Euclid preparation. XLIX. Selecting active galactic nuclei using observed colours
Euclid preparation. XLIX. Selecting active galactic nuclei using observed colours
The Euclid space mission will cover over 14 000 deg2 with two optical and near-infrared spectro-photometric instruments, and is expected to detect around ten million active galactic nuclei (AGN). This unique data set will make a considerable impact on our understanding of galaxy evolution in general, and AGN in particular. For this work we identified the best colour selection criteria for AGN, based only on Euclid photometry or including ancillary photometric observations, such as the data that will be available with the Rubin Legacy Survey of Space and Time (LSST) and observations already available from Spitzer/IRAC. The analysis was performed for unobscured AGN, obscured AGN, and composite (AGN and star-forming) objects. We made use of the spectro-photometric realisations of infrared-selected targets at all-z (SPRITZ) to create mock catalogues mimicking both the Euclid Wide Survey (EWS) and the Euclid Deep Survey (EDS). Using these mock catalogues, we estimated the best colour selection, maximising the harmonic mean (F1) of: (a) completeness, that is, the fraction of AGN correctly selected with respect to the total AGN sample; and (b) purity, that is, the fraction of AGN inside the selection with respect to the selected sample. The selection of unobscured AGN in both Euclid surveys (Wide and Deep) is possible with Euclid photometry alone with F1 = 0.22–0.23 (Wide and Deep), which can increase to F1 = 0.43–0.38 (Wide and Deep) if we limit out study to objects at z > 0.7. Such a selection is improved once the Rubin/LSST filters, that is, a combination of the u, g, r, or z filters, are considered, reaching an F1 score of 0.84 and 0.86 for the EDS and EWS, respectively. The combination of a Euclid colour with the [3.6]−[4.5] colour, which is possible only in the EDS, results in an F1 score of 0.59, improving the results using only Euclid filters, but worse than the selection combining Euclid and LSST colours. The selection of composite (fAGN = 0.05–0.65 at 8–40 μm) and obscured AGN is challenging, with F1 ≤ 0.3 even when including Rubin/LSST or IRAC filters. This is unsurprising since it is driven by the similarities between the broad-band spectral energy distribution of these AGN and star-forming galaxies in the wavelength range 0.3–5 μm.
astro-ph.GA
Bisigello, L.
9fa80bf4-1076-4f65-a687-d99b3916b1a2
Massimo, M.
5dc941c2-8b37-4d5e-b8cc-a9b8352e1aba
Tortora, C.
36a54c17-c354-4852-b4ca-39f9cfdcfb42
Fotopoulou, S.
cf4e61ac-7582-4bc5-9c4c-1a438f70cb62
Allevato, V.
6ddb9ca0-91f0-4793-bfb1-2fc706fb79a0
Bolzonella, M.
08d68ed3-5f78-486a-a3d4-8758513a1f4e
Gruppioni, C.
0fb7cd93-cdd9-48c2-8d4b-465606f80e51
Pozzetti, L.
2843eeb3-70d9-4809-b24f-2d59fb063b3e
Rodighiero, G.
0ec2af8d-737c-44be-89be-2db8432cf79e
Serjeant, S.
694633e3-bd1f-42f1-b04d-2b5d6cc186b9
Cunha, P.A.C.
03a6e225-e0f3-4092-80d1-ba99dbe7c2b5
Gabarra, L.
596924d9-e257-47f1-a757-20f21fa4a7c0
Feltre, A.
7136118d-f84d-4bf6-a278-cc590eff96a9
Humphrey, A.
9c13b146-7f3f-43f5-a724-8235d17e6d35
Franca, F. La
abbb3d3c-c4e3-4e73-920a-c6c183698ed2
Landt, H.
b0692ed3-0e7a-4eed-a00a-c05892a61e8e
Mannucci, F.
f2ba6acc-e65c-45cb-b080-8f08306519aa
Prandoni, I.
f564a4bb-0cb3-49a3-868e-10b26d611311
Radovich, M.
00e56f94-1dbf-4589-a6d2-f373a95d9019
Ricci, F.
32a03989-a0e3-41f4-b04a-39eaf32a6f4c
Salvato, M.
d4005dcf-cb25-4a2c-b451-ae25943a2c2c
Shankar, F.
b10c91e4-85cd-4394-a18a-d4f049fd9cdb
Stern, D.
a573010b-ca8e-4018-b0f5-4621657713b3
Spinoglio, L.
f96889b7-eb15-4b56-b5f2-3eda2af5d107
Vergani, D.
78983758-0299-475d-9e04-f6b99b775f33
Vignali, C.
b6521f25-b2ed-4feb-b4c0-debd78f44676
Zamorani, G.
316aede1-9ee4-46e1-8824-69c1e2060308
Yung, L.Y.A.
29e99f42-a91b-45f2-aba3-4b438361ba6f
Charlot, S.
62642506-a1a2-4cac-b180-14784f448a66
Aghanim, N.
9d1d2baa-06b3-4725-a0b2-7f98795c42fb
Amara, A.
8d8bc455-162a-4156-8e6d-ef75e4801f00
Andreon, S.
6ae4288e-2655-48bc-af01-806272b12c6b
Auricchio, N.
dca3b05e-c308-4bf9-9115-0d484c088333
Baldi, M.
780dfb31-66d3-4c34-a5fc-3a6bfe98f978
Bardelli, S.
d7eed1d7-df1b-471e-b213-6e9cb06d6213
Battaglia, P.
68651654-b8e0-4672-b88f-1eaae145779c
Bender, R.
