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Abstract 

Background: Neurobiological understanding of eating disorders (EDs) is limited. This study 

presents the first comparative multi-modal magnetic resonance imaging (MRI) assessments of 

anorexia nervosa (AN) and bulimia nervosa (BN), uncovering neurobiological differences 

associated with these disorders. 

Methods: This female case-control study included 57 healthy controls (HC) and 130 

participants with EDs (BN and AN subtypes). Structural and functional MRI assessed gray 

matter volume (GMV), cortical thickness (CT), and task-based activities related to reward 

processing, social-emotional functioning, and response inhibition. Whole-brain group 

differences were correlated to ED psychopathology. 

Results: Significant structural differences were observed in the ED group compared to HCs, 

including reduced GMV in the left lateral orbitofrontal cortex and lower CT in the left rostral 

middle frontal gyrus and precuneus, after adjusting for BMI. Specific structural alterations 

were only evident in AN subgroups. GMV reductions in the orbitofrontal cortex were linked 

to impulsivity, while lower CT in the frontal gyrus correlated with cognitive restraint in eating, 

suggesting these regions may play key roles in ED psychopathology. Functional MRI also 

revealed notable differences. During reward anticipation, participants with EDs exhibited 

deactivations in the cerebellum and right superior frontal gyrus, alongside reduced activation 

in the left lingual gyrus. These functional changes were associated with heightened neuroticism. 

Mediation analyses suggested that starvation-related GMV reductions in EDs disrupt reward-

related brain function, increase neuroticism, and reinforce cognitive restraint, likely 

contributing to the persistence of ED symptoms. 

Conclusions: These findings illuminate key neurobehavioral mechanisms underlying EDs, 

pointing to potential brain-based targets for developing specialized treatment. 
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Introduction 

Eating disorders (EDs) are serious and hard-to-treat psychiatric disorders with high mortality 

and significant disability (1). The two main diagnostic subtypes are anorexia nervosa (AN) – 

characterized by an intense fear of weight gain or disturbed body image – and bulimia nervosa 

(BN) – characterized by recurrent episodes of binge eating and compensatory behaviors to 

prevent weight gain (2,3). Common psychological comorbidities, such as mood and anxiety 

disorders, contribute to adverse outcomes of EDs (4,5). Research into the neurobiological 

underpinnings of EDs has expanded in recent years (6,7), holding promise for developing more 

effective treatments (6,8). Structural (sMRI) and functional (fMRI) magnetic resonance 

imaging have yielded important insights into the neurobiology of EDs, although most studies 

have focused on AN, limiting our understanding.  

 

Meta-analyses of sMRI have demonstrated globally reduced gray matter volumes (GMV) in 

AN compared with healthy controls (HCs; 8–10), with the largest effects observed in the 

thalamus (11). Similarly, reduced cortical thickness (CT) in AN, predominantly in the parietal 

and occipital lobes (11–13), with fewer affected regions in the frontal lobes (11,14). Findings 

in BN are conflicting. Some studies reported lower GMVs in the inferior frontal gyrus (IFG) 

(15) or caudate (16), while others found higher GMVs in the medial orbitofrontal cortex 

(mOFC) and ventral striatum (17). This inconsistency about the anatomical location and extent 

of differences may reflect the paucity of studies investigating BN and the fact that, besides one 

recent study that focused on AN (11), the current literature is based on studies with small 

sample sizes, assessing either GMV or CT (18). 

 

Task-based fMRI studies suggest that alterations in brain mechanisms of reward, emotional 

processing, and response inhibition underlie ED behaviors and symptoms (19,20). Particularly, 
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dysregulations within and/or between limbic and executive frontostriatal circuits has been 

hypothesized to contribute to extreme eating behaviors in AN and BN, alongside shared 

comorbid traits, such as personality and anxiety (21), but limited data support this hypothesis. 

Despite a few studies on reward processing in EDs (22), an imbalance between reward and 

inhibition has been suggested to characterize these disorders (20). Compared to HCs, AN 

shows an enhanced ability to delay rewards (23) and low reward reactivity (24), which may 

contribute to the maintenance of persistent food restriction (25,26). Conversely, BN involves 

deficits in frontostriatal control circuits, which may lead to diminished inhibitory control 

(21,27,28), and affect reward-based learning (29). Yet, most studies have focused on AN, rather 

than BN or the comparisons between AN and BN, and almost none used multi-modal data 

combining sMRI and fMRI in relation to EDs. In addition, the focus on predefined regions of 

interest (ROIs) also narrows our knowledge of ED neurobiology. 

