. An alternative
is to measure the fluxes of galaxies with a set of broadband or
narrowband filters within an image survey; that is, using photo-
metric techniques. These measurements allow us to compute the
photometric redshift (photo-z) of a large number of galaxies per
image, reducing the telescope time at the cost of lower precision.

The two main approaches to determining photo-zs are
template fitting and machine learning methods. Template
methods compare the spectral energy distribution (SED) of
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each galaxy with that of a set of redshifted rest-frame
templates, looking for the best match (e.g., Arnouts et al.
1999; Benítez 2000; Bolzonella et al. 2000; Ilbert et al. 2006).
Machine learning approaches use reference or training galaxy
samples whose spectroscopic redshifts are known in order
to learn the relationship between magnitudes, colours, and
redshifts. With this information, machine learning meth-
ods can predict the photometric redshift of a set of tar-
get galaxies (e.g., Collister & Lahav 2004; Sadeh et al. 2016;
Carrasco Kind & Brunner 2013; De Vicente et al. 2016). Nei-
ther method is free of difficulties. Template methods depend on
synthetic models and the completeness of the template library
used in the fitting, while machine learning methods depend
on the quality and variety of the training samples. Specifi-
cally, the selection of this spectroscopic training sample is one
of the most important decisions in obtaining accurate photo-
metric redshift estimations in the machine learning approach.
Ideally, the spectroscopic sample should be representative of
the whole target galaxy sample, covering the same colour-
magnitude space. Unfortunately, the galaxy samples whose pho-
tometric redshift is to be determined typically include galax-
ies with deeper magnitudes that are not included in the spec-
troscopic sample. Hartley et al. (2020) studied the impact of
using incomplete spectroscopic samples in the redshift distribu-
tion using the Lima et al. (2008) algorithm. They show that an
incomplete spectroscopic training sample could bias the galaxy
redshifts. Moreover, the studies of Hildebrandt et al. (2010),
Beck et al. (2017), Sánchez et al. (2014), Schmidt et al. (2020),
Bonnett et al. (2016), Abdalla et al. (2011) and Brescia et al.
(2021) compare different methods of photo-z estimation. These
works suggest that machine learning methods provide more
accurate values of photo-zs than template methods as long as
there is a sufficiently adequate sample for training. Outside the
magnitude and colour space, template methods seem to perform
better than machine learning methods because they can gener-
ate synthesised spectra without redshift constraints. Everything
seems to indicate that the combination of both template and
machine learning is the best option to obtain the best photo-
z accuracy of a sample (e.g., Tanaka et al. 2018; Salvato et al.
2019).

In this work, we study how the incompleteness in the spec-
troscopic training sample affects Directional Neighborhood Fit-
ting (DNF) photo-z algorithm (De Vicente et al. 2016) photo-zs,
as estimated in the Dark Energy Survey (DES) Year 3 Deep Field
sample. The DNF algorithm is a nearest-neighbour approach
to photometric redshift estimation that has become a reference
within DES collaboration and included as one of the five meth-
ods to be prioritised in the Vera Rubin observatory. To assess
the effects of incompleteness, we first derive the relevant param-
eters to characterise incompleteness, demonstrating how these
parameters affect photo-z performance. Then, we show how
DNF accounts for incompleteness in the photo-z errors pro-
vided. Finally, we study the incompleteness of the training sam-
ple in Y3 DES Deep Fields and compare our results with those
obtained with the EAzY template method (Brammer et al. 2008).

The rest of the paper is organised as follows. In Sect. 2, we
describe the sample selection and in Sect. 3 the metrics used and
the description of DNF algorithm. We carry out an analysis of the
effects of incomplete training samples on the estimation of pho-
tometric redshift in Sect. 4. In Sect. 5, we estimate photometric
redshift for Y3 DES Deep Fields with different training sam-
ples. We compare the photo-zs determined by DNF and EAzY
in Sect. 6. Finally, we enumerate the conclusions of this work in
Sect. 7.

2. Data

2.1. Spectroscopic sample

We used the spectroscopic sample defined by Gschwend et al.
(2018). This sample contains spectroscopic redshifts of galaxies
from 34 surveys (see Appendix A) and the photometric infor-
mation for each of them. The quality of the spectroscopic red-
shift is flagged by the label FLAG_DES (with FLAG_DES =
4 as certain redshift, FLAG_DES = 3 as probable redshift,
FLAG_DES = 2 as possible redshift, and FLAG_DES = 1 as
unknown redshift). For this work, we only selected those objects
with spectroscopic redshift determination marked in the cata-
logue with the best redshift determination; that is, those galaxies
with flags of levels three and four (FLAG_DES ≥ 3). In addition,
we excluded those galaxies with mag(i) ≥ 28. After these cuts,
our spectroscopic sample contains a total of 55 601 galaxies.

