The University of Southampton
University of Southampton Institutional Repository

Anomaly detection and approximate similarity searches of transients in real-time data streams

Anomaly detection and approximate similarity searches of transients in real-time data streams
Anomaly detection and approximate similarity searches of transients in real-time data streams
We present Lightcurve Anomaly Identification and Similarity Search (LAISS), an automated pipeline to detect anomalous astrophysical transients in real-time data streams. We deploy our anomaly detection model on the nightly Zwicky Transient Facility (ZTF) Alert Stream via the ANTARES broker, identifying a manageable ∼1–5 candidates per night for expert vetting and coordinating follow-up observations. Our method leverages statistical light-curve and contextual host galaxy features within a random forest classifier, tagging transients of rare classes (spectroscopic anomalies), of uncommon host galaxy environments (contextual anomalies), and of peculiar or interaction-powered phenomena (behavioral anomalies). Moreover, we demonstrate the power of a low-latency (∼ms) approximate similarity search method to find transient analogs with similar light-curve evolution and host galaxy environments. We use analogs for data-driven discovery, characterization, (re)classification, and imputation in retrospective and real-time searches. To date, we have identified ∼50 previously known and previously missed rare transients from real-time and retrospective searches, including but not limited to superluminous supernovae (SLSNe), tidal disruption events, SNe IIn, SNe IIb, SNe I-CSM, SNe Ia-91bg-like, SNe Ib, SNe Ic, SNe Ic-BL, and M31 novae. Lastly, we report the discovery of 325 total transients, all observed between 2018 and 2021 and absent from public catalogs (∼1% of all ZTF Astronomical Transient reports to the Transient Name Server through 2021). These methods enable a systematic approach to finding the "needle in the haystack" in large-volume data streams. Because of its integration with the ANTARES broker, LAISS is built to detect exciting transients in Rubin data.
astro-ph.HE, astro-ph.IM
0004-637X
Aleo, P.D.
c5f8321e-2293-431e-a4dc-bfca74af0bfb
Engel, A.W.
067e981a-c270-4ad4-b4e8-12ba1e653e4b
Narayan, G.
ea179d6b-a858-4cc1-89c0-85815c1b2d04
Angus, C.R.
b7c118a1-13f2-4f42-acca-117cfa0c7539
Malanchev, K.
345da36f-8527-414f-9bb1-09704d710f20
Auchettl, K.
24c92a3c-f229-4753-9bfe-8f1bcc0ff7cb
Baldassare, V.F.
674497f7-782d-4d24-822b-5c81fa862370
Berres, A.
0c85cf7f-f314-4935-aa49-8ce24c803113
Boer, T.J.L. de
74cb29d9-aefe-475b-a7bb-c9cb5d68cab5
Boyd, B.M.
c6646dd8-3ca1-4e11-a76e-b4c5616c87c9
Chambers, K.C.
4a5fcaa2-daaf-47f2-a5a8-35e76d4984e6
Davis, K.W.
6826f220-ab11-4f63-8f80-eb66bcf84122
Esquivel, N.
4739aa31-6c0e-42d3-b7c1-9299182a93c9
Farias, D.
a234ce3e-46de-42e3-821a-87790ba4f49c
Foley, R.J.
135282e0-7cdc-429c-9913-9122dda1cb7c
Gagliano, A.
b4c62d47-a615-4f11-8700-902d3483c85a
Gall, C.
49c7031d-0457-499e-ba1e-8aba5083d10e
Gao, H.
6ae951ae-3a7e-4ca1-aab8-d8c43379d0b5
Gomez, S.
85e1d727-6396-4a19-8ecc-a09f27df7ec4
Grayling, M.
063541c8-9831-44df-be20-1a7f168daf93
Jones, D.O.
3a1ffd26-04d0-45c2-a8c8-924959a69675
Lin, C.-C.
6c259828-5e73-4619-8d6a-a7ba35777ae5
Magnier, E.A.
ba2da64c-1fc3-4a7c-b207-d42d5f3e4e48
Mandel, K.S.
872e5a95-8e96-4147-901f-6fa0ccc85e0f
Matheson, T.
52797a83-7c70-40c6-ac1e-2df26f3104f6
Raimundo, S.I.
e409d9d3-17e8-4049-ad29-43ada60b24e2
Shah, V.G.
495b87a6-764a-4247-97ee-bbd6b04f28bb
Soraisam, M.D.
b7a4b825-9797-459b-8b38-eb4e0e78d9e6
Soto, K.M. de
056ad138-b454-49cd-80eb-81e2b977cb84
Vicencio, S.
b08b086d-4d7d-4453-961a-fd9e5d2008e3
Villar, V.A.
e2cffad6-131c-40a6-8413-86b3c16b576a
Wainscoat, R.J.
a3fc7486-956d-420d-be98-4787feb2c8f2
et al.
Aleo, P.D.
c5f8321e-2293-431e-a4dc-bfca74af0bfb
Engel, A.W.
067e981a-c270-4ad4-b4e8-12ba1e653e4b
Narayan, G.
ea179d6b-a858-4cc1-89c0-85815c1b2d04
Angus, C.R.
b7c118a1-13f2-4f42-acca-117cfa0c7539
Malanchev, K.
345da36f-8527-414f-9bb1-09704d710f20
Auchettl, K.
24c92a3c-f229-4753-9bfe-8f1bcc0ff7cb
Baldassare, V.F.
674497f7-782d-4d24-822b-5c81fa862370
Berres, A.
0c85cf7f-f314-4935-aa49-8ce24c803113
Boer, T.J.L. de
74cb29d9-aefe-475b-a7bb-c9cb5d68cab5
Boyd, B.M.
c6646dd8-3ca1-4e11-a76e-b4c5616c87c9
Chambers, K.C.
4a5fcaa2-daaf-47f2-a5a8-35e76d4984e6
Davis, K.W.
6826f220-ab11-4f63-8f80-eb66bcf84122
Esquivel, N.
4739aa31-6c0e-42d3-b7c1-9299182a93c9
Farias, D.
a234ce3e-46de-42e3-821a-87790ba4f49c
Foley, R.J.
135282e0-7cdc-429c-9913-9122dda1cb7c
Gagliano, A.
b4c62d47-a615-4f11-8700-902d3483c85a
Gall, C.
49c7031d-0457-499e-ba1e-8aba5083d10e
Gao, H.
6ae951ae-3a7e-4ca1-aab8-d8c43379d0b5
Gomez, S.
85e1d727-6396-4a19-8ecc-a09f27df7ec4
Grayling, M.
063541c8-9831-44df-be20-1a7f168daf93
Jones, D.O.
3a1ffd26-04d0-45c2-a8c8-924959a69675
Lin, C.-C.
6c259828-5e73-4619-8d6a-a7ba35777ae5
Magnier, E.A.
ba2da64c-1fc3-4a7c-b207-d42d5f3e4e48
Mandel, K.S.
872e5a95-8e96-4147-901f-6fa0ccc85e0f
Matheson, T.
52797a83-7c70-40c6-ac1e-2df26f3104f6
Raimundo, S.I.
e409d9d3-17e8-4049-ad29-43ada60b24e2
Shah, V.G.
495b87a6-764a-4247-97ee-bbd6b04f28bb
Soraisam, M.D.
b7a4b825-9797-459b-8b38-eb4e0e78d9e6
Soto, K.M. de
056ad138-b454-49cd-80eb-81e2b977cb84
Vicencio, S.
b08b086d-4d7d-4453-961a-fd9e5d2008e3
Villar, V.A.
e2cffad6-131c-40a6-8413-86b3c16b576a
Wainscoat, R.J.
a3fc7486-956d-420d-be98-4787feb2c8f2

