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We describe a first-principles method to apply lattice QCD to compute the order 𝛼EM corrections to
𝐾 → 𝜋ℓ𝜈ℓ decay. This method formulates the calculation in infinite volume with the conventional
infinite-volume, continuum treatment of QED. Infinite volume reconstruction is used to replace
the QCD components of the calculation with finite-volume amplitudes which can be computed in
Euclidean space using lattice QCD, introducing finite-volume errors which vanish exponentially
as the volume used in the QCD calculation is increased. This approach has also been described in
an appendix to the recent paper: Phys.Rev.D 108 (2023) 1, 014501.
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1. Combining QCD and electromagnetism

Given the increasing precision with which many important quantities can be computed using
lattice QCD there is strong motivation to extend these calculations to include the order 𝛼EM

effects of electromagnetism (E&M). While it is natural to apply the methods of lattice gauge
theory to the combined 𝑆𝑈 (3) × 𝑈 (1) strong and electromagnetic gauge group, the massless
photon creates substantial obstacles to such a naive approach. The combination of the preferred,
translationally-invariant finite-volume periodic boundary conditions with Coulomb’s law requires
that only electrically neutral systems be studied. This limitation can be avoided by using the
QEDL [1] formulation of QED where one drops the ®𝑘 = 0 mode from the photon degrees of
freedom at the cost of introducing finite-volume corrections which decrease only as inverse powers
of the lattice volume – power-law corrections which alter the Coulomb potential even at short
distance adding 𝑐0/𝐿 and 𝑐2𝑟

2/𝐿3 terms to the usual 1/𝑟 short-distance behavior, where 𝑐0 and 𝑐2

are constants. For recent discussion of these 1/𝐿3

In this talk we demonstrate an alternative strategy, referred to as QED∞ in which QCD and
QED are combined but treated very differently [2–5]. In this approach one begins by considering
a entirely physical, Minkowski-space calculation performed in infinite volume with a physical,
continuum formulation of QED. (Since we intend to use perturbation theory to expand in 𝛼EM there
is no need to treat QED non-perturbatively.) We separate the physical Minkowski-space amplitude
into QCD and QED factors and and attempt to express the QCD factor as an amplitude which can
be computed in Euclidean space. Such a transformation to Euclidean space may be accomplished
through a Wick rotation in which Cauchy’s theorem is used to show the identity of the product of
QED and QCD amplitudes before and after rotation. This treatment may even be possible when
this Wick rotation is prevented by the contribution of single-particle states if they can be explicitly
subtracted and their correct Minkowski-space contribution calculated separately.

The resulting combined Minkowski- and Euclidean-space calculation is still formulated in infi-
nite volume without approximation. In the next step one examines the Euclidean-space calculation
of the QCD factor and explores whether the mass gap in QCD provides sufficient convergence as
the vertices in the QCD amplitude are separated that the entire QCD factor can be computed in a
finite volume with only exponentially suppressed finite-volume corrections. If this is the case then
we have the best of both worlds: a finite-volume, Euclidean space calculation of the QCD factor that
can be performed using lattice QCD and an infinite-volume QED calculation that can be performed
in the continuum using standard Feynman rules for the photon and any lepton propagators.

Figure 1 suggests this QCD × QED factorization for the E&M corrections to 𝐾 → 𝜋ℓ𝜈ℓ

decay which is the topic of this paper. The finite rectangular “QCD volume” suggests the limited
region in which the Euclidean-space lattice QCD calculation will be performed while the lepton
and photon propagators are treated in infinite-volume Minkowski space with neither finite-volume
nor finite lattice spacing errors. The weak vertex (the point from which the lepton and neutrino
lines emerge) is intentionally placed at the center of the QCD volume to minimize the contribution
of the space-time region where a hadronic E&M current approaches the boundary of that volume
and finite-volume errors arise because of unphysical periodic behavior of the finite-volume pion
propagator.

The coupling shown in the figure between the photon and the emitted pion at the position
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labeled 𝑥 creates an important problem that naively would make QED∞ inapplicable to this process.
While there is exponential suppression associated with the propagation of the pion from the location
of the weak vertex to the location of the interpolating operator which absorbs the final pion, that
exponential suppression is present in the amplitude without regard to the location of the point on
the pion propagator where the photon is absorbed. As that photon-pion interaction point moves
away from the weak vertex the resulting amplitude is only mildly suppressed by the power-law
fall-off of the propagating photon. However, at such large times the pion-photon vertex can move
far from the weak vertex in space as well, with the resulting photon-pion interaction corrupted by
the power-law finite-volume-distortion of the pion propagator as it moves close to the boundary of
the finite, periodic QCD volume. Interpreted in this way, the spatial extent of the QCD volume
must be far larger than the time extent of the QCD volume if power-law-suppressed finite-volume
corrections are to be avoided — a potentially impractical requirement.

