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ABSTRACT

This work introduces an approach to enhancing the computational efficiency of 3D atmospheric simulations by integrating
a machine-learned surrogate model into the OASIS global circulation model (GCM). Traditional GCMs, which are based on
repeatedly numerically integrating physical equations governing atmospheric processes across a series of time-steps, are time-
intensive, leading to compromises in spatial and temporal resolution of simulations. This research improves upon this limitation,
enabling higher resolution simulations within practical time frames. Speeding up 3D simulations holds significant implications
in multiple domains. First, it facilitates the integration of 3D models into exoplanet inference pipelines, allowing for robust
characterization of exoplanets from a previously unseen wealth of data anticipated from JWST and post-JWST instruments.
Secondly, acceleration of 3D models will enable higher resolution atmospheric simulations of Earth and Solar system planets,
enabling more detailed insights into their atmospheric physics and chemistry. Our method replaces the radiative transfer module
in OASIS with a recurrent neural network-based model trained on simulation inputs and outputs. Radiative transfer is typically
one of the slowest components of a GCM, thus providing the largest scope for overall model speed-up. The surrogate model
was trained and tested on the specific test case of the Venusian atmosphere, to benchmark the utility of this approach in the
case of non-terrestrial atmospheres. This approach yields promising results, with the surrogate-integrated GCM demonstrating
above 99.0 per cent accuracy and factor of 147 speed-up of the entire simulation executed on one graphics processing unit (GPU)

compared to using the matched original GCM under Venus-like conditions.
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1 INTRODUCTION

3D atmospheric models, commonly known as global circulation
models (GCMs), are key tools for studying the climates of Solar
system planets including the Earth, and are becoming increasingly
important in the characterization of exoplanet atmospheres. GCMs
consist of multiple components, which individually model different
atmospheric processes: each component numerically solves equa-
tions governing an atmospheric process across elements of a grid
and across many time-steps until simulation convergence criteria are
reached. Due to the large number of numerical integrations involved
in GCM simulations, producing a simulated atmospheric state for
a given input set of planetary and stellar parameters is incredibly
computationally expensive and time-consuming.

GCMs are applied in exoplanet science in the forward modelling
component of Bayesian atmospheric retrieval pipelines. To retrieve
posterior distributions on planetary and stellar parameters from a
single transit spectrum, the Bayesian retrieval framework requires of
the order of tens of thousands of forward simulations corresponding
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to different samples of input parameter space. With current state-
of-the-art 3D modelling techniques, the compute resources and time
needed to produce the required number of 3D simulations prohibit
statistically rigorous inference of data from the JWST (Gardner
et al. 2006) and further next-generation observational instruments
yet to come, namely the Ariel Space Telescope (Tinetti et al. 2022).
Acceleration without compromising the accuracy of GCMs is thus
one clear method of facilitating inference using JWST and post-JWST
data in exoplanet science.

Reducing GCM simulation time would also incur benefits in
climate science of Earth and other Solar system planets. Increased
speed of computation would enable simulations to be run at greater
resolution, and/or with more physics included, thus enabling more
realistic climate simulations to be achieved.

The past few years have yielded work in both exoplanet science
and Earth climate science to accelerate 3D models. Much of this work
in exoplanet science involves extending 1D models with extra param-
eters to reflect certain 3D atmospheric variations deemed necessary
to account for 3D effects in phase-curve data (Changeat & Al-Refaie
2020; Feng, Line & Fortney 2020; Irwin et al. 2020; Chubb & Min
2022; Nixon & Madhusudhan 2022; Himes, Harrington & Baydin
2023). This approach is prone to introducing biases to the simulated
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atmospheric states produced, and a fully 3D model parametrization
is essential to ensuring that simulations are robust against both
known and unknown biases resulting from model oversimplifications
(Pluriel et al. 2020). Earth climate science, benefiting from a wealth
of high-resolution observational measurements, has had a different
set of methods employed, namely machine-learned surrogate models
trained on such observations (Ukkonen 2022; Yao et al. 2023).
Surrogate models have not been broadly explored outside of Earth
climate science, but demonstrate the potential of speed-up without
requiring an oversimplified model parametrization (Ukkonen 2022;
Yao et al. 2023).

Of the components within GCMs, radiative transfer (RT) is often
the slowest or least resolved process. In the 0ASIS GCM (Mendonca
et al. 2014), the RT component contributes to 50-99 per cent of the
total simulation runtime (depending on the temporal resolution of
the RT, see Section 4.3 for more details) for massive and complex
atmospheres such as Venus (Mendonca & Buchhave 2020). There
is thus key scope to substantially improve GCM computational
efficiency by targeting the RT component specifically.

To assess the effectiveness of our new approach, we are testing it on
Venus’s atmospheric conditions. Simulating the Venus atmosphere in
3Dis very computationally intensive due to the need for a complex RT
model to accurately represent the energy balance in the atmosphere
(e.g. Eymet et al. 2009; Lee & Richardson 2012; Mendonca et al.
2015). Venus has a substantial amount of CO,, which generates a
strong greenhouse effect (Sagan 1962) and is covered by highly
reflective sulphuric acid clouds, obscuring the planet’s surface. Only
about 2.5 per cent of the incoming solar radiation reaches the surface
(e.g. Tomasko et al. 1980; Mendonca et al. 2015). The radiation
model also requires fine spectral resolution to capture the spectral
windows impacting energy exchange between the deep atmosphere
and the upper layers above the clouds. Additionally, due to the high
thermal inertia of the massive CO, atmosphere, the models need to
be integrated over a long period to reach a statistically steady state
(Mendonga & Read 2016). Using a surrogate model to represent the
RT is key to enhancing the performance of 3D simulations while
enabling a more realistic depiction of radiative processes at minimal
cost. Therefore, Venus presents a significant challenge and serves as
a benchmark for the complexities our new modelling approach may
encounter in future applications.

2 DATA AND CODES

2.1 OASIS

OASIS is a planetary climate model composed of different coupled
modules representing physical and chemical processes within plan-
etary atmospheres (Mendonga & Buchhave 2020). The mathematics
and assumptions of the RT component of OASIS are detailed in
Mendonca et al. (2015).