2.2. Year 3 Deep Fields catalogue

The Y3 DES Deep Fields catalogue1 used is part of the DES.
The observations were taken using the Dark Energy Camera
(DECam, Flaugher et al. 2015) on the Victor M. Blanco 4 m tele-
scope at the Cerro Tololo Inter-American Observatory (CTIO) in
Chile. The DES covered 5000 deg2 in grizY bands with approx-
imately ten overlapping dithered exposures in each filter (90 s
in griz, 45 s in Y) covering the survey footprint. The Y3 DES
Deep Fields catalogue comprises four fields measured with eight
bands (ugrizJHKs), covering an area of ∼5.88 deg2 where the
integrated exposure time per pixel is approximately ten times
more than in the main DES area (see details in Hartley et al.
2022). This catalogue contains around 2.8 million galaxies. We
selected those galaxies that have flux measurements in the eight
filters and with mag(i) < 28, resulting in a catalogue that con-
tains around 1.5 million galaxies. We selected galaxies with
mag(i) < 28 – still suitable for weak lensing applications –
because for higher magnitudes the errors in the photometry are
large and the data become unreliable.

3. Metrics and algorithm

3.1. Metrics

This section describes the metrics used in this work to assess the
quality of the photo-z estimates, where zspec, zphot, and N repre-
sent the spectroscopic redshift, the photometric redshift, and the
number of objects in the sample, respectively. We define the fol-
lowing metrics to quantify the degree of precision of the photo-z
and its scatter:

– Bias: the assessment of the overall photo-z is determined by
the mean bias:

∆z =
1
N

N∑
i=1

(∆zi),

where ∆z = zspec − zphot.
– Mean absolute deviation:

MAD(∆z) =
1
N

N∑
i=1

|∆zi|.

1 Available at https://des.ncsa.illinois.edu/releases/
y3a2/Y3deepfields
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– σ68(∆z): denotes the half-width of the central 68% percentile
range of both galaxies’ bias values,

σ68(∆z) =
1
2

(P84 − P16),

where P16 = 16th percentile of the cumulative distribution
and P85 = 84th percentile of the cumulative distribution.

– σ68 normalised: defined as

σNorm
68 = σ68

( |∆z|
1 + zspec

)
.

– Outlier fraction:

f =
Nout

N
,

where N is the total number of objects and Nout the outlier
defined by

|∆z| ≥ 3σ,

where σ is the standard deviation of the ∆z distribution.

3.2. The DNF algorithm

Directional neighborhood fitting (DNF, De Vicente et al. 2016)
is a nearest-neighbour algorithm for estimating the redshift of
a sample of galaxies. The DNF algorithm uses the colours and
magnitudes or fluxes as a measurement of closeness to a refer-
ence sample composed of galaxies whose spectroscopic redshifts
are known. The DNF algorithm provides the main photo-z value
and its error estimation along with a secondary value intended
for photo-z distribution estimation:

– DNF_Z: the main photo-z estimate determined by the fit of
a number of neighbour galaxies to a hyperplane in the mag-
nitude space. The process is iterated to remove outliers. In
addition the algorithm can provide individual photo-z proba-
bility density functions (PDFs).

– DNF_ZSIGMA: an indicator of photo-z quality computed
from the quadratic sum of the error due to photometry plus
the error due to the fit. DNF_ZSIGMA takes the value -99
when DNF does not estimate the photo-z of a galaxy because
there is no neighbour galaxy within a given radius.

– DNF_ZN: a secondary photo-z determined by the single
nearest neighbour galaxy, which is valuable in redshift dis-
tribution estimation.
The algorithm provides three alternative metrics for the

assessment of closeness: Euclidean, angular, and directional.
While Euclidean and angular metrics account for magnitude and
colour, respectively, the directional metric integrates both in a
unique number. The present work takes advantage of the com-
bination of five optical plus three near-infrared filters to define
non-degenerated colours within the angular metric.

4. Effect of training incompleteness on photometric
redshift estimation

We studied the effect of using an incomplete spectroscopic train-
ing sample to determine the photo-zs with the DNF algorithm.
We refer to an incomplete training sample when it does not cover
the same range of magnitudes and/or colours as the target sample
for which we want to determine the photo-z.

The spectroscopic sample, in addition to being used to train
the algorithm, allows us to study the accuracy and precision

Fig. 1. Magnitude and colour distribution of incomplete training and
validation samples. The dashed red lines represent the incomplete train-
ing sample and the blue lines the validation sample. The dotted vertical
lines are the mean of each distribution. We have not included the curve
for the complete training figure because these distributions overlap per-
fectly with those of the validation sample.

of the photo-z estimation. For this purpose, the spectroscopic
sample is usually split into two samples: one used to train the
algorithm and the other one to validate the photo-zs (known as
the training and validation sample, respectively). However, we
must be careful when extrapolating the results obtained in the
validation sample to the galaxies in the scientific target sam-
ple. The scientific sample may well contain galaxies at deeper
magnitudes or in a different colour range that are not repre-
sented in the training sample and photo-zs may not be correctly
estimated.

4.1. Incompleteness emulation with the spectroscopic
sample

With the goal of learning how the incompleteness affects pho-
tometric redshift performance, we used the spectroscopic sam-
ple to emulate, at brighter magnitudes, two different scenarios:
a case in which we have completeness of magnitude and colour
coverage from training sample to the target sample, and another
in which we do not (the incomplete case).