K
0

ℓ−

νℓ

π+

IVR

QCD volume

~pπ

~pℓ

(~k, k0)

x0

x

Figure 1: A Feynman diagram showing the problematic photon-exchange topology in which the photon is
exchanged between the lepton and a quark. The momentum routing shown corresponds to that used in Eq. (5).
The vertical dotted line cuts through the three particle which complicate the Euclidean-space treatment of
this process when the sum of their energies is near or below the mass of the kaon.

This is the problem solved by infinite-volume reconstruction (IVR) [6]. As is demonstrated
below, the IVR technique explicitly limits the time extent of the QCD volume over which the
pion-photon vertex is integrated. The upper limit on the time is conventionally labeled 𝑡𝑠. This
restriction of the time integration is indicated by the arrow labeled IVR in Fig. 1. If the time 𝑥0 of
this interaction point is also required to be sufficiently far from the weak vertex that only the pion
propagation shown in the figure is possible, then a simple spatial Fourier transformation performed
on the position dependence of that interaction point will extract all the information needed for the
numerical integration of that interaction point over an infinite space-time volume with 𝑥0 > 𝑡𝑠 to be
accurately performed, thereby reconstructing the needed infinite-volume amplitude.

2. Electromagnetic corrections to 𝐾/𝜋 → ℓ𝜈ℓ and 𝐾 → 𝜋ℓ𝜈ℓ

After this introduction to the methods that we propose to use for the lattice QCD calculation of
the E&M corrections to 𝐾 → 𝜋ℓ𝜈ℓ decay, we now briefly discuss the status of the E&M corrections
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to 𝐾/𝜋 → ℓ𝜈ℓ decay and the difficulties inherent in the more complex lattice calculation of the
E&M corrections to 𝐾 → 𝜋ℓ𝜈ℓ decay, difficulties which have prevented the formulation of an ab
initio lattice calculation of these corrections until now.

𝐾/𝜋 → ℓ𝜈ℓ A method for the calculation of the E&M corrections to this decay was first pro-
posed using QEDL and the calculation carried out by the Rome123-Southampton collaboration [7–
10]. Following similar methods a second independent calculation was presented in Ref. [11] which
also used QEDL but with physical quark masses. The leading finite-volume correction depend on
the lattice extent 𝐿 as 1/𝐿, a correction which is universal and can be computed in free scalar
electrodynamics. Corrections falling with higher powers of 1/𝐿 are also present but are struc-
ture dependent and at present unknown. The size of the 1/𝐿3 corrections is an important open
question [11, 12]. See also recent work presented at this conference [13–15].

In Ref. [16] we proposed in detail a second approach to this calculation using QED∞ and
heavily exploiting IVR. This approach offers two interesting advantages: (i) the finite-volume
errors fall exponentially with increasing lattice extent and (ii) the calculation can be organized so
the all infrared divergences appear in the analytic portion of the calculation and cancel exactly —
the lattice-determined amplitudes are each infrared finite. A calculation using these methods and
physical quark masses is currently underway.

In Appendix C of Ref. [16] we also describe how this same approach can be applied to the more
difficult problem of finding the E&M corrections to 𝐾 → 𝜋ℓ𝜈ℓ . That appendix is the subject of this
talk. Using lattice methods to calculate these corrections faces two significant obstacles, which are
most severe for the case of 𝐾

0 → 𝜋+ℓ−𝜈ℓ decay where the final lepton and pion are charged. Both
problems result from the E&M rescattering of the final 𝜋+ and ℓ−, corresponding to the Feynman
diagram topology shown in Fig. 1. The first difficulty arises when the intermediate 𝜋+ℓ−𝜈ℓ state
that is present before the exchange of the photon between the 𝜋+ and ℓ− carries an energy less than
𝑀𝐾 . Under these circumstances the Wick rotation of the integration contour followed by the loop
energy 𝑘0 is obstructed by exponential growth as a rotation of that contour is attempted. (Note,
these difficulties are also present when the pion is neutral but are less important since in that case
the pion-photon coupling vanishes as 𝑘2 → 0.)

