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Abstract: 

 

We describe a generalization of the Bernoulli inverse method, which 

produces an estimate of Sea Surface Height (SSH) across the region of 

interest rather than simply at station positions. Real-time ‘float’ observations 

and satellite altimetry measurements are used to map a ‘sea surface 

elevation’ to study the large-scale ocean circulation in the North Atlantic. The 

inverse has been applied to simulated Argo floats and satellite altimetry 

tracks in the Ocean Circulation and climate model (OCCAM). The Bernoulli 

inverse method predicts the SSH by finding geostrophic streamlines along 

which the Bernoulli function is conserved. These streamlines are defined 

where modified potential temperature and salinity are conserved. This 

predicted SSH is combined with that measured by the satellite altimetry. The 

revised method uses linear regression to give a surface solution for the 

region rather than solving the function at fixed positions, hence increasing 

the resolution of the problem by combining the altimetry measurements for 

the region. We will present results of a comparison study where real-time 

Argo and satellite altimetry have been used in combination with OCCAM 

using the same method to see how robust the solutions are for the North 

Atlantic.  
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Chapter 1 

 

Introduction: 

 

Over the past decade, a vast amount of observational data about ocean 

circulation has been made available to researchers by programmes such as 

WOCE (World Ocean Climate Experiment) and emerging programs such as 

ARGO (Woods Hole Oceanographic Institution, 1999), not to mention the 

vast quantities of satellite altimetry data acquired by the Topex mission 

(1992-2006), ERS1 (1991-1995), ERS2 (1995-2005), ENVISAT (launched 

2002), and the Jason mission launched in 2002. 

 

An emerging area in oceanography, stimulated by recent improvements in 

computational and modelling capabilities, is using this data to constrain 

ocean circulation models, a process referred to as data assimilation. This is a 

way of producing a best estimate of a system we wish to understand from a 

mixture of sometimes conflicting observational data sets and our 

understanding of the physics of the ocean. Data assimilation brings together 

the measurements, the known errors in these measurements and the 

governing equations of the system. This is beneficial for a variety of 

applications such as the forecasting of climate systems, designing observing 

systems, filling in data-poor regions and estimating unobserved parameters. 
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Forward Modelling  

Generally in assimilation methods we take the observational data and 

incorporate it into a numerical model of the system. An example of this 

process is show in Figure 1 below. The poorly guessed model forecast 

(dashed line), can be improved by assimilating noisy measurements into a 

mathematical model to provide an improved estimate of the trajectory of the 

system (solid line). 

Figure 1 : A schematic of how data assimilation methods are used.  From: Making 

the most of earth observations with data assimilation, 2nd Envisat Summer School 

(http://envisat.esa.int/envschool/programme.html).  

 

 

An example of this approach is in seasonal forecasting, in particular the El 

Niño Southern Oscillation (ENSO), which since 1997-98 has dominated media 
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attention because of its linkage to many severe climatic consequences 

around the globe. ENSO is a disruption of the coupled ocean-atmosphere 

system in the tropical Pacific, where westerly blowing trade winds relax and 

allow warmer western Pacific water to move eastwards toward South 

America. This change in the system has ripple effects on climatic conditions 

in many regions globally, including increased rainfall across the southern tier 

of the US and in Peru, which have caused destructive flooding, and drought 

in the West Pacific, sometimes associated with devastating brush fires in 

Australia, more details at (http://www.pmel.noaa.gov/tao/elnino/el-nino-

story.html). 

El Niño can be seen in measurements of the sea surface temperature (SST). 

SST data from the Tropical Atmosphere/Ocean Array (TAO), an array of 

approximately 70 moored buoys in the Tropical Pacific Ocean deployed by 

the National Oceanic and Atmospheric Administration (NOAA) have aided in 

tuning ENSO models well enough that the climate prediction centre 

(http://www.cpc.ncep.noaa.gov/products/analysis_monitoring/enso_advisory/index.html) 

can now predict the ENSO conditions for the next 3-6 months at a time. For 

example, presently the conditions are still within the ENSO-neutral range, 

(McPhaden, 1993). 

Inverse Modelling 

This is an example of a forward problem – the data is used to “tune” a pre-

existing model, forcing it to fit a set of external observations. However, a 

problem with this approach is that the data cannot then be used to assess 
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the validity of the initial conditions used to set up the model. So where the 

system being studied is poorly understood, it is often a better approach to 

use inverse methods. An inverse study starts with the observational data and 

uses this to infer information about the underlying system, making no prior 

assumptions about initial conditions or parameters. Because many aspects of 

ocean circulation are still poorly understood, inverse methods are potentially 

a very useful method to improve our understanding of it dynamically using a 

combination of observations and theory.  

 

Of all the inverse methods that can be used to approach this problem , the 

Bernoulli inverse is unique because in comparison to other inverse methods, 

such as the box inverse, it does have a unique solution (Fukumori, 2001; 

Stammer, 2004) (see Chapter 4). The original Bernoulli inverse (Killworth, 

1986) was obtained using density and potential vorticity, the latter of which 

is difficult to measure.  However, the Bernoulli function can also be obtained 

from modified potential temperature (Saunders, 1995; Cunningham, 2000), 

which can be extracted from standard temperature-salinity profiles. This 

project aims to further develop this more practical application of the Bernoulli 

inverse. We have chosen to focus on mapping a ‘Sea Surface Elevation’ 

(SSH) for a region of the North Atlantic (30-6° N, 5-60° N), using a 

combination of measurements from the ARGO float network and satellite 

altimetry. Creating an accurate map of SSH in this region would allow large-

scale circulation to be reconstructed, and also monitor changes related to the 

North Atlantic Oscillation (NAO). The NAO has a considerable effect on 
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climatic variability across a large area, from the eastern coast of the United 

States to Siberia and from the Arctic to the subtropical Atlantic, especially 

during the winter period, and appears to be controlling much of the recent 

warming trend observed in the Northern hemisphere (see McCartney (1996), 

Hurrell et al. (2001) and Chapter 2). Though we understand some of the 

consequences of the NAO we have not yet managed to be able predict it in 

the same manner as the ENSO.   

 

Monitoring such changes requires datasets collected over a period of decades 

or more, which are only now becoming available. This project utilised two 

data sources: satellite altimetry from Topex/Jason and temperature-salinity 

profiles obtained by the ARGO float network. 

 

Satellite Altimetry 

Satellite altimetry can measure variations in SSH across large areas. 

Unfortunately despite all the advances in satellite altimetry, we are still 

unable to separate changes in SSH due to the mean flow field from small-

scale changes in the geoid. Figure 2 shows how the SSH as measured from 

an altimeter is calculated in relation to the reference ellipsoid. This is a 

theoretical reference point used to determine the height of the satellite in 

orbit over the globe. Deviations in SSH from this surface of equipotential 

gravity arise from forces at the sea surface, for example pressure gradient 

forces, wind and buoyancy forces or atmospheric pressure. However, Figure 
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2 also shows that local variations in e.g. seafloor topography can cause the 

geoid to deviate from the reference ellipsoid. The SSH change caused by 

these variations can be up to two orders of magnitude larger than those due 

to changes in the mean flow field of the ocean. Therefore to investigate 

these smaller amplitude signals it is essential to remove the geoid signal 

from the altimetry (Wunsch and Gaposchkin, 1980; Chelton, 2001).  

 

Figure 2: schematic summary of the sea surface height referenced to the geoid. 

 

 

In the past, remote sensors have either been content to examine “changes” 

in the dynamic height field, or they have combined the altimetry field with 

another set of real time observations. The difference between the 

observations and the satellite altimetry at the same times can then be used 

as an estimate of the geoid, and this signal can then be removed from the 
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subsequent satellite measurements to give an estimate of absolute 

geostrophic velocity value. The only previous work done in this area using 

the Bernoulli inverse and satellite altimetry adopted this method to combine 

along track CTD data with ERS-1 altimetry (Tokmakian, 1994, see also 

Chapter 4). The altimetry data was used as an a priori solution for the 

inverse.  

 

ARGO 

Until recently we have lacked a long term observing system to collect 

temperature and salinity profiles at depth in the North Atlantic and the global 

ocean in general. This has changed with the deployment of the ARGO float 

network. It is hoped that ARGO will be the next step in obtaining global 

ocean observations, by autonomously collecting temperature and salinity 

profiles and mid-depth velocity measurements on broad spatial scales (see 

Chapter 3 for more details on the implementation and operation of the ARGO 

program).  

  

A change in the sea surface height, h', may be written as: 
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where ρ' is the change in water density (a function of temperature T, salinity 

S and pressure P), P' is change in pressure, Zref is the depth of a reference 

level and g is gravity, and ‘ denotes the change from Zref (Argo, 1999). The 

first term on the right can be calculated directly from ARGO float profile data. 

This term represents the changes in the water column due to changes in the 

water properties (for example, hot water is less dense than cold water) and 

therefore represents dynamic flow. The second term refers to changes in the 

reference pressure, or deviations of the geoid from the reference ellipsoid. 

This can be obtained from the measured velocity of the floats as they drift at 

a referenced depth. It can also be calculated if h' is measured by satellite 

altimetry. 

 

Why do we want to add altimetry to the problem and why 

can altimetry not be used on its own? 

It was shown by (Guinehut, 2002) from model simulations that an array such 

as ARGO could retrieve most of the variance of the large scale circulation of 

the North Atlantic, about 65-70% at 1000m. But ARGO will only give us a 

very sparse dataset (although the design configuration of an approximately 

one float per 3˚, at the time of the work described in this thesis only 40% of 

the program was complete, a very sparse coverage, which gave us data from 

approximately 100 floats in the study area). Using a simple Bernoulli solution 

of just the ARGO data, we would only obtain the sea surface height 

difference between the locations of the floats (e.g., Alderson and Killworth, 
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2005). Satellite altimetry observations provide data over a much larger 

spatial scale than the floats alone. Guinehut (2002) also comment that they 

feel combining the floats with satellite altimetry should reduce aliases due to 

mesoscale variability and hence better constrain the solution. 

 

Rather than using the altimetry to simply constrain the problem as done by 

(Tokmakian, 1994), we  will use the Bernoulli solution of the ARGO 

temperature and salinity profiles to obtain the absolute dynamic height 

values at the float locations. We will then combine these with the altimetry 

measurements for the region, but rather than simply having a series of 

dynamic height values only at certain ARGO float locations, as in the solution 

of Cunningham (2000), we have opted to solve for a surface solution (see 

Chapter 5). This means that we may combine all the ARGO data and Jason 

measurements for the North Atlantic to create a surface picture of the 

changes in absolute velocity for the whole region. We will be able to obtain 

10-day snap shots using these two data sets. So for the first time the 

altimetry will be incorporated directly into the solution, and we will also have 

obtained absolute measurements for the whole study area by using the 

ARGO and Jason satellite altimetry to their full potential. It also represents an 

important breakthrough in using ARGO data as it was originally intended, to 

provide real-time monitoring of oceanographic changes. 
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How we approached the problem: 

This project was divided into three principal stages. First we developed the 

methodology. New procedures were developed to combine ARGO data with 

satellite altimetry, and to overcome problems such as the distribution of 

ARGO data on a highly irregular, non-stationary grid due to the continuous, 

non-uniform, drifting motion of the floats. This drift is also constantly 

changing the position of the ARGO floats relative to the Jason satellite tracks. 

 

In the second stage these procedures were validated using data extracted 

from the OCCAM model. A predictor-corrector routine was modified to 

simulate the behaviour of ARGO floats in OCCAM, and used to obtain 

simulated data for a Bernoulli inverse. Because we could extract the sea 

surface height directly from OCCAM at simulated float positions as well as 

obtaining simulated profiles of the potential temperature and salinity, we 

could directly compare the model SSH and the SSH obtained from the 

Bernoulli solution. We used simulated model data to run both float only 

solutions and solutions containing simulated Jason and float data. This was 

first done for a point only method, where we obtain values for the SSH only 

at the points at which measurements were made, and then using the surface 

fitting method. Simple polynomial functions were initially used, but in order 

to consider what difference a more complex basis function would make to 

the solution we also fitted a GAM (generalized additive model) to the “point” 
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solution. We then compared this solution to the one obtained from our 

Bernoulli surface solution.  

 

In the final stage of the project we have applied the method to real ARGO 

and Jason observations.  

 

Each stage of method development described above required us to produce 

a large amount of new programming code. The majority of coding has been 

done using python. This is a very efficient computer language, so using it 

should make sure that our method is computationally efficient enough to run 

over a large basin such as the North Atlantic region. 
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Structure of thesis: 

Chapter 2 discuss the large-scale oceanography of the North Atlantic, and 

provides a background for interpreting the features observed in our 

solutions.  

 

Chapter 3 outlines the data used in the project, giving details of the OCCAM 

model, Jason altimetry data and the operation of the ARGO floats. We also 

discuss how these data were combined to reach the end result of a Sea 

Surface Elevation for the North Atlantic. 

 

Chapter 4 discusses inverse methods, particularly the Bernoulli inverse used 

in this project, and how these methods have been used in the past to obtain 

a point solution for the Sea Surface Height at set locations. There is also 

some discussion of the conserved variable used in this study, modified 

potential temperature. We present the results from the simulation of the 

floats in the OCCAM model and the point solution obtained for the model 

data.  

 

Chapter 5 describes the background for surface fitting and linear regression 

used to obtain the surface solution, and presents the results of surface fitting 

of simulated data from the OCCAM model before obtaining a solution from 

real ARGO and Jason data. 
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Chapter 6 describes the fitting of a generalized additive model, GAM to the 

Bernoulli “point” solution from Chapter 4 and compared with the surface 

solution obtained in Chapter 5. 

 

We conclude in Chapter 7 with a discussion of both the positive outcomes of 

this research and problems that have been encountered applying the method 

to real time data. Future applications of the method we have developed are 

also discussed. 
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Chapter 2 
 

This chapter gives a brief overview of the large-scale oceanographic features 

of the North Atlantic, which are likely to influence the topography of any 

surface solution obtained from ARGO and Jason data. This project does not 

attempt to specifically address any of the major scientific problems in this 

complex field. Rather, it is concerned with developing a general method 

which can be used to tackle these problems in the future. Our discussion is 

therefore limited to general features which we would expect to obtain in any 

surface solution of SSH in the North Atlantic region, and the processes which 

control them. 

 

Circulation of the Atlantic: 

Circulation in the North Atlantic is driven by a combination of two different 

processes. There is the vertical circulation, also referred to as the meridional 

or thermohaline circulation, which is driven by temperature and salinity 

gradients. There is also the horizontal or wind driven circulation. The balance 

between these forces, and the Coriolis forces resulting from the Earth’s 

rotation, control the path of geostrophic currents, for example the North 

Atlantic current.  

 

The wind-driven surface circulation can be clearly observed in drifting buoy 

experiments such as those conducted by Krauss (1986) (Figure 5). In 
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contrast, the vertical overturning circulation is much less fully described, 

because it is difficult to make direct measurements, but its large-scale 

features  are well-represented by the popular concept of the ‘Great Ocean 

Conveyor Belt’ (Broecker and Peng, 1987; Broecker, 1991) (Figure 3). 

Figure 3: Diagram of the ocean conveyor belt taken from Broecker (1991). 

 

 

 

Figure 3 shows the importance of the linkages between the different 

components of the Earth’s Climate System which result from this global 

circulation. The lower limb of the conveyor is driven by cold water which 

downwells in the Norwegian Sea. Warm water from the Atlantic flows 

northward between Iceland and Scotland. In winter as the surface water 

cools it becomes denser. When it is denser than the water underlying it, the 

surface water sinks to its neutrally buoyant depth and then flows south into 

the Atlantic. This water mass is known as the North Atlantic Deep Water 

(NADW) and its route southwards is largely controlled by bathymetry (Figure 
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4). For example, it mainly moves into the southern North Atlantic through 

three gaps in the Greenland-Iceland-Scotland ridge. 

 

Figure 4: Bathymetry map of the North Atlantic region. X’s represent simulated 
float positions in the OCCAM model (see Chapters 3 and 4 for more details). 

 

 

The lower limb of the conveyor eventually joins the rapidly moving Antarctic 

Circumpolar Current. 