We split the spectroscopic catalogue into two sub-samples
of equal size (with 27 801 galaxies each) and equal magnitude-
colour distribution. We took one of these sub-samples as a vali-
dation sample and the other as training sample. We selected the
galaxies of the training sample in two different ways to emu-
late the scenarios mentioned. On the one hand, we took all
of the galaxies in the training sample (the 27 801 galaxies) to
emulate a complete training set; that is, a training sample that

A38, page 3 of 15
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Fig. 2. Magnitude and colour distribution of the nearest-neighbour
galaxies used in the estimation of photo-z in the incomplete training and
the validation sample. The dashed orange lines represent the nearest-
neighbour galaxies’ distribution in incomplete training and the blue
lines the distribution in the validation sample. The dotted vertical lines
are the mean of each distribution. We have not included the distributions
of the complete training sample since they overlap perfectly with those
of the validation sample.

covers the same colour-magnitude space as the validation sam-
ple. On the other hand, we used the training sample to con-
struct an incomplete version. In this second case, we wanted
to emulate, at brighter magnitudes, the incompleteness observed
in the Y3 DES Deep Fields catalogue when the training sam-
ple is formed by galaxies of the spectroscopic sample with
FLAG_DES = 4. To achieve this, some high-magnitude galaxies
can be manually removed from the training sample until incom-
pleteness is reached. In order to automate this process rather than
performing it manually, we employed the following method. We
first calculated ∆band; that is, the difference between the mean
magnitude of the objects in the spectroscopic sample and in
the Y3 DES Deep Fields photometric catalogue for each band.
Then, we subtracted ∆band from the magnitudes of every galaxy
in the training sample to emulate a similar incompleteness at
brighter magnitudes. Applying this leftward magnitude shift, we
achieved a magnitude incompleteness at the expense of decou-
pling galaxies from their own redshift. To solve this issue, we
used a nearest-neighbour algorithm to find, within the shifted
sample, real galaxies with similar magnitudes. The algorithm
assigns to each left-shifted magnitude a real galaxy from the
training sample, many of them repeated. After applying this pro-
cedure and dropping out the repeated galaxies, the new training
sample, hereafter referred to as the incomplete training sample,
is reduced to 5336 galaxies out of the original 27 801. In this
way, we now have a galaxy sample that simulates incomplete-

Fig. 3. Density map as a function of the first and second principal com-
ponent of the galaxies of the validation sample. In the bottom panel,
we included the galaxies of the training sample (red dots) and the limit
in the principal components of the galaxies for which DNF provides
a value of photo-z with an uncertainty, DNF_ZSIGMA < 1.0 (orange
line) and DNF_ZSIGMA < 0.1 (bold black line), with this training
sample.

ness in a magnitude range for which we have information about
the spectroscopic redshift, enabling us to study the effects of
incompleteness.

Figure 1 shows the magnitudes and colour distribu-
tions (upper and lower plots, respectively) for the incom-
plete training sample (dashed red lines) and the valida-
tion sample (blue lines). We have not included the com-
parison to the complete training sample since their distribu-
tions overlap perfectly with those of the validation sample by
construction.

4.2. Incompleteness assessment

We determined the DNF photometric redshifts for the valida-
tion sample with both complete and incomplete training sets,
defined as in Sect. 4.1. We selected objects meeting the con-
ditions DNF_Z > 0, DNF_ZN > 0, and DNF_ZSIGMA <
1.0 to ensure the quality of the sample. The cut-off of
DNF_ZSIGMA was defined by taking into account the analy-
sis carried out in Appendix B, which studies the possible biases
that DNF_ZSIGMA may have as a quality estimator of DNF
photo-z. The number of galaxies after these cuts is 26 882 galax-
ies (96.7% of the sample) using the complete training sample
and 22 617 (81.3% of the sample) using the incomplete training
sample.

A38, page 4 of 15
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Fig. 4. Scatter plot of spectroscopic redshift, zspec, and the photo-z DNF_Z for incomplete training (left panel) and complete training (right panel).
We note that the improvement for z > 1 in the complete case.

Figure 2 shows the magnitude and colour distributions of the
galaxies in the validation sample (blue lines) versus the distribu-
tions of their nearest-neighbour galaxies (dashed orange lines)
determined from the incomplete training sample. We note that
while nearest-neighbour magnitude distributions do not match
the weaker magnitudes in all the filters, the colour distributions
are close to being recovered in comparison with those shown
in Fig. 1. The matching of the colour distributions between the
validation sample and their nearest neighbour in the incomplete
training sample may be a necessary condition to produce a reli-
able photometric redshift distribution. However, it may not be
sufficient due to the possibility of the existence of galaxies with
colour combinations not covered by the training sample.