 

To address these limitations, we provide here comprehensive, whole-brain characterizations of 

structural and functional brain alterations in EDs. Our MRI measures include GMV, CT, and 

blood oxygen level-dependent (BOLD) responses during reward, social-emotional processes, 

and response inhibition tasks. We performed between-group analyses to distinguish brain 

signatures that characterize ED and its subtypes, exploring how these brain differences 

correlate with ED psychopathology.   
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Methods and materials 

Participants 

Data were acquired from a female case-control cohort, comprising 57 HCs and participants 

meeting the diagnostic criteria for AN or BN (N=65/group), according to the fifth edition of 

the Diagnostic and Statistical Manual of Mental Disorders (2) and the Eating Disorder 

Diagnostic Scale (30). The clinical sample was recruited through the Eating Disorders Unit at 

the South London and Maudsley NHS Foundation Trust or via social media for the ESTRA or 

STRATIFY studies. HCs were recruited during the third follow-up of the IMAGEN study (31). 

All participants, aged 18-25 and of European ancestry, were recruited in London 

(Supplementary Methods). The ESTRA, STRATIFY, and IMAGEN studies employed 

identical study procedures to ensure group comparability. Written informed consent was 

obtained from all participants before their participation.  

 

Psychopathological assessments 

Personality traits were assessed using the revised NEO Personality Inventory (32) and 

Substance Use Risk Profile Scale (33); ED behaviors were measured using the short version of 

the Three-Factor Eating Questionnaire (34,35), focusing on cognitive restraint (CR), emotional 

eating (EE) and uncontrolled eating (UE). Comorbid symptoms, including depressive, anxiety 

symptoms, and harmful drinking were examined using the Patient Health Questionnaire-9 (36), 

the anxiety section from the Development and Well-Being Assessment (37), and the Alcohol 

Use Disorders Identification Test (38), respectively (Supplementary Methods). 

 

MRI acquisition and preprocessing 

The acquisition and preprocessing of sMRI and fMRI data are detailed in Supplementary 

Methods. 
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sMRI  

Our analysis primarily targeted GMV and CT alterations, as GMV reductions are significant 

and replicable abnormalities in AN (39), and CT is considered biologically informative, and 

particularly sensitive to structural changes in AN (11,40). To ensure a comprehensive 

comparison between clinical samples and HCs, we also examined group differences in other 

surface-based measures (Supplementary Methods and Results).  

 

fMRI  

The analysis incorporated three fMRI paradigms relevant to reinforcement-related behaviors 

(41), crucial in understanding EDs: the monetary incentive delay (MID) task, emotional face 

task (EFT), and stop-signal task (SST; Supplementary Methods). In the MID task, we 

contrasted brain activation during the anticipation of a large win vs. anticipation of no win (i.e., 

reward anticipation), and between feedback of a large and no win (i.e., reward feedback). For 

the EFT, we contrasted brain activation during viewing of angry faces vs. control stimuli. In 

the SST, contrasts were chosen between brain activation during a successful stop and a 

successful go (i.e., successful inhibition) and between a failed stop and a successful go (i.e., 

unsuccessful inhibition).  

 

Statistical analyses 

To analyze differences in demographics, body mass index (BMI), personality traits, ED 

behaviors, and comorbid symptoms between EDs (AN or BN) and HC, we conducted a one-

way analysis of covariance, adjusting for age. The analysis was performed using R version 

4.1.0, with p-values corrected for multiple comparisons using the Holm-Bonferroni method.  
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Whole-brain analyses: Whole-brain analyses used generalized linear models (GLMs) in 

SPM12 to explore differences in sMRI and fMRI across groups, adjusting for age and scanners. 

In sMRI, whole-brain vertex-wise morphometry analyses examined anatomical differences in 

voxel- or surface-based measures, including total intracranial volume as an additional covariate 

for volumetric comparisons. BMI was considered as a covariate to account for its potential 

influence on structural changes when indicated in the results. In fMRI, whole-brain analyses 

assessed neural response variations between groups. To address multiple comparisons, cluster-

wise family-wise error (FWE) correction was applied at p < 0.05, with a height cluster-forming 

threshold of p < 0.001 across the whole brain. Significant clusters identified in the statistical 

difference maps were neuroanatomically located using the automated anatomical labeling 3 

atlas (AAL3; for GMV) or the Desikan-Killiany atlas (for CT). Sensitivity analyses were 

performed to assess the effects of BMI and comorbid symptoms on brain structural alterations 

(Supplementary Methods).  

 

Regions of interest (ROI)-based analyses: Brain regions demonstrating significant group 

differences in the whole-brain analyses were selected as ROIs to further investigate their 

associations with ED-related psychopathology. P-values were adjusted for multiple 

comparisons using the false discovery rate (FDR) method. 

 

Mediation analyses: Reasoning that behavior and personality constructs emerge in response to 

biological processes occurring in the brain, mediation models were performed to investigate 

whether ED-related psychopathology mediated the relationships between brain measures and 

ED diagnoses (AN or BN status). Continuous variables were standardized to z scores. 