The equations in OASIS are discretized over concentric icosahedral
spatial grids (Mendonga et al. 2016; Deitrick et al. 2020). For the 3D
simulations in this study, we set the grid to approximately 2 degrees
in the horizontal and 49 vertical layers. This grid configuration
results in a total of 10242 columns covering the entire model
domain. Our simulations started from the converged state obtained
in Mendon¢a & Buchhave (2020) and were integrated for 5 Venus
solar days (approximately 117 Earth days) using a time-step of 15 s.
The model configuration is similar to the simulations in Mendonga &
Buchhave (2020), and in the following sections, we describe the main
physical modules relevant to this work.
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2.1.1 OASIS-RT

The RT module of 0ASIS (henceforth referred to as OASIS-RT) mod-
els the interaction of radiation with gas and cloud species in the atmo-
sphere in a two-stream manner. Radiation from two different sources
are modelled separately: these are solar radiation (0.1-5.5 pm) and
thermal radiation (1.7—260 wm). The solar radiation code utilizes the
8-Eddington approximation (Joseph, Wiscombe & Weinman 1976)
in combination with an adding-layer method (Liu & Weng 2006;
Mendonca et al. 2015), while the thermal code considers absorptivity
and emissivity (Mendonca et al. 2015). The radiation scheme uses the
k-distribution method to represent the gas absorption cross-sections,
which are integrated over 353 spectral bands and 20 Gaussian points
(Mendonga & Buchhave 2020).

In the OASIS code used for this project, the spatial distribution and
radiative properties of the clouds, which are composed of sulphuric
acid and water, were taken from Crisp (1986) and Mendonca
et al. (2015). The main cloud deck is located between roughly
45 and 65 km altitude with layers of sub-micron particles below
and above (Knollenberg & Hunten 1980). More details on the cloud
properties can be found in Mendonca et al. (2015).

The RT code involves two steps of computation for each time-step;
these are

(i) Computing the gas optics: computing the optical properties
of layer boundaries from the thermodynamic variables.

(i) Computing the flow of radiation: computing the upward-
and downward-welling fluxes at each layer boundary, from the
incident flux at the top of the column in combination with the optical
properties at each layer boundary.

The model uses a k-distribution table (Lacis & Oinas 1991) to
calculate the optical properties of each layer across the wavelength
bands using pre-computed wavelength-dependent absorption coef-
ficients for CO,, SO,, and H,O. These coefficients are combined
with a continuum absorption, mostly from CO,—CO, collisions, and
Rayleigh scattering from CO, and N, (Mendonca et al. 2015).

The RT model takes inputs of the density p, pressure p, tempera-
ture 7', and chemical composition per grid element as outputted from
the dynamical core THOR! (Mendonga et al. 2016). Heating rates are
then calculated per grid element from fluxes outputted from the RT
model, and these heating rates update the temperature profile of the
atmosphere, which serves as input back into the dynamical core. Flux
is used to compute the heating rate per layer according to equation
(1.
dr 1 dF™

dr — pcp dz

(€))

where d F™! is the spectral-integrated net radiative flux (W m™2), p is
the atmospheric density (kg m~), and ¢, is the specific heat capacity
at constant pressure (900 Tkg™' K™1).

In order to improve the computational efficiency of 3D simulations
with RT, Venus GCMs traditionally do not update the radiative fluxes
from the solar and thermal schemes at every time-step (Lebonnois,
Sugimoto & Gilli 2016; Mendonga & Read 2016; Mendonca &
Buchhave 2020). In the 3D simulations with explicit RT used in this
study, the fluxes calculated from the solar radiation scheme were
updated every 2880 steps, and the thermal radiation fluxes were
updated every 320 steps. These values are adjusted by the model
user and are specific to Venus’s simulations. Larger values could

The model component that governs the resolved 3D fluid flow evolution.
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potentially cause model instabilities. Although this approach intro-
duces some inaccuracies in the heating/cooling rates, the robustness
of the simulation is not compromised because the composition of
the atmosphere and clouds remains constant over time. With the
efficiency of the new surrogate model described in the next section,
we are now able to update radiative fluxes at every time-step. To
enhance the stability of the model with the new surrogate model, we
also apply the three-step Adams—Bashforth method to the heating
rate calculated from the surrogate radiative fluxes.

2.2 Data

The data used for this project are 3D data simulated by OASIS
corresponding to input parameters of Venus (Mendonga & Buchhave
2020). The data used in this work are from a simulation of Venus
using OASIS-RT. The data consist of 1000 time-steps of simulation,
with the time interval between consecutive time-steps within the
recorded data set, Az, set to 12 h. These data correspond to time-
steps of a full simulation for which the RT update has been executed.
The data cover the entire icosahedral grid with dimensions 10242
columns x 49 layers.

At the sample level (per atmospheric column), the data comprise
the following quantities: pressure p, temperature 7', and gas density
o, all defined per layer; upwelling short-wave flux FSV:1, down-
welling short-wave flux FSW'+, upwelling long-wave flux F*V:1, and
downwelling long-wave flux FXV-¥, all defined per layer boundary;
and cosine of the solar zenith angle u, short-wave surface albedo
asw, long-wave surface albedo asw, and surface temperature Ty, all
defined per column.

Fig. E1 and Fig. E2 illustrate the distribution of samples within
the data set as a function of cos  and surface temperature.

3 METHODS

3.1 Surrogate modelling

Surrogate models, or emulators, are approximate mathematical
models that model outcomes of interest, whereby the emulator
mechanism does not necessarily reflect the physical mechanism
that produces the outcomes. Surrogate models are useful in cases
where the physical mechanism producing such outcomes is not well
understood, or in cases where modelling the physical mechanism
is excessively computationally demanding; in the case of the latter,
the aim is to produce a surrogate model that is computationally
efficient compared to the physical model while maintaining accuracy.
Machine learning provides a framework by which surrogate models
can be produced: deep neural networks adhere to the Universal
Approximation Theorem, and can (in theory) model any arbitrarily
complex non-linear relationship, thus providing a function space
whereby a suitable surrogate function is almost certain to exist
(Goodfellow, Bengio & Courville 2016).

