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Vanadium dioxide (VO2) is a strongly correlated material that exhibits a number of structural phase transitions (SPT) near to room temperature

of considerable utility for various technological applications. When reduced to the nanoscale, a foreknowledge of surface and interface properties in

VO2 during the SPT can facilitate the development of devices based on VO2. Here we show that Bragg Coherent X-ray Diffractive Imaging (BCDI)

combined with machine learning is an effective means to recover three-dimensional images of a single VO2 nanocrystal during a temperature-induced

SPT from a room temperature monoclinic phase to a high-temperature rutile phase. Our findings reveal the coexistence of multiple phases within the

nanocrystal throughout the transition, along with missing density which indicates the presence of a newly formed rutile phase.

1 Introduction

Direct observation of the origin and propagation of structural phase transition (SPT) in quantum materials is
challenging due to their inherent complexity1,2,3. These challenges encompass dynamics from the atomic scale up
to the macroscale and occur over timescales ranging from femtoseconds to microseconds. To capture the subtle
changes in the atomic arrangements during the SPT can necessitate advanced analytical techniques like ultrafast
electron diffraction (UED)4,5,6, neutron scattering7,8,9, and ultra-fast X-ray diffraction (UXRD)10,11 with high
spatial resolution capabilities. In the field of strongly correlated electronic materials12,13,14 like high-temperature
superconductors and transition metal oxides, the challenges of observing SPT are even more heightened due to the
presence of competing phases, domain structures, and complex electronic interactions including strong electron-
electron correlations coupling between charge, spin, orbital and lattice degrees of freedom15,16,17,18,19,20,21.

A prototypical example of SPT in correlated materials is displayed by vanadium dioxide (VO2), which ex-
hibits a number of phase transitions, including a slow continuous SPT from a monoclinic (M1) to a monoclinic
(M2) and an ultra-fast femtosecond symmetry-breaking SPT from M2 to rutile (R) just above the room tempera-
ture that is accompanied by a metal-to-insulator transition (MIT), spanning four orders of magnitude22,16,23. The
SPT process is initiated at nucleation sites and defect regions24 from which domains evolve depending on ex-
ternal factors like temperature25, electric field26, hydrostatic pressure27, radiance23, and applied deformation28.
These changes propagate through the material as the phase transition progresses, leading to the formation of new
crystal structures associated with different phases. Variation to the crystallographic phase within the material also
influences the material’s properties which enables them to be used in potential next-generation switching devices
and other optoelectronic applications29,30.

VO2 can also exhibit various structures under different growth conditions, with the M1 and rutile R phases
being the most common due to their reversible transition near room temperature. In the VO2 R crystal structure,
the V4+ ions occupy the body centre and the vertex of the tetragonal structure. Each V4+ ion, along with six
surrounding O2- ions, forms an octahedral VO6 unit16,31. At the M1 phase, the vanadium ions are paired and
arranged in a non-linear, non-parallel way across the octahedral edges, and with the somewhat disordered chains,
the material behaves as an insulator32. The M2 phase which is formed as a result of a continuous transition has
been also reported33. In the M2 phase which also has insulator properties, half of the vanadium ions form V-V
dimers without rotating, whereas the other half of the vanadium ions exhibit a zigzag rotated pattern, while still
maintaining an equidistant arrangement along the resulting zigzag chain34. The M1 phase has the V-O-V bond
angle as 168 degrees35 and while transitioning to the M2 phase the angle reduces to 162 degrees33. At the R
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Figure 1: (a) Coherent Diffraction Imaging setup showing the incident (ki) and reflected (kf) X-ray wave vectors, (b) Reconstructed

volume of a single VO2 nanocrystal showing three orthogonal projections at an isosurface of 99.74%.

phase, the crystal structure becomes a higher symmetry, with well-defined arrangements of vanadium ions and a
V-O-V bond angle of 90 degrees36.