In order to study the effect of incompleteness and how to
detect it, we carried out a principal component analysis (PCA).
The PCA was performed with the magnitudes of the bands
ugrizJHKs. The first principal component (PC1) of this sample
represents 92.8% of the variance of the validation sample in the
magnitude space, while the percentage increases to 98.1% with
the second component (PC2). We represent the density map of
the validation sample for the principal components in the upper
panel of Fig. 3. We have also stored the first two eigenvectors
obtained for the validation sample to represent on the same basis
the training sample. In the bottom panel of Fig. 3, the red dots
show the scatter of the incomplete training sample represented
using the same eigenvectors of the validation sample. Compar-
ing both panels of Fig. 3, it can be seen that the incomplete train-
ing sample does not cover the full validation sample, but this red
area is well delimited by the inner bold black line that corre-
sponds to the region for which DNF_ZSIGMA < 0.1. We note
that this plot shows the limitations in determining the photo-zs
using the DNF algorithm with an incomplete training sample but
it also shows how DNF_ZSIGMA informs of this fact. The outer
orange line corresponds to galaxies with DNF_ZSIGMA < 1.0
(this is 81.3% of the sample). Therefore, we can identify three
groups of galaxies. Those galaxies covered by the red dots will
have precise photo-zs, since for these galaxies the training sam-
ple covers the full range of principal component. On the other
hand, DNF tags those galaxies outside the orange limit as hav-
ing unreliable photo-zs. Therefore, we must study the quality of

Table 1. Summary of metrics.

Training sample Num. galaxies ∆z σNorm
68

Complete 26 883 0.0104 0.0373
Incomplete 22 651 −0.0740 0.0500

the photo-zs of the galaxies that are located inside the orange
limit but not covered by the training sample (red area).

4.3. Photo-z performance estimation

We compared the photo-z estimation given by DNF in the valida-
tion sample using the incomplete and complete training samples.
Figure 4 shows the comparison between the spectroscopic red-
shift (zspec) and the photometric redshift (DNF_Z) for the incom-
plete training sample (left panel) and the complete training sam-
ple (right panel). We can see that the complete training sample
not only determines photo-z values for a larger number of galax-
ies compared to the incomplete case (26 883 galaxies vs. 22 651),
but also presents a lower bias and σNorm

68 (see Table 1). In addi-
tion to the completeness, the number of galaxies in the training
sample is a factor that influences the quality of the photo-zs. In
Appendix C we have included the results of calculating the pho-
tometric redshift using a complete sample with the same num-
ber of galaxies as the incomplete sample. The results show that
the completeness allows more accurate photo-zs to be calculated
than in the incomplete case for comparable training sample sizes.

We studied the behaviour of the photo-zs estimation through
the mean absolute deviation, the σNorm

68 , and outliers. Figure 5
shows the mean absolute deviation (upper panel) and the σNorm

68
(bottom panel) of DNF_Z with respect to zspec and DNF_ZN
(solid and dashed lines, respectively) as a function of the mag(i)
for the complete training sample (blue lines) and the incom-
plete training sample (magenta lines). The solid lines display
the mean absolute deviation and σNorm

68 of the photo-zs calcu-
lated with zspec (which we will refer to as real metric values).
It can be readily seen in Fig. 5 that the completeness of the
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Fig. 5. Precision of the photo-z defined by MAD(∆z) (upper panel) and
the σNorm

68 (bottom panel) as a function of the mag(i) for the complete
training sample (blue lines) and incomplete training sample (magenta
lines). The solid lines display the metrics calculated with zspec and the
dashed lines were calculated by replacing zspec with DNF_ZN.

training sample affects the metrics. We cannot assume, then, that
the metrics (mean absolute deviation, σNorm

68 or those chosen in
the study) will have the same behaviour in the validation sample
and in the target sample if the training sample exhibits incom-
pleteness. We must keep in mind that the zspec value of each
galaxy is not available when we are calculating the photo-zs for a
catalogue so we will not have these measurements to estimate the
precision of the photo-zs. Nevertheless, we note that DNF_ZN
(nearest-neighbour photo-z) is able to reproduce the zspec distri-
bution for moderate training incompleteness in the same way
that colour distributions are well recovered in the case of incom-
plete training (Fig. 2). In this way, statistical metrics involving
zspec are well represented by DNF_ZN. For this reason, we calcu-
lated the mean absolute deviation and the σNorm

68 , replacing zspec
with DNF_ZN (dashed lines). In both plots, the behaviour of
the mean absolute deviation and the σNorm

68 can be considered a
good approximation of the real value, which changes depend-
ing on the training sample. We can take these metrics calculated
by DNF_ZN as an upper limit of real ones. Figure 6 shows the
outliers as a function of the i band magnitude, mag(i) in the com-
plete training case (blue lines) and the incomplete training case
(magenta lines). The number of outliers is less than 4% in both

Fig. 6. Outliers as a function of mag(i) for the complete training sam-
ple (blue lines) and incomplete training sample (magenta lines). The
solid lines display the outliers calculated with zspec and the dashed lines
replace zspec with DNF_ZN.

cases up until mag(i) > 24, where it starts to increase in the
incomplete training case. Finally, we complete this study with
the behaviour of the photo-z estimation as a function of the spec-
troscopic redshifts in Appendix D.