Aleo, P.D., Engel, A.W. and Narayan, G. , et al. (2024) Anomaly detection and approximate similarity searches of transients in real-time data streams. The Astrophysical Journal, 974 (2), [172]. (doi:10.3847/1538-4357/ad6869).

Record type: Article

Abstract

We present Lightcurve Anomaly Identification and Similarity Search (LAISS), an automated pipeline to detect anomalous astrophysical transients in real-time data streams. We deploy our anomaly detection model on the nightly Zwicky Transient Facility (ZTF) Alert Stream via the ANTARES broker, identifying a manageable ∼1–5 candidates per night for expert vetting and coordinating follow-up observations. Our method leverages statistical light-curve and contextual host galaxy features within a random forest classifier, tagging transients of rare classes (spectroscopic anomalies), of uncommon host galaxy environments (contextual anomalies), and of peculiar or interaction-powered phenomena (behavioral anomalies). Moreover, we demonstrate the power of a low-latency (∼ms) approximate similarity search method to find transient analogs with similar light-curve evolution and host galaxy environments. We use analogs for data-driven discovery, characterization, (re)classification, and imputation in retrospective and real-time searches. To date, we have identified ∼50 previously known and previously missed rare transients from real-time and retrospective searches, including but not limited to superluminous supernovae (SLSNe), tidal disruption events, SNe IIn, SNe IIb, SNe I-CSM, SNe Ia-91bg-like, SNe Ib, SNe Ic, SNe Ic-BL, and M31 novae. Lastly, we report the discovery of 325 total transients, all observed between 2018 and 2021 and absent from public catalogs (∼1% of all ZTF Astronomical Transient reports to the Transient Name Server through 2021). These methods enable a systematic approach to finding the "needle in the haystack" in large-volume data streams. Because of its integration with the ANTARES broker, LAISS is built to detect exciting transients in Rubin data.

Text
2404.01235v2 - Author's Original
Available under License Creative Commons Attribution.
Download (8MB)
Text
Aleo_2024_ApJ_974_172 - Version of Record
Available under License Creative Commons Attribution.
Download (11MB)

More information

Accepted/In Press date: 21 July 2024
e-pub ahead of print date: 10 October 2024
Keywords: astro-ph.HE, astro-ph.IM

Identifiers

Local EPrints ID: 496376
URI: http://eprints.soton.ac.uk/id/eprint/496376
ISSN: 0004-637X
PURE UUID: ad26a43a-09e3-4ba4-9321-7d982061b8b4
ORCID for S.I. Raimundo: ORCID iD orcid.org/0000-0002-6248-398X

Catalogue record

Date deposited: 12 Dec 2024 18:10
Last modified: 19 Dec 2024 02:58

Export record

Altmetrics

Contributors

Author: P.D. Aleo
Author: A.W. Engel
Author: G. Narayan
Author: C.R. Angus
Author: K. Malanchev
Author: K. Auchettl
Author: V.F. Baldassare
Author: A. Berres
Author: T.J.L. de Boer
Author: B.M. Boyd
Author: K.C. Chambers
Author: K.W. Davis
Author: N. Esquivel
Author: D. Farias
Author: R.J. Foley
Author: A. Gagliano
Author: C. Gall
Author: H. Gao
Author: S. Gomez
Author: M. Grayling
Author: D.O. Jones
Author: C.-C. Lin
Author: E.A. Magnier
Author: K.S. Mandel
Author: T. Matheson
Author: S.I. Raimundo ORCID iD
Author: V.G. Shah
Author: M.D. Soraisam
Author: K.M. de Soto
Author: S. Vicencio
Author: V.A. Villar
Author: R.J. Wainscoat
Corporate Author: et al.

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×