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A B S T R A C T 

This work introduces an approach to enhancing the computational efficiency of 3D atmospheric simulations by integrating 

a machine-learned surrogate model into the OASIS global circulation model (GCM). Traditional GCMs, which are based on 

repeatedly numerically integrating physical equations go v erning atmospheric processes across a series of time-steps, are time- 
intensive, leading to compromises in spatial and temporal resolution of simulations. This research impro v es upon this limitation, 
enabling higher resolution simulations within practical time frames. Speeding up 3D simulations holds significant implications 
in multiple domains. First, it facilitates the integration of 3D models into exoplanet inference pipelines, allowing for robust 
characterization of exoplanets from a previously unseen wealth of data anticipated from JWST and post- JWST instruments. 
Secondly, acceleration of 3D models will enable higher resolution atmospheric simulations of Earth and Solar system planets, 
enabling more detailed insights into their atmospheric physics and chemistry. Our method replaces the radiative transfer module 
in OASIS with a recurrent neural network-based model trained on simulation inputs and outputs. Radiative transfer is typically 

one of the slowest components of a GCM, thus providing the largest scope for overall model speed-up. The surrogate model 
was trained and tested on the specific test case of the Venusian atmosphere, to benchmark the utility of this approach in the 
case of non-terrestrial atmospheres. This approach yields promising results, with the surrogate-integrated GCM demonstrating 

abo v e 99.0 per cent accuracy and factor of 147 speed-up of the entire simulation e x ecuted on one graphics processing unit (GPU) 
compared to using the matched original GCM under Venus-like conditions. 

K ey words: radiati ve transfer – planets and satellites: atmospheres. 
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 I N T RO D U C T I O N  

D atmospheric models, commonly known as global circulation
odels (GCMs), are key tools for studying the climates of Solar

ystem planets including the Earth, and are becoming increasingly
mportant in the characterization of exoplanet atmospheres. GCMs
onsist of multiple components, which individually model different
tmospheric processes: each component numerically solves equa-
ions go v erning an atmospheric process across elements of a grid
nd across many time-steps until simulation convergence criteria are
eached. Due to the large number of numerical integrations involved
n GCM simulations, producing a simulated atmospheric state for
 given input set of planetary and stellar parameters is incredibly
omputationally e xpensiv e and time-consuming. 

GCMs are applied in exoplanet science in the forward modelling
omponent of Bayesian atmospheric retrie v al pipelines. To retrie ve
osterior distributions on planetary and stellar parameters from a
ingle transit spectrum, the Bayesian retrie v al frame work requires of
he order of tens of thousands of forward simulations corresponding
 E-mail: tara.tahseen.22@ucl.ac.uk 
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Commons Attribution License ( https:// creativecommons.org/ licenses/ by/ 4.0/ ), whi
o different samples of input parameter space. With current state-
f-the-art 3D modelling techniques, the compute resources and time
eeded to produce the required number of 3D simulations prohibit
tatistically rigorous inference of data from the JWST (Gardner
t al. 2006 ) and further next-generation observational instruments
et to come, namely the Ariel Space Telescope (Tinetti et al. 2022 ).
cceleration without compromising the accuracy of GCMs is thus
ne clear method of facilitating inference using JWST and post- JWST
ata in exoplanet science. 
Reducing GCM simulation time would also incur benefits in

limate science of Earth and other Solar system planets. Increased
peed of computation would enable simulations to be run at greater
esolution, and/or with more physics included, thus enabling more
ealistic climate simulations to be achieved. 

The past few years have yielded work in both exoplanet science
nd Earth climate science to accelerate 3D models. Much of this work
n exoplanet science involves extending 1D models with extra param-
ters to reflect certain 3D atmospheric variations deemed necessary
o account for 3D effects in phase-curve data (Changeat & Al-Refaie
020 ; Feng, Line & F ortne y 2020 ; Irwin et al. 2020 ; Chubb & Min
022 ; Nixon & Madhusudhan 2022 ; Himes, Harrington & Baydin
023 ). This approach is prone to introducing biases to the simulated
© 2024 The Author(s). 
ty. This is an Open Access article distributed under the terms of the Creative 
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1 The model component that go v erns the resolved 3D fluid flow evolution. 
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tmospheric states produced, and a fully 3D model parametrization 
s essential to ensuring that simulations are robust against both 
no wn and unkno wn biases resulting from model o v ersimplifications
Pluriel et al. 2020 ). Earth climate science, benefiting from a wealth
f high-resolution observational measurements, has had a different 
et of methods employed, namely machine-learned surrogate models 
rained on such observations (Ukkonen 2022 ; Yao et al. 2023 ).
urrogate models have not been broadly explored outside of Earth 
limate science, but demonstrate the potential of speed-up without 
equiring an o v ersimplified model parametrization (Ukkonen 2022 ; 
ao et al. 2023 ). 
Of the components within GCMs, radiative transfer (RT) is often 

he slowest or least resolved process. In the OASIS GCM (Mendonca 
t al. 2014 ), the RT component contributes to 50–99 per cent of the
otal simulation runtime (depending on the temporal resolution of 
he RT, see Section 4.3 for more details) for massive and complex
tmospheres such as Venus (Mendon c ¸a & Buchhave 2020 ). There 
s thus key scope to substantially improve GCM computational 
fficiency by targeting the RT component specifically. 

To assess the ef fecti veness of our ne w approach, we are testing it on
enus’s atmospheric conditions. Simulating the Venus atmosphere in 
D is very computationally intensive due to the need for a complex RT 

odel to accurately represent the energy balance in the atmosphere 
e.g. Eymet et al. 2009 ; Lee & Richardson 2012 ; Mendonca et al.
015 ). Venus has a substantial amount of CO 2 , which generates a
trong greenhouse effect (Sagan 1962 ) and is co v ered by highly
eflective sulphuric acid clouds, obscuring the planet’s surface. Only 
bout 2.5 per cent of the incoming solar radiation reaches the surface
e.g. Tomasko et al. 1980 ; Mendonca et al. 2015 ). The radiation
odel also requires fine spectral resolution to capture the spectral 
indows impacting energy exchange between the deep atmosphere 

nd the upper layers abo v e the clouds. Additionally, due to the high
hermal inertia of the massive CO 2 atmosphere, the models need to 
e integrated over a long period to reach a statistically steady state
Mendon c ¸a & Read 2016 ). Using a surrogate model to represent the
T is key to enhancing the performance of 3D simulations while 
nabling a more realistic depiction of radiative processes at minimal 
ost. Therefore, Venus presents a significant challenge and serves as 
 benchmark for the complexities our new modelling approach may 
ncounter in future applications. 