5. Photometric redshift Deep Fields catalogue

We want to study the effects of using different training sam-
ples on the quality of the photo-zs in the Y3 DES Deep Fields
catalogue. For that, we applied the same analysis developed in
Sect. 4 using two training samples. The first training sample con-
tains only galaxies with the highest quality of spectroscopic red-
shift determination (i.e., with FLAG_DES = 4). In this case,
the training sample does not contain galaxies with magnitudes
as deep as in the Y3 DES Deep Fields catalogue. In other words,
this training sample is of the highest quality but shows a cer-
tain incompleteness with respect to the science sample. The sec-
ond training sample contains galaxies labelled with the spectro-
scopic redshift quality FLAG_DES ≥ 3. The inclusion of galax-
ies whose spectroscopic redshift quality is not optimal but still
good in this training sample reduces the problem of incomplete-
ness. In this second case, the training sample reaches the deep-
est magnitudes of the Y3 DES Deep Fields catalogue. Figure 7
shows the magnitude and colour distributions of both training
samples (in the left panels for the incomplete sample and in the
right panels for the semi-complete sample). In order to carry out
a similar analysis to that performed in Sect. 4, we selected those
galaxies with mag(i) < 28.0 and with a positive flux measure-
ment in the eight filters. This sample contains 1 478 705 galax-
ies.

5.1. Assessment of high quality but incomplete training

For this study, the incomplete training sample is limited to
38 123 galaxies for which the spectroscopic redshift has been
determined with very high quality. As we can see in the left
panels of Fig. 7, this spectroscopic sample is shallower than
the Y3 DES Deep Fields catalogue (red lines and blue lines,
respectively). We want to know how this incompleteness affects
the photometric redshift calculation. Using DNF and selecting
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Fig. 7. Magnitude and colour distribution of incomplete training (right panels) and semi-complete training (left panels). The dashed red lines
represent the training samples and the blue lines the Y3 DES Deep Fields sample. The dotted lines are the mean of each distribution.

Fig. 8. Density map as a function of the first and second principal components of the galaxies of Y3 DES Deep Fields (density plot in green
and yellow), the galaxies of the training sample (red dots), and the limit in the principal components of the galaxies for which DNF provides a
value of photo-z with an uncertainty, DNF_ZSIGMA < 1.0 (orange line) and DNF_ZSIGMA < 0.1 (bold black line), with this training sample.
The red blob is less extensive than the green-yellow blob (where the highest density of galaxies is located) when we select only the galaxies with
FLAG_DES = 4.

galaxies with DNF_Z > 0, DNF_ZN > 0 and DNF_ZSIGMA <
1.0, we have determined the photometric redshift of 1 254 981
galaxies (84.9%) in the Deep Fields catalogue using this train-
ing sample.

The left panel of Fig. 8 shows the density map as a function
of the first and second principal components of the Y3 DES Deep
Fields catalogue and the galaxies of the training sample (red
dots). The orange line is the limit of the photo-zs of this 84.9%
of galaxies with the cuts defined above. In addition, we overplot
another limit (bold black line) using a more stringent cut, namely
DNF_ZSIGMA < 0.1, which contains 441 144 galaxies; that is,
29.8%.

5.2. Assessment of medium-quality but semi-complete
training

The second training sample used to determine the photometric
redshift of Y3 DES Deep Fields catalogue contains 55 601 galax-
ies that have magnitudes as deep as in the Y3 DES Deep Fields
catalogue but with a different distribution, as is shown in the right
panels of Fig. 7.

We can see in the right panel of Fig. 8, corresponding to
the principal components (the first two eigenvectors represent
93.59% of the sample), that the spectroscopic training sam-
ple is located in the area where the density of galaxies is
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higher. Although it does not cover the entire principal com-
ponent area of the field, DNF provides photo-z for almost all
galaxies in the sample (1 318 960 galaxies, 91.67%), delimited
by the orange line in the figure. We plot another limit with a
bold black line that represents galaxies with a more stringent cut
of DNF_ZSIGMA < 0.1, as we did before (405 854 galaxies,
i.e., 28.2%).

5.3. Performance and comparison of science sets with
different training samples

According to the results obtained, based on the cuts defined in
Sect. 4, DNF determines photometric redshifts for slightly fewer
galaxies when using the incomplete but high-quality training
sample than in the semi-complete case. The question is how the
quality of these photometric redshift estimates compare. Or, in
other words, whether it is more important to have high-quality
spectroscopic redshifts or whether we can slightly relax that con-
dition to cover the magnitude–colour space as much as possible.

The results of Fig. 9 show the precision of the photo-z esti-
mation by DNF for the Y3 DES Deep Fields catalogue defined
by mean absolute deviation (left panel) and σNorm

68 (right panel)
as a function of the mag(i). It should be noted that the zspec of
each galaxy is not available in Y3 DES Deep Fields catalogue, so
to estimate the mean absolute deviation and σNorm

68 we replaced
zspec with DNF_ZN following the analysis done in Sect. 4.3. We
can see that the results obtained by the incomplete, high-quality
training (dashed purple lines) and the semi-complete training
(blue lines) samples follow a similar behaviour for mag(i) < 24,
although slightly better for the incomplete, high-quality training.
In this case, we obtain a lower error for magnitude-colour areas
covered by the spectroscopic sample.

We have also seen the same behaviour in Sects. 5.1 and
5.2, where the incomplete, high-quality training contains more
galaxies with DNF_ZSIGMA < 0.1 even though, globally,
the semi-complete training generates more precise photo-zs.
For mag(i) ≥ 24, the semi-complete training sample, formed
by galaxies with slightly lower-quality spectroscopic redshifts,
outperforms the photo-zs of the incomplete training sample
formed by the highest-quality spectroscopic redshift galaxies.
The results indicate that completeness plays an important role in
determining higher-quality photometric redshift values, as was
expected. But the results also suggest that for specific studies
focused on brighter galaxies we may be more interested in using
only the redshifts of the highest possible quality in our training.