The second, related difficulty comes from those 𝜋+ℓ−𝜈ℓ intermediate states whose energy is
close to 𝑀𝐾 . Such nearly on-shell states can travel without exponential suppression to the edges of
a finite QCD volume and introduce potentially large finite-volume corrections. This can be easily
seen if one compares an infinite-volume calculation of the complex 𝜋+ℓ− rescattering (described by
a singular integral with an imaginary part coming from an energy-conserving 𝜋+ℓ−𝜈ℓ state and a
real part given as a principal value) with the finite-volume result which would be a sum of discrete
finite-volume states each corresponding to a non-zero, but possibly small, non-covariant energy
denominator. We will now describe how these difficulties can be overcome.

3. Overview of the solution

Both of the difficulties identified in the previous section appear when the photon is exchanged
between the lepton and a quark and when the quark-photon vertex, identified as 𝑥 in Fig. 1, is located
at a time much later than the time of the weak vertex, taken here to be at the origin: 𝑥0 ≫ 0. In this
problematic region, the dominant contribution will come from the single-pion intermediate state,
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allowing the QCD factor in the decay amplitude to be written:

A𝜇𝜈
𝜋 ( ®𝑝𝜋 , ®𝑥, 𝑥0) = ⟨𝜋( ®𝑝𝜋) |𝐽𝜇EM(®𝑥, 𝑥0)

[∫
𝑑3𝑝 |𝜋( ®𝑝)⟩⟨𝜋( ®𝑝) |

]
𝐽𝜈W(0) |𝐾 (®0)⟩. (1)

If the pion contribution identified in Eq. (1) is explicitly subtracted from the Minkowski-space
decay amplitude, then the subtracted amplitude can be Wick rotated without difficulty and the
resulting Euclidean-space QCD amplitude will be localized with contributions from the region
where the weak and E&M vertices are separated by the space-time interval 𝑥, falling exponentially
as exp(−|𝑥 |𝐸) in the Euclidean distance |𝑥 | with the energy 𝐸 likely given by the 𝜌 mass.

Thus, neither of the difficulties outlined above will appear in that portion of the calculation
from which the pion contribution given in Eq. (1) has been subtracted. The subtracted amplitude
can be correctly computed in Euclidean space and that Euclidean-space amplitude is exponentially
localized so that any finite-volume errors will also be exponentially suppressed. In this argument
we do ignore the contribution of possible low-energy 𝜋𝜋ℓ𝜈ℓ intermediate states. These four-particle
intermediate states are expected to be suppressed by 4-body phase space and to contribute at the few-
percent level. (The effects of a possible low-energy 𝜋𝜋𝜋ℓ𝜈ℓ intermediate state will be even smaller.)
In an eventual lattice calculations such contributions must be estimated phenomenologically and
their omission included as a systematic error or they can be avoided altogether by restricting the
final state kinematics to a region where one or both states cannot contribute.

As we discuss in the next section, the Minkowski-space amplitude given in Eq. (1) can be
computed from lattice QCD using IVR. More specifically two calculations are required. First this
single-pion amplitude can be subtracted from the complete decay amplitude and their difference
Wick-rotated and evaluated using lattice methods in Euclidean space. Second, lattice QCD can be
used to determine this single-pion amplitude in Minkowski space, compensating for this subtraction.
This explicit Minkowski-space contribution then provides a first-principles, non-perturbative result
that correctly contains the complex pion-lepton rescattering effects with a real part coming from
the proper infinite-volume principal part computation and an imaginary part arising from the usual
energy-conserving delta function. This dual-use of the IVR method allows both a conventional
Euclidean lattice calculation of the short distance part of the decay amplitude with exponentially
suppressed finite-volume errors and the Minkowski-space calculation of the pion-lepton scattering,
including the non-perturbative effects of the pion form factor.