Despite numerous in-situ studies reported on M1 to R structural phase transition of VO2 in thin-film form1,37,38,39,
there hasn’t been reporting of a complete three-dimensional (3D) visualisation of the process in single VO2

nanocrystals. Even though the conventional 2D ultra-fast characterisation techniques are capable of capturing
the variations during SPT at an atomic level, they often miss the intricate details and spatial relationships cru-
cial for understanding SPT. A 3D reconstruction of the captured signals into a comprehensible form overcomes
these limitations by offering enhanced visualisation and data manipulation capabilities. In spite of the advantages
of 3D image reconstruction, it is also often demanding due to the complexity of the crystal structure and the
computational complexity involved in the reconstruction process.

Bragg Coherent X-ray Diffractive Imaging (BCDI) is a powerful tool that offers a 3D high-resolution image
capturing for understanding complex phase transitions occurring in materials40,41. BCDI employs coherent X-
rays to probe the internal structure of the materials at nanoscale, effectively revealing critical details that are often
challenging to observe through conventional characterisation techniques. Notably non-destructive, BCDI offers
clear insights into both surface and bulk strain characteristics of the material. The conventional methodology of
BCDI involves the illumination of the sample with spatially coherent X-rays, where the coherence length sur-
passes the dimensions of the crystal42,43. In the Bragg reflection geometry, the entirety of the crystal volume
scatters light, leading to corresponding interference patterns in the far field, thus producing a comprehensive 3D
k-space diffraction pattern44. Subsequent to this, machine learning-aided iterative phase reconstruction method-
ologies are employed to recover the distinct 3D electron density and phase information45,46. The displacement
of ions throughout the material correlates directly with the phase, enabling the derivation of strain information
via the relationship φ = Q ·u, where u represents atomic displacement47,42. In this study, we utilised BCDI to
effectively capture SPT in a single VO2 nanocrystal and used machine learning to successfully reconstruct the 3D
images which display strong phase structure (i.e. |φ | ≥ 1

2π) during temperature-induced M1 to R structural phase
transition.

1.1 Methodology

BCDI characterisation was performed at Beamline I16 at the Diamond Light Source (DLS). The graphical
representation of the BCDI experimental setup used is given in Figure 1a. A channel-cut Si (111) monochromator
was used to produce a beam of 9 keV X-rays in Bragg geometry. The beam was then focused onto the sample
mounted on a heated stage positioned at the eucentric point of the diffractometer. The heated stage incorporates
calibrated diodes for accurate temperature monitoring during X-ray diffraction analysis. The sample was rotated
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to locate the (011) reflection and diffraction data acquired using a QuadMerlin photon-counting area detector
mounted in the reflection geometry. The sample was positioned 1,310 mm away from the detector. Rocking curve
scans of range 16.7° to 18.9° at an increment of 0.01° and exposure time of 30 seconds were done. Measurements
were taken at a range of temperatures from 320 K to 365 K from a single isolated VO2 nanocrystal.

1.1.1 Machine learning model

Reconstructing the real-space images through iterative phase retrieval algorithms has been challenging for
materials with a strong phase structure, mainly due to significant distortions in the speckle pattern48,49. We
employed a deep learning model for phase retrieval based on a convolutional neural network (CNN) architecture50.
Figure 2(a) illustrates the CNN used which uses an encoder-decoder framework, wherein the diffraction amplitude
is first encoded into a feature space, then bifurcated into two branches for independent amplitude and phase
recovery. The array size was reduced to half at every step in the encoder branch using Max Pool operations and
the depth of the feature map was doubled using a convolution layer (Conv). The size of the output array was made
to be half the size of the input diffraction pattern. Leaky LRLU activation function plus BN (Batch Normalisation)
was used, for all the layers except for the last layer, where a ReLU (Rectified Linear Unit) function is used instead.

The network’s training was conducted by the propagation of 25,000 simulated diffraction patterns through
the network to generate predictions, which were then compared with the corresponding Fourier pair ground truth
objects. The real space representation of each was characterised by a monoclinic object with dimensions that have
random aspect ratios and a Gaussian-correlated phase profile, as derived in ref. 50. In contrast, the experimental
data sourced from synchrotron facilities includes deviations from these ideal conditions, encompassing noise and
variations in object dimensions and phase profiles, and lacks a predefined ‘ground truth’ for the real space image.
The loss function, derived in ref. 50 and given by Eqn. 1, incorporated multiple terms, encompassing both real
and Fourier spaces offering multiple parameters with which to monitor the network’s performance. L1 and L2

represent losses for real space amplitude and phase, respectively. Additionally, L3 leverages Fourier transforms of
predictions to compute losses relative to input amplitudes. The relative weights of these functions are determined
by integer parameters α1, α2, and α3.

