Anomaly detection and approximate similarity searches of transients in real-time data streams
Anomaly detection and approximate similarity searches of transients in real-time data streams
We present Lightcurve Anomaly Identification and Similarity Search (LAISS), an automated pipeline to detect anomalous astrophysical transients in real-time data streams. We deploy our anomaly detection model on the nightly Zwicky Transient Facility (ZTF) Alert Stream via the ANTARES broker, identifying a manageable ∼1–5 candidates per night for expert vetting and coordinating follow-up observations. Our method leverages statistical light-curve and contextual host galaxy features within a random forest classifier, tagging transients of rare classes (spectroscopic anomalies), of uncommon host galaxy environments (contextual anomalies), and of peculiar or interaction-powered phenomena (behavioral anomalies). Moreover, we demonstrate the power of a low-latency (∼ms) approximate similarity search method to find transient analogs with similar light-curve evolution and host galaxy environments. We use analogs for data-driven discovery, characterization, (re)classification, and imputation in retrospective and real-time searches. To date, we have identified ∼50 previously known and previously missed rare transients from real-time and retrospective searches, including but not limited to superluminous supernovae (SLSNe), tidal disruption events, SNe IIn, SNe IIb, SNe I-CSM, SNe Ia-91bg-like, SNe Ib, SNe Ic, SNe Ic-BL, and M31 novae. Lastly, we report the discovery of 325 total transients, all observed between 2018 and 2021 and absent from public catalogs (∼1% of all ZTF Astronomical Transient reports to the Transient Name Server through 2021). These methods enable a systematic approach to finding the "needle in the haystack" in large-volume data streams. Because of its integration with the ANTARES broker, LAISS is built to detect exciting transients in Rubin data.
astro-ph.HE, astro-ph.IM
Aleo, P.D.
c5f8321e-2293-431e-a4dc-bfca74af0bfb
Engel, A.W.
067e981a-c270-4ad4-b4e8-12ba1e653e4b
Narayan, G.
ea179d6b-a858-4cc1-89c0-85815c1b2d04
Angus, C.R.
b7c118a1-13f2-4f42-acca-117cfa0c7539
Malanchev, K.
345da36f-8527-414f-9bb1-09704d710f20
Auchettl, K.
24c92a3c-f229-4753-9bfe-8f1bcc0ff7cb
Baldassare, V.F.
674497f7-782d-4d24-822b-5c81fa862370
Berres, A.
0c85cf7f-f314-4935-aa49-8ce24c803113
Boer, T.J.L. de
74cb29d9-aefe-475b-a7bb-c9cb5d68cab5
Boyd, B.M.
c6646dd8-3ca1-4e11-a76e-b4c5616c87c9
Chambers, K.C.
4a5fcaa2-daaf-47f2-a5a8-35e76d4984e6
Davis, K.W.
6826f220-ab11-4f63-8f80-eb66bcf84122
Esquivel, N.
4739aa31-6c0e-42d3-b7c1-9299182a93c9
Farias, D.
a234ce3e-46de-42e3-821a-87790ba4f49c
Foley, R.J.
135282e0-7cdc-429c-9913-9122dda1cb7c
Gagliano, A.
b4c62d47-a615-4f11-8700-902d3483c85a
Gall, C.
49c7031d-0457-499e-ba1e-8aba5083d10e
Gao, H.
6ae951ae-3a7e-4ca1-aab8-d8c43379d0b5
Gomez, S.
85e1d727-6396-4a19-8ecc-a09f27df7ec4
Grayling, M.
063541c8-9831-44df-be20-1a7f168daf93
Jones, D.O.
3a1ffd26-04d0-45c2-a8c8-924959a69675
Lin, C.-C.
6c259828-5e73-4619-8d6a-a7ba35777ae5
Magnier, E.A.
ba2da64c-1fc3-4a7c-b207-d42d5f3e4e48
Mandel, K.S.
872e5a95-8e96-4147-901f-6fa0ccc85e0f
Matheson, T.
52797a83-7c70-40c6-ac1e-2df26f3104f6
Raimundo, S.I.
e409d9d3-17e8-4049-ad29-43ada60b24e2
Shah, V.G.
495b87a6-764a-4247-97ee-bbd6b04f28bb
Soraisam, M.D.
b7a4b825-9797-459b-8b38-eb4e0e78d9e6
Soto, K.M. de
056ad138-b454-49cd-80eb-81e2b977cb84
Vicencio, S.
b08b086d-4d7d-4453-961a-fd9e5d2008e3
Villar, V.A.
e2cffad6-131c-40a6-8413-86b3c16b576a
Wainscoat, R.J.
a3fc7486-956d-420d-be98-4787feb2c8f2
Aleo, P.D.
c5f8321e-2293-431e-a4dc-bfca74af0bfb
Engel, A.W.
067e981a-c270-4ad4-b4e8-12ba1e653e4b
Narayan, G.
ea179d6b-a858-4cc1-89c0-85815c1b2d04
Angus, C.R.
b7c118a1-13f2-4f42-acca-117cfa0c7539
Malanchev, K.
345da36f-8527-414f-9bb1-09704d710f20
Auchettl, K.
24c92a3c-f229-4753-9bfe-8f1bcc0ff7cb
Baldassare, V.F.
674497f7-782d-4d24-822b-5c81fa862370
Berres, A.
0c85cf7f-f314-4935-aa49-8ce24c803113
Boer, T.J.L. de
74cb29d9-aefe-475b-a7bb-c9cb5d68cab5
Boyd, B.M.
c6646dd8-3ca1-4e11-a76e-b4c5616c87c9
Chambers, K.C.
4a5fcaa2-daaf-47f2-a5a8-35e76d4984e6
Davis, K.W.
6826f220-ab11-4f63-8f80-eb66bcf84122
Esquivel, N.
4739aa31-6c0e-42d3-b7c1-9299182a93c9
Farias, D.
a234ce3e-46de-42e3-821a-87790ba4f49c
Foley, R.J.
135282e0-7cdc-429c-9913-9122dda1cb7c
Gagliano, A.
b4c62d47-a615-4f11-8700-902d3483c85a
Gall, C.
49c7031d-0457-499e-ba1e-8aba5083d10e
Gao, H.
6ae951ae-3a7e-4ca1-aab8-d8c43379d0b5
Gomez, S.
85e1d727-6396-4a19-8ecc-a09f27df7ec4
Grayling, M.
063541c8-9831-44df-be20-1a7f168daf93
Jones, D.O.
3a1ffd26-04d0-45c2-a8c8-924959a69675
Lin, C.-C.
6c259828-5e73-4619-8d6a-a7ba35777ae5
Magnier, E.A.
ba2da64c-1fc3-4a7c-b207-d42d5f3e4e48
Mandel, K.S.
872e5a95-8e96-4147-901f-6fa0ccc85e0f
Matheson, T.
52797a83-7c70-40c6-ac1e-2df26f3104f6
Raimundo, S.I.
e409d9d3-17e8-4049-ad29-43ada60b24e2
Shah, V.G.
495b87a6-764a-4247-97ee-bbd6b04f28bb
Soraisam, M.D.
b7a4b825-9797-459b-8b38-eb4e0e78d9e6
Soto, K.M. de
056ad138-b454-49cd-80eb-81e2b977cb84
Vicencio, S.
b08b086d-4d7d-4453-961a-fd9e5d2008e3
Villar, V.A.
e2cffad6-131c-40a6-8413-86b3c16b576a
Wainscoat, R.J.
a3fc7486-956d-420d-be98-4787feb2c8f2