Finally, we studied the absolute median deviation and σNorm
68

as a function of the redshift for the two training samples; more
details can be seen in Appendix D.

6. Comparison between DNF and EAzY

We estimated the photo-zs of the whole deep fields and added
this information to the Y3 DES Deep Fields data2 The train-
ing sample used to estimate the photo-zs contains galaxies with
spectroscopic redshift information labeled with FLAG_DES ≥
3, corresponding to the semi-complete training sample in
Sect. 5.2. It is important to note that, when computing DNF
in this case, we ignored the spectroscopic redshift of the target
galaxy in the training sample in order to provide a homogeneous
comparison of all estimates.

2 Available at https://des.ncsa.illinois.edu/releases/
y3a2/Y3deepfields

Fig. 9. Precision of the photo-z estimates defined by MAD(∆z) (upper
panel) and σNorm

68 (bottom panel) as a function of the mag(i) calcu-
lated by DNF_Z and DNF_ZN, determined by the training sample with
only galaxies with FLAG_DES = 4 (incomplete training sample, in pur-
ple) and the training sample with galaxies with FLAG_DES≥ 3 (semi-
complete training sample, in blue).

In addition to the DNF photo-zs (De Vicente et al. 2016), the
Y3 DES Deep Fields catalogue contains photo-zs determined
with the EAzY algorithm (Hartley et al. 2022; Brammer et al.
2008). These two methods approach the photometric redshift
problem from different perspectives: EAzY determined the
photo-zs by fitting a linear combination of template components,
while DNF is a machine learning code.

We analysed the photo-zs obtained using both methods.
Firstly, we selected from the Y3 Deep Fields catalogue those
galaxies with spectroscopic redshift information, mag(i) < 28.0,
flux measurements in the eight filters. This sample contains
55 198 galaxies and covers a large portion of the total sample, as
we can see in the right panel of Fig. 8. Figure 10 shows the scat-
ter of the photo-zs determined by both methods versus the spec-
troscopic redshift (on the left, DNF, and on the right, EAzY).
The metrics obtained by DNF slightly outperform those pro-
vided by EAzY, justified in part for the completeness of the train-
ing sample used in this test. The bias and σNorm

68 are −0.0148 and
0.0519 for EAzY and 0.0065 and 0.0390 for DNF, respectively.
Both methods give good photo-z values for z < 1. However, for
z ≥ 1 EAzY shows a somewhat biased behaviour. The plot at the
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Fig. 10. Scatter plot of spectroscopic sample: SPEC_Z vs. DNF_Z (left), SPEC_Z vs. EAzY_Z (right), and DNF_Z vs. EAzY_Z (bottom).

bottom shows the photo-z values of DNF (x axis) versus EAzY (y
axis). We can see the same bias appears in the right panel; that is,
EAzY with respect to SPEC_Z. Therefore, this behaviour seems
to come from the EAzY estimation. It may be due to the lack of
Y band data. The break is poorly constrained from z ∼ 1 until the
4000 Å break starts to enter the J band. The prior tends to favour
a lower redshift and so the point estimates are pulled to a lower
redshift slightly. This would be partially alleviated with the full
EAzY PDFs.

In Fig. 11 (left), we compare the photo-z provided by both
methods for the Y3 DES Deep Fields catalogue (right panel). We
focus on galaxies with flux measurements in all eight filters and
mag(i) < 28.0. It corresponds to a sample of 1 473 381 galax-
ies. For z > 1 we can see a similar behaviour to that observed
with spectroscopic redshifts (right panel of Fig. 10). Therefore,
this behaviour seems to come from EAzY estimation. On the
other hand, there is a cloud of points below the diagonal around
EAzY_Z ∼ 0.5 that extends along several values of DNF_Z.
We can see in Fig. 11 (right) that the cloud can be removed
by applying the quality-cut DNF_ZSIGMA < 0.5. In general,
DNF_ZSIGMA allows us to detect galaxies with large errors due
to bad photometry, degeneracies, or incompleteness.

Determining the best method to be applied to a scien-
tific sample is non-trivial. Salvato et al. (2019) points out that
machine learning methods outperform template approaches
when the training survey is sufficiently complete. However, tem-
plate methods are more favourable when spectroscopic samples
are limited. In the case of DNF and EAzY, the biggest differ-
ences appear for z > 1, when the completeness of the training
sample is poorer. Nevertheless, the photo-zs generated by DNF
present better metrics than those provided by EAzY. Accord-
ing to Salvato et al. (2019), template methods work best for
high redshifts because of the lack of photometric information
with which to construct training samples for machine leaning
methods. In the same sense, the templates are built on physical
assumptions that may not be entirely correct or that have incom-
plete coverage in certain areas.