Research into surrogate modelling of exoplanetary atmospheres
is relatively nascent (Himes et al. 2022, 2023; Unlu et al. 2023).
The use of surrogate models within Earth climate science, though
still new, is much more established and well explored (Ukkonen
2022; Mukkavilli et al. 2023; Yao et al. 2023). The development
of surrogate models for atmospheric models of exoplanets can thus
be informed by the development of such surrogate models for the
parameter space of Earth.

An example where surrogate modelling has already proved valu-
able within 3D modelling of exoplanetary atmospheres is work by
Schneider et al. (2024), who utilized DeepSets to achieve fast and
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accurate mixing of correlated-k opacities. Their work exemplifies
how machine learning can be leveraged to successfully speed up a
single process of a GCM while retaining accuracy, thus establishing a
basis for further exploration into the integration of surrogates within
GCM frameworks.

In this work, two surrogate models were produced for 3D mod-
elling of Venus using OASIS: one surrogate model to emulate the short-
wave RT schema, and one to emulate the long-wave RT schema (see
Section 2.1.1 for details on the computations for the two radiation
schemas).

3.2 Data pre-processing

Data were pre-processed separately for the long-wave and short-
wave regimes. Each model took input of two types of data: variables
defined at the grid-element level, referred to as vector variables of
dimension (¢opumns, ) = (49, ), and variables defined at the column
level, referred to as scalar variables.

The short-wave surrogate model took scalar inputs of surface
temperature, 7p; gas density of the lowest altitude layer, ps; pressure
of the lowest altitude layer, ps; cosine of the solar zenith angle u;
and short-wave surface albedo agw. The long-wave surrogate model
took scalar inputs of surface temperature, Ty; gas density of the
lowest altitude layer, ps; pressure of the lowest altitude layer, ps;
and long-wave surface albedo oy yw.

Both models took input of the same vector variables, which were
as follows: temperature T'; pressure p; and gas density p. Vector
variables were scaled as

— 1Oge(xl',j)
log, (xi0)
forx € {T, p}, and

PN
Xij = (x—’) )
i,0

for x = p, for the ith column and jth atmospheric level.
Scalar variables were then re-scaled as

@

Xi.j

X; — min x;

xedled o CSmn @)
max x; — min x;
i €Strain 1€ Sirain

for x € {Tv, po, po}, where Sy, 1s the training set.
Targets were scaled as follows:

LW
JoT AW

u
fory; € {F;‘W’T, FJ].“W’¢} and

v
sw _ JJ
uy = BSW ©)

fory; € {F;™'", F}™'*}, for the jth altitude level (j € [0, 49] where
0 indexes the ground level and 49 indexes the top level of the

atmospheric column), where A™ and BSW are scaling factors linear
in Ty and p, respectively, and fitted from the data:

AW(TY) = ai Ty + aa, (7)

BSW(1) = by + by, (8)

where (aj, ay) are constants fitted using y(I;W'T and (by, by) are
fitted using yf;N ¥ across all columns of the training set Siin-
Values of (a;, az, by, by) are retained for model prediction post-

processing. Residuals between the targets y(%W‘T, yfgw . and the
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Figure 1. The figures above display scatter plots illustrating the residuals between scaling factors AXW(Tp) and BSW(u) and their respective targets y(%W‘T
and yfgw ’i, plotted over 1 epoch of 10242 test columns covering the entire icosahedral grid. Left: This panel shows the residuals between the scaling factors
BSV(11;) used for the short-wave targets of a given column i and the downward-welling short-wave flux at the top of the column Fis’r;’i. BSV (), a linear
function of the cosine of the solar zenith angle w;, approximates E§X,¢. Right: This panel displays the residuals between the scaling factors ALV (T; ) used for
the long-wave targets of a given column i and the upward-welling long-wave flux at the ground level Fi]j(\)y T Here, A™W(T; ) approximates Fi%(\)v " as a linear
function of surface temperature 7; o. Both: In both the long-wave and short-wave cases, the preferred quantities Fi%(\;" T and Fl.s_‘\:g‘¢ to use for scaling flux profiles
across atmospheric levels involve complex calculations. The figures demonstrate that simple linear functions AXY (7p) and BSW (1) yield close approximations

with low residuals, making them suitable scaling factors instead.

respective scaling factors approximating the value of these targets,
are displayed in Fig. 1. These simple linear scaling methods were
chosen for data pre-processing in this work instead of using exact
computations of y(];W’T and yfgw ¥ as the latter computations are much
more involved, and the more simple computations produce results
with an acceptably small marginal difference in the values of the
fluxes.

Columns across all epochs were shuffled and split into train, test,
and validation data sets, in the ratio 70:15:15.

3.3 Model architecture

Model architecture was chosen to be based on recurrent neural
networks (RNNs),2 as RNNs structurally incorporate the spatial
dependence of the training data, which fits naturally in this scenario.
RNN layers were implemented in the form of gated recurrent units
(GRUs; for further details on GRUs, see Cho et al. 2014). Simple
RNNs are susceptible to short-term memory problems, whereby
information propagated forwards diminishes quickly. A common
implementation of RNNs is the GRU that utilizes a more sophisti-
cated mechanism for propagating information ‘memory’ forwards
through a sequence: this is the base of the model architecture we
employ in this work. The specific architecture of the benchmark was
chosen to be that used by Ukkonen (2022) (illustrated in Fig. 2),
which utilized a bidirectional RNN-based architecture to create
a two-stream RT emulator for Earth, trained using observational
data. Ukkonen’s model performed with <0.5 per cent mean absolute
error (MAE) for the upwelling and downwelling fluxes on the test
set (Ukkonen 2022), suggesting its potential efficacy for developing
surrogates trained on analogous simulated data. The models used in
this work were constructed and trained using TENSORFLOW version
2.12.0 (Abadi et al. 2016), and converted into Open Neural Network
Exchange (ONNX) format for integration within OASIS. Input data

2See Appendix A for more details on neural networks and RNNs.

to the surrogate model are detailed in Table 1, and surrogate model
parameters are detailed in Table C1 and Table C2.

3.4 Model training

Both models were trained in a supervised, end-to-end fashion. An
Adam (Kingma & Ba 2017) optimizer was used in combination with
a cyclical learning rate. Models were trained using TENSORFLOW on
an NVIDIA A100 GPU.