 DATA  A N D  C O D E S  

.1 OASIS 

ASIS is a planetary climate model composed of different coupled 
odules representing physical and chemical processes within plan- 

tary atmospheres (Mendon c ¸a & Buchhave 2020 ). The mathematics 
nd assumptions of the RT component of OASIS are detailed in 
endonca et al. ( 2015 ). 
The equations in OASIS are discretized o v er concentric icosahedral 

patial grids (Mendon c ¸a et al. 2016 ; Deitrick et al. 2020 ). For the 3D
imulations in this study, we set the grid to approximately 2 degrees
n the horizontal and 49 vertical layers. This grid configuration 
esults in a total of 10 242 columns co v ering the entire model
omain. Our simulations started from the converged state obtained 
n Mendon c ¸a & Buchhave ( 2020 ) and were integrated for 5 Venus
olar days (approximately 117 Earth days) using a time-step of 15 s.
he model configuration is similar to the simulations in Mendon c ¸a &
uchhave ( 2020 ), and in the following sections, we describe the main
hysical modules rele v ant to this work. 
.1.1 OASIS-RT 

he RT module of OASIS (henceforth referred to as OASIS-RT) mod-
ls the interaction of radiation with gas and cloud species in the atmo-
phere in a two-stream manner. Radiation from two different sources 
re modelled separately: these are solar radiation (0 . 1 −5 . 5 μm ) and
hermal radiation (1 . 7 −260 μm ). The solar radiation code utilizes the
-Eddington approximation (Joseph, Wiscombe & Weinman 1976 ) 
n combination with an adding-layer method (Liu & Weng 2006 ;

endonca et al. 2015 ), while the thermal code considers absorptivity
nd emissivity (Mendonca et al. 2015 ). The radiation scheme uses the
-distribution method to represent the gas absorption cross-sections, 
hich are integrated over 353 spectral bands and 20 Gaussian points

Mendon c ¸a & Buchhave 2020 ). 
In the OASIS code used for this project, the spatial distribution and

adiative properties of the clouds, which are composed of sulphuric 
cid and water, were taken from Crisp ( 1986 ) and Mendonca
t al. ( 2015 ). The main cloud deck is located between roughly
5 and 65 km altitude with layers of sub-micron particles below 

nd abo v e (Knollenberg & Hunten 1980 ). More details on the cloud
roperties can be found in Mendonca et al. ( 2015 ). 
The RT code involves two steps of computation for each time-step;

hese are 

(i) Computing the gas optics: computing the optical properties 
f layer boundaries from the thermodynamic variables. 
(ii) Computing the flow of radiation: computing the upward- 

nd downward-welling fluxes at each layer boundary, from the 
ncident flux at the top of the column in combination with the optical
roperties at each layer boundary. 

The model uses a k-distribution table (Lacis & Oinas 1991 ) to
alculate the optical properties of each layer across the wavelength 
ands using pre-computed wavelength-dependent absorption coef- 
cients for CO 2 , SO 2 , and H 2 O . These coefficients are combined 
ith a continuum absorption, mostly from CO 2 –CO 2 collisions, and 
ayleigh scattering from CO 2 and N 2 (Mendonca et al. 2015 ). 
The RT model takes inputs of the density ρ, pressure p, tempera-

ure T , and chemical composition per grid element as outputted from
he dynamical core THOR 1 (Mendon c ¸a et al. 2016 ). Heating rates are
hen calculated per grid element from fluxes outputted from the RT

odel, and these heating rates update the temperature profile of the
tmosphere, which serves as input back into the dynamical core. Flux
s used to compute the heating rate per layer according to equation
 1 ). 

d T 

d t 
= 

1 

ρc p 

d F 

net 

d z 
, (1) 

here d F 

net is the spectral-integrated net radiative flux ( W m 

−2 ), ρ is
he atmospheric density ( kg m 

−3 ), and c p is the specific heat capacity
t constant pressure (900 J kg −1 K 

−1 ). 
In order to impro v e the computational efficiency of 3D simulations

ith RT, Venus GCMs traditionally do not update the radiative fluxes
rom the solar and thermal schemes at every time-step (Lebonnois, 
ugimoto & Gilli 2016 ; Mendon c ¸a & Read 2016 ; Mendon c ¸a &
uchhave 2020 ). In the 3D simulations with explicit RT used in this

tudy, the fluxes calculated from the solar radiation scheme were 
pdated every 2880 steps, and the thermal radiation fluxes were 
pdated every 320 steps. These values are adjusted by the model
ser and are specific to Venus’s simulations. Larger values could 
MNRAS 535, 2210–2227 (2024) 
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otentially cause model instabilities. Although this approach intro-
uces some inaccuracies in the heating/cooling rates, the robustness
f the simulation is not compromised because the composition of
he atmosphere and clouds remains constant o v er time. With the
fficiency of the new surrogate model described in the next section,
e are now able to update radiative fluxes at every time-step. To

nhance the stability of the model with the new surrogate model, we
lso apply the three-step Adams–Bashforth method to the heating
ate calculated from the surrogate radiative fluxes. 

.2 Data 

he data used for this project are 3D data simulated by OASIS

orresponding to input parameters of Venus (Mendon c ¸a & Buchhave
020 ). The data used in this work are from a simulation of Venus
sing OASIS-RT. The data consist of 1000 time-steps of simulation,
ith the time interval between consecutive time-steps within the

ecorded data set, �t , set to 12 h. These data correspond to time-
teps of a full simulation for which the RT update has been e x ecuted.
he data co v er the entire icosahedral grid with dimensions 10 242
olumns × 49 layers. 

At the sample level (per atmospheric column), the data comprise
he following quantities: pressure p, temperature T , and gas density
, all defined per layer; upwelling short-wave flux F 

SW , ↑ , down-
elling short-wave flux F 

SW , ↓ , upwelling long-wave flux F 

LW , ↑ , and
ownwelling long-wave flux F 

LW , ↓ , all defined per layer boundary;
nd cosine of the solar zenith angle μ, short-w ave surf ace albedo
SW 

, long-w ave surf ace albedo αSW 

, and surf ace temperature T 0 , all
efined per column. 
Fig. E1 and Fig. E2 illustrate the distribution of samples within

he data set as a function of cos μ and surface temperature. 