7. Conclusions

This study is an analysis of how the completeness and spectro-
scopic quality of the training sample affects the photometric red-
shift determination using the DNF algorithm. The conclusions
are the following:
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Fig. 11. Y3 DES Deep Fields catalogue. Scatter plot of DNF_Z vs. EAzY_Z: for mag < 28 (left) and for additional quality-cut
DNF_ZSIGMA< 0.5 (right).

1. We have emulated the problem of an incomplete training
sample for DNF with the goal of measuring its effects and
taking them into account with regard to the photo-z perfor-
mance. The principal component analysis provides a graphi-
cal method of assessing completeness and DNF_ZSIGMA
turns out to be a reliable parameter to separate the set of
galaxies computed with a complete training sample.

2. We analysed the possibility of substituting zspec with
DNF_ZN to assess ∆(z) in the scatter metrics of DNF_Z
(MAD(∆z) and σNorm

68 ). The results show that DNF_ZN pro-
vides an upper limit of the real values. Using this method,
the photo-z quality can be estimated when no spectroscopic
information is available.

3. We determine the photo-zs of the Y3 DES Deep Fields cata-
logue using both a semi-complete training sample with high-
and medium-quality redshift spectroscopy and an incom-
plete training sample with the highest-quality redshift spec-
troscopy. The obtained results are globally better for the
semi-complete sample in spite of its slight diminution in
quality. However, the photo-z improves for that sub-sample
in which the high-quality incomplete training covers its prin-
cipal component analysis space. For faint magnitudes, it
seems better to use a training sample with a medium-quality
spectroscopic redshift covering deeper magnitudes. This
result supports for training completeness at the expense of
slightly sacrificing the quality of the spectroscopic redshifts.
The results also suggest that for specific studies focused on
brighter galaxies, we may be more interested in using only
redshifts of the highest possible quality in our training.

4. We have compared the photometric redshift of the Y3 DES
Deep Fields catalogue determined with DNF and EAzY.
Both methods show a similar behaviour up to z ∼ 1. For z > 1
DNF, outperforms EAzY, which shows some bias towards
higher redshifts.
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Appendix A: Spectroscopic data

We have listed in Table A.1 the 34 spectroscopic samples com-
piled by Gschwend et al. (2018) to create the spectroscopic sam-
ple used in this work.

Table A.1. Spectroscopic samples used in Gschwend et al. (2018).

Survey Ref.

PRIMUS Coil et al. (2011), Cool et al. (2013)
SDSS DR14 Abolfathi et al. (2018)
DES AAOmega Yuan et al. (2015), Childress et al. (2017)
VIPERS Garilli et al. (2014) and

http://vipers.inaf.it/rel-pdr1.html
WiggleZ Parkinson et al. (2012) and

http://wigglez.swin.edu.au/site/

VVDS Garilli et al. (2008), Le Fèvre et al. (2004)
zCOSMOS Lilly et al. (2009)
3D-HST Momcheva et al. (2016) and

http://3dhst.research.yale.edu/Data.php
DEEP2 Davis et al. (2003, 2017)
2dF Colless et al. (2001) and

http://www.2dfgrs.net/
GAMA Driver et al. (2011)
ACES Cooper et al. (2012)
6dF Jones et al. (2009) and

http://www.6dfgs.net/
DES IMACS Nord et al. (2016)
SAGA Geha et al. (2017) and

http://sagasurvey.org/

NOAO OzDES Yuan et al. (2015), Childress et al. (2017)
XXL AAOmega Lidman et al. (2016) and

http://cosmosdb.iasf-milano.inaf.it/XXL/

SPT GMOS Bayliss et al. (2016)
UDS nottingham.ac.uk/astronomy/UDS/UDSz/

SNLS FORS Bazin et al. (2011)
ATLAS Mao et al. (2012)
Pan-STARRS Rest et al. (2014), Scolnic et al. (2014),

Kaiser et al. (2010)
C3R2 Masters et al. (2017)
SpARCS Muzzin et al. (2012)
SNVETO Gschwend et al. (2018)
FMOS-COSMOS Silverman et al. (2015) and

fmos-cosmos/FC_catalogs
SNLS AAOmega Lidman et al. (2013), Yuan et al. (2015),

Childress et al. (2017)
CDB Sullivan et al. (2011)
VUDS Tasca et al. (2017)
ZFIRE Nanayakkara et al. (2016) and

http://zfire.swinburne.edu.au/data.html
MOSFIRE http://mosdef.astro.berkeley.edu
2dFLenS Blake et al. (2016) and

http://2dflens.swin.edu.au/

GLASS Treu et al. (2015) and
https://archive.stsci.edu/prepds/glass/

XMM-LSS Stalin et al. (2010)

Appendix B: DNF_ZSIGMA as an indicator of the
quality of photo-z

Fig. B.1. Comparison of pull distribution (blue) with a standard Gaus-
sian distribution (orange line) for the error due to the fit (upper panel)
and to the photometry (bottom panel).

DNF_ZSIGMA is the indicator of the quality of each photo-z
provided by DNF. These values are computed from the quadratic
sum of the error due to the photometry plus the error due to the
fit. In this Appendix, we analyse the DNF_ZSIGMA values. For
this purpose, we have calculated the pull defined as follows:

pull =
zspec − DNF_Z
DNF_ZSIGMA

,

where zspec is the spectroscopic redshift and DNF_Z the photo-
metric redshift.