Confidence intervals (CIs) for the mediation effect were estimated using the PROCESS macro 
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for R (version 4.1.0) and based on 5000 bootstrap samples. PROCESS model 4 was used for 

simple mediation models, and model 6 for the serial mediation model. 
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Results 

Sample characteristics 

Our analysis included 187 participants (65 AN, including 23 restrictive subtype (AN-R) and 

42 binge-eating/purging subtype (AN-BP), 65 BN, and 57 HC), excluding some with 

incomplete neuroimaging data from specific MRI analyses (Table 1). As expected, AN had a 

significantly lower BMI compared to BN and HC. They were also slightly younger than HC 

(AN = 21.70 ± 2.08 years, HC = 22.63 ± 0.62 years, p = 0.01), with no age differences between 

AN and BN or BN and HC. BN scored higher on emotional eating (EE) and uncontrolled eating 

(UE) than HC and AN; AN and BN had higher cognitive restraint (CR) than HC. There were 

also differences in personality traits and comorbid symptoms; neuroticism, hopelessness, 

depression, and anxiety symptoms were significantly higher in AN and BN than in HC. BN 

had higher impulsivity and more harmful drinking than the other groups (ps < 0.001). 

 

Neuroanatomical correlates of ED 

Whole-brain voxel-wise analyses were run to identify GMV and CT differences across ED 

groups.  

 

GMV:  Compared to HCs, EDs exhibited significantly lower GMVs in 4 clusters with peaks 

in the bilateral supplementary motor area (SMA), right middle frontal gyrus (MFG, extending 

to the inferior frontal gyrus, pars orbitalis (IFGorb), left thalamus, and left IFGorb/posterior 

orbital gyrus (Fig. 1A; Table S1). After controlling for BMI, only the cluster in the left 

IFGorb/lateral orbitofrontal cortex (OFC) remained significant (Fig. 1B), suggesting that 

GMV differences in this region were unlikely due to BMI effects. Analyses of the AN and 

BN groups separately indicated that most GMV differences in the ED group were driven by 

AN (Fig. 1C; Table S1). In AN, GMV differences in the SMA and thalamus remained 
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significant after controlling for BMI (Fig. 1D). Additionally, smaller GMVs in the left 

inferior parietal lobule (IPL)/supramarginal gyrus (SMG) and right medial superior frontal 

gyrus (SFGmedial) were significant.  

CT: EDs exhibited smaller thickness in several left-lateralized regions when compared to 

HCs, including the left rostral MFG, paracentral lobule, lingual gyrus/precuneus, and left 

middle temporal gyrus (Table S2). When controlling for BMI (Fig. 2A), CT differences in 

the left rostral MFG and left precuneus remained significant. Here again, CT differences were 

largely driven by the AN group, with lower CT in 10 clusters identified in AN (when 

compared to HCs), including in the left rostral MFG (Fig. 2B).  

Further analyses of AN subgroups characterized by restrictive (AN-R), or binge-purge (AN-

BP) behaviors are reported in Supplementary Results and Tables S1 and S2. Sensitivity 

analyses indicated that the observed neuroanatomical correlates were not driven by age, BMI, 

or other outliers (Supplementary Results; Table S3). 

 

Structural alterations in ED and their relations to eating behaviors and personality 

We next investigated if the neuroanatomical differences identified above correlated with eating 

behaviors (cognitive restraint, CR; emotional eating, EE; uncontrolled eating, UE), personality, 

and comorbid symptoms in the whole sample. Using brain clusters distinguishing ED or AN 

from HCs in whole brain analyses as regions of interest (ROIs) and adjusted for BMI (Table 

S4), we found that GMV in the left lateral OFC/IFGorb (differentiating EDs from HCs) were 

not correlated with eating behaviors but with impulsivity (r = -0.24). GMV in ROIs 

differentiating AN from HCs associated with CR, notably in the SMA (r = -0.26) and thalamus 

(r = -0.26). Thickness of the left rostral MFG (differentiating ED and AN from HCs) also 

negatively associated with CR (r = -0.26, all pBonferroni < .05). CR negatively correlated with 
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BMI in the ED group (Fig. 3A), and BMI partially mediated the relationship between GMV 

differences in the SMA and thalamus (i.e., AN-related regions) and CR (36.47% mediation; 

Fig. 3B). Direct relationship (c’= -0.23, p = 5.8×10-3) between GMV in these regions and 

cognitive restraint still remained, independently of BMI. In contrast, BMI did not mediate the 

relationship between thickness in the left rostral MFG and CR. These results suggest a role for 

the left rostral MFG, SMA, and left thalamus in the etiology of EDs, via their effect on 

cognitive restraint.  