 

A consequence of NADW formation is an intensification of the wind-driven 

western boundary current in the North Atlantic (The Gulf Stream), which 

moves water northward from the tropics to replace the downwelling water in 

the Norwegian Sea. The northward flux of a warm Gulf Stream, and the 

southward flux of cooler thermocline and cold North Atlantic Deep Water, is 
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referred to as the meridional overturning circulation (MOC), and redistributes 

heat from the equator, where there is large solar heating, to higher latitudes. 

This heat is released to the atmosphere over the northern Atlantic and is 

responsible for Europe’s surprisingly mild winters.   

 

The overall effect of the geostrophy and the flow associated with the MOC 

on SSH values in the North Atlantic is to create a positive slope from the 

North West to the South East, along which the surface flow (the Gulf Stream) 

moves into the northern North Atlantic. However, many details of this 

general picture, particularly the smaller-scale spatial and temporal variability 

of the deep MOC, are still poorly known. In March 2004, a new project 

started as part of the RAPID climate change program. Nineteen moorings 

were deployed across the Atlantic at 26.5°N to monitor the deep meridonal 

overturning circulation (Srokosz, 2004). Three additional moorings were 

deployed on the western boundary along 26.5°N (by Prof. Bill Johns, 

University of Miami) to resolve transport in the Deep Western Boundary 

Current and Dr Molly Baringer (NOAA/AOML) leads the monitoring of the 

northward branch of the MOC using submarine telephone cables in the 

Florida Straits. The entire monitoring array system created by the three 

projects will be recovered and redeployed annually until 2008. From this 

program it is hoped that we will have a much better picture of the deep 

vertical circulation. 

 

We now move on to discuss the horizontal, wind driven circulation. The wind 
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driven currents in the South Atlantic are dominated by the sub-tropical gyre 

(Figure 5) and the Gulf Stream. In the Northern Atlantic, from the 

Newfoundland Rise the Gulf Stream continues as the North Atlantic Current 

(NAC). The classical picture of the NAC and its different branches is due to 

Dietrich et al. (1975). The NAC is associated with a strong thermohaline 

front, which separates western North Atlantic Central Water from the 

Labrador Current (La, Figure 5) and slope water. 

Figure 5: Schematic picture of the North Atlantic circulation, derived from drift 
experiments by Krauss (1986).  Gu = Gulf Stream; Na = North Atlantic Current 
(NAC); La = Labrador Current; Ir = Irminger Current; Ng= Norwegian Current; 
Og/Wg = East/West Greenland Current.  Horizontal shading marks the extent of 
the sub-tropical gyre; the vertical shading represents an area of eastward drift 
associated with the NAC.  Numbers represent estimated flow in Sv.  
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The drifting buoy experiments of Krauss (1986) indicate that the rapid flow 

of the NAC is superposed on a broader region of wind-driven, eastward drift 

(Figure 5). Between 51°N and 52°N, where the NAC crosses the Mid-Atlantic 

Ridge, loses its frontal character and branches into the Irminger and 

Norwegian currents (Ig and Ng, Figure 5). 

 

Past this point, various interpretations of the structure of the recirculating 

gyre system in the Northern Atlantic have been proposed. Worthington 

(1976) proposed a closed, anticyclonic “northern gyre” in the Newfoundland 

Basin (Figure 6), with no contribution from the NAC. However, according to 

drift experiments the North Atlantic Current is not the rim of the subtropical 

gyre but an independent current, and the closed northern gyre is a 

misinterpretation of the intensive eddy field on the warm side of the NAC 

(Krauss, 1993). 
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Figure 6: Closed, anticyclonic ‘northern gyre’, as interpreted by Worthington 
(1976). 

 

A more recent interpretation is shown in Figure 7. This clearly shows a two 

gyre system in the North Atlantic. In the west, the cyclonic sub-polar gyre is 

formed by the Irminger, East Greenland, West Greenland and Labrador 

currents. Where it divides at the Mid-Atlantic Ridge, two thirds of the NAC 

water is fed into this gyre (McCartney and Talley, 1984). The remaining third 

forms another cyclonic gyre system in the Norwegian-Greenland Sea to the 

east.   
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Figure 7: Simplified circulation of the upper layers of the North Atlantic.  An 
adaption of Ellet (1993), from (Heywood et al., 1994). 
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Gyre circulation causes changes in SSH due to the action of the Coriolis 

force. In the northern hemisphere, water moving clockwise around an 

anticyclonic gyre system will be pushed into the centre of the gyre, causing 

an increase in SSH. Anticlockwise motion around a cyclonic gyre will move 

water outwards from the centre, causing a decrease in SSH. The circulation 

pattern in Figure 7 should produce an SSH low associated with the cyclonic 

sub-polar gyre. Also, the eastward movement of surface water shown in 

Figure 5 (the NAC and the broader wind-driven drift) will lead to higher SSH 

values in the western North Atlantic basin. We will see later (Chapters 4 and 

5) that our point and surface solutions do a good job of obtaining this picture 

of the region. 

 

The North Atlantic Oscillation (NAO) 

The NAO is characterised by a variation in the north-south difference in 

surface air pressure in the Atlantic Ocean (Figure 8). The contrast between a 

low-pressure region centred near Iceland, and a high-pressure region in the 

subtropics near the Azores, drives the surface winds and wintertime storms 

from west to east across the North Atlantic. Over decadal timescales, there is 

an out of phase relationship between these two pressure systems. In a 

positive phase of the NAO, the pressure near Iceland is lower than normal, 

the pressure near the Azores tends to be higher than normal, and there is a 

larger pressure gradient between north and south (Figure 8a). In a negative 

phase of the NAO, the pressure near Iceland is higher, and the pressure near 

the Azores is lower, causing a smaller pressure gradient (Figure 8b).  
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Figure 8 shows the effects of the positive and negative phases of the NAO. 

Positive phases (Figure 8a) are associated with intensified meridional sea 

level pressure and sea surface temperature gradients, stronger than average 

westerlies at mid-latitudes and more northerly storm tracks toward Iceland. 

More temperate European winter conditions are seen and there is an 

increased production of Labrador Sea Water. Similarly, negative phases  

(Figure 8b) are associated with a southward shift of the Iceland low-pressure 

centre. There are weakened meridional sea level pressure and sea surface 

temperature gradients. The storm tracks are easterly across the Atlantic. A 

cooler subtropical gyre increases the production of Eighteen Degree Water 

and Nordic Sea Water, while decreasing the production of the Labrador Sea 

Water, (McCartney and Curry, 2001).  

 

Positive and negative phases of the NAO are defined by the NAO index, 

which is constructed from the differences in wintertime sea level pressure 

(SLP) between Portugal and Iceland, (Hurrell, 1995) (Figure 9). Portugal is 

chosen rather than the Azores due to the fact that there is a longer time 

series of data spanning 1864 to 1994. However, data from Portugal only 

represent the winter NAO index as they do not capture the summer 

meridional pressure gradient. To calculate the index, sea level pressure 

anomalies at each station are normalised by division of each seasonal 

pressure by the long-term mean standard deviation.  
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Figure 8: The (a) positive phase, and (b) negative phase, of the NAO, and their 
subsequent effects on the climate. From http://www.met.rdg.ac.uk/cag/NAO/ 

Positive phases (Figure 8a) are associated with intensified meridional sea level 
pressure and sea surface temperature gradients, stronger than average 
westerlies at mid-latitudes and more northerly storm tracks toward Iceland. 
More temperate European winter conditions are seen and there is an increased 
production of Labrador Sea Water. (Figure 8b), negative phases  are associated 
with a southward shift of the Iceland low-pressure centre. There are weakened 
meridional sea level pressure and sea surface temperature gradients. The storm 
tracks are westerly across the Atlantic. 

(a) 

 

(b) 
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Figure 9: Variation in NAO index for past 150 years. From 
http://www.cgd.ucar.edu/~jhurrell/indices.html 

 

 

The NAO accounts for 30% of the extratropical hemispheric variability, 

(Hurrell, 1995), and strongly influences the weather and climate of Europe, 

Eurasia, northern Africa and eastern North America. The NAO is not believed 

to be just an atmospheric phenomenon, but is tied to the North Atlantic 

ocean as well. The NAO index exhibits interannual variability, which is 

characteristic of the atmosphere. However it persists in one phase or the 

other over decadal time periods, and the atmosphere is incapable of such 

organised behaviour on its own for timescales longer than a few weeks. This 

implies a strong oceanic influence.  

 

In North America, Europe and North Africa, long-term changes in 

precipitation patterns and wintertime temperatures can be attributed to 
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changes in the phases of the NAO (McCartney, 1996; Hurrell, Kushnir et al., 

2001). Figure 9 shows that in the 1940-50’s, the NAO index was in a 

negative phase, causing colder winters in Europe and wetter conditions in 

southern Europe (Uppenbrink, 1999).  Since the mid-1970’s the NAO index 

has generally been high. During this time, winters in Europe have been 

relatively warm whereas those in the northwest Atlantic have been cold, and 

the Mediterranean has been particularly dry. Over the past decade, the NAO 

has remained in an extreme positive phase during the winters, and surface 

temperatures over the Northern Hemisphere are warmer now than at any 

other time over the past millennium.  

 

Major oceanographic changes in the North Atlantic can also be linked to 

changes in the phases of the NAO index. Dickson et al. (2002), have shown, 

through analysis of long hydrographic records, that the system of overflow 

and entrainment that ventilates the deep Atlantic has steadily changed over 

the past four decades. From 1966 to 1992, the entire water column of the 

Labrador Sea has undergone radical change, getting much cooler (equivalent 

to a continuous heat loss of 8Wm-2 over a 26 year period) and fresher 

(equivalent to mixing in an extra 6m of fresh water at the sea surface) 

(Figure 10a). By lowering the density of the water column, the freshening 

has caused the steric height in the central Labrador Sea to be typically 

reduced by 8-10 cm, Dickson et al. (2002). 
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Dickson et al. (2002) believe that these long-term changes have led to 

sustained and widespread freshening of the deep ocean, and can be linked 

to the sustained evolution of the North Atlantic Oscillation (NAO) from its 

most extreme negative state recorded during winters of the 1960s to its 

most extreme positive state in the early 1990s. In particular, they propose 

that the freshening of the overflows into the deep Labrador Sea (Figure 10c) 

is due to the long-term freshening of the upper 1-1.5km of the Nordic sea. 

This is caused by effects of the amplifying NAO, including an increase in the 

direct export of sea ice from the Arctic Ocean, and an increase in the 

precipitation along the Norwegian Atlantic Current by approximately 15cm 

per winter.  

 

We can see from the discussion above that changes in the phase of the NAO 

can potentially affect the SSH in the North Atlantic in two ways. Changes in 

the overlying atmospheric pressure gradient can potentially have a direct 

effect on the SSH. But oceanographic changes resulting from the wider 

effects of the NAO may also be detectable. 
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Figure 10: (a) Salinity changes in the central Labrador Sea since 1950, indicating 
a rapid and long-term freshening throughout the entire water column. (b) Paths 
of two main overflows of deep MOC water across the Greenland-Scotland ridge 
(dashed lines). (c) Time series of salinity measurements for overflow water, 
named and colour coded to match locations in (b). All figures from Dickson et al. 
(2002). 

 

 

 

 

 

(c) 
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Chapter 3 

 
 

Data types used in the method: 

 

This chapter discusses the sources of the various data sets that have been 

used in this study: the Argo float array programme, the OCCAM (ocean 

circulation and climate model) model and the Jason satellite altimetry. We 

also discuss how Argo floats and satellite altimetry were simulated in 

OCCAM, so that our inversion methods could be tested. 

 

ARGO data:  

Argo is a global array of 3,000 free-drifting profiling floats. These floats are 

designed to measure the temperature and salinity of the upper 2000 m of 

the ocean. Argo deployments began in 2000 and by the end of 2005 the 

array was over 75% complete (Figure 11), and the number of floats is 

continually increasing.  

When the network is complete, it will provide 3,000 temperature and salinity 

profiles and upper ocean velocities, distributed over the world oceans 

(approximately a 3° grid), every ten days. In comparison, the WOCE 

programme collected 20,000 temperature and salinity profiles over an eight 

year period between 1990 and 1998.  For the first time this network allows 

for the continuous monitoring of the temperature, salinity and velocity 
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structure of the upper ocean. The data is made public within hours of 

collection.  

Figure 11: Locations of the 1918 currently deployed ARGO floats, as of July 2005. 

 

 

 

An Argo float is battery-powered and autonomous (Figure 12). A typical 

measurement cycle is shown in Figure 13. Each float spends most of its time 

drifting at 2000 m depth, where they are stabilized by a built-in hydraulic 

bladder. At 10-day intervals, the floats pump fluid into an external bladder 

and move up to the surface over about 6 hours, measuring temperature and 

salinity as they rise. When the floats reach the surface they transmit the 

profile information to orbiting satellites, which also obtain the float’s position. 

The bladder then deflates, allowing the float to sink back down to 2000m, 

where it drifts until the cycle is repeated. The floats are designed to make 

about 150 such cycles (Woods Hole Oceanographic Institution, 1999).  
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Figure 12: The Argo float design. 

 

 

 

 

 



 45

 

Figure 13: Schematic of ARGO float cycle. 

 

 

Float data was obtained from http://www.coriolis.eu.org/. We used corrected 

data, which has been pre-processed to remove any flagged or missing 

profiles, in netCDF format. However, further processing was necessary in 

order to ensure only data with sensible pressure, temperature and salinity 

values were included in our inversion. Additionally, we only used profiles 

which contained at least 10 measurements to guarantee that bad casts were 

excluded. Absent data take the value 99999 (see Chapter 5 for more details). 



 46

 

OCCAM Model: 

Model details 

 

The OCCAM model is based on the Bryan-Cox-Semtner ocean general 

circulation model (Webb et al., 1997; Webb et al., 1998). The version we use 

has a global geographic coverage at a resolution of ¼ degree latitude x ¼ 

degree longitude. The model contains 36 depth levels, ranging in thickness 

from 20m near the surface to 255m at 5500m (Table 1). It was run for a 14 

year simulation period. The main variables stored are u, the horizontal 

velocity, T the potential temperature and S the salinity. The other variables, 

P the pressure, w the vertical velocity and ρ the density can be calculated 

from these other values if need be. In general, temperature, salinity and the 

three components of velocity define the state of the ocean. The temperature 

variable is stored as potential temperature (relative to a pressure of one 

atmosphere) because this remains constant under adiabatic changes in 

pressure. 

The horizontal grids 

If a global model uses a Mercator grid everywhere, then convergence of the 

meridians near the North Pole means that the spacing between grid points 

becomes very small, and at the pole itself you would get a singularity. This 

requires the model time-step to be small, and requires a large amount of 
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computation. To overcome this problem, the OCCAM model is split into two 

parts, called Model 1 and Model 2. Model 1 uses a standard Mercator grid 

and covers the Pacific, Indian and South Atlantic Oceans. Model 2 covers the 

North Atlantic and Arctic Oceans and uses a rotated grid, which has its poles 

on the Equator in the Indian and Pacific Oceans. It is oriented to match 

Model 1 at the Equator in the Atlantic. A simple channel model connects the 

two grids through the Bering Strait. The two model grids have a resolution of 

one quarter of a degree in both longitude and latitude. Figure 14 shows an 

example of the SSH extracted from the rotated model.  

 

The vertical grid 

The model has thirty-six levels in the vertical. These range in thickness from 

20m near the surface to 255m at a depth of 5500m. (Webb, Cuevas et al., 

1998) (Table 1). 

 

For this project we used the 5-day averaged files from the model 2 grid in 

the North Atlantic for the ¼ degree resolution model kindly provided by Dr. 