LTrain =
1

α1 +α2 +α3
[α1L1(Ap,Ag)+α2L2(φp,φg)

+α3L3(
√

Ip,
√

Ig)
]

(1)

By utilizing back-propagation over at least 2000 epochs and implementing the ADAM (Adaptive Moment Es-
timation) optimizer51, we attained a low and stable training loss. Subsequent to the initial training, we employed
a transfer learning strategy, applying the pre-trained network to experimental diffraction patterns across several
hundred epochs. The optimisation during this phase was guided by the loss metric comparing the Fourier trans-
form of the predicted object against the provided diffraction pattern. This transfer learning phase enhances the
model’s robustness and provides a precise fine-tuning mechanism, making it more adaptable to specific data sets.

Figure 2(b) presents epoch versus training loss plot that illustrates the training progress of a machine learning
model applied to the analysis. Each curve corresponds to a specific temperature, ranging from 320 K to 365 K,
capturing the training loss over 2000 epochs. As the model undergoes training, the loss decreases, indicating
improved convergence and enhanced performance in capturing the underlying patterns in the diffraction data.
A low average training loss of 0.0329 (for data at 345 K) suggests that the machine learning model achieves a
particularly accurate representation of the observed diffraction patterns at this temperature. For data at 365 K,
the average training error loss was 0.0807. The low error loss across all the reconstructions indicates that the
predicted output closely matches the actual data, reflecting a high level of agreement.

1.2 Results and discussions

Figure 1(b) shows the machine learning model reconstructed 3D images of a single VO2 nanocrystal at 320 K.
The resulting reconstructed object exhibits dimensions of approximately 1.8 µm x 1.6 µm x 1.1 µm at a resolution
of 20 nm, revealing distinguishable crystal facets and well-defined morphological features. The presence of clear
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Figure 2: (a) Overview of the machine learning model used for the reconstruction of BCDI diffraction pattern. (b) Machine learning

training loss plotted against the epoch iteration as the neural network model reconstructs the diffraction pattern for each of the nanocrystal

under different temperatures. A low average training loss of 0.0329 was obtained for data 345 K.

and distinct facets imply an organised and ordered atomic arrangement within the crystal lattice, reflecting the
crystalline nature of the material. Figure S3 (see supplementary material) shows the side-by-side comparison of
the experimentally observed diffraction pattern and calculated Fourier transform of the resulting reconstruction
for temperatures ranging from 320 K to 365 K. Good agreement is observed between the two and quantified in
Table S2 (see supplementary material) as χ2 error values.

The reconstructed electron density consists of phase and amplitude which correspond to the atomic displace-
ments in the Q-vector direction and crystal morphology, respectively52. Figure 3 presents an overall view of the
amplitude of the 3D reconstructed images of a single VO2 nanocrystal at different temperatures. Notably, as the
temperature increases from lower to higher values, the overall morphology of the reconstructed objects displays
nuanced changes, while still retaining an average thickness of approximately 1.00 µm. At lower temperatures
(320 K and 325 K), minimal morphological changes are observed. As previously stated, while transitioning to
the M2 phase, the V-O-V bond angle reduces from 168 degrees35 to 162 degrees33. This change in bond angle
suggests a distortion in the crystal structure, which could potentially impact the crystal morphology. A critical
transition temperature of 330 K - 335 K, marked by the solid-line box, signifies the onset of rapid transition of
the crystal from the M2 to the R structure. This transition is associated with a slight increase in the density of
the crystal when compared with the lower temperatures. More importantly, the SPT doesn’t cease beyond the
critical temperature, indicating multiple crystallographic phases within the nanocrystal. As the temperature rises
(345 K - 355 K), we observe missing density in the reconstructed objects. This phenomenon may be attributed
to the coexistence of monoclinic and rutile phases at elevated temperatures. This could be most likely smaller
strain-induced grains forming within the crystallite, which no longer fulfill the Bragg condition. It is conceivable
that these areas of the crystal diffract at different angles which results in missing Bragg electron density in those
particular Bragg reflections and the detector may not capture this variation effectively53.