 M E T H O D S  

.1 Surrogate modelling 

urrogate models, or emulators , are approximate mathematical
odels that model outcomes of interest, whereby the emulator
echanism does not necessarily reflect the physical mechanism

hat produces the outcomes. Surrogate models are useful in cases
here the physical mechanism producing such outcomes is not well
nderstood, or in cases where modelling the physical mechanism
s e xcessiv ely computationally demanding; in the case of the latter,
he aim is to produce a surrogate model that is computationally
fficient compared to the physical model while maintaining accuracy.
achine learning provides a framework by which surrogate models

an be produced: deep neural networks adhere to the Universal
pproximation Theorem, and can (in theory) model any arbitrarily

omplex non-linear relationship, thus providing a function space
hereby a suitable surrogate function is almost certain to exist

Goodfellow, Bengio & Courville 2016 ). 
Research into surrogate modelling of exoplanetary atmospheres

s relatively nascent (Himes et al. 2022 , 2023 ; Unlu et al. 2023 ).
he use of surrogate models within Earth climate science, though
till new, is much more established and well explored (Ukkonen
022 ; Mukkavilli et al. 2023 ; Yao et al. 2023 ). The development
f surrogate models for atmospheric models of exoplanets can thus
e informed by the development of such surrogate models for the
arameter space of Earth. 
An example where surrogate modelling has already pro v ed valu-

ble within 3D modelling of exoplanetary atmospheres is work by
chneider et al. ( 2024 ), who utilized DeepSets to achieve fast and
NRAS 535, 2210–2227 (2024) 
ccurate mixing of correlated- k opacities. Their work e x emplifies
ow machine learning can be leveraged to successfully speed up a
ingle process of a GCM while retaining accuracy, thus establishing a
asis for further exploration into the integration of surrogates within
CM frameworks. 
In this w ork, tw o surrogate models were produced for 3D mod-

lling of Venus using OASIS : one surrogate model to emulate the short-
ave RT schema, and one to emulate the long-wave RT schema (see
ection 2.1.1 for details on the computations for the two radiation
chemas). 

.2 Data pr e-pr ocessing 

ata were pre-processed separately for the long-wave and short-
av e re gimes. Each model took input of two types of data: variables
efined at the grid-element level, referred to as vector variables of
imension ( n columns , ) = (49 , ), and variables defined at the column
evel, referred to as scalar variables. 

The short-wave surrogate model took scalar inputs of surface
emperature, T 0 ; gas density of the lowest altitude layer, ρS ; pressure
f the lowest altitude layer, p S ; cosine of the solar zenith angle μ;
nd short-wave surface albedo αSW 

. The long-wave surrogate model
ook scalar inputs of surface temperature, T 0 ; gas density of the
owest altitude layer, ρS ; pressure of the lowest altitude layer, p S ;
nd long-wave surface albedo αLW 

. 
Both models took input of the same vector variables, which were

s follows: temperature T ; pressure p; and gas density ρ. Vector
ariables were scaled as 

 i,j = 

log e ( x i,j ) 

log e ( x i, 0 ) 
(2) 

or x ∈ { T , p} , and 

 i,j = 

(
x i,j 

x i, 0 

)0 . 25 

(3) 

or x = ρ, for the ith column and j th atmospheric level. 
Scalar variables were then re-scaled as 

 

scaled 
i = 

x i − min 
i∈ S train 

x i 

max 
i∈ S train 

x i − min 
i∈ S train 

x i 
(4) 

or x ∈ { T 0 , p 0 , ρ0 } , where S train is the training set. 
Targets were scaled as follows: 

 

LW 

j = 

y LW 

j 

A 

LW 

(5) 

or y j ∈ { F 

LW , ↑ 
j , F 

LW , ↓ 
j } and 

 

SW 

j = 

y SW 

j 

B 

SW 

(6) 

or y j ∈ { F 

SW , ↑ 
j , F 

SW , ↓ 
j } , for the j th altitude level ( j ∈ [0 , 49] where

 inde x es the ground lev el and 49 inde x es the top lev el of the
tmospheric column), where A 

LW and B 

SW are scaling factors linear
n T 0 and μ, respectively, and fitted from the data: 

 

LW ( T 0 ) = a 1 T 0 + a 2 , (7) 

 

SW ( μ) = b 1 μ + b 2 , (8) 

here ( a 1 , a 2 ) are constants fitted using y 
LW , ↑ 
0 and ( b 1 , b 2 ) are

tted using y 
SW , ↓ 
49 across all columns of the training set S train .

alues of ( a 1 , a 2 , b 1 , b 2 ) are retained for model prediction post-
rocessing. Residuals between the targets y LW , ↑ 

0 , y SW , ↓ 
49 , and the
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Figure 1. The figures abo v e display scatter plots illustrating the residuals between scaling factors A 

LW ( T 0 ) and B 

SW ( μ) and their respective targets y LW , ↑ 
0 

and y SW , ↓ 
49 , plotted o v er 1 epoch of 10 242 test columns co v ering the entire icosahedral grid. Left: This panel shows the residuals between the scaling factors 

B 

SW ( μi ) used for the short-wave targets of a given column i and the downw ard-welling short-w ave flux at the top of the column F 

SW , ↓ 
i, 49 . B 

SW ( μi ), a linear 

function of the cosine of the solar zenith angle μi , approximates F 

SW , ↓ 
i, 49 . Right: This panel displays the residuals between the scaling factors A 

LW ( T i, 0 ) used for 

the long-wave targets of a given column i and the upward-welling long-wave flux at the ground level F 

LW , ↑ 
i, 0 . Here, A 

LW ( T i, 0 ) approximates F 

LW , ↑ 
i, 0 as a linear 

function of surface temperature T i, 0 . Both: In both the long-wave and short-wave cases, the preferred quantities F 

LW , ↑ 
i, 0 and F 

SW , ↓ 
i, 49 to use for scaling flux profiles 

across atmospheric levels involve complex calculations. The figures demonstrate that simple linear functions A 

LW ( T 0 ) and B 

SW ( μ) yield close approximations 
with low residuals, making them suitable scaling factors instead. 
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espective scaling factors approximating the value of these targets, 
re displayed in Fig. 1 . These simple linear scaling methods were
hosen for data pre-processing in this work instead of using exact 
omputations of y LW , ↑ 

0 and y SW , ↓ 
49 as the latter computations are much 

ore involved, and the more simple computations produce results 
ith an acceptably small marginal difference in the values of the 
uxes. 
Columns across all epochs were shuffled and split into train, test,

nd validation data sets, in the ratio 70 : 15 : 15. 

.3 Model ar chitectur e 

odel architecture was chosen to be based on recurrent neural 
etworks (RNNs), 2 as RNNs structurally incorporate the spatial 
ependence of the training data, which fits naturally in this scenario. 
NN layers were implemented in the form of gated recurrent units

GRUs; for further details on GRUs, see Cho et al. 2014 ). Simple
NNs are susceptible to short-term memory problems, whereby 

nformation propagated forwards diminishes quickly. A common 
mplementation of RNNs is the GRU that utilizes a more sophisti-
ated mechanism for propagating information ‘memory’ forwards 
hrough a sequence: this is the base of the model architecture we
mploy in this work. The specific architecture of the benchmark was 
hosen to be that used by Ukkonen ( 2022 ) (illustrated in Fig. 2 ),
hich utilized a bidirectional RNN-based architecture to create 
 two-stream RT emulator for Earth, trained using observational 
ata. Ukkonen’s model performed with ≤0 . 5 per cent mean absolute 
rror (MAE) for the upwelling and downwelling fluxes on the test
et (Ukkonen 2022 ), suggesting its potential efficacy for developing 
urrogates trained on analogous simulated data. The models used in 
his work were constructed and trained using TENSORFLOW version 
.12.0 (Abadi et al. 2016 ), and converted into Open Neural Network
xchange (ONNX) format for integration within OASIS . Input data 
 See Appendix A for more details on neural networks and RNNs. 
l

o the surrogate model are detailed in Table 1 , and surrogate model
arameters are detailed in Table C1 and Table C2 . 