 

Functional alterations in ED  

Whole-brain fMRI analyses were conducted to investigate group differences in brain activation 

patterns related to reward (MID task), social-emotional (EFT) processing, and response 

inhibition (SST; Fig. 4; Tables S5 and S6). 

 

MID task: During reward anticipation (Fig. 4A; Table S5), EDs showed deactivations in the 

bilateral cerebellum (Crus II) and right SFG when compared to HCs, and lower activations in 

the visual cortex (left lingual gyrus/right calcarine fissure). Comparing AN and BN groups to 

HCs revealed that differences in cerebellar activations were driven by BN, while lower 

activations in the left lingual gyrus/right calcarine fissure were driven by AN. In addition, 

deactivations in the right middle temporal gyrus and triangular part of the left IFG (IFGtriang) 

were also observed in BN and in AN, lower activations or deactivation in other visual areas 

(right fusiform gyrus and left middle occipital gyrus (MOG). Lower activation in the left MOG, 

along with areas in the right frontal cortex, were also found associated with AN-R 

(Supplementary Results; Table S6). During reward feedback, no differences were found 

when comparing EDs to HCs, although BN had significantly lower activations in the right 

calcarine fissure/superior occipital gyrus when compared to HCs (Fig. 4B; Table S5).  

Jo
urn

al 
Pre-

pro
of



 

 14 

 

EFT: No differences in brain activations were observed between EDs and HCs when they 

viewed angry faces vs control stimuli. The only significant differences in this task were 

observed when comparing AN to BN (Table S5). When viewing angry faces, participants with 

AN tended to activate the left insula, while those with BN showed deactivation in this region 

(Fig. 4C). 

 

SST: No significant group differences were found between ED, AN, or BN groups and HCs. 

Analyses of AN subgroups revealed differences in AN-R, and AN-BP, when compared to HCs 

(Supplementary Results; Table S6).  

 

The observed alterations were not driven by age, BMI, or other outliers (Supplementary 

Results and Table S7). 

 

Relationships between task-based brain activation patterns in ED, eating behaviors, and 

personality 

Analyses in the whole sample were conducted to explore relationships between altered brain 

activations in EDs, eating behaviors, personality, and comorbid symptoms, using brain clusters 

differentiating ED groups in the fMRI tasks as ROIs. The only brain activations significantly 

associated with these traits were those identified in the MID task (Table S8). During reward 

anticipation, activations in ED-related ROIs specifically associated with CR, not EE or UE, 

most significantly in the left lingual/right calcarine fissure (r = -0.29). As for associations with 

personality, activations during reward anticipation in all ROIs distinguishing EDs from HCs 

(i.e., cerebellum, left lingual gyrus/right calcarine fissure and right SFG) negatively correlated 

with neuroticism, not with impulsivity. They were also nominally associated with depression. 
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In contrast, activations in the left IFGtriang (i.e., ROI deactivated during reward anticipation 

in BN) negatively correlated with impulsivity (r = -0.30, all pBonferroni < .05). 

 

Mediation analyses revealed that neuroticism fully mediated the relationship between brain 

activations during reward anticipation in ED-related ROIs (i.e., the bilateral cerebellum, left 

lingual gyrus, and right SFG) and CR. This mediation was significant when controlling for 

BMI (Fig. 5A).  

 

Relationships between structural alterations, brain activations during reward 

anticipation, neuroticism, and cognitive restraint  

Finally, we investigated whether the relationships between brain responses during reward 

anticipation, neuroticism, and CR may be related to structural brain alterations associated with 

ED. For this, we first summed up the GMVs or CTs within ROIs defined by brain regions that 

differed between groups (i.e., ED vs. HC or AN vs. HC) and investigated their associations 

with brain activation patterns within ROIs differentiating between groups, in the whole sample. 

Nominally significant findings were found for GMV, not CT (Table S9). These correlations 

were only observed for ROIs derived from voxel-wise whole-brain analyses that were not 

corrected for BMI. GMV in regions distinguishing EDs from HCs (i.e., SMA, right MFG, left 

thalamus, left IFGorb) correlated with brain activations in the left lingual gyrus/right calcarine 

fissure and right SFG (both ROIs, r = 0.17, p < 0.05). GMVs in regions distinguishing AN 

from HCs (SMA, left thalamus, left SFGmedial, left IFGorb, left olfactory, and right MFG) 

correlated with brain activations in the left MOG (r = 0.28, p = 0.006).  