86488c5f-206b-4770-aae8-123154bc1c7d
Bonino, D.
9f25a90d-8fce-4a3d-8147-9e7a5b801b0e
Branchini, E.
6ef3ffc8-cc6f-43f1-a3e9-b221afd5c4ca
Brau-Nogue, S.
7d98857c-b14b-46c4-9c8b-47d81701e2ad
Brescia, M.
afefa233-5867-490c-933b-bd0c32711845
Camera, S.
fd4f850b-2a05-4ac0-b13d-b20397a499ae
Capobianco, V.
7b2ba729-4682-4d71-b3f4-040baaf46aa7
Carbone, C.
d72c807a-c7bc-4c21-96c9-e4e24ca533ce
Carretero, J.
081b0f5d-7e69-469c-a22d-5b851f9b8d1d
Casas, S.
0eae44cb-929b-4fd5-a0a4-83bbf23a6d19
Castander, F.J.
b61356c2-f7f5-4da7-9322-b9eda0b0081a
Castellano, M.
a42064b9-0b21-4aec-99be-67a150c6c876
Cavuoti, S.
39f23810-63c9-4f81-aee2-c045df2c1a12
Bisigello, L.
9fa80bf4-1076-4f65-a687-d99b3916b1a2
Massimo, M.
5dc941c2-8b37-4d5e-b8cc-a9b8352e1aba
Tortora, C.
36a54c17-c354-4852-b4ca-39f9cfdcfb42
Fotopoulou, S.
cf4e61ac-7582-4bc5-9c4c-1a438f70cb62
Allevato, V.
6ddb9ca0-91f0-4793-bfb1-2fc706fb79a0
Bolzonella, M.
08d68ed3-5f78-486a-a3d4-8758513a1f4e
Gruppioni, C.
0fb7cd93-cdd9-48c2-8d4b-465606f80e51
Pozzetti, L.
2843eeb3-70d9-4809-b24f-2d59fb063b3e
Rodighiero, G.
0ec2af8d-737c-44be-89be-2db8432cf79e
Serjeant, S.
694633e3-bd1f-42f1-b04d-2b5d6cc186b9
Cunha, P.A.C.
03a6e225-e0f3-4092-80d1-ba99dbe7c2b5
Gabarra, L.
596924d9-e257-47f1-a757-20f21fa4a7c0
Feltre, A.
7136118d-f84d-4bf6-a278-cc590eff96a9
Humphrey, A.
9c13b146-7f3f-43f5-a724-8235d17e6d35
Franca, F. La
abbb3d3c-c4e3-4e73-920a-c6c183698ed2
Landt, H.
b0692ed3-0e7a-4eed-a00a-c05892a61e8e
Mannucci, F.
f2ba6acc-e65c-45cb-b080-8f08306519aa
Prandoni, I.
f564a4bb-0cb3-49a3-868e-10b26d611311
Radovich, M.
00e56f94-1dbf-4589-a6d2-f373a95d9019
Ricci, F.
32a03989-a0e3-41f4-b04a-39eaf32a6f4c
Salvato, M.
d4005dcf-cb25-4a2c-b451-ae25943a2c2c
Shankar, F.
b10c91e4-85cd-4394-a18a-d4f049fd9cdb
Stern, D.
a573010b-ca8e-4018-b0f5-4621657713b3
Spinoglio, L.
f96889b7-eb15-4b56-b5f2-3eda2af5d107
Vergani, D.
78983758-0299-475d-9e04-f6b99b775f33
Vignali, C.
b6521f25-b2ed-4feb-b4c0-debd78f44676
Zamorani, G.
316aede1-9ee4-46e1-8824-69c1e2060308
Yung, L.Y.A.
29e99f42-a91b-45f2-aba3-4b438361ba6f
Charlot, S.
62642506-a1a2-4cac-b180-14784f448a66
Aghanim, N.
9d1d2baa-06b3-4725-a0b2-7f98795c42fb
Amara, A.
8d8bc455-162a-4156-8e6d-ef75e4801f00
Andreon, S.
6ae4288e-2655-48bc-af01-806272b12c6b
Auricchio, N.
dca3b05e-c308-4bf9-9115-0d484c088333
Baldi, M.
780dfb31-66d3-4c34-a5fc-3a6bfe98f978
Bardelli, S.
d7eed1d7-df1b-471e-b213-6e9cb06d6213
Battaglia, P.
68651654-b8e0-4672-b88f-1eaae145779c
Bender, R.
86488c5f-206b-4770-aae8-123154bc1c7d
Bonino, D.
9f25a90d-8fce-4a3d-8147-9e7a5b801b0e
Branchini, E.
6ef3ffc8-cc6f-43f1-a3e9-b221afd5c4ca
Brau-Nogue, S.
7d98857c-b14b-46c4-9c8b-47d81701e2ad
Brescia, M.
afefa233-5867-490c-933b-bd0c32711845
Camera, S.
fd4f850b-2a05-4ac0-b13d-b20397a499ae
Capobianco, V.
7b2ba729-4682-4d71-b3f4-040baaf46aa7
Carbone, C.
d72c807a-c7bc-4c21-96c9-e4e24ca533ce
Carretero, J.
081b0f5d-7e69-469c-a22d-5b851f9b8d1d
Casas, S.
0eae44cb-929b-4fd5-a0a4-83bbf23a6d19
Castander, F.J.
b61356c2-f7f5-4da7-9322-b9eda0b0081a
Castellano, M.
a42064b9-0b21-4aec-99be-67a150c6c876
Cavuoti, S.
39f23810-63c9-4f81-aee2-c045df2c1a12