.4 Model training 

oth models were trained in a supervised, end-to-end fashion. An 
dam (Kingma & Ba 2017 ) optimizer was used in combination with
 cyclical learning rate. Models were trained using TENSORFLOW on 
n NVIDIA A100 GPU. 

.4.1 Loss function 

he loss function was constructed as a combination of the mean
ercentage error (MPE) between the predictions and targets, per 
utput. The mean error (ME) for the ith test column and kth target
ariable is defined as follows: 

E i,k = 

n levels −1 ∑ 

j= 0 

∣∣ ˆ y i,j ,k − ˜ y i,j ,k 

∣∣
n levels 

, (9) 

here ˆ y i,j ,k is the target for the ith test column, j th atmospheric level,
nd kth target variable, where k = 0 corresponds to downwelling flux
nd k = 1 corresponds to upwelling flux, and n levels is the number of
tmospheric levels ( n levels = 50 in this work). Normalization factors
ere defined as 

orm i,k = 

∑ n levels −1 
j= 0 

∣∣ ˆ y i,j ,k 

∣∣
n levels 

, (10) 

uch that MPE of the ith test column and kth target variable can be
xpressed as 

PE i,k = 

ME i,k 

norm i,k 

. (11) 

he loss function per sample was then defined as 

oss i = 

1 

2 

∑ 

k 

MPE i,k , (12) 
MNRAS 535, 2210–2227 (2024) 
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M

Figure 2. Figure illustrating the architecture of the learned surrogate models used in this work. Surrogate models for both the long-wave and short-wave 
schemas took scaled vector inputs X j = ( ̃  p j , ˜ T j , ˜ ρj ) for the j th layer where ˜ p j , ˜ T j , and ˜ ρj are scaled pressure, scaled temperature, and scaled density of 
the j th layer of the input atmospheric column, respectively (see Section 3.2 for details on scaling). The surrogate models took input of scalar inputs β, where 
βSW 

= ( μ, p 0 , T 0 , ρ0 , αSW 

) for the short-wave surrogate model, and βLW 

= ( p 0 , T 0 , ρ0 , αLW 

) for the long-wave surrogate model, where μ and α denote the 
cosine of the solar zenith angle and surface albedo, respectively. Vector inputs are passed through a GRU layer starting from the top atmospheric layer (layer 
48) and moving downwards to the ground layer (layer 0). Scalar inputs are concatenated with the output of the downward GRU, and inputted into a dense layer, 
which then serves as the first input to an upward-moving GRU layer. The outputs of the two GRU layers are then concatenated and passed through a dense 
layer, which produces the model outputs of shape ( n levels , n outputs ) = (50 , 2), corresponding to scaled upwards and downwards flux for each atmospheric level. 
Rectified linear unit (ReLU, Agarap 2019 ) acti v ation functions were used for both GRU layers and Dense 1 , while a sigmoid acti v ation function was used for the 
Dense out layer. 

Table 1. Surrogate model inputs : Surrogate models for both the long-wave 
and short-wave schemas took scaled vector inputs X i = ( ̃  p i , ˜ T i , ˜ ρi ) for the 
ith layer where ˜ p i , ˜ T i , and ˜ ρi are scaled pressure, scaled temperature, and 
scaled density of the ith layer of the input atmospheric column, respectively 
(see Section 3.2 for details on scaling). The surrogate models took input 
of scalar inputs β, where βSW 

= ( μ, p 0 , T 0 , ρ0 , αSW 

) for the short-wave 
surrogate model, and βLW 

= ( p 0 , T 0 , ρ0 , αLW 

) for the long-wave surrogate 
model, where μ and α represent the cosine of the solar zenith angle and 
surface albedo, respectively. 

Surrogate schema Short-wave Long-wave 

Vector inputs X i = ( ̃  p i , ˜ T i , ˜ ρi ) X i = ( ̃  p i , ˜ T i , ˜ ρi ) 
Scalar inputs βSW 

= ( μ, p 0 , T 0 , ρ0 , αSW 

) βLW 

= ( p 0 , T 0 , ρ0 , αLW 

) 
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ith the total loss defined as the sum o v er all test samples: 

oss = 

1 

2 

∑ 

i 

∑ 

k 

MPE i,k . (13) 

.4.2 Hyperparameter tuning 

ultiple models were trained corresponding to different hyperpa-
ameter values. Number of neurons of all RNN layers was varied
cross the range of values [16 , 32 , 64 , 128] for both surrogate
odels. The best candidate models were chosen as having 128
NRAS 535, 2210–2227 (2024) 
eurons per RNN layer for the short-wave surrogate model, and
2 neurons per RNN layer for the long-wave surrogate model. 

.5 Performance analysis 

elow, we detail the metrics used to analyse the performance of the
urrogate models on the test set. In the results (Section 4 ), different
ggregations of absolute error (equation 15 for raw model outputs and
quation 14 for post-processed model outputs) are used to investigate
he performance of both the long-wave and short-wave surrogate

odels. 

bsolute Error ≡ AE i,j ,k = 

∣∣ ˆ y i,j ,k − ˜ y i,j ,k 

∣∣ , (14) 

here ˆ y i,j ,k are the post-processed model predictions, and ˜ y i,j ,k are
he unscaled target variables. 

̂ E i,j ,k = 

∣∣ ˆ u i,j ,k − ˜ u i,j ,k 

∣∣ , (15) 

here ˆ u i,j ,k are the raw model predictions, and ˜ u i,j ,k are target
ariables, which have been scaled to lie in the interval [0, 1] using
he scaling methods detailed in Section 3.2 . 

Column-aggregated error quantities are defined as follows: 

AE i,k = 

n levels −1 ∑ 

j= 0 

∣∣ ˆ y i,j ,k − ˜ y i,j ,k 

∣∣ , (16) 
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Table 2. This table summarizes the MAE ( MAE k , defined in equation 21 ) across the four target v ariables, and relati ve to 
the mean values F̄ k of these four variables (as defined in equation 20 ), across the test set. 