3.4.1 Loss function

The loss function was constructed as a combination of the mean
percentage error (MPE) between the predictions and targets, per
output. The mean error (ME) for the ith test column and kth target
variable is defined as follows:

Nlevels —
ME,; , =
j=0

1 N ~
910 = Fujal ©

Nevels

where §; ; ; is the target for the i th test column, jth atmospheric level,
and kth target variable, where k = 0 corresponds to downwelling flux
and k = 1 corresponds to upwelling flux, and 7jeyejs 1S the number of
atmospheric levels (njeves = 50 in this work). Normalization factors
were defined as

Mevels—1 | &
Zj:o ‘yi,j,k |
B
Nevels

such that MPE of the ith test column and kth target variable can be
expressed as

(10)

norm; ; =

ME; ;
MPE, ; = — "k, (11)
norm; x
The loss function per sample was then defined as
1
loss; = - ;MPE,-,,(, (12)
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Scaled Inputs Model Architecture Scaled Outputs
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Figure 2. Figure illustrating the architecture of the learned surrogate models used in this work. Surrogate models for both the long-wave and short-wave
schemas took scaled vector inputs X ; = (p;, T/-, p;) for the jth layer where p;, T/-, and p; are scaled pressure, scaled temperature, and scaled density of
the jth layer of the input atmospheric column, respectively (see Section 3.2 for details on scaling). The surrogate models took input of scalar inputs 8, where
Bsw = (i, po, To, po, asw) for the short-wave surrogate model, and Brw = (po, To, po, arw) for the long-wave surrogate model, where & and o denote the
cosine of the solar zenith angle and surface albedo, respectively. Vector inputs are passed through a GRU layer starting from the top atmospheric layer (layer
48) and moving downwards to the ground layer (layer 0). Scalar inputs are concatenated with the output of the downward GRU, and inputted into a dense layer,
which then serves as the first input to an upward-moving GRU layer. The outputs of the two GRU layers are then concatenated and passed through a dense
layer, which produces the model outputs of shape (7ievels, Zoutputs) = (50, 2), corresponding to scaled upwards and downwards flux for each atmospheric level.
Rectified linear unit (ReLU, Agarap 2019) activation functions were used for both GRU layers and Dense;, while a sigmoid activation function was used for the

Denseqy layer.

Table 1. Surrogate model inputs: Surrogate models for both the long-wave
and short-wave schemas took scaled vector inputs X; = (p;, T;, ;) for the
ith layer where p;, T, and p; are scaled pressure, scaled temperature, and
scaled density of the ith layer of the input atmospheric column, respectively
(see Section 3.2 for details on scaling). The surrogate models took input
of scalar inputs 8, where Bsw = (i, po, To, po, asw) for the short-wave
surrogate model, and Brw = (po, To, po, @Lw) for the long-wave surrogate
model, where © and « represent the cosine of the solar zenith angle and
surface albedo, respectively.

Surrogate schema Short-wave Long-wave

Xi =i, T, ) Xi =i, T;, )
Bsw = (i, po, To, po, asw) Brw = (po. To, o, aLw)

Vector inputs
Scalar inputs

with the total loss defined as the sum over all test samples:

loss = % Z zk:MPE,;k. (13)

i

3.4.2 Hyperparameter tuning

Multiple models were trained corresponding to different hyperpa-
rameter values. Number of neurons of all RNN layers was varied
across the range of values [16, 32, 64, 128] for both surrogate
models. The best candidate models were chosen as having 128
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neurons per RNN layer for the short-wave surrogate model, and
32 neurons per RNN layer for the long-wave surrogate model.

3.5 Performance analysis

Below, we detail the metrics used to analyse the performance of the
surrogate models on the test set. In the results (Section 4), different
aggregations of absolute error (equation 15 for raw model outputs and
equation 14 for post-processed model outputs) are used to investigate
the performance of both the long-wave and short-wave surrogate
models.

Absolute Error = AEiyj‘k = ﬁi'.]‘vk — 51‘1',]"1{| y (14)

where §; ;  are the post-processed model predictions, and J; ; x are
the unscaled target variables.

AE, jx = |Qijx — Hijk|, (15)

where f; j are the raw model predictions, and i; ;, are target
variables, which have been scaled to lie in the interval [0, 1] using
the scaling methods detailed in Section 3.2.

Column-aggregated error quantities are defined as follows:

Nlevels—1
CAEi .= > |9iju—Fijul (16)

=0
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Table 2. This table summarizes the MAE (MAE;, defined in equation 21) across the four target variables, and relative to
the mean values Fj of these four variables (as defined in equation 20), across the test set.

Regime Stream Mean flux Fy (Wm~2) MAE; (Wm~?) MAE;,/F) (per cent)
Long-wave Upwelling 4211.0 18.8 0.45
Downwelling 41393 16.9 0.41
Short-wave Upwelling 577.9 6.4 1.11
Downwelling 707.8 7.7 1.09
4.1.1 Short-wave surrogate model
Tevels — 1
C//ﬁii,k = Z ’ﬁi,j,k — 0 k| (17) Variation of error versus altitude: Fig. 3 displays the average

j=0

where 7jevels 18 the number of atmospheric levels.
Error quantities averaged across samples per altitude level are
defined as follows:

SISy |91k = il

MAE; ; = , 18
j.k N ( )
N—1|A _
— i Ui jk— Ui j
MAE; ; = Lizo i =] , (19)
N
where N is the number of test samples.
Mean flux for the kth target variable is defined as
N—1 S tevets—1 5
Mean Flux; = F, = im0 2% yw"k, (20

N

and the MAE for the kth target variable aggregated across all altitude
levels is calculated as

Nevels —1

MAE, = Z MAE; ;. 1)
j=0

4 RESULTS AND DISCUSSION

4.1 Model performance on test set

Table 2 summarizes the MAE (equation 21) across the four target
variables, and relative to the mean values of these four variables,
across the test set. These MAE values are in line with those achieved
using similar surrogate modelling methods for RT within the Earth’s
atmosphere, with Ukkonen (2022) quoting MAE for short-wave
fluxes of around 1 percent or less. For both the long-wave and
short-wave regimes, the MAE is higher for the upwelling fluxes
as compared to downwelling fluxes: this is expected as physical
computation of the upwelling flux depends on the computation of
the downwelling flux, thus meaning that this is a more complicated
mapping to emulate. The percentage errors for the short-wave targets
are a factor of 2—3 greater than those for the long-wave targets: this is
to be expected as the magnitude of the short-wave targets is smaller,
and the supervised learning task set for the short-wave model in this
work is a more complex mapping from inputs to outputs as compared
to that for the long-wave model.