4. Infinite-volume reconstruction of the single-pion contribution

The IVR technique exploits the known space-time dependence of amplitudes which are dom-
inated by a single-pion intermediate state. Specifically we can express the critical, single-pion
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Minkowski amplitude given in Eq. (1) as follows:

A𝜇𝜈
𝜋 ( ®𝑝𝜋 , ®𝑥, 𝑥0) = ⟨𝜋( ®𝑝𝜋) |𝐽𝜇EM(®𝑥, 𝑥0)

[∫
𝑑3𝑝 |𝜋( ®𝑝)⟩⟨𝜋( ®𝑝) |

]
𝐽𝜈W(0) |𝐾 (®0)⟩𝑀 . (2)

=

∫
𝑑3𝑝𝑒−𝑖 (𝑥0+𝑖𝑡𝑠 ) (𝐸 ®𝑝−𝐸𝜋 ) ⟨𝜋( ®𝑝𝜋) |𝐽𝜇EM(®𝑥,−𝑖𝑡𝑠) |𝜋( ®𝑝)⟩⟨𝜋( ®𝑝) |𝐽𝜈W(0) |𝐾®0⟩𝑀 (3)

=

∫
𝑑3𝑝𝑒−𝑖 (𝑥0+𝑖𝑡𝑠 ) (𝐸 ®𝑝−𝐸𝜋 )

∫
𝑑3𝑦

(2𝜋)3 𝑒
𝑖 ( ®𝑝− ®𝑝𝜋 ) · ( ®𝑥−®𝑦) (4)

ℎ𝜇𝜌ℎ𝜈𝜎 ⟨𝜋( ®𝑝𝜋) |𝐽𝜌EM(®𝑦, 𝑡𝑠)𝐽𝜎W (0) |𝐾®0⟩𝐸 ,

where 𝐸 ®𝑝 =
√︁
®𝑝 2 + 𝑀2

𝜋 and for simplicity we use 𝐸𝜋 = 𝐸 ®𝑝𝜋 . The subscripts 𝑀 and 𝐸 identify
QCD amplitudes that are computed in Minkowski and Euclidean space, respectively. The tensor
ℎ𝛼𝛽 is a diagonal matrix with either 1 or 𝑖 on the diagonal as needed to convert the Euclidean
conventions for the current components in the Euclidean-space amplitude on the second line of
Eq. (4) into the Minkowski-space conventions used in the Minkowski-space amplitude A𝜇𝜈

𝜋 which
appears on the left-hand side of Eq. (2).

Equation (3) follows from Eq. (2) by simply inserting +𝑖𝑡𝑠 into the argument of the exponent and
a canceling shift of−𝑖𝑡𝑠 in the argument of 𝐽EM. Equation (4) is obtained from Eq. (3) by recognizing
the Minkowski-space amplitude with an imaginary time argument as actually a Euclidean amplitude
and replacing the explicit insertion of a single-pion intermediate state carrying momentum ®𝑝 by a
Fourier transform which projects onto the same state. Of course, we must require that the time 𝑡𝑠 is
sufficiently large that only single-pion intermediate states can contribute.

Equation (4) provides the IVR result which we need. The Minkowski-space single-pion
contribution to the QCD matrix element for 𝑥0 > 0 is expressed as the Fourier transform of a
Euclidean amplitude that can be directly evaluated in a finite-volume lattice QCD calculation. This
result can be inserted into the Feynman amplitude represented by Fig. 1 to give the contribution
of this single-pion intermediate state to the E&M correction to the 𝐾 → 𝜋ℓ𝜈ℓ decay in which the
photon is exchanged between the charged lepton and a quark:

A 𝐼
𝐾ℓ3( ®𝑝𝜋 , ®𝑝ℓ) =

∫
𝑑4𝑘

∫
𝑑4𝑥 𝜃 (𝑥0)𝑒−𝑖 ( ®𝑥 ·

®𝑘−𝑥0𝑘0 )A𝜇𝜈
𝜋 ( ®𝑝𝜋 , ®𝑥, 𝑥0)

· 1
𝑘2 − 𝑖𝜖

�̄�ℓ ( ®𝑝ℓ)𝛾𝜇
(
𝛾 · (𝑝ℓ + 𝑘) + 𝑚ℓ

)
𝛾𝜈 (1 − 𝛾5)𝑣𝜈 ( ®𝑝 �̄�)

(𝑝ℓ + 𝑘)2 + 𝑚2
ℓ
− 𝑖𝜖

. (5)

≡
∫
𝑑4𝑥 𝐿 ( ®𝑝ℓ , 𝑥)𝑀𝜇𝜈A

𝜇𝜈
𝜋 ( ®𝑝𝜋 , ®𝑥, 𝑥0). (6)

where Eq. (6) provides a definition for the analytic “leptonic” factor 𝐿 ( ®𝑝ℓ , 𝑥)𝑀𝜇𝜈 which is defined in
Minkowski-space. We have labeled this single-pion contribution A 𝐼