Regime Stream Mean flux F̄ k ( W m 

−2 ) MAE k ( W m 

−2 ) MAE k / ̄F k (per cent) 

Long-wave Upwelling 4211.0 18.8 0.45 
Downwelling 4139.3 16.9 0.41 

Short-wave Upwelling 577.9 6.4 1.11 
Downwelling 707.8 7.7 1.09 
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̂ AE i,k = 

n levels −1 ∑ 

j= 0 

∣∣ ˆ u i,j ,k − ˜ u i,j ,k 

∣∣ , (17) 

here n levels is the number of atmospheric levels. 
Error quantities averaged across samples per altitude level are 

efined as follows: 

AE j,k = 

∑ N−1 
i= 0 

∣∣ ˆ y i,j ,k − ˜ y i,j ,k 

∣∣
N 

, (18) 

̂ AE j,k = 

∑ N−1 
i= 0 

∣∣ ˆ u i,j ,k − ˜ u i,j ,k 

∣∣
N 

, (19) 

here N is the number of test samples. 
Mean flux for the kth target variable is defined as 

ean Flux k ≡ F̄ k = 

∑ N−1 
i= 0 

∑ n levels −1 
j= 0 ˜ y i,j ,k 

N 

, (20) 

nd the MAE for the kth target variable aggregated across all altitude
evels is calculated as 

AE k = 

n levels −1 ∑ 

j= 0 

MAE j,k . (21) 

 RESULTS  A N D  DISCUSSION  

.1 Model performance on test set 

able 2 summarizes the MAE (equation 21 ) across the four target
 ariables, and relati ve to the mean v alues of these four v ariables,
cross the test set. These MAE values are in line with those achieved
sing similar surrogate modelling methods for RT within the Earth’s 
tmosphere, with Ukkonen ( 2022 ) quoting MAE for short-wave 
uxes of around 1 per cent or less. For both the long-wave and
hort-wav e re gimes, the MAE is higher for the upwelling flux es
s compared to downwelling fluxes: this is expected as physical 
omputation of the upwelling flux depends on the computation of 
he downwelling flux, thus meaning that this is a more complicated 

apping to emulate. The percentage errors for the short-wave targets 
re a factor of 2–3 greater than those for the long-wave targets: this is
o be expected as the magnitude of the short-wave targets is smaller,
nd the supervised learning task set for the short-wave model in this
ork is a more complex mapping from inputs to outputs as compared

o that for the long-wave model. 
In the following sections, we visualize and interrogate the variation 

f model prediction errors with altitude and with scalar variables: 
os μ for both long-wave and short-wave model predictions, and 
urface temperature for long-wave model predictions only. For 
ompleteness, further plots of error as a function of the remaining 
nput scalar variables (surface temperature, surface pressure, and 
urface gas density) are contained in Appendix F . 
.1.1 Short-wave surrogate model 

ariation of error versus altitude : Fig. 3 displays the average
bsolute error of predictions at different altitude levels across test 
amples. Below around 65 km , the average error increases roughly 
n proportion to the average target flux es. Abo v e this altitude, the
verage error decreases for both target v ariables, e ven though the
verage values of these variables continue to rise with altitude. This
hange in the trend of the average error occurs around the top of the
loud deck. 

Potential explanations as to why there is lower error in predicting
argets abo v e 65 km are as follows: abo v e the top of the cloud deck,
here is less complexity in mapping from input variables to output
uxes, and so this can be naively assumed to be an easier task to

earn; there is also tighter variance in the target variables within the
est set abo v e this altitude threshold. 

Figs 3 (A) and (B) display MEs of less than 3 per cent across all
ltitude lev els, av eraged across test samples in the [5, 95] percentile
nterval of column-aggregated errors. This accuracy falls within an 
cceptably small margin of error. 

Variation of error versus cos μ: Fig. 5 displays the distribution in
est errors as a function of cos μ of the test column. Data in these
lots have been binned to more simply display the spread of errors
or a given cos μ interval. For values of cos μ close to 1, there is
 narrower distribution of error, with test samples being predicted 
eliably more accurately as compared to test samples corresponding 
o lower values of cos μ. 

This variation in test error distribution as a function of cos μ
ay be attributable to the approximations used during target pre- 

rocessing when training the model (see Section 3.2 ); if indeed this
s the case, then there is scope to mitig ate ag ainst this by refining
ata pre-processing methods when producing future iterations of this 
urrogate model. This error variation with cos μ may otherwise be 
ue to the model not exactly capturing the complexities in how cos μ
s used in mapping inputs to outputs, which may be an acceptable
nd necessary trade-off in using a surrogate model for the purposes
f model speed-up. 

.1.2 Long-wave surrogate model 

ariation of error versus altitude : Fig. 4 displays the absolute error
f predictions averaged across altitude levels across test samples. 
 similar trend can be seen in these plots as compared to the

rends described in Section 4.1.1 : average magnitude of error roughly
ollows the same trend as average magnitude of the target variables,
xcept for between 40 and 70 km altitude (roughly in the interval of
he main cloud deck) whereby the error rises significantly at the top
f the cloud deck and decreases going deeper into the cloud deck,
or both target variables. 

Below the cloud deck, it can be seen from Figs 4 (A) and (B) that
he ME in target predictions is less than 5 per cent of mean target

agnitude, for the given percentile interval of test samples. Abo v e
MNRAS 535, 2210–2227 (2024) 



2216 T. P. A. Tahseen et al. 

MNRAS 535, 2210–2227 (2024) 

Figure 3. Plots A and B display the ̂ MAE j,k (defined in equation 19 ) for test samples that hav e column-aggre gated absolute error ( ̂ CAE i,k , defined in equation 
17 ) in the [5 , 95] percentile interval (that is, test samples with errors falling in the smallest 5 per cent and largest 5 per cent of the test set have been discarded 
from this aggregate statistic, in order to better illustrate typical model performance). Plots D and E display the MAE j,k (defined in equation 18 ) of surrogate 
model predictions across the two short-wave target variables, for test samples that lie within 1 angular degree of the substellar point. Plots G and H display the 
MAE j,k of surrogate model predictions across the tw o short-w ave target variables, for test samples that lie within 0.1 angular degree of the day-night terminator. 