In the following sections, we visualize and interrogate the variation
of model prediction errors with altitude and with scalar variables:
cos v for both long-wave and short-wave model predictions, and
surface temperature for long-wave model predictions only. For
completeness, further plots of error as a function of the remaining
input scalar variables (surface temperature, surface pressure, and
surface gas density) are contained in Appendix F.

absolute error of predictions at different altitude levels across test
samples. Below around 65 km, the average error increases roughly
in proportion to the average target fluxes. Above this altitude, the
average error decreases for both target variables, even though the
average values of these variables continue to rise with altitude. This
change in the trend of the average error occurs around the top of the
cloud deck.

Potential explanations as to why there is lower error in predicting
targets above 65 km are as follows: above the top of the cloud deck,
there is less complexity in mapping from input variables to output
fluxes, and so this can be naively assumed to be an easier task to
learn; there is also tighter variance in the target variables within the
test set above this altitude threshold.

Figs 3(A) and (B) display MEs of less than 3 per cent across all
altitude levels, averaged across test samples in the [5, 95] percentile
interval of column-aggregated errors. This accuracy falls within an
acceptably small margin of error.

Variation of error versuscos p: Fig. 5 displays the distribution in
test errors as a function of cos u of the test column. Data in these
plots have been binned to more simply display the spread of errors
for a given cos u interval. For values of cos u close to 1, there is
a narrower distribution of error, with test samples being predicted
reliably more accurately as compared to test samples corresponding
to lower values of cos .

This variation in test error distribution as a function of cos u
may be attributable to the approximations used during target pre-
processing when training the model (see Section 3.2); if indeed this
is the case, then there is scope to mitigate against this by refining
data pre-processing methods when producing future iterations of this
surrogate model. This error variation with cos u may otherwise be
due to the model not exactly capturing the complexities in how cos p
is used in mapping inputs to outputs, which may be an acceptable
and necessary trade-off in using a surrogate model for the purposes
of model speed-up.

4.1.2 Long-wave surrogate model

Variation of error versus altitude: Fig. 4 displays the absolute error
of predictions averaged across altitude levels across test samples.
A similar trend can be seen in these plots as compared to the
trends described in Section 4.1.1: average magnitude of error roughly
follows the same trend as average magnitude of the target variables,
except for between 40 and 70 km altitude (roughly in the interval of
the main cloud deck) whereby the error rises significantly at the top
of the cloud deck and decreases going deeper into the cloud deck,
for both target variables.

Below the cloud deck, it can be seen from Figs 4(A) and (B) that
the ME in target predictions is less than 5 percent of mean target
magnitude, for the given percentile interval of test samples. Above
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Figure 3. Plots A and B display the MAE j.k (defined in equation 19) for test samples that have column-aggregated absolute error (C//ﬁii,k, defined in equation
17) in the [5, 95] percentile interval (that is, test samples with errors falling in the smallest 5 per cent and largest 5 per cent of the test set have been discarded
from this aggregate statistic, in order to better illustrate typical model performance). Plots D and E display the MAE; ;. (defined in equation 18) of surrogate
model predictions across the two short-wave target variables, for test samples that lie within 1 angular degree of the substellar point. Plots G and H display the
MAE; ; of surrogate model predictions across the two short-wave target variables, for test samples that lie within 0.1 angular degree of the day-night terminator.
Plot C displays the scaled target short-wave flux profiles averaged across the test samples with C/A\E,-,k within the chosen percentile interval. Plot F displays the
target short-wave flux profiles averaged across samples that lie within 1 angular degree of the substellar point. Plot I displays the target short-wave flux profiles
averaged across samples that lie within 1.1 angular degree of the terminator. The shaded regions in all plots represent the interval [max (0, 0; — o0;), 0; + 0/,

T. P. A. Tahseen et al.

Prediction errors within the [5, 95] percentile interval
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where 0; and o; denote the mean and standard deviation of the plotted quantities for the jth altitude level.
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Prediction errors within the [5, 95] percentile interval

Downwelling LW Flux

Upwelling LW Flux

Mean Scaled Flux Profile of Percentile Interval

100 @] 100 IBY 100 —--- Mean Downwelling Flux }
---- Mean Upwelling Flux
30 80 4 80
E 604 60 - 60 14
— 1
@ \
E \‘I
=] ]
S 40 40 40 4 '\‘
p L { 41 4 \\. i
20 20 20 N
04t . : 0 0 B
0.000 0.001 0.002 0.003 0.004 0.005 0.000 0.001 0.002 0.003 0.004 0.005 00 02 04 06 08 10
Mean Absolute Error Mean Absolute Error Mean Scaled Flux
Prediction errors within the [5, 95] percentile interval
Downwelling LW Flux Upwelling LW Flux Mean Flux Profile of Percentile Interval
oy i oy
100 @ 100 ®] 100 ®|
80 80
E 604 60
1
= \  ---- Mean Downwelling Flux
E \ ---- Mean Upwelling Flux
E 0l a0 4++-\
\\
“
= *
20 20 o
\
\\--.__' |
0 0 P
0 20 40 60 &0 0 20 40 60 80 0 5000 10000 15000