Andrew Coward, National Oceanography Centre Southampton. We chose the 

5-day output as this was easy to match with the Argo float and Jason 

altimeter data for comparison. 
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Table 1: Vertical levels in the OCCAM model 

 

OCCAM vertical grid settings. All depths in metres, but note: internally the model uses centimetres 

k  t-box thickness  distance between  t-pt depth  Bottom of t-box 

  t-points    

 (dz)  (dzw)  (zt)  (zw) 

0   9.86946   

1  20.00000  20.55911  9.86946  20.00000 

2  21.19713  21.92465  30.42857  41.19713 

3  22.75355  23.69704  52.35323  63.95068 

4  24.76980  25.98805  76.05027  88.72048 

5  27.36958  28.93379  102.03832  116.09007 

6  30.70166  32.69565  130.97211  146.79173 

7  34.93955  37.45820  163.66776  181.73128 

8  40.27707  43.42179  201.12596  222.00835 

9  46.91741  50.78758  244.54775  268.92576 

10  55.05351  59.73280  295.33533  323.97927 

11  64.83814  70.37598  355.06813  388.81741 

12  76.34513  82.73558  425.44410  465.16254 

13  89.52746  96.69041  508.17968  554.69000 

14  104.18343  111.95524  604.87010  658.87343 

15  119.94538  128.08578  716.82534  778.81881 

16  136.30297  144.52066  844.91112  915.12178 

17  152.66255  160.65512  989.43178  1067.78433 

18  168.43022  175.92725  1150.08690  1236.21455 

19  183.09483  189.89180  1326.01415  1419.30937 
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20  196.28768  202.26245  1515.90595  1615.59705 

21  207.80598  212.91698  1718.16840  1823.40303 

22  217.60180  221.87305  1931.08538  2041.00482 

23  225.74829  229.24868  2152.95843  2266.75311 

24  232.39785  235.22084  2382.20711  2499.15096 

25  237.74326  239.99061  2617.42795  2736.89423 

26  241.98773  243.75842  2857.41856  2978.88195 

27  245.32516  246.70897  3101.17698  3224.20712 

28  247.92924  249.00381  3347.88595  3472.13636 

29  249.94890  250.77921  3596.88976  3722.08526 

30  251.50799  252.14711  3847.66897  3973.59325 

31  252.70719  253.19770  4099.81608  4226.30044 

32  253.62703  254.00263  4353.01378  4479.92747 

33  254.33107  254.61818  4607.01640  4734.25854 

34  254.86907  255.08824  4861.63458  4989.12761 

35  255.27966  255.44681  5116.72282  5244.40727 

36  255.59273  127.83037  5372.16963  5500.00000 

37    5500.00000  
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Figure 14: Example SSH output (in cm) from the OCCAM Model 2, which uses a 
rotated grid. 
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Simulating Argo floats in the OCCAM model 

 

To create a working “model” system we have simulated Argo floats in 

OCCAM, extracting salinity and potential temperature profiles from the model 

to apply the Bernoulli function to. The OCCAM model used was the 6 hourly 

wind forced run in the North Atlantic, which gives 5-day mean average 

values. The float trajectories on a set level of 1000m were calculated by 

interpolation of the velocity field in time and space using a 

predictor/corrector routine (Marsh and Megann, 2002). This routine 

calculated the motion of a single particle (representing the Argo float) in the 

model over time. At each 10-day time step this predicted position was then 

corrected to the nearest grid point in the model. Because the floats are 

located in the North Atlantic, this routine had to work in the rotated grid 

model, before converting float positions back to the corresponding latitude 

and longitude values. 

 

As for the real Argo floats, vertical temperature and salinity profiles were 

extracted every 10 days along with the latitude and longitude values of each 

profiling station. These temperature and salinity values are then solved using 

the Bernoulli function to predict the SSH. Station pairs were obtained for the 

floats and streamlines are created for these, by seeking crossings of the 

modified potential temperature versus salinity distribution amongst the eight 
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nearest neighbouring stations. There is an extra test to check these eight 

nearest neighbours are all clustered within reasonable distance of each 

other, and are therefore likely to have the same water properties. From the 

Bernoulli inverse a set of simultaneous equations are obtained and these are 

solved by singular value decomposition (SVD). This is outlined in much more 

detail in the next chapter. Once the slope of the sea surface is known, the 

barotropic reference velocity may be determined and ocean circulation can 

be estimated. This surface circulation can later be combined with the 

dynamic height relative to the surface to calculate the total geostrophic 

circulation. 

 

The Sea Surface Height (SSH) for the OCCAM model at each of the “float” 

positions was also extracted for later comparison with the Bernoulli inverse 

results. Exactly the same method is applied to the “simulated floats” from the 

OCCAM model, where we know the true solution, as is applied for the “real” 

Argo floats. The simulated method therefore gives us a clear idea of how 

well the new method is performing before applying it to the real data, where 

we do not know the true solution. 

 

To allow comparison, I have used the original positions from Cunningham 

(2000) as our “simulated float” starting points (Table 2). These are the 

CONVEX cruise station positions.   
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Table 2: Simulated float starting positions, given in degrees longitude and 

latitude 

 
latitude/ longitude 
 

longitude/latitude 
 

  329.   39.   336.   39. 

  329.   42   336.   42. 

  328.   45.   336.   45. 

  328.   48.   332.   45. 

  327.   51.   333.   42. 

  326.   54.   333.   39. 

  331.   54.   340.   57. 

  332.   51.   338.   57. 

  331.   48.   335.   58. 

  336.   48.   333.   58. 

  335.   51.   331.   58. 

  335.   54.   330.   57. 

  339.   54.   329.   59. 

  339.   51.   326.   59. 

  340.   48.   324.   59. 

  344.   48.   320.   59. 

  344.   51.   319.   58. 

  345.   54.   321.   56. 

  348.   47.   323.   54. 

  348.   45.   343.   57. 

  347.   42.   346.   56. 
   
  343.   42.   348.   55. 
   
  344.   45.   340.   42. 
     340.   39. 



 54

  340.   45. 

 

Jason Altimetry: 

 

Jason-1 was launched on December 7th 2001. Built around the Proteus 

spacecraft bus, the Jason-1 satellite carries five instruments: an altimeter, a 

radiometer, and three location systems. It has been launched into a 1,300-

kilometer orbit with a ten-day repeat cycle, identical to that of 

Topex/Poseidon, which covers 90% of the world's ice-free oceans every ten 

days (Figure 15). Jason-1 follows on from Topex/Poseidon and continues to 

provide data of similar quality. Jason-1 is also expected to complement 

measurements collected by ARGO. In fact the name Argo was chosen to 

recall the story in Greek mythology of Jason and the Argonauts, to reflect the 

synergy between Argo and the Jason satellite altimeter missions.  

 

The Jason data is extracted using the RADS (Radar Altimetry Database 

System) routine, rads2asc, written by Helen Snaith at the National 

Oceanography Centre.  The following command is used: 

 

rads2asc sat=j1 lat=55,60 lon=330,335 ymd=030101,030110 out=jul032 sel=0 

 

Where the latitude and longitude are changed accordingly and the ymd, is 

the year month and day of the data. 
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Figure 15 : Jason-1's orbit covers 90% of the world's ice-free oceans every 10 

days and is identical to that of Topex/Poseidon 
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Simulating Satellite Altimetry in OCCAM model 

 

In a similar manner to the floats, satellite altimetry for use in the Bernoulli 

inverse has been simulated in OCCAM. This was achieved by taking real 

TOPEX and Jason ground track locations and using these positions to extract 

SSH values from the model at these locations. The code for the simulated 

Argo floats was used, but the predictor/corrector routine was turned off to 

keep the tracks stationary in the model. We simply subtract 10-day snap 

shots from one another to obtain changes in SSH, ∆SSH.  

 

Figure 16 shows the positions of the floats and satellite altimetry tracks used 

to extract data from OCCAM in the simulated method. For comparison, 

Figure 17 shows the positions of the Jason satellite altimetry tracks and the 

ARGO float positions used for the ‘‘real’’ surface solutions in Chapter 5.  
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Figure 16. Simulated ARGO floats (blue diamonds) and Jason altimetry (green 

tracks) in OCCAM.  
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Figure 17: Positions of real ARGO floats (crosses) and JASON tracks (blue lines) 
for (a) a 1st solution, and (b) a 2nd solution over a larger area. 

(a) 

 

(b) 
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Summary of data processing procedure: 

The whole programming process for all the data sets and solutions used in 

this project is summarised in Figure 18. The starting data sets, shown along 

the top, are the OCCAM model, the ARGO temperature and salinity profiles 

and Jason altimetry. To simulate the real world data we obtain temperature 

and salinity profiles, and the SSH at TOPEX satellite track positions, from the 

OCCAM model using the routines described in this chapter. 

  

These various data sets are then stepped through the different programming 

paths described in Chapters 4-6 to obtain our solutions, shown at the bottom 

of Figure 18. Firstly we obtain point solutions, both with and without the 

satellite altimetry. Secondly we obtain a surface solution with and without 

altimetry. Finally we fit a GAM to the model float only point solution. 
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RADS data, provided by the Technical University of Delft, (Naeije et al., 2005) 

 

 

 



 62

 

Chapter 4 

 

Background to Inverse Methods 

 

What is an Inverse Method? 

 

According to Wunsch (1996), “the ocean inverse problem, is the problem of 

inferring the state of the ocean circulation, understanding it dynamically and 

even perhaps forecasting it, through a combination of theory and 

observations.” In a forward problem we would start with a set of equations 

that describe the known system and then try to predict what we should 

observe. In contrast, in an inverse situation we already have these 

observations and data. What we then wish to achieve is a description of the 

system producing these observations.  

 

There are three main types of inverse methods used in oceanography, the 

Beta-Spiral, the Box Inverse and the Bernoulli Inverse methods. When these 

three methods are compared (Killworth and Bigg, 1988), it can be seen they 

span a range of length scales. The Beta-Spiral method is fundamentally a 

local calculation, generating an estimate of the velocity vectors (u,v) at a 
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given point or set of points, whereas the Bernoulli and Box inverses can 

handle a much wider range of data, and aim to give a large scale description 

of the oceanic circulation. The most popular of these methods is the Box 

Inverse but this project has chosen to use the Bernoulli solution. This method 

was first developed by Peter Killworth in 1986 (Killworth, 1986; Grose et al., 

1994) and  modified in 2000 by Stuart Cunningham (Cunningham, 2000). We 

work with this modified method, which uses the modified potential 

temperature and salinity variables. Combination of the Bernoulli inverse with 

satellite altimetry has only been attempted in one published study, using the 

original method, in 1994 on the Iceland-Faroe front (Tokmakian, 1994).  

 

This chapter gives a brief background to the other methods, before going into 

greater detail on the Bernoulli Method used in this study. 

 

The Beta-Spiral Method:  

 

The origins of the Beta-Spiral Method are fully discussed in (Scott and 

Stommel, 1978). At a given station, the method assumes thermal wind 

balance in both horizontal directions and buoyancy conservation. The 3D 

velocity vector at some reference depth provides three unknowns. The 

horizontal velocity at other selected depths is computed from the thermal 

wind and vertical velocity. Approximate conservation of density at each of 

these depths produces an over-determined system of equations for the 
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reference values (u,v,w), which are solved as a linear least squares problem 

for example using singular value decomposition (SVD). Conservation of mass 

between stations can be used to link them together. 

  

The Box Inverse Method:  

 

The development of this method for oceanographic purposes is due to 

Wunsch (1978). It requires a closed volume of ocean surface surrounded by a 

set of stations, and assumes thermal wind balance and approximate mass and 

buoyancy conservation. A reference level for the normal velocity is assumed 

and all other normal velocities are calculated as offsets from this using 

thermal wind. Conservation of buoyancy (or temperature) is then applied to 

each collection of buoyancy ranges. Each conservation equation yields one 

equation for the collection of unknown reference velocities so that the system 

is underdetermined.  Selecting the optimal solution from the null space of 

permissible solutions then solves the system: “it is assumed in the method 

that the evaporation and precipitation are in balance (or negligible), and 

therefore the amount of water flowing into the box (closed area) must equal 

the amount of water coming out” (Wunsch, 1978). Because the system of 

equations is underdetermined we need to add additional information to 

extract a solution. This is usually done by taking the solution closest to the 

initial guess.  
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Bernoulli Method:  

In 1986 Peter Killworth produced an inverse method for defining the large-

scale ocean circulation (Killworth, 1986). Unlike the other methods, the 

Bernoulli inverse requires no information about the horizontal velocity 

gradient. The method is designed for use with widely spaced and vertically 

sparse data, making in an ideal choice for an array of floats, such as the Argo 

network. By assuming that density and potential vorticity are conserved on a 

streamline a set of simulations equations are obtained in terms of the 

Bernoulli function. These may then be solved by linear regression to give the 

Sea Surface Height solution to the problem. Unlike other inverse methods, 

such as the box inverse, we can obtain a unique solution to the problem, 

rather than a range of values from which we then have to determine the best 

guess.  

 

Despite these advantages, the box inverse has been much more widely used 

in the oceanographic community, and has had many subsequent 

developments as a result. The Bernoulli method lay dormant until 

Cunningham (2000) modified the method to use modified potential 

temperature instead of potential vorticity, so that it could be more easily 

applied to existing oceanographic data. The increasing availability of high-

performance computing resources in the last decade has also made it much 

easier to practically use this method.   
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How do we obtain Sea Surface height from the 

Bernoulli function? 

 

In this section, we first explain the general principles behind the Bernoulli 

method, before discussing modified potential temperature and how this is 

used as a conserved variable in the Bernoulli function. Then we show how the 

linear problem is solved, using the singular value decomposition method, to 

obtain an SSH solution 

 

Figure 19 shows three conserved surfaces (C1, C2, C3). In our case these are 

three different layers of water with their own unique properties. Conservation 

means that the flow lines (the narrow lines with arrows in Figure 19) are 

restricted to their respective surfaces. These flow lines have the properties of 

the surface that they are on. Where surfaces C1 and C2 intersect, the 

properties of both surfaces must be conserved along the blue line of 

intersection.  

 

If we then introduce the third surface, C3, which also intersects the other two 

surfaces, the properties of this new surface must also be conserved at the line 

of intersection. The only way that this condition can be met is if surface C3 is 

a function of the other two intersecting surfaces, C1 and C2: 
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Equation 2    ),( 213 CCfnC =  

 

 

Figure 19: The figure shows 3 different water layers with their own unique 
properties. The surfaces are conserved which means that the flowlines (the lines 
with arrows) have to remain on their respective surface. Therefore the 
intersection between surfaces (shown in a blue line between surface C1, C2 and 
C3) is a point at which a streamline must be conserved for all three surfaces.  

 

 

The conserved surfaces in Figure 19 can represent any conserved function or 

variable (Bernoulli function, Montgomery function etc.). In our case the 

Bernoulli function is used. In the original Bernoulli inverse of Killworth (1986) 

density and potential vorticity were used as the conserved variables, C1 and 

C2. The third surface C3 was the Bernoulli function. In this project we instead 
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use salinity and modified potential temperature as our conserved variables, 

following the method of Cunningham (2000).  

 

We now take profiles at two stations or float positions and extract the 

temperature and salinity through the water column, as in Figure 20 below. 

The temperature is later converted to modified potential temperature, as 

explained later in this section. 

  

Figure 20: Salinity and temperature profiles at two stations. Values are extracted 
at depths Z1 and Z2, indicated by the dark blue horizontal lines. These are the 
same Z1 and Z2 used later in equation 3. 

 

 

These temperature and salinity profiles can also be plotted against each other 

as in Figure 21, where C1 and C2 are modified potential temperature and 

salinity. At depth Z1 in profile 1, and depth Z2 in profile 2, the temperature 

and salinity values for the two profiles intersect, forming a crossing point. 

Z1 

Z2 
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From our earlier discussion and equation 1, a function of these conserved 

temperature and salinity variables, i.e. the Bernoulli function, is also 

conserved between these points. 

 

Figure 21: The functional relationship between the two conserved variables C1 and 

C2 .S1 and S2 are the profiles extracted at the two stations in figure 2. The blue dot 

denotes the crossing point of these two stations. 

 

 

 

From Figure 21 we now have the following equation: 

Equation 3    )()( 2313 ZCZC =  
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Where Z1 and Z2 are the depths at our two stations or float positions. A 

crossing point between the two stations S1 and S2 has been obtained. We 

now expand the equations to include the Bernoulli function. 

 

The Bernoulli function can be expressed as: 

Equation 4    gzPB ρ+=  

 

Where P is the pressure and the ρgz term is the variation of potential energy 

within the water column. 