Figure 4 shows the plotted maximum (εmax), mean (εmean), and standard deviation (εσ ) for the strain along the
direction of the Q-vector for each temperature at different isosurface % during SPT. The maximum value shows
the peak deformation experienced by the crystal at each temperature and the mean value shows the average strain
magnitude across the diffraction pattern. Standard deviation shows the variation of strain magnitude within the
crystal moving from a lower to higher isosurface area across various temperatures, reflecting the heterogeneity
of strain across the different regions of the crystal. We observe a decrease in the standard deviation of strain as
the isosurface % increases showing the strain difference between the surface and bulk of the crystal. This trend
indicates that the core of the crystal experiences more substantial deformation during the SPT, likely due to the
tightly constrained environment compared with the surface atoms with more degrees of freedom.

The SPT also gives rise to multiple crystallographic phase changes within the crystal. Exploring this varia-
tion solely through visual inspection of the reconstructed diffraction pattern across the temperature spectrum is
challenging. In such scenarios, Principal Component Analysis (PCA) was used to provide a more systematic
and insightful approach to uncovering the underlying structural intricacies and facilitating a comprehensive un-
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Figure 3: 3D reconstructed images of VO2 nanocrystals showcasing amplitude which corresponds to the distinct crystal morphology at

varying temperatures, displayed at three orthogonal angles visualised at an isosurface containing approximately 99.74% of the reciprocal

data. The solid-line box highlights the critical transition temperature. The reconstructed objects corresponding to varying temperatures

exhibit distinguishable crystal facets and well-defined morphological features.

derstanding of the phase transitions54,55,56. PCA was utilised to reduce the data dimensions and emphasise key
features, thereby facilitating a more interpretable analysis. Additionally, PCA assists in identifying trends within
the strain variation across the crystallographic phases with respect to varying temperatures, contributing to a bet-
ter understanding of the phase transition dynamics. It is important to clarify that this concept is distinct from the
order parameter in structural phase transition used in Landau theory57,58. The order parameter in PCA analysis of
reconstructed diffraction patterns focuses on quantifying structural variation, while the order parameter in Landau
theory describes the degree of order or symmetry in the system’s macroscopic properties.

Initially, the reconstructed diffraction patterns were binned with dimensions (64, 64, 64) to reduce noise
and computational complexity and then the phase information was extracted from the binned data. To identify
the primary sources of structural variance across the temperature range, we computed the Covariance Matrix (C)
using Eqn. 2. The covariance measures how changes in one variable correspond to changes in another. The
covariance matrix was calculated by taking the outer product of the phase differences (∆φn = φn − φ0) for all
temperature points, where φ0 represents the phase at a reference temperature (here 320 K).

C = ∑
n

(∆φn ⊗∆φn) (2)

The subsequent stage involves conducting an eigenvalue-eigenvector decomposition of the covariance matrix
C. This yields a set of eigenvalues (λ ) and their corresponding eigenvectors (v). The eigenvalues Cv = λv,
represent the data variances along the principal components.

Principal components are determined from the eigenvectors. The first principal component is associated with
the eigenvector corresponding to the largest eigenvalue (λ1), the second principal component corresponds to the
second-largest eigenvalue (λ2), and so on. These principal components establish a basis for the data, explaining
the maximum variance in decreasing order. The inner product of the phase information of the reconstructed object
with the principal components was computed to project the original phase information into the new coordinate
system defined by the principal components. This operation yields a set of values referred to as “order parameters”
(Oi), quantifying the contribution of each diffraction pattern to the overall structural variation. The equation for
calculating the PCA order parameters, Oi, is given by:

Oi = vT
i ·∆φi (3)

where vi is the i-th eigenvector, with v1 being the leading eigenvector (first principal component). ∆φi represents
the phase differences of the diffraction patterns relative to the reference diffraction pattern. The leading principal
component, associated with the largest eigenvalue (λ1), encapsulates the most substantial structural variation. This
equation highlights the concept of alignment between phase differences and principal components.
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Figure 4: Max value (εmax), mean value (εmean), and standard deviation (εσ ) for the strain magnitude of a single VO2 nanocrystal

at various temperatures at different isosurface % during SPT. εmax shows the peak deformation experienced by the crystal at each

temperature and the εmean shows the average strain across the diffraction pattern. εσ shows the variation of strain across the crystal

with respect to the temperature moving from a lower to higher isosurface area, reflecting the heterogeneity of strain across the different

regions of the crystal.

The scree plot (Figure S1 of supplementary file) shows the eigenvalues from PCA analysis arranged from
largest to smallest and Figure S2 shows the clustering of various temperatures across the first and second PCA
components. While the order parameter was derived from a vector operation, for clarity the order parameter dis-
cussed here primarily refers to the projection onto the main principal components (single values corresponding to
the main component), aligning with the largest eigenvalue (λ1) of the covariance matrix. When phase differences
align or are "parallel" to the leading eigenvector, the order parameter tends to yield larger values, indicating a
strong contribution of the corresponding diffraction pattern to the overall structural variation. Conversely, when
phase differences are orthogonal (perpendicular), the order parameter tends to yield zero values, suggesting min-
imal contribution of the diffraction pattern to the structural variation. Thus, the order parameters provide insights
into the alignment between phase differences and the dominant structural features captured by PCA, facilitating
the analysis of structural domain changes during the SPT.

To comprehensively understand the dynamic phase changes occurring within the crystal, we performed cross-
sectional slicing of the reconstructed object along the x, y, and z axes. Figure 5(a) showcases the sliced images
along the y-axis. The colour map shows the phase range of −π and π displayed at the bottom of Figure 5(a) which
is indicative of compressive and tensile strains respectively. At room temperature (320 K), a clear distinction
between the tensile and compressive regions can be seen, showing a recognizable and organised pattern within
the crystal structure. The presence of a positive phase (tensile strain) within the resting state (320 K) of the
crystal, which was mostly visible on the surface region implies possible surface-induced effects, such as defects
or imperfections, influencing strain localisation59. A significant change is observed at 325 K, where the positive
phase which was initially surrounding the negative phase (compressive strain), rapidly spread across the crystal
indicating the beginning of a M1 to M2 dynamic phase transition process. The compressive strain regions are
shrunken into small islands (marked by arrows in Figure 5(a)), surrounded by the higher values of positive phase
(violet colour) indicating the growth of M2 region in the vicinity of the island. A similar trend can be also seen in
temperature 330 K of supplementary figures S3 and S4.

At 335 K, there is an overall shift from tensile strain to minimal compressive strain, indicated by the appearance
of green phase regions, and the formation of localised neutral white regions which suggest a relaxation state.
Missing density at 345 K occurs at surface regions that have likely transitioned to the rutile phase and no longer
fulfill the Bragg condition. At 345 K and 350 K, islands of M2 phase persist. The occurrence of M2 regions at
high temperatures confirms an inhomogeneous phase transition, where different regions of the material undergo
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Figure 5: (a) Slices of reconstructed images (along the y-axis) showing the structural changes during phase transition at various temper-

atures. The −π side of the color map indicates the compressive strain (green - red) and the π indicates the tensile strain (blue-violet).