Mean Absolute Error / Wm=2

Mean Absolute Error / Wm~2

Mean Flux / Wm™2

Figure 4. Plots A and B display the MAE j.k (defined in equation 19) and plots D and E display the MAE; ; (defined in equation 18) of surrogate model
predictions across the two long-wave target variables, for test samples that have column-aggregated absolute error ((TA\E,;k, CAE,; ;) in the [5, 95] percentile
interval (that is, test samples with errors falling in the smallest 5 per cent and largest 5 per cent of the test set have been discarded from this aggregate statistic,
in order to better illustrate typical model performance). Plot C displays the scaled target long-wave flux profiles averaged across the test samples with C/\AE,-,k
within the chosen percentile interval. Plot F displays the target flux long-wave profiles averaged across the test samples with CAE; ; within the chosen percentile
interval (not necessarily the same subset displayed in plot C). The shaded regions in all plots represent the interval [max (0, 6; — o), 6; + o;] where 6; and
o denote the mean and standard deviation of the plotted quantities for the jth altitude level.

the cloud deck, the long-wave fluxes tend to zero; so, though the
percentage errors increase for increasing altitude, these accuracies
still fall within the reasonable margin of error for the model.
Variation of error versuscos p/surface temperature: Variations in
test error versus surface temperature (displayed in Fig. 5) appear
to follow the same trend as compared to residuals in the scaling
factor used in pre-processing (displayed in Fig. 1). This is promising
as it may indicate that scaling residuals are the limiting factor in
model accuracy, and these scaling residuals were initially deemed as
acceptably small for the purpose of this work. Considering variation
in test error versus cosine of the solar zenith angle (cos ) (also
displayed in Fig. 5), there is not a discernible trend in the error
variation across cos u, though it appears that the error distribution is
most narrow for cos  approaching 1. This may reflect the variability
in target flux profiles in both the train and test set for different cos u

bins, as can be seen plotted in Appendix G, whereby targets for
higher values of cosp (i.e. approaching the substellar point) are
more constrained, and thus are intuitively easier to predict.

4.2 Model performance in simulation

To evaluate the performance of our new surrogate model on 3D
simulations of Venus’s atmosphere, we have run two OASIS sim-
ulations: one using OASIS-RT for the RT scheme and the other
using the new surrogate model presented in this work. In order to
efficiently run the 3D simulation with OASIS-RT, as detailed in
Section 2.1.1, we updated the radiative fluxes for solar radiation
every 2880 steps, and the thermal radiation fluxes were updated
every 320 steps. Both simulations run for 5 Venus solar days,
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Figure 5. The above plots display the variation in C/A\E,; « (as defined in equation 17) across the long-wave and short-wave schemas, as functions of the cosine
of the solar zenith angle (cos 1) and of surface temperature 7 (for the long-wave schema only). The extent of the plots on the y-axis covers the full range of the
error quantity on the y-axis of each plot, with white spaces corresponding to values falling in the lowest value bin. Top row: The above figure displays the error
distribution of test samples per cos 1 bin, across both short-wave target variables. Test samples have been binned into 20 bins of cos u, into 20 bins of (TA\E,-,k.
Bins have been normalized to percentages by the total number of test columns in each cos pu bin. Middle and bottom rows: The above figure displays the error
distribution of test samples per cos u bin, across both long-wave target variables as a function of cos u (middle row) and 7Tj (bottom row). cos i, Tp, and C//ﬁiik
have been divided linearly into 20 bins; the plots display the proportion of test samples falling into each error bin relative to total samples in a given cos u or Tp

bin.

each of which is approximately 117 Earth days. Fig. 6 displays
the temperature of the simulation using OASIS-RT averaged over
the last simulated Venus day in the left plot, and the percentage
difference in this quantity between the two simulations in the right
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plot. Beneath the bottom of the cloud deck, the percentage difference
between the time-averaged temperature profiles produced by the
two simulations is below 1.5 percent; in the interval of the cloud
deck, below 2.7 percent; and above the cloud deck, below 4.0
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Figure 6. Left: The above figure displays the simulated atmospheric temperature profile (in units of K) of Venus averaged over the final Venus solar day of the
simulation. The simulation was run using OASIS and OASIS-RT for 5 Venus solar days (each Venus solar day is equivalent to approximately 117 Earth days).
Right: The above figure displays the percentage difference in simulated atmospheric temperature profiles of Venus averaged across the final Venus day of the
simulation, for two simulations using (1) OASIS-RT and (2) the surrogate models presented in this work, to model the RT. Both: In both plots, the main cloud

deck extends from approximately 10% to 2 x 103 mbar.

per cent. These deviations in the final temperature profiles fall within
the range of uncertainties in the measurements. This is reasonable
due to two main factors: first, there will be inherent discrepancies
between simulated and real temperatures arising from assumptions
made in the physical model, and secondly, deviations will also
naturally arise between the physical model and real temperature
profiles due to the spatial resolution of the simulation. Also, we
expected differences to arise due to the frequency at which the
radiative fluxes are updated. In the case of the surrogate model,
it is possible to update them at every physical time-step. Fig. Bl
displays the contrast of temperature profiles of simulations using
OASIS-RT and the surrogate models, whereby the frequency of
updating radiative fluxes in the latter matches that of the former
(every 2880 steps for the short-wave regime and every 320 steps for
the long-wave regime). There is negligible discrepancy between the
final temperature profile of Venus as simulated using the surrogate-
integrated schema for both frequencies of executing the RT update.
A large difference between the plots was not expected because, in
both cases, the RT updates are performed at intervals shorter than
the radiative time-scale. This means that similar results would occur
if the simulation were executed using full RT updates at every time-
step, as compared to the simulation executed using RT updates at
every 2880/320 time-steps for SW/LW, respectively. Despite this
small difference in the resulting temperature profile corresponding
to the different update frequencies, our future simulations will avoid
using large step updates since these compromise the accuracy of the
atmospheric physics, computed by the dynamical core, and would
also compromise the future implementation of radiatively active
clouds in the 3D simulations.

4.3 Simulation runtime

To benchmark the speed-up achieved using the surrogate RT schema,
we run four simulations of the Venus atmosphere. All 4 of these
simulations span 1000 time-steps, with each time-step corresponding
to an increment of 15 s. Simulations were run on one NVIDIA Tesla
V100 GPU. The simulations were as follows:

(i) Simulation with no RT update at any time-step: 95 s runtime.

(i) Simulation with RT executed in the first time-step, and then
updated every 2880 time-steps (equivalent to a time-step of 12 h)
for the short-wave regime, and every 320 time-steps (equivalent to a
time-step of 1 h 20 min) for the long-wave regime: 195 s.