 

If we take equation 4 and integrate this function from the surface to depth z, 

we can obtain the following new equation: 

 

Equation 5    ∫+=
z

dzgBB
0

0 ρ  

 

As we are integrating from the surface, we have replaced P with B0, which is 

the value of the Bernoulli function at the surface. This can also be written as: 

Equation 6    ηρ gB 00 =  

 

where η is the unknown Sea Surface Height (SSH) and 0ρ  is the density 

integrated from the surface. The second term in equation 5, ∫
z

dzzg
0

ρ , can be 
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obtained from the profile at each station position. Hence for a series of station 

points we obtain a set of simultaneous equations for an over-determined 

system in which the only unknown is the SSH.   

 

In summary we have a series of simultaneous linear equations in the 

conserved variables, density and salinity, that we can solve for sea surface 

height. These can be solved using standard methods such as SVD. The details 

of this solution are given later.    
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Modified Potential Temperature: 

 

We now explain how the conservative variable, modified potential 

temperature, which we use in this project is obtained from the temperature 

profile, according to the method of (Cunningham, 2000). 

 

Ideally to meet the conditions explained above we need to choose variables 

that are conserved when water parcels are mixed, and are independent of 

changes in pressure. For example, salinity remains unchanged by physical 

processes in the ocean and only depends on the chemistry of the water, 

hence it is said to be conservative. In oceanography potential temperature (θ) 

is often used as though it is a conserved variable like salinity. However, 

(McDougall and Jackett, 2000) show that mixing fluid parcels from the real 

ocean leads to a maximum production of θ of about –0.4°C, meaning that θ is 

not truly conserved. However, it has been shown by (Macdonald, 2003) that 

potential enthalpy is more conservative than potential temperature by two 

orders of magnitude. Potential enthalpy is the enthalpy that a water parcel 

would have if raised adiabatically and without exchange of salt to the sea 

surface, where enthalpy is defined as the sum of the internal energy, U, plus 

the product of the pressure and the volume. U,  is the sum of the total kinetic 

energy due to the motion of molecules, and the total potential energy 

associated with the vibrational and electric energy of atoms within molecules. 

Although enthalpy is a quantifiable state variable, the total enthalpy of a 
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system cannot be measured directly. The enthalpy change is measured 

instead.  

Equation 7      H = U + PV  

 

 
Where H is the enthalpy, U is the internal energy, P is the pressure and V is 
the volume. The enthalpy change is calculated from the final enthalpy of the 
system minus the initial enthalpy. 
 

 

A simple linear combination of potential enthalpy and salinity gives us a new 

variable, modified potential temperature (Θ), also referred to as conservative 

temperature. This gives us (from McDougall and Jackett, 2000): 

  

Equation 8   S
c

PSH
S 31076664.2

)0,,(
),( −×+

=
=Θ

θ
θ  

 

Where c is the specific heat capacity of water and the constant term, 

2.76664×10-3 scales the value so that at 0°C we have Θ(0,0)=0 and similarly 

at 20°C we have Θ(35,20)=20, (Cunningham, 2000). 

 

We now have a new functional relationship, which allows us to transform the 

Bernoulli function into a new variable E:  

 

Equation 9   ),( SFE Θ=  
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Solving the modified Bernoulli function: 
 

Imagine we have a similar situation to that shown in Figure 21, but with three 

stations instead of two. Suppose a streamline exists from station one to 

station two and another streamline exists from station one to station three. 

We know the Bernoulli function, modified potential temperature and salinity 

are all conserved along these streamlines. We can now obtain a set of 

simultaneous equations for each pair of stations. These simultaneous 

equations are equations 10, 11, 12 and 13 below. Stations one and two 

intersect at depths z1 and z2, whereas stations one and three intersect at 

depths z3 and z4. 

 

Equation 10    Θ1(z1)=Θ2(z2) 

 

Equation 11       S1(z1)=S2(z2) 

 

Equation 12       S1(z1)=S2(z2) 

 

Equation 13    Θ1(z3)=Θ3(z4) 

 

Equation 14    S1(z3)=S3(z4) 
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We have transformed B, the Bernoulli function into a new variable E (Equation 

10), which is a linear combination of the two conserved variables B-gη and Θ, 

the potential temperature. The new variable, E, is itself conserved except for 

the unknown SSH contribution.  We now have the equation: 

Equation 15     E= B – Bcorr 

 

Bcorr is a scaling term added for numerical reasons, without it we end up 

subtracting two very small numbers (Cunningham, 2000). 

 

Equation 16   Bcorr = -393.4 – 3987.6Θ   

 

We now have the following new simultaneous equations for the problem 

using this new variable E and our conserved variables Θ and S: 

 

Equation 17   E1(z1) + gη1 – E2(z2) – gη2 = 0 

 

Equation 18   E1(z3) + gη1 – E3(z4) – gη3 = 0 

 

Where E is the Bernoulli function in the new modified form from equation 15 

at our crossing points for the four simultaneous equations 11-14. g is 

acceleration due to gravity and η is the unknown SSH that we wish to 

determine. We can rearrange equations 17 and 18 to the following format: 
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Equation 19   )}()({)( 221121 zEzEg −−=−ηη    

  

Equation 20   )}()({)( 433131 zEzEg −−=−ηη    

  

For n stations and m crossings the rank of the problem is n -1 since one value 

of the SSH may be chosen. Generally there are many more known crossings 

than unknown station SSH’s, m>n, so that the system of linear simultaneous 

equations is an over-determined problem. In the matrix solution seen later in 

this section, we rearrange this equation by dividing by g, so that only the 

unknown SSH which we wish to solve is on the left hand side.  It should also 

be noted that for simplicity the Bernoulli function is still referred to as B in our 

matrices as it is more familiar and less easily confused. However, this is 

actually the modified Bernoulli function E. 

 

Equations 19 and 20 are solved using the Singular Value Decomposition (SVD) 

method, which is explained in the next section 

 

 

Singular Value Decomposition Method (SVD) 

Singular Value Decomposition is a very powerful method for dealing with sets 

of equations or matrices that are either singular, or numerically very close to 
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singular. SVD allows us to diagnose the problems in a given matrix and can 

provide a numerical solution to a linear regression problem. 

The least squares problem for the Bernoulli inverse method can be written in 

matrix form (Lawson and Hanson, 1974) as: 

 

Equation 21    yAx =  

 

where A, the design matrix, is a real matrix with m rows and n columns. Here 

m is the number of crossing points and n is the number of stations or floats in 

the problem. x is the real n-vector of unknown SSH that we wish to solve. 

The new function E lies on the right hand side as the Bernoulli differences in a 

real m-vector y.  

 

The solution to equation 21 is: 

Equation 22    x = A-1y 

 

However inverting the matrix A would be computationally very inefficient. The 

following equations 23-28 show how a solution is obtained using matrices and 

the SVD method, which eliminates these computational difficulties. 

 

Any matrix (m×n) where the number of rows is greater than the number of 

columns can also be written as: 
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Equation 23    
TSVUA =  

 

The matrices U (m×m) and V (n×n) are orthogonal, which means that the 

inverse of these matrices equals their transpose. S (n×m) is the matrix 

consisting of a diagonal of singular values and zeros everywhere else. 

 

Equation 24    UT. U =  VT. V = I 

 

Where I is the identity matrix. If all the eigenvectors of the symmetric design 

matrix A . AT exist then, 

 

Equation 25    U . UT =  I 

 

And similarly for V 

 

Equation 26    V . VT =  I 

 

The natural inverse of A is A-1, so we can now rearrange equation 23: 

Equation 27    
TS UVA

11 −− =  

Where S-1 is the inverse of the singular values. We can now substitute for A-1 

back into equation 22: 

 

Equation 28    x = VS-1UTy 
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Where x is the unknown SSH we wish to solve for and y the differences of 

the new Bernoulli variable, E for each station pair (the right-hand side of our 

equations 19 and 20). 

 

In Figure 22 below a schematic of the matrices we wish to solve in this 

problem are shown. On the left hand-side we have the vector of Bernoulli 

differences y. On the right hand-side we have the design matrix A, which is a 

matrix of ones and minus ones denoting crossing points, and zeros where no 

crossing is obtained. Each crossing pair will be represented by a one and a 

corresponding minus one, as a result of us using the Bernoulli difference 

function. The x vector is the unknown SSH we wish to solve for. All the matrix 

dimensions are shown, where n is the number of stations or floats in our 

problem and m is the number of crossings that have occurred between these 

stations. The Bernoulli method assumes a constant single water mass. In 

practice because we are solving across a larger basin there are a number of 

water masses involved. To reduce the number of crossings between different 

water masses we restrict ourselves to local crossings. For this reason only the 

eight nearest neighbouring stations are checked for crossings, so that only 

crossings likely to be within the same type of water mass are used in the 

solution. 
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Figure 22: A schematic of the matrices to be solved for the problem. 
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Where 

 

n: is no. of Stations 

m: is no. of Crossing between Stations 
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Results for inverse of OCCAM Model data: 

 

Before moving on in the next chapter to the improvements we have made to 

this method by fitting a surface solution, we will examine our simulated floats 

in the OCCAM model, and use the extracted profiles of temperature and 

salinity from the model to produce a “point” solution. 

 

 

Simulated ARGO floats in OCCAM: 

  

The following figures demonstrate the use of the predictor/corrector routine 

to track the simulated Argo floats as they move in the OCCAM model, as 

outlined in Chapter 3. These plots show how the position of the floats 

changes over an increasing number of days. 
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Figure 23: Initial positions of the floats. 
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Figure 24: Float positions after drifting in the model for 25 days. The blue X marks 
the initial position and the red trail the motion to new locations. 

 
 
 
 

 

 
 
 

We can see that one or two of the floats (for example the float at 

approximately -27° W, 39° N) have not moved because they have hit 

topography (Figure 4, which plots these float locations onto a bathymetry 

map of the North Atlantic, shows that this float intersects the Mid-Atlantic 

Ridge). These floats have been omitted from the solution.  

  



 84

Figure 25: The floats after 100 days of projection. Blue trails mark motion of the 
floats from their starting positions (crosses) 

 
 
 
 

 

 

 

This figure shows that even after 100 days, many floats have hardly moved. 

Though we can accept that some of the floats will not move due to the 

obvious constraints of the topography in the bottom middle of the map, this 

does not explain why many other floats appear not to move at all either. We 

became concerned about this and decided to look at the actual velocity fields 

for some of these locations in the OCCAM model, to try and discover what 

was happening. 
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Figure 26: U Velocity field extracted from OCCAM. Velocities in ms-1 (vertical axis), 
extracted from the OCCAM model at different levels, are plotted for each float 
position (numbered along the horizontal axis). 
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Figure 27: V velocity field extracted from OCCAM. 

 

 

 

 

 

 

These figures may be a little difficult to interpret at first. What we have done 

is to extract the velocity field directly from OCCAM at each float location 

during the period of simulated motion. We have done this for several depth 

levels of the model: 1, 50, 100, 500, 1000 and 2000 m. We would expect the 

bottom levels to have a lower velocity in both U and V, and the surface 

velocities to be higher. The velocity is shown by the vertical distance from the 

zero axis. What we see from this figure is that the deep floats, at 2000m are 

hardly moving because the velocities are so low. The floats higher in the 
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water column are moving, though a certain number had obviously hit 

topography during our simulation. To reduce this problem we raised the 

drifting level from 2000 m to 1000 m. We also concluded from this analysis 

that the extremely low velocities observed at lower depths in the OCCAM 

model, of the order of 10-6
 ms-1, are so small that rounding errors might be an 

issue when writing the profiles to a file, hence we increased the number of 

significant figures for the temperature and salinity file outputs from our 

program. 

 

It is not clear why OCCAM has such small velocities at depth. One possibility 

is that the run we use is not fully spun up after 14 years. This problem does 

not appear to have been noted by other people. This run with seasonal 

forcing has been used extensively. By moving our floats to 1000m we 

produced simulations that were suitable for our purpose so we did not pursue 

this odd behaviour in OCCAM. Because we can prove that our simulated floats 

were moving correctly within the model, these small changes to our program 

were sufficient to allow us to move on the main focus of the project, applying 

a Bernoulli inverse to this data set.  
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Extracting temperature and salinity profiles from OCCAM: 

 

In order to apply the Bernoulli method we need to extract temperature and 

salinity profiles to mimic the ARGO floats. We then obtain the crossing points 

for the Bernoulli equations by plotting the temperature versus salinity. Below 

we have plotted just two station profiles (Figure 28) and then all the profiles 

extracted from the model (Figure 29). 

 

Figure 28: Profiles of extracted salinity and temperature for two simulated floats 
plotted together. The blue line uses potential temperature extracted from the 
model; the green line uses the modified temperature for our method. 
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We can see from Figure 28 that these two stations have in fact got more than 

one crossing point between them. This is a clear example of how this problem 

is over-determined, with far more crossing points than stations. This graph 

also shows that there is a good match between the potential temperature 

extracted from the model (blue line) and the converted temperature for our 

method (green line). 
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Figure 29: Temperature and salinity of all 48 extracted profiles plotted against 

one another. The different North Atlantic water masses are also indicated by their 

expected temperature and salinity properties. 

 
 

 
 

 

We are now ready to go on and apply an inverse calculation to this data set. 
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Results for the original Bernoulli point solution method 

and comparison with OCCAM: 

 

In this section we use the simulated floats in OCCAM to obtain a Bernoulli 

inverse “point’’ solution for the SSH. Because we have simulated the ARGO 

floats in a model, we can also extract the ‘‘true’’ SSH at each of the float 

positions and do a comparison with the SSH obtained from the inverse. 

 

First of all we do a quick comparison between the “point” solution method of 

(Cunningham, 2000) and that of the extracted SSH from the OCCAM model. 

The OCCAM data is shown in Figure 30. These plots clearly show some of the 

expected features discussed in Chapter 2. The higher (red/orange) SSH in the 

south west is associated with the Gulf-Stream/North Atlantic Current, and the 

subpolar gyre is clear as a region of lower (blue) SHH in the north west 

corner. The eastern Atlantic has much less variable topography, but moderate 

to high SSH, as expected. 

 

Figure 31 shows the SSH “point” solution obtained between the same float 

locations using the Bernoulli inverse method, as outlined at the beginning of 

this chapter.  

 

A matlab contouring routine has been used on both of these figures for 

comparison. We also present the point solutions without contouring as scatter 

plots in Figures 32 and 33.  
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Figure 30: The 1st six ten-day snap shots of SSH (in m relative to an arbitrary 
reference point) extracted from OCCAM. The black X’s denote the positions of the 
floats. T0 is the first 10 day snapshot, T2 is 20 day snap shot and so on. 
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Figure 31: The same seven ten-day snap shots of SSH (in m relative to an arbitrary 
reference) solved using Bernoulli inverse. 
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Figure 32: Dot plot for the first of the six ten day snap shots of SSH in Figure 30 
extracted from OCCAM. SSH values are in cm; the mean SSH signal has been 
calculated and subtracted from each value.   
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Figure 33: The first of the six ten day snap shots obtained from the Bernoulli 
solution displayed using a dot plot. SSH is in cm, and again the mean signal has 
been calculated and subtracted from the solution. 

 
 

 
 

 

When we compare these two dot plots (figures 32 and 33) we can see that 

the magnitude of the Bernoulli obtained SSH is slightly higher than that of the 

extracted OCCAM SSH, but in general there is a very strong similarity between 

the two data sets. We can see the low sea surface height region to the North 

West in both figures and similarly the high sea surface height in the South. 

Going beyond this geographical comparison we have plotted the expected 

SSH from OCCAM against the SSH obtained from the Bernoulli solution in a 



 96

scatter plot, figure 34. If the solution was perfect we would expect to see a 

cluster of points along a diagonal from the origin. The solution is not perfect 

but we do have a general linear trend across the plot. A value of 0.34 was 

obtained for the correlation coefficient. This is very low and illustrates the 

poor fit. However despite this poor fit, we can see the main oceanographic 

features that we would expect for the region, the North Atlantic Current and 

the sub-polar gyre, though these are easier to see in the 2-D plots. We 

discuss how successfully these features are reproduced by our solution in 

more detail in Chapter 5. 