Plot C displays the scaled target short-wave flux profiles averaged across the test samples with ̂ CAE i,k within the chosen percentile interval. Plot F displays the 
target short-wave flux profiles averaged across samples that lie within 1 angular degree of the substellar point. Plot I displays the target short-wave flux profiles 
averaged across samples that lie within 1.1 angular degree of the terminator. The shaded regions in all plots represent the interval [ max (0 , θj − σj ) , θj + σj ], 
where θj and σj denote the mean and standard deviation of the plotted quantities for the j th altitude level. 
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Figure 4. Plots A and B display the ̂ MAE j,k (defined in equation 19 ) and plots D and E display the MAE j,k (defined in equation 18 ) of surrogate model 

predictions across the two long-wave target variables, for test samples that have column-aggregated absolute error ( ̂ CAE i,k , CAE i,k ) in the [5 , 95] percentile 
interval (that is, test samples with errors falling in the smallest 5 per cent and largest 5 per cent of the test set have been discarded from this aggregate statistic, 
in order to better illustrate typical model performance). Plot C displays the scaled target long-wave flux profiles averaged across the test samples with ̂ CAE i,k 

within the chosen percentile interval. Plot F displays the target flux long-wave profiles averaged across the test samples with CAE i,k within the chosen percentile 
interval (not necessarily the same subset displayed in plot C). The shaded regions in all plots represent the interval [ max (0 , θj − σj ) , θj + σj ] where θj and 
σj denote the mean and standard deviation of the plotted quantities for the j th altitude level. 
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he cloud deck, the long-wave fluxes tend to zero; so, though the
ercentage errors increase for increasing altitude, these accuracies 
till fall within the reasonable margin of error for the model. 

Variation of error versus cos μ/surface temperature : Variations in 
est error versus surface temperature (displayed in Fig. 5 ) appear 
o follow the same trend as compared to residuals in the scaling
actor used in pre-processing (displayed in Fig. 1 ). This is promising
s it may indicate that scaling residuals are the limiting factor in
odel accuracy, and these scaling residuals were initially deemed as 

cceptably small for the purpose of this work. Considering variation 
n test error versus cosine of the solar zenith angle ( cos μ) (also
isplayed in Fig. 5 ), there is not a discernible trend in the error
ariation across cos μ, though it appears that the error distribution is
ost narrow for cos μ approaching 1. This may reflect the variability 

n target flux profiles in both the train and test set for different cos μ
ins, as can be seen plotted in Appendix G , whereby targets for
igher values of cos μ (i.e. approaching the substellar point) are 
ore constrained, and thus are intuitively easier to predict. 

.2 Model performance in simulation 

o e v aluate the performance of our new surrogate model on 3D
imulations of Venus’s atmosphere, we have run two OASIS sim- 
lations: one using OASIS-RT for the RT scheme and the other
sing the new surrogate model presented in this work. In order to
fficiently run the 3D simulation with OASIS-RT, as detailed in 
ection 2.1.1 , we updated the radiative fluxes for solar radiation
very 2880 steps, and the thermal radiation fluxes were updated 
very 320 steps. Both simulations run for 5 Venus solar days,
MNRAS 535, 2210–2227 (2024) 
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M

Figure 5. The abo v e plots display the variation in ̂ CAE i,k (as defined in equation 17 ) across the long-wave and short-wave schemas, as functions of the cosine 
of the solar zenith angle ( cos μ) and of surface temperature T 0 (for the long-wave schema only). The extent of the plots on the y -axis covers the full range of the 
error quantity on the y -axis of each plot, with white spaces corresponding to values falling in the lowest value bin. Top row: The abo v e figure displays the error 
distribution of test samples per cos μ bin, across both short-wave target variables. Test samples have been binned into 20 bins of cos μ, into 20 bins of ̂ CAE i,k . 
Bins have been normalized to percentages by the total number of test columns in each cos μ bin. Middle and bottom rows: The abo v e figure displays the error 
distribution of test samples per cos μ bin, across both long-wave target variables as a function of cos μ (middle row) and T 0 (bottom row). cos μ, T 0 , and ̂ CAE i,k 

have been divided linearly into 20 bins; the plots display the proportion of test samples falling into each error bin relative to total samples in a given cos μ or T 0 
bin. 
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ach of which is approximately 117 Earth days. Fig. 6 displays
he temperature of the simulation using OASIS-RT averaged over
he last simulated Venus day in the left plot, and the percentage
ifference in this quantity between the two simulations in the right
NRAS 535, 2210–2227 (2024) 
lot. Beneath the bottom of the cloud deck, the percentage difference
etween the time-averaged temperature profiles produced by the
wo simulations is below 1.5 per cent; in the interval of the cloud
eck, below 2.7 per cent; and abo v e the cloud deck, below 4.0
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Figure 6. Left: The abo v e figure displays the simulated atmospheric temperature profile (in units of K) of Venus averaged over the final Venus solar day of the 
simulation. The simulation was run using OASIS and OASIS-RT for 5 Venus solar days (each Venus solar day is equi v alent to approximately 117 Earth days). 
Right: The abo v e figure displays the percentage difference in simulated atmospheric temperature profiles of Venus averaged across the final Venus day of the 
simulation, for two simulations using (1) OASIS-RT and (2) the surrogate models presented in this work, to model the RT. Both: In both plots, the main cloud 
deck extends from approximately 10 2 to 2 × 10 3 mbar . 
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3 Radiative time constants for the Venus atmosphere can be seen in table 2 of 
Pollack & Young ( 1975 ). 
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er cent. These deviations in the final temperature profiles fall within 
he range of uncertainties in the measurements. This is reasonable 
ue to two main factors: first, there will be inherent discrepancies 
etween simulated and real temperatures arising from assumptions 
ade in the physical model, and secondly, deviations will also 

aturally arise between the physical model and real temperature 
rofiles due to the spatial resolution of the simulation. Also, we 
xpected differences to arise due to the frequency at which the 
adiativ e flux es are updated. In the case of the surrogate model,
t is possible to update them at every physical time-step. Fig. B1
isplays the contrast of temperature profiles of simulations using 
ASIS-RT and the surrogate models, whereby the frequency of 
pdating radiativ e flux es in the latter matches that of the former
every 2880 steps for the short-wave regime and every 320 steps for
he long-wav e re gime). There is ne gligible discrepanc y between the
nal temperature profile of Venus as simulated using the surrogate- 

ntegrated schema for both frequencies of executing the RT update. 
 large difference between the plots was not expected because, in 
oth cases, the RT updates are performed at intervals shorter than 
he radiative time-scale. This means that similar results would occur 
f the simulation were e x ecuted using full RT updates at every time-
tep, as compared to the simulation e x ecuted using RT updates at
very 2880/320 time-steps for SW/LW, respectively. Despite this 
mall difference in the resulting temperature profile corresponding 
o the different update frequencies, our future simulations will a v oid
sing large step updates since these compromise the accuracy of the 
tmospheric physics, computed by the dynamical core, and would 
lso compromise the future implementation of radiatively active 
louds in the 3D simulations. 

.3 Simulation runtime 

o benchmark the speed-up achieved using the surrogate RT schema, 
e run four simulations of the Venus atmosphere. All 4 of these

imulations span 1000 time-steps, with each time-step corresponding 
o an increment of 15 s. Simulations were run on one NVIDIA Tesla
100 GPU. The simulations were as follows: 

(i) Simulation with no RT update at any time-step: 95 s runtime. 
(ii) Simulation with RT e x ecuted in the first time-step, and then
pdated every 2880 time-steps (equivalent to a time-step of 12 h)
or the short-wave regime, and every 320 time-steps (equi v alent to a
ime-step of 1 h 20 min) for the long-wave regime: 195 s. 