 

We next investigated whether lower GMV in these ED- or AN-related brain regions may relate 

to brain responses during reward anticipation, neuroticism, and CR in two serial mediation 
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models, whereby brain activations during reward anticipation and neuroticism mediated the 

relationship between GMV and CR. The model using ED-related ROIs (Fig. 5B) was 

significant: brain activations in the left lingual gyrus/right calcarine fissure and right SFG, 

along with neuroticism, partially mediated (8.5% mediation) the relationship between GMV in 

ED-related ROIs and CR. The model using AN-related ROIs (Fig. 5C) was also significant, 

indicating that activity of the left MOG partially and neuroticism mediated (7.1% mediation) 

the relationship between GMV in AN-related ROIs and CR. In both models, the relationships 

between GMV and anticipatory brain activations in the MID were dependent on BMI, as the 

mediating effects were lost after controlling for BMI. This suggests that in ED, lower GMV 

induced by starvation/low weight influences anticipatory brain responses to rewards and 

thereby neuroticism and cognitive restraint. 
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Discussion 

This study represents the first multimodal, whole-brain MRI investigation comparing ED 

participants – including AN subtypes (AN-R and AN-BP) and BN – to healthy controls, 

highlighting structural and functional brain alterations associated with EDs and their 

relationships to psychopathological traits. After controlling for BMI, EDs exhibited reduced 

GMV in the left lateral OFC/IFGorb, which was linked to increased impulsivity, and reduced 

cortical thickness in the left rostral MFG, associated with cognitive restraint in eating. When 

analyzed separately, specific structural differences were observed only in the AN subgroups. 

Functional MRI analyses revealed disrupted anticipatory brain responses to rewards in EDs 

characterized by deactivations in the cerebellum (driven by BN) and right SFG, as well as 

decreased activation in the left lingual gyrus (driven by AN). These functional alterations 

correlated with heightened neuroticism, which fully mediated the relationship between altered 

reward responses in these regions and cognitive restraint. Serial mediation analyses further 

demonstrated that BMI-related GMV differences influenced reward anticipation, contributing 

to elevated neuroticism and cognitive restraint in EDs. These findings elucidate key 

neurobehavioral mechanisms underlying EDs, offering a promising foundation for the 

development of targeted, brain-based interventions aimed at addressing specific neurocognitive 

impairments associated with impulsivity, cognitive restraint, and reward anticipation. 

 

Our analyses comparing participants with ED to controls while controlling for the impact of 

BMI on brain structure (42), suggest that the lateral OFC/IFGorb and rostral MFG play roles 

in the pathophysiology of EDs, rather than being the consequence of low weight or starvation. 

That lower GMV in the OFC correlates with impulsivity aligns with studies showing that 

patients with damage to this region are more impulsive (43). The lateral OFC, functionally 

connected with the IFG (44), is involved in flexible decision-making by associating sensory 
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stimuli with predicted outcomes (45,46). In relation to eating behaviors, studies suggest that 

the OFC assigns reward values to food, thereby guiding behavioral choices (47). For example, 

in rodent studies, activation of feeding-responsive neurons in the OFC causes increased feeding 

behavior (48), which may contribute to weight gain and obesity by biasing consumption toward 

highly palatable and rewarding foods.  

 

Regarding the left rostral MFG, reduced thickness in this region negatively correlated with 

cognitive restraint, independently of BMI. This region is associated with craving regulation for 

food or substances like nicotine (49,50). Interestingly, food cravings are more closely 

associated with mood and emotional eating than food deprivation and cognitive restraint (51). 

The lower thickness in the left rostral MFG in EDs, notably in the AN-BP subtype, may thus 

underlie difficulties in regulating craving, potentially leading to the need for greater cognitive 

restraint, the conscious restriction of food intake to control body weight and shape.  

 

Our study also expands existing knowledge by identifying structural alterations in fronto-

temporo-occipital areas distinguishing AN subtypes from HCs. Notably, in addition to the 

alterations in the left rostral MFG noted above, lower volumes in the thalamus – a hub for brain 

function and connectivity in BN (52) and parietal regions (parietal lobule and left 

supramarginal gyrus) were specific to AN-BP. In contrast, lower volumetric alterations in 

frontal regions (SMA and SFG), which integrate sensory and reward information (53,54), and 

fusiform and lingual gyri, involved in visual information processing and abnormal body image 

perception (55,56), were specific to AN-R. The volumes of the SMA and left thalamus, lower 

in AN, were associated with cognitive restraint, even after controlling for BMI effects, 

suggesting a role for these brain regions in the etiology of EDs. In line with our expectations 

(57), as cognitive restraint increased, BMI decreased. Accordingly, cognitive restraint was 
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particularly pronounced in AN, possibly due to pronounced avoidance of food driven by 

intense fears of weight gain and a preoccupation with body shape, leading to low BMI. 

However, given the two dimensions of dietary restraint (58), cognitive restraint may also create 

food cravings that may lead to binge or overeating in some individuals (e.g., AN-BP). Thus, 

the identified links between SMA volume and AN-R and thalamus volume and AN-R raise the 

interesting possibility that these two brain regions may relate to distinct aspects of cognitive 

restraint. 