 

Figure 34: The expected SSH solution extracted from OCCAM plotted against the 
solution obtained from the Bernoulli method. 
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For a more comparison of these results we have plotted two line graphs. 

Figure 35 plots our “point” solution (blue) with the OCCAM SSH (red). We can 

see that the shape of the “point” solution is similar to the expected answer 

(the OCCAM SSH), but that there is an offset. The two surfaces appear to 

have different reference levels. Figure 36 compares the “point” solution (red) 

to the OCCAM SSH minus the mean signal (green). This removes the offset, 

and we see that our “point” solution is in good agreement with the OCCAM 

SSH, though some detail is lost at small length scales. Looking at figure 36 we 

can see that both the red and green curve rise to a maximum at ~20 and 

have a minimum at ~40, rising again towards the end of the plot. Although 

this general shape is common there are discrepancies in detail. For example 

at ~5 and ~12, where the OCCAM (green) signal has spikes. It should be 

noted that the sign of the OCCAM SSH is flipped between these two figures, 

because there is an arbitrary sign in the solution. 
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Figure 35: one time step of OCCAM compared with the same “point” solution for 
the same time step. The red line is the OCCAM SSH extracted at the solution 
points and the blue is the “point” solution. Vertical axis is SSH in cm, horizontal 
axes shows float number. 

 

 

 

Figure 36: The solution (red line) and the extracted data (green line) at the same 
time step but with the mean signal subtracted from the OCCAM SSH. Note the 
change in sign. Axes as in Figure 34. 
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Figure 37 is a simple line plot of the SSH calculated at the simulated float 

locations using the “point” inverse method for the 1st five ten-day snap shots 

shown in Figure 31. Variations in SSH are in metres rather than centimetres 

as in Figure 36. This plot gives us a clear idea of the expected magnitude of 

the SSH signal (between ± 0.4 m), which is useful when we move on to our 

surface solution. We have also marked the errors obtained from the Bernoulli 

solution using the SVD linear regression method. We can see that the typical 

error is ~ ±0.05 m, which is small in terms of the overall signal. 

 

We have also obtained a mean square error value for how well the inverse 

solution compares to the extracted OCCAM SSH (we discuss how this is 

calculated in Chapter 5, where we discuss in detail all of the mean square 

error calculations for our different solutions). We obtained a value of 681 cm2. 

The square root of this value, the standard deviation, is 29 cm, which is 

rather large. We will see in Chapter 5 that this value for the “point” solution is 

smaller, and indicates a better result, than the simple 6th order polynomial 

surface solution we obtain using the floats only. However, the value is very 

close to that obtained by our later 7th order polynomial surface fit and our 6th 

order polynomial surface solution combining the satellite altimetry. 
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Figure 37: Line plot of point solution obtained from Bernoulli inverse for the 1st 
five ten day snap shots in Figure 31. Vertical axis is SSH in m, horizontal axis is 
float number. 
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At this point in the project we have now examined the simulated floats in the 

OCCAM model and their temperature and salinity profiles. We have managed 

to reproduce the earlier work of (Cunningham, 2000) effectively by applying a 

“point” solution of SSH to these data. We have seen a strong similarity 

between the extracted SSH of the model and that produced using the 

Bernoulli inverse method. We are now ready to move on and examine the 

new developments of the method, the addition of satellite altimetry and 

surface fitting.  
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Chapter 5 

 

Improving the method with the addition of satellite 

altimetry: 

 

The discussion so far has focussed on the use of simulated ARGO float data, 

which record temperature and salinity profiles every 10 days. These profiles 

can be used by the Bernoulli inverse to obtain the SSH for each 10 day 

snapshot between the ARGO float locations. This is a new application for the 

Bernoulli inverse, which in the past has been largely been applied to model 

data only (Bigg, 1986; Killworth, 1986; Killworth and Bigg, 1988; Tokmakian, 

1994; Cunningham, 2000), although Cunningham (2000) did apply the 

method to some CONVEX CTD data. Prior to this study, it has never been 

applied to such a variable and real time data set as is represented by ARGO. 

 

In order to advance and improve the solution we wish to constrain the 

problem further with the introduction of satellite altimetry data. The SSH from 

the inverse solution of the ARGO floats will be combined with the differences 

in SSH, ∆SSH, obtained from satellite altimetry to map a sea surface elevation 

for a given region (in this study, the North Atlantic) to study large-scale 

geostrophic currents. 
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The only previous study to combine altimetry and the inverse method was by 

(Tokmakian, 1994). The inverse method was used to obtain a set of Bernoulli 

values, B1 and B2, for each of two surveys of a region. The changes in SSH 

between the two surveys, ∆η, were known from the altimetry. Therefore the 

difference between B1 and B2 was equal to ∆η. The inverse solutions were 

found using a weighted least squares method, and the stations that had 

coinciding altimetry data were weighted more than the stations without, and 

hence the solution was forced towards the a priori altimetry data values. This 

study showed that with the use of satellite altimetry the Bernoulli inverse 

method does produces a valid geostrophic velocity field. It also demonstrated 

that the use of the altimetry data in the inverse method did not just help to 

constrain the SSH at the locations of the altimetry but also at other locations, 

for example 63.7  ํ N, on profile C in Figure 38.  

 

Our study differs from that of (Tokmakian, 1994) because we do not use the 

altimetry simply as a priori information for the inverse method. Instead, we 

combine the altimetry directly into the solution matrices to be solved as a 

linear regression solution by the inverse. A further advance is the solution for 

a paired parametric surface solution over two time steps of float data with the 

difference in altimetry between these two time steps. These developments 

are described in more detail later in this chapter. 
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Figure 38: Differences in dynamic height between two surveys for altimeter height 

data (dash-dot line), a traditional geostrophic calculation referenced to 800m 

(solid line), and an inverse model with (short dash) and without (long dash) 

altimeter data. Altimetry locations are indicated at points where the inverse 

method and altimetry lines exactly intersect. From (Tokmakian, 1994) 
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Problems with combining altimetry and moving to a 

surface solution: 

 

It is difficult to combine this sea surface height solution for the floats with the 

satellites because the float solution is an absolute sea surface height. By 

comparison the satellite altimetry gives us a measure of the sea surface 

relative to the reference ellipsoid. As we explained in Chapter 1, for this 

reason we are unable to use altimetry on its own to calculate absolute surface 

currents. 

 

So the altimetry data is not an absolute measurement, and cannot easily be 

combined with float data in the inverse method. The array of float points and 

the distances between them are also changing, because the floats are drifting 

to new locations every ten days. This means that the floats form a highly 

irregular non-stationary grid, which makes their integration with altimetry 

even more complex.  

 

One solution to these problems would be to interpolate the inverse solution 

for the floats on to a standard grid to compare snap shots at different times. 

However, we would still be left with the problem of combining the altimetry 

into the solution. We would still have the difficulties of combining the 

differences in SSH from the altimetry with the absolute SSH calculated from 

the inverse of the float data.  
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Therefore, rather than using interpolation techniques we have opted to solve 

for a parametric surface solution. So rather than solving for a point SSH 

solution we obtain the surface fit parameters for the whole region of interest. 

This is potentially of great advantage because we can now fit any basis 

function of any complexity to the problem. In the next section we explain the 

new surface method in detail and show how the matrices are modified to 

solve for the surface parameters (α ) rather than the absolute SSH between 

the station or float locations.  

 

Improving the method by surface fitting 

 

In the preceding chapter we have outlined the theory behind the Bernoulli 

inverse method and seen the results obtained for the “point” solution method. 

This section moves on to explain how we enhance this method to obtain a 

“surface” solution. First we discuss some background to surface fitting, and 

show how this approach changes the equations for the problem given in 

Chapter 4.  

 

Our main reason for obtaining a surface solution rather than a “point” solution 

is to be able to solve for the SSH for a whole region of interest. With a “point” 

solution we are only able to solve for the SSH at a set number of stations or 

float positions, whereas with the surface solution we solve for the parameters 
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of the surface fit for a whole region, giving us SSH values at any point in that 

region. 

  

Surface fitting is an attractive method for interpolating small numbers of 

observations because an interpolation can be produced for an entire region 

even in the absence of any other background knowledge to constrain the 

solution. It also is possible to account for observational errors through cross-

validation (especially when using GAMS; see Chapter 6). However there are 

also disadvantages. There can be no incorporation of information from a 

background field, hence we ignore any prior knowledge we may have. We 

must also be aware of the risks of under fitting, over fitting, or using the 

wrong set of functions. If the data is under fitted, by not having enough 

terms in the polynomial expansion, important details in the dataset may be 

unresolved. If, on the other hand, we over fit the observational data, by using 

too many polynomial terms, the solution may display features which have no 

real significance. Surface fitting can also be computationally expensive when 

large numbers of observations are considered. 

 

In our case, surface or function fitting is used to find the parameters that best 

describe the set of ARGO and Jason data we have for the North Atlantic. In 

this case we wish to extrapolate beyond the observation points we have to 

obtain a much larger picture of SSH in the North Atlantic region than the one 

we can simply obtain at our observation points. This method will also allow 

for the easy comparison between different time snap-shots, which is difficult 
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to achieve with a simple ”point” solution because the “points” (the ARGO 

floats) move about randomly with respect to each other over time.  

 

From chapter 4 we have seen how a “point solution” is obtained for the sea 

surface height by solving the Bernoulli equations. We had the following 

equation 19: 

 

Equation 29   Axy =  

 

Where x was the unknown SSH we wished to solve for. In this section we 

move on to explain how we obtain a surface fit by solving the modified 

equation: 

 

Equation 30  αAB=y  

 

Where A is the design matrix of crossing points. As in equation 19, this matrix 

has m rows and n columns, where m is the number of crossings and n is the 

number of stations or floats in the problem (see Chapter 4).  

 

y is a vector of the differences in the Bernoulli function, with dimensions 1 by 

m. Thus we have a Bernoulli difference for each one of our station pairs with 

a crossing point.  
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B is a new position matrix. This contains the latitude and longitude positions 

of the floats and (when used) the satellite ground tracks.  This matrix has n 

rows and a columns, where n is the number of points we have in the solution, 

the number of floats plus satellite altimetry points, and a is controlled by the 

order of our polynomial fit. It corresponds to the number of parameter terms 

in the equation. So in column one we have a column of ones for the first 

term, in column two latitude, column three longitude and so on. All of the 

expansion terms for the 6th and 7th order polynomial are listed in Table 3.  

 

 

The last term α, are the surface fit parameters which we now solve for 

instead of the earlier unknown SSH in equation 19. This solution gives us the 

parameter fit for the surface over our whole region of interest. We then 

simply evaluate our polynomial equation using the α terms and relevant 

latitudes and longitudes to obtain the SSH for this whole region.  

 

Given an nth degree polynomial, the roots can be found by finding the singular 

values of the matrix. This is still a linear problem so we can solve it in the 

same way as already outlined in Chapter 4, by using the SVD method to find 

the eigenvalues. 
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The Polynomial structure and surface fitting: 

 

Bearing in mind that we could take any basis function of any complexity to fit 

to our problem, we have chosen a polynomial fit. We have made this choice 

because it is computationally simple, can be generalised easily and there are 

previous examples of polynomials being used in this manner. One of the best 

known of these examples is (Panofsky, 1949), which was the first published 

attempt to fit a mathematical function (in this case a 3rd order polynomial) to 

two-dimensional meteorological data, across areas of the order of 106 square 

miles (eastern North America). Surfaces were defined by means of two-

dimensional polynomials for each sub-region of the study area. These 

surfaces were joined smoothly at the edges of each sub-region.  Panofsky 

states that a field of 10 observations can be fitted accurately by a third-

degree polynomial, with no smoothing of the data. He also states that though 

the polynomial cannot be expected to fit eddies in the data it should represent 

the large scale features of the field to be analysed.  

 

Polynomials are a popular choice as a fitting function, but we must be aware 

of the problems of using them. There is a tension between describing too 

little, using a function that does not have enough flexibility to follow the data, 

and too much, using a function that is so flexible that it fits noise or produces 

artefacts in the original data.  
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Any reasonable model with N free parameters should be able to exactly fit N 

data points. The goal of fitting is usually to be able to interpolate or 

extrapolate. Extrapolation should only be carried out with great care as the 

polynomial is not constrained outside the data. If there is any noise in the 

data, a model that passes through every point is carefully fitting details of this 

noise and does not generalize the meaningful patterns of the data. On the 

other hand, if too few parameters are used, the model may be forced not only 

to ignore the noise but also to miss the meaningful variation as well. 

Successful function fitting requires a balance between overfitting, where there 

are model mismatch errors because the model is also incorporating noise, 

with underfitting, where there are model estimation errors due to too few 

parameters in the model.  These ideas are illustrated Figure 39 below.  
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Figure 39: Figure showing how the function relates to the system it is trying to 

describe. Light green line shows how the errors for an originally underfitted 

function decrease as the model complexity increases, but past a certain point 

increasing complexity leads to an increase in error due to overfitting. Taken from 

(Gershenfeld, 1999) 

 

 

 

In our case we have chosen to fit a 6th order polynomial to the data. For 

comparison, we later fit a 7th order function to see what difference, if any, is 

made to the solution. A further test of this method is made in Chapter 6, 

where we fit a generalised additive model (GAM) to the “point” solution we 

obtained in Chapter 4. This allows us firstly to assess how well a polynomial 

fit describes the data, and secondly to see whether it is better to solve for a 

surface solution, or to obtain a “point” solution and then fit a surface to it. 

 

 

Underfitting overfitting 

Model complexity 

= system 
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In sample 

Out of 
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Model complexity 
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Our model dataset consists of approximately 48 Argo floats simulated in the 

OCCAM model, and in the case of the real time data we have information 

from approximately 115 floats every 10 days to fit a function to.  

 

We apply a polynomial equation of the form: 

 

Equation 31 
n

n xxx αααα ++++ ....2

210   

 

This generalises to a bivariate polynomial form with two variables. 

 

Equation 32 

   

Where our two variables are latitude and longitude positions of the floats and 

the satellite altimetry.   

 

The terms for the expansion of the polynomial up to the 6th and 7th orders are 

shown in Table 3. Figure 40 shows an example polynomial fit to some OCCAM 

SSH data. It can be seen that the fit captures most of the variability in these 

data.  

 

 

 

Table 3 : Terms for the 6th and 7th order bivariate polynomial fit: 
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Term Order 
1  
X  
Y End of 1st  
X2  
XY  
Y2 End of 2nd 
X3  
X2Y  
XY2  
Y3 End of 3rd  
X4  
X3Y  
X2Y2  
XY3  
Y4 End of 4th 
X5  
X4Y  
X3Y2  
X2Y3  
XY4  
Y5 End of 5th  
X6  
X5Y  
X4Y2  
X3Y3  
X2Y4  
XY5  
Y6 End of 6th  
X7  
X6Y  
X5Y2  
X4Y3  
X3Y4  
X2Y5  
XY6  
Y7 End of 7th 
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Figure 40: An example of a polynomial fit to some SSH data extracted from the 

OCCAM model, in this case a simulated single TOPEX/Jason track. Vertical axis is 

SSH in cm, horizontal axis is data point number. 
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Our approach to the problem: 

 

Having outlined the principles behind surface fitting, and particularly the use 

of polynomials, it is now time to move on to explain how we have modified 

the Bernoulli inverse to produce a surface fit. 

 

The easiest way to understand the method is go back to our modified 

equation: 

 

Equation 33  y=ABα  

 
 
 

And examine the construction of the new matrices required to solve the 

problem. These are shown in Figures 40 and 43 below. We have approached 

the problem in stages to gain an improved understanding of how well the 

method is performing. Firstly we solve for a surface solution using the float 

data only, before incorporating the satellite altimetry into the problem. 
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Obtaining a float only solution: 
 
 
 
First we apply the surface fit to one time step of simulated float data. We 

have extracted the “real” SSH from the OCCAM model at the same time as 

our simulated temperature and salinity profiles. This is the solution that we 

expect to be able to replicate. The matrices for this solution are shown in 

Figure 41.  

 

One of the advantages of using matrices is that it is very simple to include or 

exclude part of the matrices in the solution. In Figure 41 we divide the 

matrices so that the upper parts describe the floats, with the satellite 

components in the lower parts. Therefore, for the float only solution we just 

exclude the lower part of the matrices which contain the satellite components. 