(iii) Simulation with RT updated every time-step: 27 046 s. 
(iv) Simulation using the surrogate models to update the RT every 

ime-step: 184 s. 

Simulation (ii) uses the typical RT update frequency employed 
or using OASIS to simulate Venus: this satisfies a trade-off between
ufficient temporal resolution of the RT, which must be modelled 
ith a resolution smaller than the radiative time constant τR of 

he atmosphere ( τR ≈ 43 h at the altitude in the atmosphere where
t takes its smallest value), 3 and o v erall simulation runtime. F or
larity, in simulation (ii), the short-wav e RT computation is e x ecuted
nce and the long-wave RT computation is e x ecuted three times. As
entioned in Section 4.2 , less frequent RT updates limit the accuracy

f modelling the atmospheric physics, and so a higher frequency of
T updates is preferred. Simulation (iii), which updates the RT at
very 15 s time-step, illustrates how increasing the frequency of 
T updates enormously increases the simulation runtime; here, by 
 factor of 92 compared to simulation (ii) with less frequent RT
pdates, and by a factor of 285 compared to simulation (i) with no
T update at all. 
Comparing simulation (iv) to simulation (ii) with infrequent RT 

pdates, we see a speed-up of ∼6 per cent while achieving a higher
emporal resolution of RT. Comparing simulation (iv) to simulation 
iii), we see a factor of 147 × speed-up of the entire simulation
untime. 

In addition to the reduction in simulation runtime, simulation 
iv) is much more memory-efficient than simulations (i) and (ii), 
s the surrogate RT models do not require storing opacity cross-
ections from the gas absorption or clouds. Furthermore, with the 
otential to update the radiative fluxes on every physical time- 
tep now computationally feasible, our new approach allows for 
MNRAS 535, 2210–2227 (2024) 
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he inclusion of dynamical cloud feedback at a small computational
ost. This addresses one of the main limitations of current 3D Venus
tmospheric models. 

.4 Limitations 

he surrogate models produced in this work do not take explicit
nput of the structure of cloud and gas absorber constituents of the
tmosphere being modelled, except for the input of gas density,
i,j . This means that the learning objective for surrogate models in

his work is to approximate the mapping from input thermodynamic
olumn variables to output columnar flux profiles, conditioned on
 specific cloud and absorber structure. Consequently, this means
hat the models produced in this work are only applicable for
lanets corresponding to the planetary parameters and cloud and
bsorber structure specific to Venus. This is a limitation in terms of
eneralizability of the surrogate-integrated GCM to other types of
tmosphere. 

 C O N C L U S I O N S  

his work introduces a surrogate model approach to replacing
umerical simulations of short-wave and long-wave computations
n a two-stream RT model, aimed at accelerating the GCM, OASIS .
he results show a significant GCM speed-up by a factor of 147
PU performance, with surrogate models for both long-wave and

hort-wav e re gimes achieving test set accuracies of approximately
9 per cent. Additionally, this approach replicates the temperature
rofile of the original Venus simulations averaged across a Venus
olar day with differences of 4 per cent after 5 Venus solar days of
imulation. 

This work is significant in that it enables 

(i) ∼150 × faster simulations of planets with massive atmospheres
hat require complex RT schemes, such as the Venus atmosphere. 

(ii) Longer simulations with a much higher spatial resolution ( ∼
0 ×). 
(iii) Impro v ed representation of the temperature evolution of

hort-term physical phenomena in the atmosphere. These can be
tmospheric waves with time-scales shorter than the period at which
he radiativ e flux es are updated in the simulation. In the case of
ur Venus simulations, we can measure the temperature change of
tmospheric waves with time-scales <12 h. 

(iv) A model free of model tuning to optimize performance, such
s the frequency of how the radiative fluxes are updated. 

(v) The inclusion in 3D simulations of cloud dynamical feedback
r higher order, more comple x radiativ e schemes with a small extra
omputational cost. 

This achievement of faster and/or higher spatial resolution at-
ospheric simulations will facilitate better insight into the nature

f the atmosphere of Venus, as well as benchmarking the utility
nd applicability of such modelling techniques for use in exoplanet
cience. 
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PPEN D IX  A :  M O D E L  A R C H I T E C T U R E  

1 F eedf orward neural networks 

 neural network is a type of function f that, given an input
eature vector X , can be implemented as combination of matrix 
ransformations, { M k ∈ R 

m k ×n k } , and non-linear transformations, 
 αk } , where each αk is a dimension-preserving mapping, i.e. αk : 
 

m ×n → R 

m ×n . A simple feedforward neural network implements 
he transformation 4 

 = 

(©i 
k= 0 ( αk ◦ M k ) 

)
( X ) . (A1) 

he matrices { M k } are fitted as an optimization task of a chosen
bjective function L given a set of examples S = { ̂  Y , ˆ X } to constrain
he network to approximate some given mapping ˜ f captured by 
. Neural networks as described abo v e are universal function 

pproximators, and so constitute an appropriate function space 
ithin which to seek an approximate function f for the target 

unction ˜ f . The matrices { M k } are often referred to as network
eights or network parameters ; the dimension of each M k is

ree in one dimension [except for M i for which the dimension 
s fully constrained by the dimension of Y and the dimension of
©i−1 

k= 0 ( αk ◦ M k ) 
)

( X )]. This free dimension m k of each M k we can
 Below, ©i 
k= 0 ( a k ◦ M k ) represents the composition of functions ( a k ◦ M k ) 

rom k = 0 to k = i. 
scribe as the number of neurons of the layer M k , to be consistent
ith machine learning terminology. For further details about the 
athematics and implementation of neural networks, see chapters 
 and 4 of Prince ( 2023 ). 

2 Recurrent neural networks 

NNs are function spaces defined using similar concepts to simple 
eedforw ard neural netw orks, designed to incorporate the structural 
ependence of sequential input feature v ectors. Giv en a set of
nput feature vectors { X k } ∀ k ∈ [0 , N ], with some relation between
onsecutiv e feature v ectors X k and X k+ 1 , a simple RNN operates as
ollows: 

 k+ 1 = α0 ( M in X k+ 1 + M r k ) , (A2) 

 k+ 1 = α1 ( M out r k+ 1 ) , (A3) 

here r k is defined as the hidden state of the network for the kth input.
he abo v e formulation of the simple recurrent network illustrates
ow information from preceding input feature vectors contributes to 
he function output corresponding to the kth input. 

In practice, the RNN implementation is more complicated than the 
wo equations abo v e, but these equations capture the core operation
f the RNN. For an in-depth treatment of the mathematics and
mplementation pragmatics of RNNs, see G ́eron ( 2019 ). 