(iii) Simulation with RT updated every time-step: 27 046 s.

(iv) Simulation using the surrogate models to update the RT every
time-step: 184 s.

Simulation (ii) uses the typical RT update frequency employed
for using OASIS to simulate Venus: this satisfies a trade-off between
sufficient temporal resolution of the RT, which must be modelled
with a resolution smaller than the radiative time constant 7z of
the atmosphere (tg =~ 43 h at the altitude in the atmosphere where
it takes its smallest value),> and overall simulation runtime. For
clarity, in simulation (ii), the short-wave RT computation is executed
once and the long-wave RT computation is executed three times. As
mentioned in Section 4.2, less frequent RT updates limit the accuracy
of modelling the atmospheric physics, and so a higher frequency of
RT updates is preferred. Simulation (iii), which updates the RT at
every 15 s time-step, illustrates how increasing the frequency of
RT updates enormously increases the simulation runtime; here, by
a factor of 92 compared to simulation (ii) with less frequent RT
updates, and by a factor of 285 compared to simulation (i) with no
RT update at all.

Comparing simulation (iv) to simulation (ii) with infrequent RT
updates, we see a speed-up of ~6 per cent while achieving a higher
temporal resolution of RT. Comparing simulation (iv) to simulation
(iii), we see a factor of 147x speed-up of the entire simulation
runtime.

In addition to the reduction in simulation runtime, simulation
(iv) is much more memory-efficient than simulations (i) and (ii),
as the surrogate RT models do not require storing opacity cross-
sections from the gas absorption or clouds. Furthermore, with the
potential to update the radiative fluxes on every physical time-
step now computationally feasible, our new approach allows for

3Radiative time constants for the Venus atmosphere can be seen in table 2 of
Pollack & Young (1975).
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the inclusion of dynamical cloud feedback at a small computational
cost. This addresses one of the main limitations of current 3D Venus
atmospheric models.

4.4 Limitations

The surrogate models produced in this work do not take explicit
input of the structure of cloud and gas absorber constituents of the
atmosphere being modelled, except for the input of gas density,
pij- This means that the learning objective for surrogate models in
this work is to approximate the mapping from input thermodynamic
column variables to output columnar flux profiles, conditioned on
a specific cloud and absorber structure. Consequently, this means
that the models produced in this work are only applicable for
planets corresponding to the planetary parameters and cloud and
absorber structure specific to Venus. This is a limitation in terms of
generalizability of the surrogate-integrated GCM to other types of
atmosphere.

5 CONCLUSIONS

This work introduces a surrogate model approach to replacing
numerical simulations of short-wave and long-wave computations
in a two-stream RT model, aimed at accelerating the GCM, OASIS.
The results show a significant GCM speed-up by a factor of 147
GPU performance, with surrogate models for both long-wave and
short-wave regimes achieving test set accuracies of approximately
99 per cent. Additionally, this approach replicates the temperature
profile of the original Venus simulations averaged across a Venus
solar day with differences of 4 percent after 5 Venus solar days of
simulation.
This work is significant in that it enables

(1) ~150x faster simulations of planets with massive atmospheres
that require complex RT schemes, such as the Venus atmosphere.

(i1) Longer simulations with a much higher spatial resolution (~
10x).

(iii) Improved representation of the temperature evolution of
short-term physical phenomena in the atmosphere. These can be
atmospheric waves with time-scales shorter than the period at which
the radiative fluxes are updated in the simulation. In the case of
our Venus simulations, we can measure the temperature change of
atmospheric waves with time-scales <12 h.

(iv) A model free of model tuning to optimize performance, such
as the frequency of how the radiative fluxes are updated.

(v) The inclusion in 3D simulations of cloud dynamical feedback
or higher order, more complex radiative schemes with a small extra
computational cost.

This achievement of faster and/or higher spatial resolution at-
mospheric simulations will facilitate better insight into the nature
of the atmosphere of Venus, as well as benchmarking the utility
and applicability of such modelling techniques for use in exoplanet
science.
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APPENDIX A: MODEL ARCHITECTURE

A1 Feedforward neural networks

A neural network is a type of function f that, given an input
feature vector X, can be implemented as combination of matrix
transformations, {M; € R">*"} and non-linear transformations,
{orr }, where each «; is a dimension-preserving mapping, i.e. o :
R — R™*". A simple feedforward neural network implements
the transformation®

Y = (Oheolar 0 M) (). (AL)

The matrices { M} are fitted as an optimization task of a chosen
objective function £ given a set of examples S = {J, X'} to constrain
the network to approximate some given mapping f captured by
S. Neural networks as described above are universal function
approximators, and so constitute an appropriate function space
within which to seek an approximate function f for the target
function f. The matrices {M,} are often referred to as network
weights or network parameters; the dimension of each M; is
free in one dimension [except for M; for which the dimension
is fully constrained by the dimension of ) and the dimension of
(O;;})(otk o ./\/lk)) (X)]. This free dimension m;, of each M, we can

4Below, O;;=0(ak o M) represents the composition of functions (a; o My)
fromk=0tok =1i.
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ascribe as the number of neurons of the layer My, to be consistent
with machine learning terminology. For further details about the
mathematics and implementation of neural networks, see chapters
3 and 4 of Prince (2023).

A2 Recurrent neural networks

RNNs are function spaces defined using similar concepts to simple
feedforward neural networks, designed to incorporate the structural
dependence of sequential input feature vectors. Given a set of
input feature vectors {X;} Yk € [0, N], with some relation between
consecutive feature vectors X; and X;, a simple RNN operates as
follows:

i1 = Qo(Min Xy + Mry), (A2)

Vi1 = ar(Mou Te41)s (A3)

where ry, is defined as the hidden state of the network for the kth input.
The above formulation of the simple recurrent network illustrates
how information from preceding input feature vectors contributes to
the function output corresponding to the kth input.

In practice, the RNN implementation is more complicated than the
two equations above, but these equations capture the core operation
of the RNN. For an in-depth treatment of the mathematics and
implementation pragmatics of RNNs, see Géron (2019).