 

As in the earlier “point” solution method described in Chapter 4, the vector y 

on the left hand side of the equation is the difference in the Bernoulli function 

between two crossing points obtained from our simultaneous equations. On 

the right-hand side, we have the design matrix A, the crossing point matrix. 

As described in Chapter 4, this matrix is constructed from the crossing points 

between pairs of streamlines. The matrix contains a set of ones and minus 

ones, with each one corresponding with a minus one for the crossing pair, 

because we are looking at the difference in the Bernoulli function for each 

pair.   
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For the surface solution we now have an additional B matrix. This is the 

position matrix and contains the latitude/longitude terms from the polynomial 

equation. As described in the previous section, in column one we have a 

column of ones for the first term, in column two latitude, column three 

longitude and so on. The expansion terms for the 6th and 7th order polynomial 

are listed in Table 3.  

 

The last term in the equation is the vectorα , which denotes the parameters 

of the surface fit, and is replacing the height between the points, h, which is 

solved for in the “point” solution.  

 

Adding altimetry to the problem: 

As we can see from Figure 40, when we wish to include the altimetry we 

simply add the bottom sections of the y, A and B matrices described above. 

On the left hand side of the equation we add an extra section to the bottom 

of the Bernoulli difference vector y, which contains the changes in SSH from 

the satellite altimetry. On the right-hand side, the altimetry part of the design 

matrix A is made up of a diagonal of minus ones, and the B matrix is 

expanded so that it contains the latitude/longitude terms for both the float 

positions and altimetry. We only need the positions of the altimetry for one 

time step as the ground tracks are assumed to remain constant. 
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 Figure 41: Matrices for the new surface fit. 
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Results of a Simple surface solution for one time step: 

The inverse has now been modified to solve for alpha parameters of a surface 

fit instead of SSH.  We are now ready to calculate a surface solution for the 

whole North Atlantic region, by applying a simple low order polynomial fit to 

the data. At this stage we are still using the OCCAM model output rather than 

real ARGO or Jason data sets. Figure 42 shows the alpha parameter estimates 

for two separate single time step solutions. Note that this is not a SSH 

solution, the vertical axis of the figure denotes the value of alpha and the 

horizontal axis each of the polynomial terms listed in Table 3. 

 

The alpha parameters were very small when the solution was first run, 

because the SSH variations being fitted to were very small in relation to the 

dimensions of the surface.  For computational reasons we decided to put a 

scaling factor directly in to the solution code so that, when building the 

position matrix B, the latitudes and longitudes were scaled to fit on a unit 

square. We write out these scaling factors with the solution and then use 

them to rescale the heights to a new latitude and longitude grid.  
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Figure 42: Example of an α  parameter solution for a surface fit, obtained for two 

separate single time steps. Vertical axis denotes the value of α  for each of the 

polynomial terms listed in Table 3 (horizontal axis). 

 

 
 
This α  solution is then converted to a SSH solution by multiplying out the 

alpha terms in the polynomial to obtain a surface solution for the whole 

region of interest  
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Figure 43: A 1-dimensional profile of surface solutions obtained for the whole 
region. The vertical axis is SSH in m and the horizontal axis is distance along the 
profile Each of the coloured lines represents a single step solution at different 
times in the OCCAM model.  

 
 
In figure 43, we can clearly see the smoothing effect of applying a low order 

polynomial to the data. The different solutions indicate changes in the SSH 

with time, but this 1-D representation does not give us a particularly clear 

idea of the oceanographic features in the data. In later representations we 

plot our solutions in a 3-D way with geographical information, by applying a 

standard grid to the data and using Matlab routines. Meshgrid was used to 

create the following standard grid: 

 

• Latitude: from 30.25 to 60 degrees in 0.25 degree steps. 
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• Longitude: from 320 to 350.5 degrees in 0.255 degree steps (due to a 

constraint in Matlab, the matrices need to be of the same size, so we 

use a 0.255 degree step rather than 0.25). 

 

The griddata routine was then used to place our datasets onto this standard 

grid. By applying the same standard grid to both the surface solution and the 

extracted OCCAM SSH, we could easily compare our solution with the 

expected results.  

 

In summary the polynomial coefficients were very small and in figure 42 we 

can see there was little change between the first and second time step. When 

a number of time steps were plotted in figure 43 as a 1-Dimensional surface 

plot the smoothing effect of the polynomial function can be clearly seen this 

will obviously reduce accuracy as we know that the OCCAM model has 

variability on all space scales. 

 

We now move on to solving for paired time steps rather than single time step 

solutions. 



 124 

 

Obtaining a paired solution rather than a single time step. 

We still have two problems with our method at this point. 

 

1. We have not overcome the problem of combining the ∆SSH values 

from the satellite altimetry with the absolute SSH values of the 

Bernoulli float solution, which move relative to the satellite tracks.  

 

2. We still do not know the contribution of the geiod to the problem. As 

we discussed in Chapter 1, it is impossible to separate out the mean 

flow field without knowing the value of the geoid. However, due to the 

irregular nature of the ARGO array it is not possible to use a traditional 

approach to the problem, where we estimate the geoid from surface 

observations made at the same time and location as the satellite pass. 

The ARGO array is too sparse and irregular and we would need to 

match up the times of both the floats and the satellite track passes. 

 

To overcome these difficulties we have opted for a paired solution, using two 

sets of float data, taken ten days apart. The difference in altimetry between 

these two time steps is then used in the inverse. Because we now have 

information about ∆SSH from the ARGO floats, we can incorporate the 

satellite data into our solution for absolute SSH. The new matrix arrangement 

for this paired solution is shown in Figure 44. The difference from Figure 41 is 
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that we have now added extra sections to the matrices for the second float 

data set. We now solve for two sets of α  solutions, one for each time step.  

 

As with the single time step solution we can very easily produce a float only 

solution by simply turning on and off parts of the matrices to obtain solutions 

with and without the altimetry. We now move on to present some results 

using these new matrices to solve the method. 
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Figure 44: Matrices for float pair surface solution 
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n: is no. of Stations 

m: is no. of Crossing between Stations 

 

Bernoulli differences 

And SSH difference 

from satellite altimetry 

Design matrix A: 

crossing points 

Design 

matrix B: 

position 

matrix 

α solution solved for: 

these are the parametric 

fit for the surface 

equation 

y=ABα 

= 

1 

m 

n 

∆Bfloat1 

∆Bfloat2 
 

∆SSH 
from  
satellite 

altimetry 

0 0 0 0 0  

0 0 0 0  

0 0 … 

0 0 0 0  

0 0 0 0 

0 0 

0 …. 

0 0 0 0 0 0 0 0 0 0 0  

0 0 0 0 0 0 0 0 0 0 0 

0 0 0 0  

0 0 0  

0 0  

……. 

0 0 0 0 0 0 0  

0 0 0 0 0 

0 0 … 

0 0 0 0 0 0 0  

0 0 0 0 0 0  

0 0 0  

… 

1 0 0 0 0 0 0  

0 1 0 0 0 0 0 

0 0 1 0 0 0 0 

0 0 0 1 0 0 0  

0 0 0 0 1 0 0  

0 0 0 0 0 1 0  

 
Diagonal matrix 

of ones 

1 -1 1  

-1 1 -1  

1 -1 1 

-1 1 -1 1 

1 -1 1 -1 

-1 1 -1 1 

…. 

1 

a 

Note: there are now 2 sets of α 

solutions, 1 for each float pair 

αf1 

αf2 

Sat lat -Sat 

Float 2    

Float 1 0 0 0 0 0 0 0 0  

0 0 0 0 0 

0 0 0 0  

0 0 0 0 0  

0 0 0 0  

0 0 0 ……..  
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Results of Surface solution for the paired floats solution: 

 

Figure 44 shows a 6th order surface solution for OCCAM paired float data only, 

in the form of a dot plot similar to the solutions presented in Chapter 4 

(Figures 32 and 33), although the float positions are different due to this 

solution being from a later time step. The latitudes and longitudes are scaled 

to fit on a unit square, for the reasons discussed in the previous section.   

Figure 45: Dot plot of 6th order fit for floats only solution. The axes are the scaled 
latitude and longitude. The colour scale represents SSH is cm.  
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Figure 46 plots the expected SSH values, directly extracted from the OCCAM 

model. A comparison with Figure 44 shows that the broad features of the 

OCCAM SSH have been reproduced by our surface solution, with low SSH 

values in the north west and higher values in the south east. However, we 

can see the smoothing due to our use of a low order polynomial.  Some of the 

smaller-scale variation in the OCCAM SSH appears to have been lost in our 

solution. 

Figure 46: Dot plot of SSH from OCCAM extracted at the same positions as the 
floats above. The axes are the scaled latitude and longitude, with SSH in cm. 
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Figure 47 shows a 2-D image plot of our float-only solution, which allows us 

to more easily compare the features reproduced by our solution to the 

oceanographic features that we expect to see in the North Atlantic. The sub-

polar gyre is clearly indicated by the region of low SSH in the north; the 

increased SSH values in the east are also a result of the wind-driven 

circulation (see Chapter 2). We do not see high SSH values in the south west 

as we did in the point solutions for Chapter 4, but this feature is not seen in 

the OCCAM SSH plot either. This is probably because of the different 

distribution of simulated floats used in this solution, which does not include 

any floats from the southwest North Atlantic. At this point we had removed 

some simulated floats which were problematic, because of the low velocities 

in the OCCAM model (see  Chapter 3). 
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Figure 47: The 2-D image surface solution for the same time step using only the 
float data. 

 

 

There are two further ways of comparing our solution with the OCCAM SSH, 

firstly by looking at the maximum and minimum range of the SSH signal, and 

secondly and more accurately by examining the mean square error 

calculations. 

 

If we compare the SSH signal for our solution with the original OCCAM SSH, 

our solution has a range of ±40 cm, while the OCCAM SSH had a 
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maximum/minimum range of ± 50 cm. The smoothing effect of the low-order 

polynomial also appears to have reduced the maxima and minima of the 

solutions. In terms of the Root Mean Square Error (see later for details of the 

calculation) the difference between this solution and OCCAM is 46.8cm but 

the “point” solution has a RMSE of 29.1cm. However this comparison is unfair 

as the surface solution RMSE is calculated over the whole field whereas the 

point solution can only be calculated at the float positions.  

 

The following figures compare our paired float solution with the OCCAM 

model in two ways. Solution A (Figure 48) plots the difference between the 

surface solution obtained for the first time step only, and the SSH extracted 

from OCCAM with the mean signal removed. For Solution B (Figure 49) we 

have plotted the difference between our paired surface solutions and the 

changes in the OCCAM SSH over the two time steps. 

 

We would expect solution A to be better than solution B (solution B becomes 

relevant later, when we consider the effects of adding satellite altimetry to 

our solution). Since we are trying to obtain a solution as closely related to the 

extracted SSH from OCCAM, we would expect Solution A to show less 

variation than Solution B. We can see from Figure 46 that solution A shows a 

more structured deviation from the OCCAM data, varying most at the 

maximum and minimum values. This is due to the smoothing caused by our 

choice of using a low order polynomial. We can see that we are also losing 
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the extremes of the signal in Solution B, but there is very little correlation of 

these changes with the structure of the OCCAM SSH. 

 

 

 

 

 

 

Figure 48: 2-D image of the difference (in cm) between the surface solution from 
floats only and the OCCAM SSH with the mean signal removed. The axes are the 
scaled latitude and longitudes. This is solution A. 
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Figure 49: 2-D image of the difference (in cm) between the paired surface solution 
from floats only and the changes in the OCCAM SSH with the mean signal 
removed. The axes are the scaled latitude and longitudes. This is solution B. 

 

 

 

 

The Mean Square Error results for these calculations, which give a 

quantitative estimate of how well our solutions compare to the SSH, are 

discussed later in this chapter. We now present solutions where satellite 

altimetry has been added, and discuss the effects on the observed 

oceanographic features, the maximum and minimum of the signal and the 

MSE. 
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Results with the altimetry included in the solution: 

 

We now show the effects of the addition of simulated satellite altimetry to the 

problem. We compare ‘point’ plots of the SSH solution obtained from the float 

and altimetry (Figure 50), and the SSH extracted at the float and satellite 

track positions from the OCCAM model (Figure 51). We also show a 2-D 

image of the surface solution (Figure 52) to allow a better examination of the 

oceanographic features reproduced by our method.   

 

Figure 50: Dot plot surface solution obtained with both simulated floats and 
altimetry, showing values of the SSH (in cm) at the float stations and underneath 
the satellite tracks. The axes are the scaled latitudes and longitudes. 
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Figure 51: The OCCAM extracted SSH (in cm) at the same float and altimetry 
positions. The axes are the scaled latitudes and longitudes.  

 

 
 

One feature of the two figures above that may appear odd is the slight 

divergence of the altimetry tracks. The tracks are in fact based on real 

TOPEX/Jason altimetry tracks, and diverge due to the effect of the rotational 

grid for the North Atlantic region used in the OCCAM model (see Chapter 3).  
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Figure 52: Surface solution for the same time steps using both simulated float and 
satellite altimetry. 

 

 
With the addition of the satellite altimetry to the method we notice that the 

magnitude of the signal in the SSH solution is reduced. Although we have 

seen some reduction to the maximum and minimum with the float only 

solution, this was only ±10 cm. When the satellites are added to the problem 

we see a much greater difference. The maximum/minimum range is reduced 

from ±50 cm for the expected signal to ±10cm. In the case of the earlier float 

only solution, we decided that the magnitude of the signal was reduced 

because the polynomial fit was of too low an order to reproduce the SSH 

signal accurately. There was too much smoothing of the signal taking place. 

The addition of the satellite altimetry seems to have increased this problem. 
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However, we will see later that the satellite altimetry reduces the MSE by half, 

suggesting a much more accurate fit to the data. It appears that though the 

altimetry data allows us to reproduce more of the structure of the original 

OCCAM signal, we may lose the extremes of the signal as a consequence, 

because the polynomial is too low in order and is still smoothing the signal too 

much.  

 

Another effect on the solution when the altimetry is included is the 

domination of the altimetry over our float data. Our solutions typically involve 

data from around 50 floats and several thousand satellite altimetry points. 

Therefore in our solution information about changes in SSH dominates over 

the absolute SSH values from the Argo floats. The effects of this can be seen 

by making the same comparisons between our solutions and the OCCAM data 

as we made for the float only solutions. Plotting the difference between the 

surface solution and the OCCAM SSH with the mean signal removed (Solution 

A, Figure 53) shows a similar result to Figure 47, with the main differences 

associated with the maxima and the minima. However, plotting the difference 

between our paired surface solutions and the changes in the OCCAM SSH 

over the two time steps (Solution B, Figure 54), we see that there is much 

more correlation with the structure of the OCCAM SSH than we saw in Figure 

49. Although the shapes are very similar the colour scales are very different. 

In figure 49 they go from -50 to +15 cm whereas in figure 54 they go from 

-14 to + 5cm.  The RMSE is reduced from 47.4 cm to 28 cm.   
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Figure 53: Solution A, the differences (in cm) between the surface solution with 
altimetry and the OCCAM SSH without the mean signal. The axes are the scaled 
latitudes and longitudes. 

 

Figure 54: Solution B, the differences (in cm) between the surface solution with 
altimetry and the changes in SSH from OCCAM without the mean signal. The axes 
are the scaled latitudes and longitudes. 
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Figure 54 plots the difference in SSH seen between the two time steps (10 

days) in the OCCAM model. It can be seen that the range of the minimum 

and maximum values for the differences in SSH from OCCAM are -5 to 15 cm 

whereas the extracted absolute SSH values are of the order of -50 to 50 cm. 

Therefore our solution with altimetry, where we see maximum and minimum 

signals in the range of -10 to 10 cm (Figure 50), is much closer in range to 

the change in the SSH between our two time steps, and not the absolute 

values. The altimetry has added more structure to our solution, but the large 

amount of satellite points by comparison to the number of float points in the 

solution causes it to be much closer to the changes in the OCCAM SSH than 

the absolute values.  