PPENDI X  B:  RESULTS  

elow, we display the contrast of temperature profiles of simulations 
sing OASIS-RT and the surrogate models, whereby the frequency 
f updating radiative fluxes in the latter matches that of the for-
er (every 2880 steps for the short-wave regime and every 320

teps for the long-wav e re gime). There is ne gligible discrepanc y
etween the final temperature profile of Venus as simulated using the
urrogate-integrated schema for both frequencies of executing the RT 

pdate. 
MNRAS 535, 2210–2227 (2024) 
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M

Figure B1. Both: The abo v e figures display the percentage difference in simulated atmospheric temperature profiles of Venus averaged across the final Venus 
day of the simulation, for two simulations using (1) OASIS-RT and (2) the surrogate models presented in this work, to model the RT. Left: This plot was 
generated by updating the short-wave radiative fluxes at every 2880 steps, and the long-wave radiative fluxes at every 320 steps, for the simulation with the 
surrogate models. Right: This plot was generated by updating the short-wav e radiativ e flux es and long-wav e radiativ e flux es at ev ery time-step, for the simulation 
with the surrogate models. 
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Table C2. This table displays the number of parameters across model layers 
for the long-wave surrogate model, as well as the output shapes of each layer. 
n denotes the number of atmospheric columns passed as input to the model; 
layers correspond to those displayed in Fig. 2 . 

Layer Output shape Number of parameters 

Main inputs [( n , 49, 3)] 0 
Auxiliary inputs [( n , 4)] 0 
GRU ↓ [( n , 49, 32), ( n , 32)] 3552 
Dense 1 [( n , 32)] 1184 
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PPENDIX  C :  M O D E L  PA R A M E T E R S  

he tables below display the number of model parameters per layer
f the two surrogate models produced in this work. 

1 Short-wave surrogate model 

2 Long-wave surrogate model 
NRAS 535, 2210–2227 (2024) 

able C1. This table displays the number of parameters across model layers 
or the short-wave surrogate model, as well as the output shapes of each layer. 
 denotes the number of atmospheric columns passed as input to the model; 

ayers correspond to those displayed in Fig. 2 . 

ayer Output shape Number of parameters 

ain inputs [( n , 49, 3)] 0 
uxiliary inputs [( n , 5)] 0 
RU ↓ [( n , 49, 128), ( n , 128)] 51 072 
ense 1 [( n , 128)] 17 152 
RU ↑ [( n , 50, 128)] 99 072 
ense out [( n , 50, 2)] 514 

Total number of model parameters: 167 810 

GRU ↑ [( n , 50, 32)] 6336 
Dense out [( n , 50, 2)] 130 

Total number of model parameters: 11 202 
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PPENDI X  D :  F U RTH E R  AG G R E G ATE  

TATISTICS  O F  M O D E L  TEST  SET  

E R F O R M A N C E  

he figures included in this section display the ̂ MAE j,k (defined
n equation 19 ) of the entire test set for the long-wave (Fig. D1 )
nd short-wave (Fig. D2 ) schemas. These figures are included for
ompleteness, and are analogous to Figs 3 (A)–(C) and 4 (A)–(C),
espectively, but for the entire test sets instead of the [5, 95] percentile
nterval subset of the test sets. 
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Figure D1. The abo v e plots display the ̂ MAE j,k (defined in equation 19 ) of the long-wave surrogate model predictions. Plot C displays the target scaled flux 
profiles averaged across the test set. Plots A and B display the MAE of the scaled predictions and targets across the test set. 

Figure D2. The abo v e plots display the ̂ MAE j,k (defined in equation 19 ) of the short-wave surrogate model predictions. Plot C displays the target scaled flux 
profiles averaged across the test set. Plots A and B display the MAE of the scaled predictions and targets across the test set. 
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PPEN D IX  E:  D ISTRIBU TION  O F  SAMPLES  

he plots in this section display the distribution of the entire data set
cross surface temperature and cosine of the solar zenith angle. 
MNRAS 535, 2210–2227 (2024) 
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M

Figure E1. Top row: The figure displays the distributions of surface temperature (left tile) and cosine of the solar zenith angle, cos μ (right tile), across the data 
set used for this work. Bottom row: The figure displays the distributions of surface temperature across samples falling within the dayside (left tile) and nightside 
(right tile). 

Figure E2. The figure displays the co-variation of surface temperature and cos μ across dayside samples within the data set. 
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PPEN D IX  F:  D ISTRIBU TION  O F  E R RO R S  

ITH  SCALA R  PA R A M E T E R S  

he plots in this section are analogous to those displayed in Fig. 5 and
isplay the variation in ̂ CAE i,k (as defined in equation 17 ) of short-
igure F1. The figure displays variation in ̂ CAE i,k (as defined in equation 17 ) of s
urface pressure (middle row), and surface gas density (bottom row). The extent of 
f each plot, with white spaces corresponding to values falling in the lowest value
olumns in each x -axis bin. 
ave (Fig. F1 ) and long-wave model predictions (Fig. F2 ) versus
calar model variables. These figures are included for completeness. 
MNRAS 535, 2210–2227 (2024) 

hort-wave model predictions as a function of surface temperature (top row), 
the plots on the y -axis covers the full range of the error quantity on the y -axis 
 bin. Bins have been normalized to percentages by the total number of test 
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M

Figure F2. The figure displays variation in ̂ CAE i,k (as defined in equation 17 ) of long-wave model predictions as a function of surface pressure (top row) and 
surface gas density (bottom row). The extent of the plots on the y -axis co v ers the full range of the error quantity on the y -axis of each plot, with white spaces 
corresponding to values falling in the lowest value bin. Bins have been normalized to percentages by the total number of test columns in each x -axis bin. 
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PPENDIX  G :  VA R I AT I O N  O F  E R RO R  VERSUS  

O S  μ IN  T H E  S H O RT-WAV E  R E G I M E  

o investigate the amount of variability in targets versus cos μ, we
efine the following quantity: 

i,k = 

n levels −1 ∑ 

j= 0 

σi,j,k , (G1) 
NRAS 535, 2210–2227 (2024) 
nd plot this quantity for the test set, displayed in Fig. G1 .
he plots displayed in Fig. G1 illustrate a lo wer le vel of vari-
tion in the flux–altitude profiles with higher values of cos μ,
nd for the bin with the lo west v alues of cos μ (i.e. at the
erminator). 
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MNRAS 535, 2210–2227 (2024) 

Figure G1. The abo v e figure shows the distribution of column-aggregated error σi,k (computed according to equation G1 ) per cos μ bin per short-wave target 
for both the train set (top row) and test set (bottom row). These figures illustrate a lower level of variation in the flux–altitude profiles with higher values of 
cos μ, and for the bin with the lowest values of cos μ (i.e. at the terminator). 
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