APPENDIX B: RESULTS

Below, we display the contrast of temperature profiles of simulations
using OASIS-RT and the surrogate models, whereby the frequency
of updating radiative fluxes in the latter matches that of the for-
mer (every 2880 steps for the short-wave regime and every 320
steps for the long-wave regime). There is negligible discrepancy
between the final temperature profile of Venus as simulated using the
surrogate-integrated schema for both frequencies of executing the RT
update.
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Figure B1. Both: The above figures display the percentage difference in simulated atmospheric temperature profiles of Venus averaged across the final Venus
day of the simulation, for two simulations using (1) OASIS-RT and (2) the surrogate models presented in this work, to model the RT. Left: This plot was
generated by updating the short-wave radiative fluxes at every 2880 steps, and the long-wave radiative fluxes at every 320 steps, for the simulation with the
surrogate models. Right: This plot was generated by updating the short-wave radiative fluxes and long-wave radiative fluxes at every time-step, for the simulation

with the surrogate models.

APPENDIX C: MODEL PARAMETERS

The tables below display the number of model parameters per layer
of the two surrogate models produced in this work.

C1 Short-wave surrogate model

C2 Long-wave surrogate model

Table C1. This table displays the number of parameters across model layers
for the short-wave surrogate model, as well as the output shapes of each layer.
n denotes the number of atmospheric columns passed as input to the model;
layers correspond to those displayed in Fig. 2.

Layer Output shape Number of parameters
Main inputs [(n, 49, 3)] 0

Auxiliary inputs [(n, 5)] 0

GRU, [(n, 49, 128), (n, 128)] 51072

Dense| [(n, 128)] 17152

GRU; [(n, 50, 128)] 99072
Densegyt [(n, 50, 2)] 514

Total number of model parameters: 167810

MNRAS 535, 2210-2227 (2024)

Table C2. This table displays the number of parameters across model layers
for the long-wave surrogate model, as well as the output shapes of each layer.
n denotes the number of atmospheric columns passed as input to the model;
layers correspond to those displayed in Fig. 2.

Layer Output shape Number of parameters
Main inputs [(n, 49, 3)] 0
Auxiliary inputs [(n, D] 0
GRU, [(n, 49, 32), (n, 32)] 3552
Dense; [(n, 32)] 1184
GRU4 [(n, 50, 32)] 6336
Densegyt [(n, 50, 2)] 130
Total number of model parameters: 11202

APPENDIX D: FURTHER AGGREGATE
STATISTICS OF MODEL TEST SET
PERFORMANCE

The figures included in this section display the MAE j.k (defined
in equation 19) of the entire test set for the long-wave (Fig. D1)
and short-wave (Fig. D2) schemas. These figures are included for
completeness, and are analogous to Figs 3(A)—(C) and 4(A)—(C),
respectively, but for the entire test sets instead of the [5, 95] percentile
interval subset of the test sets.
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Prediction errors within the [0, 100] percentile interval
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Figure D1. The above plots display the MAE j.k (defined in equation 19) of the long-wave surrogate model predictions. Plot C displays the target scaled flux
profiles averaged across the test set. Plots A and B display the MAE of the scaled predictions and targets across the test set.

Prediction errors within the [0, 100] percentile interval
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Figure D2. The above plots display the MAE .k (defined in equation 19) of the short-wave surrogate model predictions. Plot C displays the target scaled flux
profiles averaged across the test set. Plots A and B display the MAE of the scaled predictions and targets across the test set.

APPENDIX E: DISTRIBUTION OF SAMPLES

The plots in this section display the distribution of the entire data set
across surface temperature and cosine of the solar zenith angle.
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Figure E1. Top row: The figure displays the distributions of surface temperature (left tile) and cosine of the solar zenith angle, cos p (right tile), across the data
set used for this work. Bottom row: The figure displays the distributions of surface temperature across samples falling within the dayside (left tile) and nightside
(right tile).
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Figure E2. The figure displays the co-variation of surface temperature and cos y across dayside samples within the data set.
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wave (Fig. F1) and long-wave model predictions (Fig. F2) versus

APPENDIX F: DISTRIBUTION OF ERRORS scalar model variables. These figures are included for completeness.

WITH SCALAR PARAMETERS

The plots in this section are analogous to those displayed in Fig. 5 and
display the variation in CAE,;  (as defined in equation 17) of short-

Absolute error of predicted scaled flux across test columns vs. surface temperature
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Absolute error of predicted scaled flux across test columns vs. surface pressure
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Figure F1. The figure displays variation in C/A\E,-, « (as defined in equation 17) of short-wave model predictions as a function of surface temperature (top row),
surface pressure (middle row), and surface gas density (bottom row). The extent of the plots on the y-axis covers the full range of the error quantity on the y-axis
of each plot, with white spaces corresponding to values falling in the lowest value bin. Bins have been normalized to percentages by the total number of test
columns in each x-axis bin.
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Absolute error of predicted scaled flux across test columns vs. surface pressure
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Figure F2. The figure displays variation in C/Ajii,k (as defined in equation 17) of long-wave model predictions as a function of surface pressure (top row) and
surface gas density (bottom row). The extent of the plots on the y-axis covers the full range of the error quantity on the y-axis of each plot, with white spaces
corresponding to values falling in the lowest value bin. Bins have been normalized to percentages by the total number of test columns in each x-axis bin.

APPENDIX G: VARIATION OF ERROR VERSUS
COS p IN THE SHORT-WAVE REGIME

To investigate the amount of variability in targets versus cos u, we
define the following quantity:

Nevels—1
Oix = E Oi,j k> (G1)
j=0

MNRAS 535, 2210-2227 (2024)

and plot this quantity for the test set, displayed in Fig. Gl.
The plots displayed in Fig. GI1 illustrate a lower level of vari-
ation in the flux—altitude profiles with higher values of cospu,
and for the bin with the lowest values of cosu (i.e. at the
terminator).
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Figure G1. The above figure shows the distribution of column-aggregated error o; ; (computed according to equation G1) per cos i bin per short-wave target
for both the train set (top row) and test set (bottom row). These figures illustrate a lower level of variation in the flux—altitude profiles with higher values of

cos i, and for the bin with the lowest values of cos u (i.e. at the terminator).
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