The University of Southampton
University of Southampton Institutional Repository

Associations of per- and polyfluoroalkyl substances, polychlorinated biphenyl, organochlorine pesticides, and polybrominated diphenyl ethers with oxidative stress markers: a systematic review and meta-analysis

Associations of per- and polyfluoroalkyl substances, polychlorinated biphenyl, organochlorine pesticides, and polybrominated diphenyl ethers with oxidative stress markers: a systematic review and meta-analysis
Associations of per- and polyfluoroalkyl substances, polychlorinated biphenyl, organochlorine pesticides, and polybrominated diphenyl ethers with oxidative stress markers: a systematic review and meta-analysis
Background
Per- and polyfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs) are intentionally produced persistent organic pollutants (POPs) that are resistant to environmental degradation. Previous in-vitro and in-vivo studies have shown that POPs can induce oxidative stress, which is linked to neurodegenerative diseases, cardiovascular diseases, and cancer. However, findings in epidemiological studies are inconsistent and an evidence synthesis study is lacking to summarize the existing literature and explore research gaps.

Objective
We evaluated the effects of PFAS, PCBs, OCPs, and PBDEs, on oxidative stress biomarkers in epidemiological studies.

Methods
A literature search was conducted in PubMed, Embase, and Cochrane CENTRAL to identify all published studies related to POPs and oxidative stress up to December 7th, 2022. We included human observational studies reporting at least one exposure to POPs and an oxidative stress biomarker of interest. Random-effects meta-analyses on standardized regression coefficients and effect direction plots with one-tailed sign tests were used for quantitative synthesis.

Results
We identified 33 studies on OCPs, 35 on PCBs, 49 on PFAS, and 12 on PBDEs. Meta-analyses revealed significant positive associations of α-HCH with protein carbonyls (0.035 [0.017, 0.054]) and of 4′4-DDE with malondialdehyde (0.121 [0.056, 0.187]), as well as a significant negative association between 2′4-DDE and total antioxidant capacity (TAC) (-0.042 [-0.079, -0.004]), all β [95%CI]. Sign tests showed a significant positive association between PCBs and malondialdehyde (pone-tailed = 0.03). Additionally, we found significant negative associations of OCPs with acetylcholine esterase (pone-tailed = 0.02) and paraoxonase-1 (pone-tailed = 0.03). However, there were inconsistent associations of OCPs with superoxide dismutase, glutathione peroxidase, and catalase.

Conclusions
Higher levels of OCPs were associated with increased levels of oxidative stress through increased pro-oxidant biomarkers involving protein oxidation, DNA damage, and lipid peroxidation, as well as decreased TAC. These findings have the potential to reveal the underlying mechanisms of POPs toxicity.
0013-9351
Rubbo, Bruna
dc31cd48-3d84-41ab-a8b8-351c9914dca4
Rubbo, Bruna
dc31cd48-3d84-41ab-a8b8-351c9914dca4

Rubbo, Bruna (2023) Associations of per- and polyfluoroalkyl substances, polychlorinated biphenyl, organochlorine pesticides, and polybrominated diphenyl ethers with oxidative stress markers: a systematic review and meta-analysis. Environmental Research, 239 (1), [117308]. (doi:10.1016/j.envres.2023.117308).

Record type: Article

Abstract

Background
Per- and polyfluoroalkyl substances (PFAS), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs), and polybrominated diphenyl ethers (PBDEs) are intentionally produced persistent organic pollutants (POPs) that are resistant to environmental degradation. Previous in-vitro and in-vivo studies have shown that POPs can induce oxidative stress, which is linked to neurodegenerative diseases, cardiovascular diseases, and cancer. However, findings in epidemiological studies are inconsistent and an evidence synthesis study is lacking to summarize the existing literature and explore research gaps.

Objective
We evaluated the effects of PFAS, PCBs, OCPs, and PBDEs, on oxidative stress biomarkers in epidemiological studies.

Methods
A literature search was conducted in PubMed, Embase, and Cochrane CENTRAL to identify all published studies related to POPs and oxidative stress up to December 7th, 2022. We included human observational studies reporting at least one exposure to POPs and an oxidative stress biomarker of interest. Random-effects meta-analyses on standardized regression coefficients and effect direction plots with one-tailed sign tests were used for quantitative synthesis.

Results
We identified 33 studies on OCPs, 35 on PCBs, 49 on PFAS, and 12 on PBDEs. Meta-analyses revealed significant positive associations of α-HCH with protein carbonyls (0.035 [0.017, 0.054]) and of 4′4-DDE with malondialdehyde (0.121 [0.056, 0.187]), as well as a significant negative association between 2′4-DDE and total antioxidant capacity (TAC) (-0.042 [-0.079, -0.004]), all β [95%CI]. Sign tests showed a significant positive association between PCBs and malondialdehyde (pone-tailed = 0.03). Additionally, we found significant negative associations of OCPs with acetylcholine esterase (pone-tailed = 0.02) and paraoxonase-1 (pone-tailed = 0.03). However, there were inconsistent associations of OCPs with superoxide dismutase, glutathione peroxidase, and catalase.

Conclusions
Higher levels of OCPs were associated with increased levels of oxidative stress through increased pro-oxidant biomarkers involving protein oxidation, DNA damage, and lipid peroxidation, as well as decreased TAC. These findings have the potential to reveal the underlying mechanisms of POPs toxicity.

This record has no associated files available for download.

More information

Published date: 7 October 2023

Identifiers

Local EPrints ID: 496395
URI: http://eprints.soton.ac.uk/id/eprint/496395
ISSN: 0013-9351
PURE UUID: 3754a75a-d258-4559-abfb-af29b089fd29
ORCID for Bruna Rubbo: ORCID iD orcid.org/0000-0002-1629-8601

Catalogue record

Date deposited: 12 Dec 2024 18:17
Last modified: 14 Dec 2024 02:49

Export record

Altmetrics

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×