 

This will clearly also be an issue in the “real” data solution as the amount of 

Jason altimetry is far greater than the number of ARGO floats used in the 

solution. 
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Figure 55: The difference in SSH (in cm) between two time steps of the OCCAM 
model. 

 

Test to see changes between time steps. 

 

Before moving on to the real data solution, we ran paired solutions over three 

consecutive ten-day time steps to examine how much the region changes 

over these steps. These solutions (Figures 56-58) show only very small 

changes in the order of magnitude of the signals, with the main features (e.g. 

the low associated with the sub-polar gyre) remaining stable. As we would 

expect, we would have to run solutions over much longer time periods to 

show much significant change. 
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Figure 56: 2-D image solution for the simulated ARGO and Jason data, 1st  10-day 
time step. SSH for Figures 55-57 given in cm. 

 
Figure 57: 2-D image solution for the simulated ARGO and Jason data, 2nd  10-day time step 

 

Figure 58: 2-D image solution for the simulated ARGO and Jason data, 3rd 10-day time step 
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Applying a more complex polynomial surface fit: 

 

In order to test if it was worthwhile fitting a higher order polynomial to the 

real data, we fitted 6th and 7th order polynomials to a float only solution of the 

same model data. These solutions are compared to the OCCAM data in the 

profiles in Figure 59. We see can that the 7th order fit is reduced slightly in 

magnitude but the overall shape is very similar to the 6th order fit. When we 

calculate the mean square errors at the end of this chapter, the value we 

obtain for the 7th order fit (24 cm) is much closer to that of the solution 

including the altimetry (27 cm) than that of the float only solution (47 cm). As 

we would expect, the use of a higher-order polynomial reduces the smoothing 

of our surface solution. These differences are discussed in much greater detail 

at the end of this chapter and in the conclusions 
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Figure 59: Testing of 6th and 7th order polynomials (blue and red, respectively) 
against OCCAM SSH (green/black) and the OCCAM SSH minus mean signal (pink). 
The negative fits are due to changes in sign convention between the solutions. 
Vertical axis denotes the SSH in cm, horizontal axes shows float number. 
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Changes made for the solution using “real” ARGO and 

Jason data: 

 

Using the OCCAM model data gave us a great opportunity to properly test our 

method, as we knew what the solution should be. However, it was also much 

easier to work with model output than real data. For example, the model data 

had a standard grid arrangement, and unlike the real data sets were all in the 

same format. For these reasons we had to make some further changes to our 

method when we began to use real ARGO and Jason data. 
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Gridding of the satellite data/objective analysis 

 

One of the key problems we encountered when using real rather than 

simulated satellite altimetry was that the different passes of the satellites 

were not necessarily on exactly the same positions each time, which led to 

missing data points or invalid data. Figure 60 illustrates this problem. The first 

pass of the satellite records data at the blue stars, while the second pass 

records at the red ones. This leads to complications when we wish to create a 

difference solution between the two time steps. We found that the simplest 

way to overcome this was to create a standard 6 X 6 km grid. We made this 

choice because the spacing between the satellite points is approximately 6 

km. By using standard gridding routines in matlab, (meshgrid and griddata), 

we were able to create two uniform data sets to subtract from each other 

with very little error involved in doing so. 

  



 146 

Figure 60: Schematic to show how different points may be obtained on different 
passes along the same satellite ground track. 

 

 

 

 

Changes made for the use of ARGO data in the method: 

 

In our analysis we choose to use data from January 2003, in the second year 

of the ARGO program. We did this in the hope that some of the difficulties 

with the data set, e.g. technical problems with the floats, would have been 

ironed out by then, and that the data processing and correction routines 

would have improved.  We found however that it was still not sufficient to just 

remove the absent data values from the data set. We needed to apply more 

stringent tests to remove bad data when extracting the profiles from the 

NETCDF files. We extracted the data every ten days, which guaranteed that 

6 km 

Pass one is in blue 

 

Pass two is in red  
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we did not have any overlap between the floats and prevented us from using 

the same float twice in different profiles.  We only extracted profiles that had 

not been flagged as bad (a 99999 value), and that also had sensible data 

values for all of the properties, as follows: 

 

Temperature range: [-3 40] 

Salinity range: [20 40] 

Pressure range: [0 7000] 

 

By doing these extra tests we increased the accuracy of the solution by 

excluding obviously bad data. 

 

We first compare a point solution, for the ARGO floats only, to the OCCAM 

model SSH, to check that our method produces reasonable results from real 

data. We then move on to producing paired surface solutions, first with float 

data only and then examining how this solution changes with the introduction 

of the satellite altimetry. In order to compare the different solutions with each 

other and the OCCAM SSH, they are all created on the same standard grid. 

We also test the different solutions by comparing the value of the mean 

square error for the different results.  
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Results from applying the Method to the “Real” data: 

 

At this point in the study we have seen that our surface fitting methods are 

able to reproduce general oceanographic features of the OCCAM SSH with 

reasonably good success. However, we have also seen that the order of 

magnitude of the SSH signal has been reduced in our surface solutions, 

especially with the inclusion of the altimetry. Therefore, before moving on to 

applying the surface fit to the “real” data, we applied the “point” solution 

described in Chapter 4 to the ARGO floats. This quickly tests if our method 

can produce reasonable results from real data. 

Figure 61: Point solution of real ARGO float data for comparison. SSH values are in 
cm. 
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Figure 62: 2-D image of the same point solution. Note that SSH values are now in 
m. 

 

 

By comparing Figures 61 and 62 to plots of the OCCAM model SSH (e.g. 

Figures 30 and 32), we can see that the solution for the real ARGO data has a 

signal with similar features and magnitude. This suggests that the 

temperature and salinity data from ARGO are measured well enough to obtain 

a reasonable inverse solution and that we should be able to compare the 

“real” data and the OCCAM model sensibly. 
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Figure 63: Positions of the ARGO floats used for the two time steps of our paired 
solution. 

 

 

The ARGO and Jason data used in this experiment are from the first two 

weeks in January 2003. First we will look at the float only solutions, later 

incorporating the satellite altimetry to see how the results improve. We 

represent the data in two ways, firstly as a three dimensional surface and 

then as a 2-D image. Both are useful ways to look at the data. We have 

solved for the α  parameters and then used the same standard grid as before 

to multiply out the 6th order polynomial equation and obtain a sea surface 

height solution. We then use a standard surface plotting and contouring 

routine in matlab. The surface fit (Figure 64) allows us to see clearly how we 
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have achieved the main aim of this program, namely obtaining a surface 

solution for the whole region of interest, but the 2-D image representation 

(Figure 64) is more useful when picking out the oceanographic features of the 

region. 

 

 

Figure 64: Solution for the floats only using ARGO. The axes are the SSH in cm, 
and the scaled latitudes and longitudes. 

 

In the Figure 64 above we can clearly see the slope across the North Atlantic. 

It is positive (high) in the eastern region and negative (low) towards the 

North Western Greenland Front, which clearly shows the sub-polar gyre. 
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Figure 65: 2-D image surface solution for the 1st pair float only solution using 
ARGO. SSH values are in cm. 

 

In the 2-D image representation (Figure 65) we can see that our surface 

solution can be correlated to the oceanographic features discussed in Chapter 

2 (Figures 5 & 7). The dark red peak off the coast of Ireland at approximately 

10° W, 50° N represents a topographic high caused by wind-driven 

movement of water with the North Atlantic Current, which is coming across 

from the south western corner of the figure. We can see a low associated 

with the sub-polar gyre around Greenland at 55° N, and possibly the northern 

boundary of the sub-tropical gyre at the bottom of the solution area. Though 
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the signal has been greatly smoothed by our choice of only using a 6th order 

polynomial, we see the general features which we would expect to find in a 

valid solution.  

 

We then repeated the experiment, including satellite altimetry data in the 

problem (Figure 66), to see what difference this would make to our solution. 

We solved using two different areas of Jason data. Figure 67 is the solution 

using the area indicated in Figure 17(a). Figure 68 shows the solution using a 

larger area, as indicated in Figure 17(b) and Figure 66 below. 

 

 

Figure 66: Example of ARGO and Jason positions solution in Figure 67. This is the 
larger Jason area used.  
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Figure 67:  Smaller solution area using Jason data (see Figure 17(a) for data 
coverage). SSH is in cm.  

 

 
Figure 68: The solution for a larger area of Jason used. SSH also in cm. 
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By comparison of Figures 67 and 68 with the float only solution in Figure 65 

we can see two clear results. The first is that with the inclusion of more 

satellite data, we obtain more detail in our solution. The second is that there 

is a trade off in doing this as we also find that the magnitude of the signal is 

greatly reduced as the amount of altimetry data in the solution is increased. 

As we have already discussed, the inclusion of satellite data in our simulated 

solutions has a tendency to force the solution towards a difference solution 

rather than an absolute SSH. A plot of the difference in Jason altimetry 

between the two time steps of our “real” solution (Figure 69) shows most of 

the variation is of the order 10 cm or less. Therefore it seems that the small 

magnitude of the SSH signal in our “real” solutions is also due to this effect. 

 

Figure 69: The difference in Jason altimetry for the 2 time steps plotted as a 
surface in meters 
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Up to this point all of the data, both real and simulated, that have been used 

in this project have been taken from January, the time of year when the SSH 

signal in the North Atlantic is expected to be higher and more variable due to 

greater storm activity. For comparison, we also ran a float only solution using 

data from July, which is plotted in Figure 70 below. 

 

Figure 70: Float only solution using data from July rather than January. SSH in cm. 

 

In comparison to Figure 65, the surface fit for this solution shows less small-

scale variability. As we might expect, the reduced variability in actual SSH 

heights at this time of year mean that small scale features are even less likely 

to survive the smoothing effect of the polynomial. 
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Calculating the Mean Square Error: 

Up to this point we have examined our solutions in a very qualitative way. We 

now apply Mean Square Error calculations to our solutions for a more 

quantitative assessment of their performance. We wish to see if the variance 

of the solution does in fact decrease with the addition of the altimetry, and if 

the altimetry solution is in fact closer to the changes in the SSH from the 

model rather than the absolute SSH values. 

 

In a sense, any measure of the centre of a distribution should be related to 

some measure of the error in the data. If we have a number t, a good 

measure of the centre, then presumably we are saying that t represents the 

entire distribution better, in some way than other central measures. 

 

The mean square error (MSE), is the measure of the quality of t, as a 

measure of the distribution. The error is the amount by which the estimator 

differs from the quantity to be estimated. 
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==

−=−=
k

i

iii

k

i

i txPtxf
n

tMSE
1

22

1

)()(
1

)( = 
n

1
[(X-t)2] 

 

Or we can think of the MSE as: 

Equation 35  MSE (t)= (bias(t))2 + variance(t) 
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MSE(t) is the average of the square of the distances between t and the data. 

The best measure of the centre, relative to this measure of error, is the value 

of t that gives us the lowest value of MSE.  

 

To find the MSE for our solutions, we took the total number of OCCAM points 

(n) used in the solution, found the reciprocal of this value (1/n) and multiplied 

it by the sum of the squares of the difference between the OCCAM data and 

the surface solution [(X-t)2], when both of these data sets were mapped onto 

the same standard grid. This gives us an estimate of how well the model has 

predicted SSH at the points where we did not originally have OCCAM data. 

The mean square error calculations are in cm2. We obtain the square root of 

this value to obtain the standard deviation in cm. 
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Mean Square Error Calculation results (MSE): 

 

 

The table below shows the MSE results from three snap shots tested. We 

have used the same standard grid as before.  

 

We place the OCCAM data, we used in the solution, on to the same standard 

grid as that of the surface solution. We did this in the same way as we have 

done previously. 

 

We then compared the MSE calculations for each of our solutions with the 

both the changes in the OCCAM SSH and the absolute SSH extracted from the 

model. 

 

From our earlier results in this chapter, we would expect that our solution 

should be closer to the changes in SSH than the absolute SSH. We would also 

expect to obtain a smaller MSE for the solution containing the satellite 

altimetry.  

 

The upper half of the table below compares each of the solutions to the SSH 

from OCCAM. The lower part of the table is the comparison between the 

solution and the changes in SSH from OCCAM. 
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The units of the MSE are centimetres squared. We square root this result to 

give a measure in centimetres of the root mean square error (RMSE).  

 

With the inclusion of the satellites the magnitude of the MSE is reduced in all 

cases. For the first time step we have 47cm reduced to 27cm for the solution 

containing altimetry.  

 

More importantly the number is reduced in comparison to the OCCAM 

differences. The satellites have done a better job of reproducing the changes 

in the OCCAM SSH than the floats. This is the expected result. 

 

Some solutions are better than others. The solutions for the 1st and 3rd time 

steps are better than those for the 2nd and 4th. There is no clear reason for 

this. It may be just due to the variability in those particular time steps or 

there may be a better coincidence between the float and satellite data sets.  
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Chapter 6 

 

Generalized Additive Models, (GAM’s): 

 
Following on from chapter 5, where we have explained how we have fitted a 

simple polynomial function to the data to create a “surface” solution for the 

inverse, we now explore the other ways to solve this problem. How would we 

make the basis function more complex and what would happen if we were to 

do this? We could fit a piecewise polynomial, a spline to the data but instead 

we have chosen to fit a GAM, a generalized additive model. GAMS are 

explained in full in (Hastie, 2001). We took further details from Advanced 

Regression notes from the Statistics for Environmental Evaluation, Dept. of 

Statistics, University of Glasgow, written by A. Bowman and S. Wood, 2004. 

 

We have chosen to fit a GAM as they are far more versatile than a standard 

line model. Normal linear models require us to know a great deal about the 

form of the relationship between the response variable, y, our sea surface 

heights in this case, and the predictor variables, latitude and longitude in our 

data. We would need to be able to write down exactly how y depended on 

our x’s additive models attempt to give us a lot more freedom. The “kinks” in 

the model fit are decided by “smoothing terms” rather like the “knots” in a 

spline function. The greater the number of smoothing terms the smoother the 
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fit, the less smoothing terms and we would be fitting directly to the data 

points. 

     

 

The linear model is replaced by an equation such as: 

 

Equation 36 iiiiiiii xxmxmxmxxy εβββ ++++++= ),()()( 653423122110  

 

Where the mj are the smoothing functions and the εi’s are independent 

random variable. Therefore y is given by some regular linear model terms 

plus the sum of some smooth functions of the predictors plus a random error 

term. 

 

We now need some way of deciding these new smoothing terms, mj.  The 

smoothness is controlled during the model fit by penalized least squares. The 

model unknowns are fitted by minimizing a weighted sum of the residual sum 

of the squares and some measure of the wiggliness of the mj’s. For example 

the simple model: 

 

 

Equation 37   
i

iii xmxmy ε++= )()( 2211     

 

This would be estimated by finding the functions m1 and m2 minimizing 
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Equation 38 ∫ ∫∑ ++−−
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Where the two integrated square second derivative terms measure the 

wiggliness of the two smooth functions, and the parameters  λ1 and λ2 control 

the trade-off between the model fit and the smoothness of the two terms. 

 

Now we need to discover how the λj’s may be estimated. If we choose to 

minimize the penalized residual sum of the squares, this would lead to zero. 

This means the model fits the data as closely as it can, but this means fitting 

the “noise” as well. One solution is to fit the solution to the data so they are 

not match to as closely as possible to the curve, but rather we emphasize the 

data points that are not being fitted for by the solution. This is cross 

validation. For given smoothing parameters, each data point is omitted from 

the dataset in turn, the model is fitted to the remaining data and the square 

of the error is predicted for the omitted datum. The average of these 

predicted errors is the cross validation score which is used for estimating the 

λj’s. This idea is shown in the figure below. 
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Figure 71: Illustration of the principle of cross validation. 

 

In figure 71, illustrates the principle of cross validation discussed above. In 

this case the fifth data point (solid black dot) has been omitted from the 

fitting and continuous line shows a penalized regression spline fitted to the 

remaining data (◦). When the smoothing parameter is too high the spline fits 

of the data poorly and does no better with the missing point. When λ is too 

low the spline fits the noise as well as the signal and the extra variability that 

this includes causes it to predict the missing datum poorly again. For the 

intermediate λ the spline is fitted the underlying signal quite well, but 

smoothing the noise, as a result the missing datum is reasonably well 

predicted. Cross validation leaves out each datum from the data in turn and 

considers the average ability of models fitted to the remaining data to predict 

the left out datum. 