 

Functionally, the disrupted anticipatory brain responses to rewards in the cerebellum observed 

in EDs, notably BN, support a prominent role for this region in feeding behavior. Lack of 

cerebellar activation in anticipatory responses to food has been associated with hyperphagia, 

and disruption of a cerebellum-driven satiety network controlling striatal dopamine release is 

proposed as an underlying mechanism (59). Our finding of lower cerebellar activation in 

ED/BN supports the cerebellum’s role in reducing the reward value of food intake upon satiety 

and contributing to overeating. Alternatively, the bilateral Crus I/II deactivations seen during 

reward anticipation in BN may reflect deficits in working memory (60). In contrast, disrupted 

anticipatory brain responses in the lingual gyrus were driven by AN, characterized by disrupted 

activation patterns in occipitotemporal visual areas. These regions are activated by visual 

craving-inducing cues such as drugs (61), and activation of the lingual gyrus has been inversely 

related to food craving in individuals with obesity, possibly reflecting increased attentional or 

visual processing efforts to reduce craving (62).  

 

Our findings suggest that alterations in GMVs in brain regions structurally affected by EDs 

influence cognitive restraint, partly through their impact on anticipatory brain activations and 

neuroticism. This relationship is both novel and intriguing. Notably, neuroticism fully mediated 
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the relationship between anticipatory brain activations in ED-related regions and cognitive 

restraint, independently of BMI. However, the influence of GMV differences on cognitive 

restraint, through brain activation and neuroticism, was related to BMI. This suggests that in 

EDs, GMV alterations caused by starvation or low weight disrupt reward-related brain function 

and heighten neuroticism, reinforcing cognitive restraint. This mechanism likely contributes to 

the maintenance of ED symptoms. These findings support a cognitive-behavioral theory of AN, 

which posits that once the disorder begins, a feedback loop is triggered wherein starvation 

reinforces further dietary restriction, making the disorder self-perpetuating (63). 

 

While our multimodal investigation into EDs offers valuable insights, several limitations 

should be acknowledged. First, our study included only female participants of white ethnicity, 

limiting the generalizability of the findings to more diverse gender and ethnic populations. 

Second, the age range of participants was relatively narrow, which confines the applicability 

of our results to the earlier stages of EDs, despite these disorders often having a prolonged 

course. Although we controlled for age in our analyses, significant age differences between the 

controls and ED participants were noted. Future studies should aim for closer age matching to 

reduce potential confounding effects. Third, the lack of randomization in the task order may 

have influenced our results, as negative affective processes could have impaired subsequent 

cognitive performance (64). Fourth, while mediation analyses were used to explore 

relationships between brain structure, personality traits, and ED behaviors, the cross-sectional 

nature of our data means these findings should be interpreted with caution, without inferring 

causality. Finally, our study did not account for potential confounding variables such as illness 

duration, medication or treatment status, and socioeconomic factors, all of which should be 

considered when interpreting our results. 
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Conclusion 

Our study identified critical neurobehavioral mechanisms underlying EDs, shedding light on 

both shared and distinct features across different ED subtypes. Specific structural and 

functional alterations observed in ED subgroups provide a more nuanced understanding of the 

complexity of these disorders. Key brain regions, such as the left orbitofrontal cortex, rostral 

middle frontal gyrus, cerebellum, and left lingual gyrus, were found to play significant roles in 

ED pathology. These findings highlight potential novel brain-based targets for developing 

specialized and effective interventions for EDs. 
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Figure Legends 

Fig. 1. Regional differences in gray matter volume (GMV) between ED (AN and BN) and HC. 

A. Brain regions showing significant differences in whole-brain analyses when comparing ED 

with HC. B. GMV differences between ED and HC, adjusted for BMI. C. GMV differences 

between AN and HC. D. GMV differences between AN and HC, adjusted for BMI. No 

volumetric differences were found between AN and BN when controlled for BMI, and no 

differences were found between BN and HC. The images illustrate views from the left and right 

brain hemispheres, the top rows being lateral, the middle medial, the bottom, anterior and 

posterior. The middle column displays superior and inferior views of the brain. The color bar 

indicates T values. All analyses were adjusted for age, scanning sites and total intracranial 

volume. Cluster-level pFWE < 0.05 was used as significance threshold for all comparisons. 

 

Fig. 2. Regional differences in cortical thickness (CT) between ED (AN and BN) and HC, 

when controlled for BMI. A. Brain regions with significant differences in whole brain analyses 

when comparing ED with HC. B. CT differences between AN and HC. The color bar indicates 

T values. All analyses were adjusted for age and scanning sites. Cluster-level pFWE < 0.05 was 

used as significance threshold for all comparisons.  