𝐾ℓ3
These same quantities can be used to write an explicit formula for the remaining contribution to

this problematic diagram in which the photon is exchanged between the lepton and a quark, which
we label A 𝐼 𝐼

𝐾ℓ3. This is the contribution from which the single-pion amplitude has been subtracted,
allowing a Wick rotation to Euclidean space and subsequent lattice QCD evaluation:

A 𝐼 𝐼
𝐾ℓ3( ®𝑝𝜋 , ®𝑝ℓ) =

∫
𝑑4𝑥 𝐿 ( ®𝑝ℓ , 𝑥)𝐸𝜇𝜈

[
⟨𝜋( ®𝑝𝜋) |𝐽𝜇EM(𝑥)𝐽𝜈W(0) |𝐾 (®0)⟩𝐸 (7)

−ℎ𝜇𝜌ℎ𝜈𝜎A𝜌𝜎
𝜋 ( ®𝑝𝜋 , ®𝑥,−𝑖𝑥0)

]
.
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Here the subtraction of the single-pion amplitudeA𝜌𝜎 ( ®𝑝𝜋 , ®𝑥,−𝑖𝑥0) results in a subtracted amplitude
which falls sufficiently rapidly that the usual Wick rotation to Euclidean space is well-defined. In
Eq. (7) we have introduced a Euclidean-space version, 𝐿 ( ®𝑝ℓ , 𝑥)𝐸𝜇𝜈 of the leptonic factor but simply
evaluated the Minkowski-space amplitude A𝜌𝜎

𝜋 ( ®𝑝𝜋 , ®𝑥, 𝑥0) at imaginary time.
An interesting issue raised by the finite-volume matrix elements which appear in Eqs. (4) and

(7) is the choice of the out-going pion momentum ®𝑝𝜋 . Since our approach is put forward as one
in which all finite-volume corrections are exponentially suppressed in the linear extent of the QCD
volume, we should expect that any pion momentum ®𝑝𝜋 will be accessible. In fact, this is the
case. We must introduce a local pion interpolating operator 𝜋(𝑥) and use its Fourier transform∫
𝑑3𝑥 exp(−𝑖 ®𝑝𝜋 · ®𝑥) to absorb the final-state pion when evaluating these matrix elements for the

general three-momentum ®𝑝𝜋 .
While the integration volume used to perform this Fourier transform must be limited to the

QCD volume, the exponential localization present in the Green’s functions that would be used
when evaluating Eq. (4) or (7) should result in this unwanted truncation of the Fourier transform
introducing only exponentially small errors. Of course, it is likely that these matrix elements
change slowly as the external momentum ®𝑝𝜋 varies so evaluation at a few allowed lattice momenta
®𝑝𝜋 = 2𝜋®𝑛/𝐿 where ®𝑛 is a three-tuple of integers, should be sufficient.

5. Conclusion

We have presented for the first time a strategy to use lattice QCD to evaluate the electro-
magnetic corrections to the decay 𝐾 → 𝜋ℓ𝜈ℓ [16]. The approach described uses infinite volume
reconstruction [6] and introduces finite-volume errors which decrease exponentially as the linear
extent of the volume used in the lattice calculation grows. We have focused on the diagram which
makes this calculation difficult for Euclidean-space lattice methods, where a photon is exchanged
between the final-state lepton and a quark. This amplitude, if naively evaluated in Euclidean space
will be dominated by an unphysical contribution in which the kaon decays into a pion, lepton and
lepton-neutrino with total energy below that of the kaon. This three-particle state then propagates
for an extended time before the final photon exchange produces the state with the final kinematics.
In the method proposed here infinite-volume reconstruction is used to determine the QCD Green’s
function in which the hadronic intermediate state which propagates from the weak current to the
E&M current carried by the quarks is a single pion. This Green’s function can then be used both to
remove the unwanted 𝜋ℓ𝜈ℓ state described above and to calculate the complex, Minkowski-space
E&M rescattering between the final lepton and pion – the other challenging component of this
calculation.

In this presentation we have focused on these two issues which are present in the particular
diagram shown in Fig. 1. We expect that the other aspects of this calculation will be straight-forward
applications of the methods already developed in Ref. [16]. The methods in that paper are now
being applied in a physical calculation of the E&M corrections to 𝐾/𝜋 → ℓ𝜈ℓ decay, already a
very challenging calculation. The more complicated 𝐾 → 𝜋ℓ𝜈ℓ calculation discussed in these
proceedings must wait at least until that first calculation is complete.
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