The areas highlighted with the arrow show a potential monoclinic M2 structure retained in this specific region. (b) PCA (Principal

Component Analysis) of reconstructed diffraction pattern depicting the change in the order parameter with temperature. Blue scatter

points represents measured order parameter values, the red line represents the best fit line and the error bar (dashed line) illustrates the

difference between the actual and predicted values of the best fit line. (c) Crystal structures of monoclinic (M1) insulator phase and rutile

(R) metallic phase.

transition at different rates, emphasizing the coexistence of crystallographic phases within the nanocrystal during
SPT. These findings are consistent with our observations in the laboratory, and other reported findings60,61,62,63

where optical microscopic studies of larger VO2 crystals revealed different regions changing at different rates in
response to the temperature. At 350 K the crystal retains a new organised pattern and as the temperature rises to
360 K, the majority of the system starts to settle with the new structural configuration. As the temperature reaches
to 365 K, a further rearrangement in the phase profile was observed indicating the coexistence of crystal phases.

Figure 5(b) shows the PCA outcome by plotting the order parameter against each temperature. The order pa-
rameter of Eqn. 3 quantifies the degree of variation in phase, relative to the ground state throughout the nanocrystal
during the structural phase transition. The blue scatter points represents actual measured order parameter values
while the red line represents the best fitted line for the order parameter for corresponding temperatures. The error
bar (dashed line) shows the variance between the measured data points and the corresponding predictions made
by the best fit line. Table S1 (supplementary file) tabulates the numerical order parameter values and the best
fitted values. At 320 K, the resting state of the crystal, the order parameter was zero as expected since it indicates
a minimum deviation from the reference state of the crystal at room temperature. From 320 K to 330 k, the best
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fit line represents the beginning of transition of the M1 phase ot a M2 phase. As the temperature further rises,
the best fit line shows a decreasing trend in the order parameter indicative of the transition of the crystal moving
away from the M1 phase to the M2 phase. At higher temperature, the order parameter shows oscillatory variations
which are likely due to the co-existance of of M1, M2 and R phases. The compressive and tensile strain shown
in Figure 5(a) and supplementary figures S3 and S4 also indicate the co-existance of multiple phases at higher
temperature.

2 Conclusion

In this study, we show the complete 3D image reconstruction of VO2 nanocrystal during a temperature-induced
M1 to R transition. Cross-sectional analysis of the reconstructed object confirms the dynamics of the transition
from a room-temperature M1 phase to a high-temperature R phase, displaying the coexistence of multiple phases
within a single VO2 nanocrystal throughout the transition which hasn’t been previously achieved. We observed
changes in crystal morphology with missing density likely caused by rutile regions that do not fulfill the mono-
clinic Bragg condition. Our novel CNN model was found to be effective in robustly reconstructing the morphology
and the strong phase structure inherent in the reconstructed objects due to the presence of tensile and compressive
strains during SPT. An order parameter, derived using PCA was used to describe the structural evolution of the
VO2 nanocrystal and could be used to correlate the variations in phase distribution at which the transition from
the distorted M1 phase to the more ordered R phase was initiated. Trends in the variation of phase information, as
observed in the reconstructed VO2 nanocrystal, are in good agreement with the PCA order parameter. The possi-
bility of the coexistence of M2 and R phases at elevated temperatures is consistent with earlier findings, wherein
localised and contrasted changes in reflectivity are observed under light microscope illumination in larger VO2

nanocrystals during the structural phase transition.

3 Experimental Section

The VO2 nanocrystals were synthesised by thermal chemical vapor deposition (CVD). A silicon (111) substrate
of 10 mm x 10 mm, was used for the deposition. A custom-made tantalum mask with a pore size of 0.5 mm in
diameter was used to control the crystallisation rate. Grounded VO2 powder was placed in a quartz boat and the
substrate was positioned upside-down and placed inside the furnace. The furnace was then heated to 800 °C while
maintaining high vacuum conditions and argon gas flow at 3.0 sccm. The deposition time was set to 5 minutes
and the furnace was cooled down to room temperature gradually. The growth substrates were then inspected
with optical microscopy and micro-manipulation to transfer single well-faceted (011) plane VO2 nanocrystals to
a clean silicon substrate for synchrotron measurements.

Supporting Information

See the supplementary material for the χ2 error values and a side-by-side comparison of the experimentally
observed diffraction pattern and calculated Fourier transform of the resulting reconstruction along with the slices
of reconstructed images showing the variations in the phase due to the structural domain changes during phase
transition at various temperatures along the x axis and z axis.
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