 

Fig. 3. A. Correlation between cognitive restraint (CR) and BMI. The analysis was adjusted 

for age and recruitment sites. B. Mediation analyses examining relationships between lower 

GMVs in the bilateral supplementary motor area and bilateral thalamus (the regions 

differentiated AN from HC), BMI and CR. These analyses indicated that BMI partially 

mediated the relationships between GMV changes and CR. 
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Fig. 4. Group differences in brain activity between ED (AN and BN) and HC groups in three 

functional MRI tasks. Cluster-level pFWE < 0.05 was used as significance threshold for all 

comparisons. A. Differences in brain activation during the reward anticipation phase 

(anticipation of a large reward vs. anticipation of no reward) in the monetary incentive delay 

(MID) task when comparing ED to HC (top panel), AN to HC (middle panel), and BN to HC 

(bottom panel). No differences were found between AN and BN groups. B. Group differences 

between BN and HC during the reward feedback phase (feedback of large reward vs no reward) 

in the MID task. No other differences between groups were found in this contrast. C. Group 

differences between AN and BN in the left insula when viewing angry faces vs control stimuli 

in the emotional face task (EFT). No other group differences were found in this task. No group 

differences were found among these groups in the stop-signal task. All analyses were adjusted 

for age and scanning sites. The error bars indicate standard error. **, p < 0.01; ***, p < 0.001. 

 

Fig. 5. A. Neuroticism as mediator for the relationship between brain deactivations during 

reward anticipation, in ROIs differentiating ED from HC, and CR. B. Serial mediation analyses 

in which brain activation patterns distinguishing ED from HCs (i.e., in the left lingual gyrus 

and right superior frontal gyrus) and neuroticism are tested as mediators for the relationship 

between GMV in ROIs differentiating ED from HC, and CR. C. Serial mediation analyses 

investigating brain activation patterns distinguishing AN from HCs (i.e., in the left middle 

occipital gyrus) and neuroticism as mediators for the relationship between GMV in ROIs 

differentiating AN from HCs, and CR. Analyses were conducted in the whole sample. Model 

in a was controlled for age, scanning sites, and BMI. Models in B and C were adjusted for age, 

scanning sites, and TIV, and were no longer significant when considering the effect of BMI.  
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Table legends 

Table 1. Participants’ characteristics stratified by analyses. 
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Table 1. Participants' characteristics stratified by analyses. 

 
  HC AN BN  

F p 
Post hoc analyses 

  Mean (SD) Mean (SD) Mean (SD) AN vs HC BN vs HC AN vs BN 

Whole sample 

Sample size (N) 57 65 65     p 95% CI p 95% CI p 95% CI 

Age: mean (SD); 

range 

22.63 (0.62);  

21.98-24.79 

21.70 (2.08);  

18.11-26.19 

22.21 (2.01);  

18.74-28.00 
4.42 0.01 0.01 -1.69 – -0.17 0.54 -1.18 – 0.33 0.27 -1.23 – 0.21 

BMI: mean (SD); 

range 

25.24 (5.46); 

18.35-45.96 

16.92 (2.83); 

13.06-21.92 

24.06 (3.87); 

18.79-36.06 
70.17 2.40×10-13 1.04×10-20 -10.14 – -6.41 0.37 -2.99 – 0.66 1.11×10-17 -8.88 – -5.34 

Eating behaviors (TFEQ) 

Cognitive 

restraint 
14.58 (4.23) 22.43 (3.56) 18.75 (4.47) 52.78 7.98×10-19 2.31×10-19 6.00 – 9.70 2.59×10-7 2.37 – 5.98 3.00×10-6 1.92 – 5.44 

Emotional eating 6.79 (2.58) 5.98 (2.66) 9.94 (2.13) 48.60 1.18×10-17 0.08 -2.11 – 0.09 2.24×10-10 2.00 – 4.15 5.41×10-17 -5.13 – -3.04 

Uncontrolled 

eating 
19.93 (5.85) 19.72 (6.26) 27.08 (5.41) 33.63 3.64×10-13 1.00 -3.22 – 2.01 1.23×10-9 4.44 – 9.56 1.68×10-11 -10.10 – -5.11 

Personality: NEO-PI-R 

Neuroticism 1.84 (0.58) 2.99 (0.62) 2.85 (0.65) 55.97 1.08×10-19 1.68×10-17 0.82 – 1.37 1.87×10-15 0.72 – 1.26 1.00 -0.16 – 0.37 

Extraversion 2.46 (0.57) 1.98 (0.66) 2.29 (0.61) 9.07 1.76×10-4 1.49×10-4 -0.75 – -0.20 0.45 -0.43 – 0.11 0.013 -0.58 – 0.05 

Openness 2.45 (0.57) 2.51 (0.54) 2.80 (0.56) 7.54 7.11×10-4 1.00 -0.25 – 0.25 3.78×10-3 0.08 – 0.57 2.74×10-3 -0.56 – -0.09 