Figures B.1 and B.2 compare the pull distribution (blue) with
a standard Gaussian distribution with mean zero and unit width
(orange line) for the values obtained from the complete sample.
The pull, together with the central limit theorem, allows us to
analyse the possible dispersion and bias in the DNF_ZSIGMA
values, comparing the pull distribution with a standard Gaus-
sian. The results obtained from the pull using the complete train-
ing sample fit the Gaussian distribution. The pull distribution
is slightly narrower in the centre has larger wings. These dif-
ferences show that DNF_ZSIGMA overestimates the errors for
photo-zs with small errors and underestimates for large errors.
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Fig. B.2. Comparison of pull distribution (blue) with a standard Gaus-
sian distribution (orange line).

Appendix C: Effect of training sample size on
photometric redshift

Fig. C.1. Scatter plot of spectroscopic redshift, zspec, and the photo-z
DNF_Z for complete training of 5336 galaxies.

In addition to incompleteness, the number of galaxies in the
training sample is also a factor that must be taken into account
to determine the quality of the photometric redshift. We wanted
to check what the results would be if the complete sample had
the same number of galaxies as our incomplete sample; that is,
5336 galaxies.

In this appendix, Fig. C.1 shows a comparison between
the spectroscopic redshift (zspec) and the photometric redshift
(DNF_Z) for a training sample that is complete but that con-
sists of 5336 galaxies. The number of galaxies that DNF has cal-
culated photometric redshifts for with the same cuts defined in
4.2 is 26, 608 galaxies (95.7% of the sample). This value is very
close to the case of the complete sample with 27 801 galaxies
(96.8%) and considerably improves the result of the incomplete
sample (81.3%). On the other hand, the results found are inter-

mediate values between the incomplete and complete cases for
bias and σNorm

68 .

Appendix D: Quality metrics as a function of
redshift

Fig. D.1. MAD(∆z) as a function of zspec for the complete training sam-
ple (blue lines) and the incomplete one (magenta lines). The solid lines
display the metrics calculated with zspec and the dashed lines replace
zspec with DNF_ZN.

Fig. D.2. σNorm
68 as a function of zspec for the complete training sample

(blue lines) and the incomplete one (magenta lines). The solid lines dis-
play the metrics calculated with zspec and the dashed lines replace zspec
with DNF_ZN.

We studied the behaviour of the photo-z estimation as a func-
tion of the spectroscopic redshift for the complete and incom-
plete spectroscopic training samples defined in Sect. 4. Fig-
ures D.1 and D.2 show the behaviour of the absolute median
deviation and the σNorm

68 as a function of zspec for the com-
plete training sample (blue lines) and incomplete training sample
(magenta lines). We also calculated the mean absolute deviation
and the σNorm

68 replacing zspec by DNF_ZN (dashed lines). As in
Fig. 5 of Sect. 4.3, in both plots the behaviour of the mean abso-
lute deviation and the σNorm

68 can be considered a good approxi-
mation of the real value, which changes depending on the train-
ing sample. The high errors that can be observed for zspec close to
zero are due to stars wrongly classified in the validation sample.
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Fig. D.3. Precision of the photo-z estimates defined by the abso-
lute median deviation as a function of the zspec calculated by DNF_Z
and DNF_ZN, determined by a training sample of only galaxies with
FLAG_DES = 4 (incomplete training sample) and a training sample
of galaxies with FLAG_DES<=3 (semi-complete training sample), in
purple and blue, respectively.

In addition, we studied the behaviour of the photo-z estima-
tion as a function of the redshift for the galaxies of the Y3 Deep
Field catalogue using the incomplete and semi-incomplete train-
ing samples defined in Sect. 5. In this case, as we lack infor-

Fig. D.4. Precision of the photo-z estimates defined by σNorm
68 as a func-

tion of the zspec calculated by DNF_Z and DNF_ZN, determined by
a training sample of only galaxies with FLAG_DES = 4 (incomplete
training sample) and a training sample of galaxies with FLAG_DES<=3
(semi-complete training sample), in purple and blue, respectively.

mation on the spectroscopic redshift, we have replaced zspec with
DNF_Z. The results of Fig. D.3 and D.4 show that MAD(∆z) and
σNorm

68 get worse for higher redshifts. Both training samples have
similar results for z < 1.4. After this value, the semi-incomplete
training sample works better than incomplete one.

A38, page 15 of 15


	Introduction
	Data
	Spectroscopic sample
	Year 3 Deep Fields catalogue

	Metrics and algorithm
	Metrics
	The DNF algorithm

	Effect of training incompleteness on photometric redshift estimation
	Incompleteness emulation with the spectroscopic sample
	Incompleteness assessment
	Photo-z performance estimation

	Photometric redshift Deep Fields catalogue
	Assessment of high quality but incomplete training
	Assessment of medium-quality but semi-complete training
	Performance and comparison of science sets with different training samples

	Comparison between DNF and EAzY
	Conclusions
	References
	Spectroscopic data
	DNF_ZSIGMA as an indicator of the quality of photo-z
	Effect of training sample size on photometric redshift
	Quality metrics as a function of redshift