 

This example and figure have been taken from Advanced Regression notes 

from the Statistics for Environmental Evaluation, Dept. of Statistics, University 

of Glasgow, written by A. Bowman and S. Wood, 2004. 
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Results obtained for GAM fit: 

 
 

In this section as we have explained we have taken our earlier “point” 

solution data for a few time steps and fitted the GAM to the data. This is 

meant as a test to see how well our polynomial surface has done in 

comparison to a more complex surface function.  

 

We can see the results are very similar. We have obtained the same expected 

positive slope of the North Atlantic towards the eastern side of the basin. The 

results of the GAM are in metres, unlike some of our earlier results which are 

represented in centimetres.  The “point” solution we have used here is the 

float only solution as a test. We chose this because our results so far have 

suggested that the float only solution is closer in magnitude to the original 

OCCAM data. Though the shape of the signal has not been altered by the 

inclusion of the altimetry there is a tendency for the magnitude in the signal 

to be reduced as we have seen in the previous chapter.  

 

The next few three figures are the GAM fit obtained using the R programming 

package. These coincide with the first three time steps for all our solutions. If 

we go back to our point solution result obtained in chapter 4 figure 36, we 

will see the first time step has a solution range of [-20 40] cm. The extracted 

range of SSH from OCCAM is ± 50 cm, figure 32. our first time step solution 

from the GAM is in a range of [-10 30] cm. This is slightly lower than our 
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Bernoulli “point” solution we obtained and quite significantly lower than our 

expected SSH from OCCAM. But if we look at our 6th order float only surface 

solution, which was ± 40 cm we are doing slightly better. But it is probably 

better to compare our GAM fit with that of the 7th order more complex fit 

surface fit. This fit obtained a result of [-25 30] cm, which is a lot nearer to 

the value obtained by our GAM. Our other two time steps for our GAM 

solution are similar at , [-20 40] cm and ±20 cm.  

 

From these results we can deduce as we have done with both the 7th order 

polynomial fit for the floats only surface solution and the 6th order solution 

containing the satellite altimetry that there is a trade off between obtaining a 

more complex higher resolved surface fit and the reduction in the magnitude 

of the signal obtained. We should note that any “smoothing” function must 

reduce the range of the signal. The extremes in the signal will be omitted.   

 

Another key point to consider here is what difference it makes fitting the 

surface function after the inverse solution has been obtained, rather than 

solving for a surface as we have previously done. Our surface solution with 

floats only has done a better job than our “point” solution surface fit. This 

would suggest that we are better off solving for a surface. We have seen that 

we are able to increase the detail of the surface fit with both the addition of 

satellite altimetry and the use of a more complex polynomial surface. Though 

there has been some difficulties with a reduction in the magnitude of the 

signal. 
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 Figure 72: GAM fit for float only data simulated in OCCAM, the 1st time step  
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Figure 73: GAM fit for float only data simulated in OCCAM, the 3rd time step 
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Figure 74: GAM fit for float only data simulated in OCCAM, the 4th time step 
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Chapter 7 

 

Conclusions and Future work: 

 

Introduction 

 

In this thesis I have for the first time combined ARGO and satellite Altimetry 

in an inverse solution. ARGO is designed to work with altimetry but so far 

people have only tried to achieve this by combining these data with ocean 

models in complex assimilation schemes. As we move to operational 

oceanography there is a need for data products that are independent of the 

models and can be used for validation. My aim was to produce a non-model 

dependant method for combining these two data sets. If successful this would 

produce an additional way of validating ocean model predictions. 

  

One difficulty with ARGO is that as a Lagrangian system the data are not on a 

regular grid. This means a lot of traditional data analysis methods cannot be 

used. I chose to use the Bernoulli inverse method to study this problem, in 

part this is because this method developed at the NOC and in principle it 

seemed suitable. Unfortunately the results did not live up to their 

expectations. Possible reasons for this will be given below. 
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 Summary 

 

After describing the problem and the datasets involved in chapters one to 

three, I outline my method in chapter four. After considering the various 

inverse methods that have been suggested I decided to use a variation on the 

Bernoulli method, (Killworth, 1986; Cunningham, 2000) for this problem. We 

have illustrated these methods in a region of the North Atlantic. The novel 

aspect of my version of this method is to fit a surface rather than obtaining 

sea surface height at individual points. This enabled me to solve for a sea 

surface height at points where I did not have a T/S profile which enables me 

to combine the solution with altimeter data. In chapter four I tested the 

established Killworth-Cunningham method using simulated floats in the 

OCCAM model. The use of the model enables me to test the method because 

I know the true value of the solution. However the use of the OCCAM model 

introduced its own problems. In particular I found that the velocity values at 

depth were very low, in fact the floats hardly moved at all. This was solved by 

raising the floats to a higher depth. Although with OCCAM we knew the 

solution operationally it was difficult to use due to the rotated grid and the 

format in which the data was stored. In chapter 4 I presented results from 

our “point” solution method , this was basically a rerun of the original method 

used by (Cunningham, 2000).  I obtained a SSH of between ±40 cm with a 

bias of 5 cm and a RMSE value of 29.1cm calculated at the float positions. 

The OCCAM SSH extracted for the same points was between ±50 cm. These 

compare to the mean sea level anomaly created from TOPEX and ERS-2 
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altimetry for the same region by (Volkov, 2003) of between ±30 cm.  In 

chapter five I introduced surface fitting and added satellite altimetry data to 

the problem. When I moved on to obtaining a float only surface solution, I 

obtained a SSH signal of ±40 cm, the same as our point solution. The RMSE 

difference was 46.8cm which appears a lot higher than the float point solution 

but this is because it calculated across the whole field rather than simply at 

the float positions. Though I could see the main oceanographic features of 

the region, the northern gyre and the North Atlantic Current, the smaller scale 

signals had been smoothed out by our low order polynomial fit. Introducing 

the altimeter data involves incorporating the unknown geoid. To solve this I 

proposed to use the difference between two altimeter passes since the geoid 

is constant this removes the problem. The addition of the satellite altimetry 

had three effects on our solution. First, I saw a much lower range of the 

signal between ±10 cm, second, I saw greater structure in our solution and 

third the RMSE falls to 27.3cm. The lower range of signal is not necessarily a 

problem though. As I have explained in chapter 5, I feel there are two 

reasons for this. The first is that the solution begins to coincide more with the 

changes in the SSH signal rather than the absolute values of SSH. I would 

expect this to be the case with the weighting due to the size of the altimetry 

component of the solution compare to that of the floats. We have ~100 floats 

by comparison to several thousand satellite altimetry points. The altimetry is 

measuring the change in the SSH over our two time steps in the paired 

solution, so it makes sense for our solution to reflect this. The OCCAM range 

of change in SSH is [-5 15] cm well comparable our solution of ±10 cm. The 
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RSME for this solution is 28cm. In this chapter I also extended the problem to 

using real ARGO and Jason altimeter data as opposed to OCCAM. I introduce 

another novel technique in chapter six, rather than using a polynomial to fit 

the surface as I did in the earlier chapters here I use a advanced non-

parametric statistical method Generalised Additive Models (GAMs). With the 

GAM fit for technical reasons I was not able to do a MSE calculation. We saw 

the same reduction in the extremes of the signal, a range of [-10 30] cm.   

 

Comparison with OCCAM 

 

The results in general were poorer than expected. With OCCAM we could not 

recover the surface with any great confidence. To illustrate this we have 

included a schematic figure below, figure 75. In the figure the blue line 

represents the SSH we wish to obtain, the true signal. The green line is our 

“smoothed” surface fit obtained from the float only solution. We can see that 

the solution has been heavily smoothed due to fitting such a low order 

polynomial. We can see that we reproduce the maximum and minimum of the 

signal successfully but we lose the structure of the signal. The red line is our 

solution included the addition of the satellite altimetry. When we combine 

altimetry into the solution we can see that we solve for more of the structure 

in the signal but we lose the extremes of the signal. This is due to the 

constraints of using a low order polynomial function. If we were to use a 

higher order more complex function for the surface fit, the function would 
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possibly be able to respond to the higher structured solution in a way as to 

not lose the extremes of the signal.  

 

Figure 75: Schematic to explain the difference between our surface solution with 

floats only and that including satellite altimetry. The blue line depites the SSH 

signal we wish to replicate. The green line is our “smoothed” 6th order polynomial 

surface fit with floats only. The red line is our 6th order surface fit with the 

altimetry included in the solution. 

 

 
 
 

 
 

 

 

 

 

 

 

 

 

 

 

In order to examine the solutions in a more quantitative manner, we looked 

at the mean square errors of our results. We wished to see how well our 
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model did in predicting where we didn’t have data. So we mapped the 

OCCAM SSH and OCCAM SSH differences on to the same standard grid as our 

solution. This meant that we could clearly compare our results with the 

solution we would expect to obtain. We calculated the mean square error first 

and then found the square root of these values to obtain the root mean 

square error (RMSE) in centimetres. The result was that with the addition of 

the satellite altimetry the RMSE was almost halved. In one case the value was 

reduced from 47 cm to 28 cm and in another time step by even more from 86 

cm to 50 cm. This proves our conclusion that we are reproducing more of the 

structure of the signal with the inclusion of the satellite altimetry to the 

solution.   

 

We then did a further test to see what would happen if we fitted a higher 

order polynomial to the solution. The result was very similar to that of the 

addition of the satellite altimetry. We obtained a higher resolution solution but 

of a lower order in magnitude, in a range of ±20 cm. The mean square error 

calculation reflected this result. The float only 6th order polynomial gave a 

RMSE of 47 cm whereas the 7th order fit gave a value of 24 cm. This was 3cm 

lower than the same time step solution with satellite altimetry included. We 

didn’t try a 7th order polynomial solution with the inclusion of altimetry, but if 

we had we would expect the solution to continue to improve.  

 

Our result was promising. Our solution agreed well with the schematic of the 

expected circulation for the region created by Ellett (1993).  This can be seen 
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by referring back to figures 5, 7 and 64. We can see a clear representation of 

the two gyred system we would expect in the North Atlantic. The range of the 

SSH signal was [-50 10] this is well within the bounds of reason when 

compared to both the OCCAM model, the SLA obtained by (Volkov, 2003) and 

the values obtained by the DUACS combined altimetry dataset, see figure 76 

below. However our experience with OCCAM showed that although we could 

recover the general shape of the sea surface height field it was difficult to 

produce good estimates of the detailed height field. Thus our real world 

results should be treated with caution.  

 

Figure 76: SSH obtained from DUACS for the 1st of Jan 2003 in 
meters. 

 



 178 

Why the Bernoulli method might not be working as well as 

expected 

 

As stated above, with the OCCAM data the numerical comparison of my 

solution with the truth is poor, although the general oceanographic features 

are recovered. There are a number of possible reasons for why the Bernoulli 

method might give this poor fit. 

(1) the Bernoulli method assumes steady state conditions whereas the data 

we use includes high frequency variations such as eddies. These high 

frequency variations will mean that our assumption that variables are 

conserved at crossings is not true. 

 

(2) Another reason for a poor solution is the assumption of well defined water 

masses with a constant T/S relationship. In practise our method is spanning a 

large basin which contains a number of water masses. One method I used to 

try and overcome this was to search for the eight nearest neighbours for each 

float. This reduces the effect of differing water masses. However it is not 

possible to remove this difficulty completely.  

 

(3) An additional problem is the rapid change in the sea surface height field. 

The altimeter data in particular is dominated by this high frequency variation. 

When I included the altimetry data in the solution this dominated the result as 

I had ~100 floats to several thousands altimeter points. This means that this 
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high frequency signals then over shadow the mean sea surface height field 

reflected in the ARGO data.   

 

(4) The low order polynomial function I fit to the sea surface height field is 

very smooth. This could be an additional reason for the poor fit. In attempt to 

get around this problem I used a more adaptable function, GAM. The more 

complex I made the function the better the surface fits the true sea surface 

height from OCCAM out performing the point solution. For example when I 

went from the 6th to the 7th order solution the RMSE was reduced from 47 to 

25cm. However because of the soothing involved we tend to loose the 

extreme values. Using a less smooth function we may be able to recover 

these extreme values. This would involve more polynomial terms or more 

smoothing terms in the GAM. Unfortunately I ran out of time before I could 

investigate this properly.  

 

Models other than OCCAM 

 

We used the OCCAM model because it was a high resolution model that was 

available at NOC and had the advantage of having a five day dumps which 

were easy to match to the ten day ARGO cycle. The model also has a free sea 

surface that makes analysis simpler. However it was not without its problems. 

The data was difficult to work with. In part this was due to the rotated grid 

and in part in the way the data was stored. Extracting the data was slow and 

on occasion the OCCAM team would move data without telling me. A more 
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serious problem was the non-existent flow below 1000m. This was worrying 

and may be due to lack of spin up in the model. However I did not have time 

to investigate why this was occurring and it does not seem to have been 

picked up by other analyses of OCCAM. For my purposes it was not a major 

problem as by moving my floats to a depth of 1000m good float simulations 

were obtained. It would be interesting to repeat my calculations with another 

model but time did not permit this. I do not think that this would change the 

quality of the results but would have allowed a larger numbers of experiments 

to be carried out and possibly to help in understanding why the results were 

disappointing. If I had a lower resolution model that did not resolve eddies I 

may possibly have obtained a better solution. It would be interesting to carry 

this out to investigate the effect eddies have on the solution.  

 

 

Suggestions for future work 

 

There are a number of improvements that could be made to the method. 

These include using a higher order polynomial or GAM to fit the sea surface, 

reducing the dominance of the altimeter data either by weighting or sub-

sampling, matching the ARGO profiles to water masses. 

 

(1) The surfaces we fit to the sea surface height are very smooth since the 

highest order polynomial we use was 7th order. This clearly could not capture 
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sharp boundaries or high frequency variability such as eddies or the Gulf 

Stream. There are two ways we could tackle this problem. One is to use much 

higher polynomials. However is this computationally expensive and there is a 

danger of over fitting the data. The alternative is to use non-polynomial basis 

functions. In chapter six we experimented with GAMs and it would be 

interesting to develop these in the full methodology. There are alternative 

basis functions that could be used, for example wavelets.  

 

(2) The altimeter data dominates because there are ten of thousands of 

altimeter points and only a hundred or so floats. As we discussed above the 

altimeter data is likely to be dominated by the eddy field which we know is 

poorly captured by the Bernoulli method. There are a number of possible 

solutions to this problem. One solution is to down weight the altimeter data, 

another is to sub-sample the data by taking every tenth or one hundredth 

point. Experiments would need to be carried out to optimise the amount of 

weighting or sub-sampling needed to balance the two data sets.  

 

(3) In this work I use an eight nearest neighbours test to reduce the effect of 

different water masses. One can imagine a more complex scheme that would 

allocate each point on a profile to a distinct water mass. Crossing points from 

each water mass would be analysed separately and then recombined to form 

a complete solution.  
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Conclusion 

 

We have successful developed the Bernoulli inverse method to combine 

altimetry and ARGO floats. We have shown that this does constrain our 

solution as hoped. Some suggested reasons for this have been given.  

Secondly we have developed this method to be used effectively on “real” time 

datasets. The matrix structure of the method makes it highly accessible to 

any dataset and of large sizes. The method is computationally efficient 

enough to run a large basin such as the North Atlantic region, mainly due to 

the fact that the majority of coding has been done using python. This is a 

very efficient computer language. As an aside to this we have shown it is 

possible to simulate ARGO floats in a model such as OCCAM to test our 

method. This was one of the most difficult parts of the project. The other 

difficulty being to incorporate the “real” data, as the data sets were in very 

different formats.  

In conclusion, developing the method to include satellite data and solve for 

more than the SSH between a few data stations took so much time that we 

did not manage to apply the method in its most practical sense to real 

oceanographic issues. However we have developed a tool that can be made 

use of in analysing the ocean state. We have developed the means to obtain 

a sea surface elevation for the whole North Atlantic region rather than just at 

“points” every ten days from real time data. There are still some issues about 

the accuracy of the method that should be resolved before it could be used in 

practise. 
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