Agreeableness 2.87 (0.44) 2.48 (0.50) 2.56 (0.51) 8.71 2.44×10-4 3.82×10-4 -0.57 – -0.14 3.28×10-3 -0.51 – -0.08 1.00 -0.27 – 0.15 

Conscientiousness 2.70 (0.52) 2.48 (0.69) 2.25 (0.63) 7.78 5.70×10-4 0.51 -0.43 – 0.12 4.73×10-4 -0.70 – -0.16 0.04 0.01 – 0.53 

Personality: SURPS 

Hopelessness 1.79 (0.38) 2.91 (0.63) 2.45 (0.63) 53.74 4.36×10-19 1.61×10-19 0.83 – 1.34 7.23×10-9 0.40 – 0.90 5.90×10-5 0.20 – 0.68 

Anxiety 

sensitivity 
2.37 (0.42) 2.62 (0.45) 2.70 (0.56) 7.27 9.20×10-4 0.03 0.02 – 0.45 7.10×10-4 0.12 – 0.54 0.77 -0.3 – 0.11 

Impulsivity 1.90 (0.39) 2.14 (0.53) 2.48 (0.54) 20.69 7.59×10-9 0.08 -0.02 – 0.43 6.74×10-9 0.35 – 0.78 1.81×10-4 -0.57 – -0.15 

Sensation seeking 2.64 (0.54) 2.67 (0.65) 2.87 (0.60) 3.20 0.04 1.00 -0.30 – 0.23 0.02 -0.05 – 0.47 0.06 -0.50 – 0.01 

Comorbid symptoms 

Depression 3.43 (3.58) 15.22 (5.90) 14.19 (6.48) 75.78 2.14×10-24 2.57×10-21 8.92 – 13.93 1.55×10-19 8.18 – 13.14 1.00 -1.68 – 3.21 

Anxiety 

(DAWBA) 
1.27 (0.56) 2.68 (1.23) 2.63 (1.26) 30.51 4.28×10-12 2.97×10-10 0.91 – 1.90 7.14×10-10 0.87 – 1.84 1.00 -0.43 – 0.53 

Harmful drinking 5.40 (3.07) 5.74 (5.68) 9.40 (7.57) 8.27 3.67×10-4 1.00 -2.84 – 2.65 4.13×10-3 0.95 – 6.46 9.89×10-4 -6.31 – -1.29 

Sample for sMRI analyses (including GMV and CT)       

Sample size (N) 56 64 57           

Age 22.72 (0.62) 21.78 (2.10) 22.53 (2.09) 4.76 0.01       

BMI (kg/m2) 24.91 (4.72) 16.62 (1.80) 24.06 (4.00) 96.32 1.11×10-28       

TIV (mm3) 1397.96 (94.17) 
1416.80 

(105.01) 

1415.61 

(113.76) 
0.59 0.558       

Sample for fMRI analyses: MID task       

Sample size (N) 49 48 53           

Age 22.67 (0.59) 21.75 (2.09) 22.51 (2.07) 3.92 0.02       

BMI (kg/m2) 24.90 (4.60) 16.58 (1.62) 24.27 (3.95) 79.05 4.91×10-24       

Sample for fMRI analyses: EFT       

Sample size (N) 54 62 61           

Age 22.72 (0.63) 21.79 (2.10) 22.48 (2.10) 4.30 0.02       

BMI (kg/m2) 24.78 (4.68) 16.71 (1.76) 24.17 (3.97) 91.88 5.81×10-28       
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Sample for fMRI analyses: SST       

Sample size (N) 50 61 61           

Age 22.73 (0.64) 21.92 (2.06) 22.49 (2.09) 3.07 0.05       

BMI (kg/m2) 24.94 (4.77) 16.56 (1.79) 24.09 (3.94) 93.82 3.92×10-28       

BMI, body mass index. MID, monetary incentive delay; EFT, emotional face task; SST, stop-signal task. GMV, grey matter volume; CT, cortical thickness. AN, anorexia nervosa; BN, bulimia nervosa; HC, 

healthy control. TIV, total intracranial volume. NEO-PI-R, the Revised NEO Personality Inventory. SURPS, Substance use risk profile scale. The comparisons of age were controlled for sites. BMI, eating 

behaviours, personality and comorbid symptoms were controlled for age and site. 
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GMV: AN < HC GMV: AN < HC (Controlled for BMI)

Fig. 1. 
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CT: AN < HC (Controlled for BMI)

T-value

A
Fig. 2. 

CT: ED < HC (Controlled for BMI)
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Fig. 3 
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(ROIs = bilateral SMA 
and bilateral thalamus)
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A Contrast: anticipation of large reward vs no reward in the MID task
Fig. 4. 
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Fig. 5. 

BOLD signals in reward anticipation
(ROIs = bilateral cerebellum+ right 

SFG + left lingual gyrus)
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